Свободная энергия реально работающие схемы: работающие схемы, как получить в домашних условиях

Содержание

работающие схемы, как получить в домашних условиях

Многие думают, что газ, уголь или нефть — единственные источники, из которых можно получать энергию. Но атомы сами по себе достаточно опасны. Гидроэлектростанции тоже строятся, но это трудоёмкий и опасный процесс. Можно ли найти альтернативу? Она есть, и далеко не в единственном варианте. Получение энергии из эфира своими руками возможно, но требует некоторых навыков.

Что это такое

Сам термин «свободной энергии» появился, ещё когда широкомасштабно внедрялись двигатели внутреннего сгорания, когда от затрачиваемого угля зависела проблема получения нужных количеств энергии. Древесина и нефтепродукты тоже учитывались. Под свободной энергией принято понимать такую силу, для добычи которой не нужно тратить большое количество топлива. Значит, расходование ресурсов не требуется. В том числе — когда создают трансгенератор с самозапиткой.

Сейчас создают безтопливные генераторы, реализующие подобные схемы.

Некоторые из них давно начали работать, получая энергию от солнца и ветра, других тому подобных природных явлений. Но существуют и другие концепции, направленные на обход закона о сохранении энергии.

Установка Тесла

Параметры генераторов

Самый простой вариант такого генератора можно представить как набор из нескольких катушек, взаимодействующих с магнитными полями, образующимися вокруг устройства.

Необходимо учитывать следующие параметры, когда для создания такого генератора выбирают внутренние элементы:

  1. Первичные катушки лучше делать из нескольких витков толстого провода, когда разрабатывают генератор энергии. Тогда прибор отличается низким омическим сопротивлением, малой индуктивностью.
  2. Во вторичной катушке количество витков наоборот — больше. И сам провод достаточно тонкий. При такой конфигурации энергетический выброс будет максимальным. Волны будут распространяться на большее расстояние. Неважно, какую выбрали схему генератора свободной энергии на отечественных деталях.

Основной эффект во много раз усиливается, если подключить разрядник параллельно колебательному контуру.

Упрощённый вариант

Принцип работы

Чтобы разобраться с главным принципом, по которому работают такие устройства, сначала надо вспомнить одно правило — напряжённость в каждой точке устройства прямо пропорциональна квадрату тока, который протекает по проводнику. При появлении электрического тока вокруг последнего всегда появляется поле. Оно способно распространять своё действие на большие расстояния. Легко создать и в генераторе Романова свободную энергию по инструкции своими руками.

Схему обеспечивает постоянная подкачка энергии из внешнего источника. Образуется она за счёт переменного ВЧ тока. Результат — поле начинает пульсировать, распространять свой сигнал. Энергетические характеристики, таким образом, проявляются в кинетическом виде. Если этот процесс форсировать, удастся получить интересный эфирный эффект. Он проявляет себя как волна, обладающая мощной ударной характеристикой.

Электромагнитные установки работают иначе.

Интересно. Ситуация способствует переходу к оперированию с большими мощностями.

Генераторы Тесла — устройства, в которых удаётся реализовать этот процесс. Природный аналог — эфирный разряд молнии, электрогенераторы тоже могут создавать такую энергию.

Бесплатное электричество от магнитов

Как соорудить генератор свободной энергии своими руками?

Генераторы создаются на основе следующих комплектующих и приспособлений:

  • Элемент питания и резистор номиналом 2,2 КОМ. Его включать в чертёж обязательно.
  • Ферритовое колечко любой магнитной проводимости.
  • Конденсатор с ёмкостью 0,22 мкф, рассчитанный для напряжения до 250 Вольт.
  • Толстая медная шина, чей диаметр — около 2 миллиметров. В дополнение берут тонкие медные провода в эмалевой изоляции, с диаметром 0,01 мм. Тогда и радиантные установки дают результат.
  • Пластиковая или картонная трубка, чей диаметр составляет 1,5-2,5 сантиметра.
  • Любой транзистор, обладающий подходящими параметрами. Хорошо, если в базовой комплектации, помимо генератора, будет присутствовать дополнительная инструкция. Иначе невозможно заняться реализацией практических схем генераторов свободной энергии с самозапиткой.

Интересно. В случае с дополнительными развязками между питающей и высоковольтной цепями применяют специальный входной фильтр. Можно не ставить такое приспособление, а подавать напряжение напрямую.

Для сборки можно использовать плату из стеклотекстолита, либо другое основание, обладающее похожими характеристиками. Главное — чтобы поверхность вмещала радиатор со всеми необходимыми приспособлениями. На пластиковой трубке наматывают обе катушки таким образом, чтобы одна размещалась внутри другой. Виток к витку наматывают высоковольтную обмотку, тоже расположенную внутри. Иногда этого требуют и самодельные импульсные безтопливные генераторы энергии.

Форма генерируемых импульсов обязательно проверяется на работоспособность, когда сборка закончена.

Для этого берут осциллограф, цифровой или электронный. При настройке следует обращать внимание только на один важный параметр — наличие крутых фронтов, которыми отличается генерируемая последовательность прямоугольных контактов.

Безтопливные генераторы

Схема генератора

Минимальные мощности из любых устройств можно получить несколькими способами:

  1. Атмосферный конденсат в качестве источника. Его можно использовать при создании трансгенератора.
  2. Ферримагнитные сплавы.
  3. Тёплая вода.
  4. Через магниты. Условия для них нужны минимальные.

Но необходимо научиться управлять этим явлением, чтобы эффект был максимальным.

Схема свободной энергии

Магнитный генератор

Подача магнитного поля к электрической катушке — главный эффект, которого можно добиться при использовании такого устройства. Список основных компонентов выглядит следующим образом:

  • Поддерживающая катушка, для регулировки электричества.
  • Питающая катушка.
  • Запирающая катушка.
  • Пусковая катушка, необходимая и для бестопливных приборов.

Схема включает транзистор управления вместе с конденсатором, диодами, ограничительным резистором и нагрузкой.

Создание переменного магнитного потока — вопрос, при решении которого у владельцев устройств возникает больше всего вопросов. Рекомендуется монтировать два контура, у которых есть постоянные магниты. Тогда силовые линии организуются со встречным направлением.

С самозапиткой

Необходимо создать схему, которая подаёт на рабочее устройство основной поток электроэнергии. После этого генераторы переходят к автоколебательному режиму. Во внешнем питании они больше не нуждаются.

Такое устройство получило название «качера». Но правильное название — блокинг-генератор. Оно создаёт мощный электрический импульс.

Всего выделяют три основные группы блокинг-генераторов:

  1. На полевых транзисторах, затвор у которых изолирован.
  2. С основой в виде биполярных транзисторов.
  3. С электронными лампами, такие конструкции тоже встречаются часто.
Энергия из эфира

Генераторы Теслы

Конструкция предполагает применение трансформатора, как высоковольтные аналоги. Принцип работы — примерно такой же, как и у обычных изделий. На выходе у этого приспособления образуются так называемые излишки энергии. Они значительно превосходят то, что потратилось при запуске устройства. Главное — выбрать правильную методику изготовления трансформатора, настроить приспособление на работу.

Как получить энергию из эфира своими руками?

Микроквантовые эфирные потоки у многих подобных генераторов — главные источники, откуда поступает энергия для генераторов. Системы можно пробовать подключать через конденсаторы, литиевые батарейки. Можно выбирать различные материалы в зависимости от показателей, которые они дают. Тогда и количество кВт будет разным.

Пока что свободная энергия — явление мало изученное на практике. Поэтому сохраняется много пробелов при конструировании генераторов. Только практические эксперименты помогают найти ответ на большинство вопросов. Но многие крупные производители электронных устройств уже заинтересованы в этом направлении.

Субботнее FAQ на тему свободной энергии и БТГ / Хабр

Вышедший на прошлой неделе критический обзор по теме «свободной энергии» породил вопросы, в том числе и на других ресурсах. Поэтому пока работаю над обещанным материалом, решил выпустить небольшое внеочередное FAQ — чтобы конструктивно расставить точки над «i» по особо актуальным темам.

Q: Решение французской Академии Наук от 1775 г. о запрете вечных двигателей — общеизвестный исторический факт. Который однозначно намекает на существование секретных технологий получения энергии, и их строжайшее сокрытие на протяжении уже двух сотен лет.

A: Надеюсь после приведенных ниже аргументов, вопрос с Парижской Академией Наук будет решен раз и навсегда для всех искателей СЭ.

Начнем с точной формулировки: по факту французская АН никогда никому ничего не запрещала. Ученые всего лишь официально отказались от рассмотрения проектов и идей вечных двигателей. Государственные научные исследования финансируются из гос. бюджета, на средства собранные с налогоплательщиков — т.е за наш с вами счет. Так было и в 18 веке, и то же самое происходит по сей день. Закономерен вопрос: имеет ли смысл тратить крайне дорогостоящее рабочее время ученых на бесплатное для заявителя рассмотрение идеи, пришедшей ему в пасмурное утро после бодуна? Акцентирую внимание — именно идей, эскизов, проектов — то есть плодов воображения, теоретических измышлений авторов… Уж лучше пусть ученые занимаются созданием практически полезных технологий — подсказывает здравый смысл.

Теперь о том что можно и разрешено. Любой исследователь СЭ может обратиться к ученым для объяснения почему у него амперметр показывает сверхединичность, или даже созвать экспертную комиссию для рассмотрения проекта — но только за определенную оплату. Любой может приобрести в личное пользование приборы и оборудование широчайшего спектра — и ни одна собака не спросит «а зачем тебе гигагерцовый осциллограф, уж не вечняк ли собираешь…» Любой желающий может делать модель самостоятельно, или взять кредит под залог имущества и заказать изготовление на производстве — если конечно проект не коллайдерных масштабов. По-моему всё справедливо, нет никаких ограничений. Если уверен — вкладывайся и делай. А не уверен — не пытайся выехать с рисковыми проектами за чужой счет.

Q: Я к примеру сначала задергался, когда про закон сохранения прочитал (хотел даже минусов натыкать, не читая далее)

A: Наука, не смотря на популярность в обществе — весьма закрытая система. Причем её закрытость исходит не из секретности, а в первую очередь из высокой образовательной планки, необходимой для понимания глубины научных вопросов. Что бы ни творилось за её кулисами, какие бы на первый взгляд безумные гипотезы там не обсуждались — в мир наука выпускает проверенные знания и технологии. Инженер работает с тем что уже разведано и описано наукой. Он пользуется предоставленными ему моделями, не особо заморачивась из чего и как они выведены, главное что они практически работают.

Поэтому если к инженеру приходит вечнякостроитель, типа вот придумал нечто нарушающее ЗСЭ — вполне разумно гнать его метлой, не разбираясь.
Ученый при такой постановке вопроса тоже выставит за дверь, т.к. формулировка однозначно говорит что индивид не понимает основ физики, а заниматься его просвещением накладно.
Но если вопрос будет сформулирован корректно с научной точки зрения, к примеру: «вот прототип, вот схемы, выдаёт кажется сверхъединичность, не понимаю откуда берется дополнительная энергия» — возможно имеет смысл уделить внимание, показать автору где прячутся ошибки измерений или другие косяки. Правда корректностью формулировок не стремятся отличиться эфирщики, фитонно-радиантные энергетики, и другие шизотронщики — несущие вместо прототипов лишь свои представления, в корне не совместимые с научным подходом.

Q: Любой тепловой насос обладает КПД>1 Даже домашний холодильник, только никто об этом не подозревает

A: Да-да, и главное производители не в курсе что выпускают вечняки) В особенности кто не дочитал комменты на первоисточнике…
Если серьезно, тепловой насос это аналог ленты транспортера, доставляющей энергию из пункта «а» в пункт «б». При удачном стечении обстоятельств, на эту транспортировку уйдет намного меньше энергозатрат, чем объем передаваемой энергии — которая между прочим должна откуда-то взяться.

Общая схема любой энергопитающей системы:

Здесь Eo — энергия подаваемая на вход, к примеру механическая (утилизируемая).
На выходе: полезная — электричество E1, побочная но применимая — скажем тепло E2, и некоторая часть идет в потери.
Тепловой насос — всего лишь подмножество энергетических систем, для которых E2 отсуствует, а E0 и E1 — однородные виды энергии — тепловая. При этом питание собственных нужд (насос компрессора кондиционера) осуществляется от иного источника.

Q: Почему там загнобили участника Canep7 который не выдавал никакой отсебятины, а хотел лишь донести точку зрения Бедини как работает установка?

A: Именно по этой причине и заминусовали, за отсуствие «отсебятины» в научном смысле. За противоречие между тем что было задекларировано вначале: «я интересовался исследованиями Бедини и потому могу абсолютно уверенно утверждать, что вы ничерта не поняли сути его изобретения (открытия). Там дело совсем в другом» и тем что вылезло на свет когда ситуация прояснилась. Такого рода заявление подразумевает что были проведены собственные исследования, или хотя бы технически грамотный анализ принципов работы. А на деле выдал копипасту версии объяснения самого Бедини, которая и так написана на каждом заборе известна всем интересующимся — без какой-либо собственной проработки.

Q: Почему исследования фриков, согласен не особо компетентных в том что они делают, общим мнением сочли категорически ненаучными?

A: Потому что наука работает на переднем крае, исследует то что еще не познано человеком. И выдает новые знания, технологии, методики, продукты — которых ранее человечество просто не имело в своем арсенале. Исследования фриков носят либо философский характер — где обсуждаются недоказуемые и неопровергаемые общие вопросы бытия. Либо околотехническое творчество, в котором фрик имеет шансы узнать что-то для себя новое. Но всё это давно известно профильным специалистам, так что никакого вклада в расширение известной картины мира их деятельность не привносит. Поэтому и не является научной.

схемы, инструкции, описание. Происхождение генератора Тесла

Генератор Тесла — это прекрасная альтернатива солнечным панелям. Основным его достоинством считаются простота сборки, небольшие затраты на изготовление и минимальное количество материалов. Понятно, что эта разновидность генератора будет производить меньше электричества, нежели солнечная панель, однако можно сделать сразу несколько и получить неплохое дополнение в виде бесплатной энергии.

Происхождение генератора Тесла

Знаменитый ученый Никола Тесла полагал, что наш мир полностью состоит из разных форм энергии, для получения и эксплуатации которой нужно собрать улавливающий прибор. Он успел разработать множество конструкций генераторов бестопливного типа. Один из его проектов можно реализовать своими руками в домашних условиях .

Принцип функционирования бестопливного генератора Тесла состоит в том, что он применяет энергию солнца как источник положительно заряженных электронов, а энергию земли как источник электронов с отрицательным потенциалом. В результате образуется разница потенциалов, с помощью которой и создается электроток.

Система состоит из пары электродов, один из которых улавливает энергетические источники, а второй применяется в качестве заземления. Роль накопителя в конструкции играет емкостный конденсатор или линий-ионный аккумулятор (более современные вариант).

Как уже было сказано, генератор Тесла требует минимум материалов. Для его создания нужно взять следующее:

  • провода;
  • фанерные или картонные листы;
  • фольга;
  • резистор;
  • емкостный конденсатор.

Процесс сборки генератора Тесла своими руками не очень сложный. Он состоит из нескольких этапов.

Устройство заземления

Для начала необходимо позаботиться о надежном и правильном заземлении. Если самодельное

оборудование будет эксплуатироваться в деревне или на даче, то для создания хорошего заземления нужно просто вбить поглубже металлический штырь в землю. Также можно подключить установку к конструкциям, которые уходят в почву на достаточную глубину.

Если генератор будет применяться в городской квартире, то тут для заземления можно воспользоваться газовыми или водопроводными трубами. Кроме того, можно подключиться и к электрическим розеткам, которые, в свою очередь, обладают заземлением.

Изготовление приемника электронов

Затем нужно сделать прибор, улавливающий положительные частицы, которые вырабатываются источником света. Подобным источником может выступать не только солнце, но и осветительное оборудование. Генератор Тесла может вырабатывать электричество даже от дневного света, причем и в пасмурную погоду.

Приемник включает в свою конструкцию кусок фольги, зафиксированный на листе картона или фанеры. Когда световые частицы будут попадать на фольгу, в ее структуре начнут формироваться токи. Объем получаемой энергии зависит от площади фольги. Для увеличения показателей мощности установки можно собрать сразу несколько приемников и обеспечить их параллельное соединение.

Подсоединение схемы устройства

На следующей стадии необходимо подключить контакты друг к другу. Это делать нужно через емкостный конденсатор. Если рассматривать электроконденсатор, то у него на корпусе есть обозначения полярностей. К «минусовому» контакту следует подсоединить заземление, а к «плюсовому» зафиксировать провод от фольги. После этого начнется зарядка конденсатора, с которого потом уже можно будет выделять электричество. В том случае, если мощность конденсатора окажется слишком высокой, то он может взорваться от чрезмерного количества энергии. Для того чтобы предотвратить проблемы, электроцепь дополняют специальным ограничительным резистором.

Если говорить о классическом конденсаторе из керамики, то в этом случае полярность не имеет никакого значения.

Кроме того, можно попытаться устроить систему не с помощью конденсатора, а с помощью литиевой батарейки. Тогда у вас будет возможность аккумулировать гораздо большее количество энергии.

На этом сборка генератора завершается. Для проверки напряжения в конденсаторе можно воспользоваться мультиметром. В том случае, если оно достаточное, можно попытаться подсоединить к установке небольшой светодиод. Такую генераторную установку можно применять для самых разных проектов, например, для изготовления устройств ночного освещения на основе светодиодов, которое не будет нуждаться в питании.

По сути, вместо фольги также можно воспользоваться и иными материалами:

  • алюминиевыми листами;
  • медными листами.

Если крыша вашего дома сделана из алюминия, то можно попытаться включить ее в схему генератора и посмотреть, какое количество энергии она может выработать.

Машина Баумана Тестатика (Дистатика, ML-machine) — прекрасный образец действующего генератора свободной энергии , построенного в условиях мастерской своими руками, когда руки и голова у человека на месте. Принципиально это двигатель-генератор, использующий для выработки электроэнергии статическое электричество.

Генератор получил известность после публикации в СМИ.

В духовной общине Methernita, Линден в Швейцарии, с 1980-х годов работают устройства, генерирующие 220 Вольт для бытовых нужд поселка. Суммарная мощность систем составляет более 750 Киловатт. Изобретатель назвал свое устройство Swiss M-L converter , Thesta-Distatica, и заявил, что он получил описание конструкции и принципы работы во время медитации.

С технической точки зрения, устройство представляет собой модернизированный электрофорный генератор Вимшурста, диски которого способны вращаться постоянно за счет сил электростатического взаимодействия. В конструкцию также входят постояные магниты. Машина с диаметром дисков 20 сантиметров производит около 200 Ватт мощности. Большая машина имеет диски диаметром 2 метра и производит около 30 Кватт.

Детали описания конструкции могут быть получены от Швейцарской Ассоциации Свободной Энергии. Проект развивается группой исследователей Methernita, CH 3517, Linden, Switzerland. В основе лежит электростатический генератор Вимшурста, который использует стальные или алюминиевые сегменты. Отмечено, что при использовании постоянных подковообразных магнитов в современной версии конвертера, ЭДС значительно увеличивается. Специальный диодный модуль и лейденские банки обеспечивают регулировку частоты за счет резонанса, поскольку они соединены с катушками подковообразных магнитов.

Генератор использует принцип усиления статики. Машина достаточно простая, ее реально собрать в домашних условиях. Вполне возможно получать мощность 10-20 Квт, чего для домашних нужд больше чем достаточно.

Предлагается инструкция для изготовления генератора в упрощенном варианте своими руками. Машина получается гораздо проще, если не преобразовывать энергию в напряжение 220 В 50 Гц, а сразу использовать ее, например для отопления. Для изготовления генератора не требуется больших познаний в электронике.

Сама идея устройства для получения дармовой энергии из эфира неизменно была очень востребована. Не только аматёры, но и многие именитые учёные всерьёз и небезрезультатно занимались этим вопросом. Нынче не стало меньше желающих разработать подобную установку и её сделать самому. Энергию из эфира для дома сегодня можно попытаться получить, используя простые и доступные схемы.

Наука не даёт вразумительного определения ни полю, ни энергии. Зато она ясно формулирует — энергия не берётся из ниоткуда и никуда не девается. Пытаясь добывать «энергию из ничего», мы можем только стараться «встраиваться» в процесс её естественного преобразования из одних видов в другие.

Энергия определяется полезной работой, а поле — пространственными характеристиками влияния его источника. И статический электрический заряд, и динамический магнитный эффект вокруг проводника с током, и тепло нагретого тела считаются полями.

Любое поле может выполнить полезную работу, следовательно, передать часть своей энергии. Именно это свойство побуждает искать источники дармовой энергии в различных полях. Считается, что такой энергии существует в разы больше, чем в освоенных человечеством традиционных источниках.

Например, мы умеем использовать энергию гравитации огромной Земли, но не умеем её извлекать из притяжения малюсенького камня. Она слишком незначительная, чтобы это имело смысл, но практически неисчерпаема. Если придумать некий способ её извлечения из камешка, мы получим новый источник энергии.

Примерно этим занимаются исследователи и разработчики всех видов и мастей в попытках извлечь «энергию из ничего». То поле, из которого различные изыскатели стремятся научиться добывать энергетический ресурс, они называют эфир.

Эфир и его свойства

Многие его разработки считаются утраченными ещё со времени его смерти . Одни из них известны исключительно как принципы, другие — всего лишь в общих чертах. Тем не менее, многие нынешние конструкторы пытаются сегодня воспроизвести открытия и устройства Тесла, пользуясь уже современными научными и технологическими открытиями.

Большинство идей Тесла базируются на извлечении её из полей, формируемых взаимодействием Земли со своей ионосферой. Эта система рассматривается как большой конденсатор, в котором одна пластина — Земля, а другая — её ионосфера, облучаемая космическими лучами. Как и любой конденсатор, такая система постоянно накапливает заряд.

А разрабатываемые по идеям Тесла различные самодельные устройства предназначены для извлечения этой энергии.

Нынешние и классические разработки

Современные открытия и технологические разработки предоставляют широкое поле деятельности в получении «холодного электричества». Кроме устройств по идеям Тесла, сегодня широко распространены такие разработки для получения «энергии из пустоты», как:

Все эти способы имеют своих приверженцев, но большинство из них довольно ресурсоёмкие и затратные. Немаловажно и то, что они требуют глубоких специальных знаний и изобретательности. Всё это делает подобное конструирование в домашних условиях затруднительным. Энергия из эфира своими руками может быть получена с помощью несложных и доступных схем. Их реализация не потребует глубоких знаний или больших издержек, но некоторая подгонка, настройка и расчёты всё же понадобятся.

Не все такие разработки можно назвать извлекающими именно «эфирную энергию» . С точки зрения отсутствия расхода ресурсов на выработку электроэнергии, их по праву можно назвать извлекающими «энергию из ничего». Энергоносители этих систем не разрушаются при передаче энергии — отдавая её, они тут же её снова накапливают. Сама же система может вырабатывать электроэнергию если и не вечно, то, по крайней мере, очень-очень долго.

Энергия воздушной тяги

Эта идея — типичный пример такого устройства. Она не является в строгом смысле слова способом извлечь энергию из эфира. Это, скорее, способ её простого, дешёвого и длительного получения.

Для его реализации понадобится высокая труба, 15 метров и более. Такая труба ставится вертикально. Нижнее и верхнее отверстия должны быть открыты. Внутри неё устанавливаются электродвигатели с пропеллерами соответствующего диаметра, которые должны легко крутиться вместе с ротором. Восходящий поток воздуха вращает лопасти и роторы электродвигателей, в статоре вырабатывается электроэнергия.

Незамысловатая домашняя мини-электростанция

Одно из самых элементарных устройств можно сделать самостоятельно из кулера от компьютера (рис.1). В нём используется такая современная разработка, как неодимовые магниты.

Для его изготовления нужно:

Такая электростанция позволяет работать подключённой к ней маленькой лампочке. Взяв мотор побольше и более сильные магниты, можно получить больше электроэнергии.

Применение магнитов и маховика

Возможности подобной электростанции значительно увеличиваются при использовании инерции тяжёлого маховика. Упрощённая модель такой конструкции показана на рис. 2.На сегодняшний день существует масса разработок — в том числе и запатентованных подобных конструкций с горизонтальным и вертикальным расположением маховика. Все они имеют общую схему устройства.

Основная деталь — барабан маховика, по окружности которого расположены довольно мощные неодимовые магниты. По окружности движения ротора-маховика расположены несколько электрических катушек, выполняющих роль электромагнита и генератора электричества (статора). В комплект также входит аккумулятор и устройство переключения направления подачи напряжения.

Будучи один раз запущен, маховик, вращаясь по кругу, возбуждает своими магнитами электромагнитное поле в катушках. Это приводит к появлению в проводнике электрического тока, который подаётся для зарядки аккумулятора. Периодически часть вырабатываемой электроэнергии используется для подталкивания маховика. Заявляемый разработчиками КПД такого механизма составляет 92%.

В обоих этих устройствах энергия вырабатывается за счёт инерции вращения и сравнительно недавно разработанных мощных магнитов. Понимая принцип работы устройства, можно попытаться сделать его самостоятельно дома. По словам конструкторов, с помощью него можно получать до 5 кВт*ч полезной мощности.

Простой генератор Тесла

Сегодняшнее воздушное пространство значительно сильнее ионизировано, чем во времена Тесла.

Основание тому — существование огромного количества линий электропередач, источников радиоволн и прочих причин ионизации. Поэтому попытка получить электричество из эфира своими руками с помощью простейших конструкций по идеям Тесла может быть весьма эффективной.

Начинать самостоятельные эксперименты лучше с доступных для изготовления в домашних условиях приспособлений. Одно из них — простейший трансформатор Тесла. Это устройство позволяет буквально «получать энергию из воздуха». Его принципиальная схема изображена на рис. 3.В этой установке используются две пластины. Одна закапывается в землю, а другая поднимается на некоторую высоту над её поверхностью.

На пластинах, как и в конденсаторе, накапливаются потенциалы противоположного знака. Само устройство состоит из стартового источника питания (аккумулятор 12 В), подключённого через разрядник к первичной обмотке трансформатора, и параллельно включённого конденсатора. Накопившийся заряд пластин снимается со вторичной обмотки трансформатора.

Эта конструкция представляет опасность тем, что фактически моделирует возникновение атмосферного разряда молнии, и работы с такой установкой нужно проводить с соблюдением всех мер безопасности.

С помощью подобной конструкции можно получить небольшое количество электричества. Для более серьёзных целей потребуется использовать более сложные и дорогостоящие в реализации схемы. В этом случае также не обойтись без достаточных знаний физики и электроники.

Устройство разработки Стивена Марка

Эта установка, созданная электриком и изобретателем Стивеном Марком, предназначена для получения уже довольно значительного количества холодного электричества (рис.4). С помощью него можно питать как лампы накаливания, так и сложные бытовые устройства — электроинструмент, телерадиоаппаратуру, электродвигатели. Он назвал его Тороидальный Генератор Стивена Марка (TPU). Изобретение подтверждено патентом США от 27 июля 2006 года.

Принцип его действия основан на создании магнитного вихря, резонансных частот и ударов тока в металле. В отличие от многих других подобных устройств, будучи уже запущенным, генератор не требует подпитки и может работать неограниченное количество времени. Он был воссоздан много раз различными испытателями, которые подтверждают его работоспособность.

Существуют несколько конструкций этого устройства. Принципиально они между собой не разнятся, есть некоторые отличия в реализации схемы.

Здесь приведена схема и конструкция 2-частотного TPU. В основу принципа его действия положено столкновение вращающихся магнитных полей. Устройство имеет вес меньше 100 г и довольно простую конструкцию. Оно включает в себя такие компоненты:

Внутрення кольцеобразная основа (рис.5) выполняет роль стабильной платформы, вокруг которой расположены все другие катушки. Материал для изготовления кольца — пластик, фанера, мягкий полиуретан.

Размеры кольца:

  • ширина: 25 мм;
  • внешний диаметр: 230 мм;
  • внутренний диаметр: 180 мм;
  • толщина: 5 мм.

Внутренняя коллекторная катушка может быть сделана из 1–3 витков 5 параллельных многожильных проводов-литцендратов. Для намотки витков можно также использовать обычный одножильный провод с диаметром жилы 1 мм. Схематический вид после изготовления представлен на рис. 6.

Внешняя коллекторная катушка , она же — выходной коллектор двухполярного типа. Для его намотки можно использовать тот же провод, что и для управляющих катушек. Им покрывается вся доступная поверхность.

Каждая из катушек управления (рис.7) — плоского типа, по 90 градусов для установки вращающегося магнитного поля.

Чтобы сделать катушки с одинаковым количеством витков, необходимо до наматывания отрезать 8 проводов немного длиннее метра. Выводы поможет различать разный цвет проводов. Каждая катушка имеет 21 виток двухпроводного стандартного одножильного провода сечением 1 мм со стандартной изоляцией.

Выводы с наконечниками (рис. 7) — это два вывода внутренней коллекторной катушки.

Обязательной является установка общей обратной земли и 10-микрофарадного полиэстрового конденсатора, без которого на всё оборудование будут отрицательно воздействовать токи и возвращаемое излучение.

Схема соединений делится на 4 секции:

  • входа;
  • управления;
  • катушек;
  • выхода.

Секция входа предназначена для предоставления интерфейса к генератору прямоугольного сигнала

и выдачи синхронизированных прямоугольных волн подходящим образом. Это обеспечивается с помощью КМОП-мультивибратора.

Для реализации секции управления МОСФИТами (MOSFET) лучшее решение — стандартный интерфейс IRF7307, предлагаемый конструктором.

Как видно из последней модели, человеку без специального образования и навыков работы с физическими устройствами и приборами собрать такую конструкцию дома будет достаточно сложно.

Существует множество схем и описаний подобных устройств других авторов. Капанадзе, Мельниченко, Акимов, Романов, Дональд (Дон) Смит хорошо известны всем желающим найти способ получения энергии из ничего. Многие конструкции довольно простые и недорогие для того, чтобы их сделать и самому получить энергию из эфира для дома.

Вполне возможно, что многим таким аматёрам удастся практически достоверно узнать, как получить электричество в домашних условиях.

Счет за электричество – неминуемая статья расходов для любого современного человека. Централизованное электроснабжение постоянно дорожает, но потребление электричества с каждым годом все равно растет. Особенно остро эта проблема стоит для майнеров, ведь, как известно, добыча криптовалюты потребляет значительное количество электроэнергиии, в связи с чем счета на ее оплату могут превышать прибыль от . При таких условиях стоит обратить внимание на то, что практически все природные ресурсы могут быть использованы для преобразования в электричество. Даже в воздухе присутствует статическое электричество, осталось только найти методы им воспользоваться.

Где взять бесплатное электричество?

Добыть электричество можно из всего. Единственное условие: необходим проводник и разница потенциалов. Ученые и практики постоянно ищут новые альтернативные источники электричества и энергии, которые будут бесплатными. Следует уточнить, что под бесплатными подразумевается отсутствие платы за централизованное энергоснабжение, но само оборудование и его установка все же стоит средств. Правда, такие вложения с лихвой окупаются впоследствии.

На данный момент бесплатная электроэнергия добывается из трех альтернативных источников:

Методика получения электричества Особенности выработки энергии
Солнечная энергия
Требует установки солнечных батарей или коллектора из стеклянных трубок. В первом случае электричество будет вырабатываться благодаря постоянному движению электронов под воздействием солнечных лучей внутри батареи, во втором — электричество будет преобразовано из тепла от нагрева.
Ветряная энергия
При ветре лопасти ветряка начнут активно вращаться, вырабатывая электричество, которое может сразу поставляться в аккумулятор или сеть.
Геотермальная энергия
Метод заключается в получение тепла из глубины грунта и его последующей переработки в электроэнергию. Для этого пробуривают скважину и устанавливают зонд с теплоносителем, который будет забирать часть постоянного тепла, существующего в глубине земли.

Такие методы используются как обычными потребителями, так и в широких масштабах. Например, огромные геотермальные станции установлены в Исландии и вырабатывают сотни МВт.

Как сделать бесплатное электричество дома?

Бесплатное электричество в квартире должно быть мощным и постоянным, поэтому для полного обеспечения потребления потребуется мощная установка. Первым делом следует определить наиболее подходящий метод. Так, для солнечных регионов рекомендуется установка . Если солнечной энергии недостаточно тогда следует использовать ветряные или геотермальные электростанции. Последний метод особенно подходит для регионов расположенных в относительной близости к вулканическим зонам.

Определившись с методом получения энергии, следует также позаботиться о безопасности и сохранности электроприборов. Для этого домашняя электростанция должна быть подключена к сети через инвертор и стабилизатор напряжения для обеспечения подачи тока без резких скачков. Стоит также учитывать, что альтернативные источники достаточно капризны к погодным условиям. При отсутствии соответствующих климатических условий выработка электроэнергии остановиться или будет недостаточной. Поэтому следует обзавестись также мощными аккумуляторами для накопления на случай отсутствия выработки.

Готовые установки альтернативных электростанций широко представлены на рынке. Правда, их стоимость достаточно высока, но в среднем все они окупаются от 2-х до 5-ти лет. Сэкономить можно приобретая не готовую установку, а ее комплектующие, а затем уже самостоятельно спроектировать и подключить электростанцию.

Как получить бесплатное электричество на даче?

Подключение к централизованной системе энергоснабжение проблематичный процесс и часто дачи остаются без света долгое время. Здесь на помощь может прийти установка дизельного генератора или альтернативные способы добычи.

На дачах зачастую отсутствует огромное количество электроприборов. Соответственно, потребление электроэнергии значительно меньше. Для начала следует определить преимущественный период времени, который будет проводиться в помещении. Так для летних дачников подойдут солнечные коллекторы и батареи, для остальных ветряные методы.

Питать отдельные электроприборы или освещать помещение можно также собирая электроэнергию от заземления. Схема для получения бесплатного электричества: ноль — нагрузка — земля. Напряжение внутри дома подается через фазовый и нулевой проводник. Включив в эту схему третий проводник нагрузки к нулю, в него будет направлено от 12Вт до 15Вт, которые не будут фиксироваться приборами учета. Для такой схемы обязательно нужно позаботиться о надежном заземлении. Ноль и земля не несут опасности удара током.

Бесплатное электричество из земли

Земля благоприятная среда для извлечения электричества. В грунте присутствуют три среды:

  • влажность — капли воды;
  • твердость — минералы;
  • газообразность — воздух между минералами и водой.

Кроме того, в почве постоянно проходят электрические процессы, так как его основной гумусовый комплекс представляет собой систему, на внешней оболочке которого формируется отрицательный заряд, а на внутренней положительный, что влечет за собой постоянное притягивание положительно заряженных электронов к отрицательным.

Метод похож на тот, что используется в обычных батарейках. Для получения электричества из земли следует погрузить в грунт на глубину полуметра два электрода. Один медный, второй из оцинкованного железа. Расстояние между электродами должно быть примерно в 25 см. Грунт между проводниками заливается солевым раствором, а к проводникам подключаются провода, на одном будет положительный заряд, на втором отрицательный.

В практических условиях выходная мощность такой установки составит приблизительно 3Вт. Мощность заряда также зависит от состава грунта. Конечно, такой мощности недостаточно для того, чтоб обеспечить энергоснабжение в частном доме, но установку можно усилить, изменяя размер электродов или последовательно соединить между собой необходимое количество. Проведя первый опыт, можно примерно просчитать, сколько понадобиться таких установок, чтоб обеспечить 1 кВт, а далее рассчитать необходимое количество на основе среднего потребления в сутки.

Как добыть бесплатное электричество из воздуха?

Впервые о получении электричества из воздуха заговорил Никола Тесла. Опыты ученого доказали, что между основанием и поднятой металлической пластиной существует статическое электричество, которое можно накапливать. К тому же, воздух в современном мире постоянно подвергается дополнительной ионизации за счет функционирования множества электросетей.

Почва может выступать основанием для механизма добычи электроэнергии из воздуха. Металлическую пластину размещают на проводнике. Она должна быть размещена выше других, рядом стоящих объектов. Выходы от проводника подключают к аккумулятору, в котором будет накапливаться статическое электричество.

Бесплатное электричество от ЛЭП

Линии электропередач пропускают по своим проводам огромное количество электричества. Вокруг провода, в котором идет ток, создается электромагнитное поле. Таким образом, если поместить под ЛЭП кабель, то на его концах образуется электрический ток, точную мощность которого можно просчитать, зная какой мощности ток передается по кабелю.

Еще одним способом является создание трансформатора вблизи линий электропередач. Трансформатор можно создать при помощи медной проволоки и стержня, используя метод первичной и вторичной обмотки. Выходная мощность тока в таком случае зависит от объема и мощности трансформатора.

Стоит учесть, что такая система получения бесплатного электричества является незаконной, хоть в ней и отсутствует фактическое незаконное подключение к сети. Дело в том, что такое вклинивание в систему электроснабжение наносит ущерб ее мощности и может караться штрафами.

Бесплатное электричество из сетевого фильтра

Многие искатели бесплатного электричества наверняка находили в интернете версии о том, что удлинитель может стать источником нескончаемой свободной энергии, образовывая замкнутую цепь. Для этого следует взять сетевой фильтр с длиной провода не менее трех метров. Из кабеля сложить катушку, диаметром не более 30 см, подключить к розетке потребителя электроэнергии, изолировать все свободные отверстия, оставив только еще одну розетку для вилки самого удлинителя.

Далее сетевому фильтру необходимо дать изначальный заряд. Легче всего это сделать подключив удлинитель к функционирующей сети, а затем за доли секунды замкнуть в себе. Бесплатное электричество из удлинителя подойдет для питания осветительных приборов, но мощность свободной энергии в такой сети слишком мала для чего-то большего. А сам метод достаточно спорный.

Бесплатное электричество из магнитов

Магнит излучает магнитное поле и как следствие – его можно использовать для добычи бесплатного электричества. Для этого следует обмотать магнит медной проволокой, образуя маленький трансформатор, разместив который вблизи электромагнитного поля можно получать бесплатную энергию. Мощность электроэнергии в таком случае зависит от размера магнита, количества обмоток и мощности электромагнитного поля.

Как использовать бесплатное электричество?

Решив заменить централизованное энергоснабжение на альтернативные источники, следует учитывать все необходимые меры безопасности. Во избежание резких перепадов напряжения электрический ток к приборам должен подаваться через стабилизаторы напряжения. Обязательно стоит обратить внимание на опасности каждого метода. Так, погружение электродов в почву подразумевает последующую заливку почвы соленым раствором, что сделает ее непригодной для дальнейшего роста растений, а системы накопление статического электричества из воздуха могут привлекать молнии.

Электричество не только полезно, но и опасно. Неправильная фазировка может привести к ударам тока, а короткое замыкание в сети — к пожарам. Подходить к обеспечению дома электричеством в домашних условиях нужно с детального изучением методов и законов физики.

Следует также учитывать, что большинство методов не дают стабильной мощности и зависят от многих факторов, в том числе и погодных условий, предугадать которые невозможно. Поэтому энергию рекомендуется или накапливать в аккумуляторах, а на всякий случай иметь запасной вид электрообеспечения.

Прогноз на будущее

Уже сейчас альтернативные источники энергии широко используются. Львиная доля потребления электричества приходиться на домашние электроприборы и освещения. Заменив их питание с централизованного на альтернативное можно существенно экономить бюджет. Особое внимание на альтернативные источники электроснабжения стоит обратить майнерам, так как майнинг на централизованном энергоснабжении способен забирать до 50% прибыли, в то время, как добыча на бесплатном электропитании будет приносить чистый доход.

Все больше домов переходит на питание от солнечных батарей или ветряных электростанций. Такие методы дают намного меньше мощности, но являются экологически чистыми источниками энергии, которые не наносят вреда окружающей среде. Конструируются также и промышленные альтернативные электростанции.

В дальнейшем это сфера будет только дополняться новыми методами и улучшенными аналогами.

Заключение

Добыть электроэнергию можно даже из воздуха, но для покрытия всех нужд потребления необходимо спроектировать целую систему альтернативной выработки электроэнергии. Можно пойти легким путем и купить уже готовые солнечные батареи или ветряные станции, а можно приложить усилия и собрать собственную электростанцию. Сейчас бесплатное электричество не до конца изведанная сфера и открывает массу возможностей для самостоятельных экспериментов.

Предлагаемое устройство не имеют ни чего общего с гальваническими элементами питания (батарейками, аккумуляторами и т.п.) и, тем более, с вечными двигателями.

Устройство вырабатывает электроэнергию нетрадиционным методом.

Данное устройство представляет собой генератор, который конвертирует энергию окружающей среды, превращая ее в электричество нетрадиционным методом.

Настоящие устройства работают со строгим соблюдением закона сохранения энергии и представляют собой элементарные электрические генераторы, — источником питания для которых является рассеянная энергия окружающего пространства.

В частности настоящие устройства являются конвертерами широкого спектра низко-потенциальной энергии окружающей среды в электричество постоянного тока.

В первом приближении Настоящие устройства выглядят как самозаряжающиеся конденсаторы, мощность которых пропорциональна их запрограммированной электрической емкости и напрямую зависит от притока энергии из окружающей среды в виде ионизированных частиц, механических колебаний, звука, тепла, света, электромагнитных волн, радиационного фона, магнитного поля земли и т.д. и т. п.

Преимущество: — аналогичных технологий не существует.

Принципиальным преимуществом настоящих устройств является:

— Во-первых, абсолютная коммуникабельность, ввиду широчайшего спектра конвертируемой энергии окружающей среды,

— Во-вторых, долговечность без эксплуатационного обслуживания ввиду отсутствия движущихся частей и деталей.

— В — третьих, устройство не боится коротких замыканий. После замыкания практически мгновенно набирает прежние показатели.

— А также одним из основных преимуществ устройств являются неограниченные возможности в их конструкционном исполнении от традиционных форм в виде общепринятых гальванических элементов, до форм, определяемых спецификой их применения.

Предлагаемые устройства позволяют, телефонам, планшетам, видео камерам и другим приборам работать в автономном режиме длительное время.

Принцип работы: — это условно называемая электрическая губка, которая впитывает электроэнергию окружающей среды, разделяя заряды, при этом самостоятельно вырабатывая электрическую энергию.

Работающие установки коммуникабельны и мобильны, при этом можно делить и умножать масштаб установок, создавая нужные параметры для решения различных требований.

При этом себестоимость производства устройства (генератора), — на уровне традиционныхэлементов питания (батарей, аккумуляторов).

Новая технология позволяет делать получение электроэнергии в высокой степени технологичной и экономически выгодной.

В устройстве для получения электроэнергии, отсутствуют движущиеся детали, что практически исключает ремонтные и профилактические работы.

Предлагаемая технология, является абсолютно независимой и автономной при длительной эксплуатации.

Устройство не боится коротких замыканий.
— После замыкания практически мгновенно набирает прежние показатели.

Аналогичных устройств не существует.

А тот факт, что, устройство поглощает, вредный для человека радиационный фон, перерабатывая его и превращая в электрическую энергию, — делает технологию нужной и полезной для экологии.

Все выше сказанное, позволяет с уверенностью заявить, — что предлагаемая технология, является технологией 21 века, и позволяет решить новые методы получения экономически выгодной и экологически чистой электрической энергии.

Глобальное потепление климата, катастрофическое ухудшение экологии и целого ряда общеизвестных экономических и политических проблем однозначно подталкивает человечество к поиску новых альтернативных источников энергии.

Научно-исследовательским институтом разработаны новые технологии решающие проблему получения экономически выгодной электрической энергии альтернативным методом.

Продолжим и расскажем подробнее о новых открытиях.

Следующей разработкой альтернативных устройств получения электроэнергии нетрадиционным методом является,
— Самозаряжающийся генератор, — конвертирующий энергию окружающей среды в электричество.

Сейчас приоткроем занавес некоторых секретов происходящих процессов.
Природа подарила человечеству активные диэлектрики, благодаря которым можно изготовлять новый, точнее сказать, нетрадиционный вид альтернативных источников электрической энергии — энергетические губки.

Так называемые энергетические губки способны впитывать, поглощать и концентрировать в себе разнообразную низко потенциальную энергию окружающей среды, и преобразовывать (конвертировать) её в относительно высокопотенциальное электричество, аналогично океанским электрическим скатам или речным электрическим угрям.

— UA № 84117 и RU № 2390907 «Устройство для получения электрической энергии»;

— UA № 85360 и RU № 2419951 «Статический генератор электрической энергии».

Дальнейшие публикации о новых более совершенных конструкций энергетических губок временно приостановлено, — до практической реализации уже известных, с целью исключения научно-технического плагиата.

Описанные энергетические губки по своим техническим характеристикам способны заменить традиционные электролитические аккумуляторы, например, в мобильных телефонах, слуховых аппаратах, шахтерских фонарях и т.п. устройствах.

С позиции рядового потребителя энергетические губки при этом обладают рядом неоспоримых преимуществ:
— абсолютная автономность на весь период их эксплуатации, так как они заряжаются самостоятельно даже при непрерывной их работе на протяжении всего срока действия, не менее 2-3 лет;

С позиции специалистов энергетические губки так же имеют следующие преимущества и перспективу:
— высокую технологичность производства, обусловленную возможностью изготовления энергетических губок методом вакуумного напыления;
— энергетические губки можно изготовлять любой формы, например, в форме корпуса самого телефона или его кнопок, каски шахтера или в форме прожектора для каски, что позволит снять необходимость носить коробочку с аккумуляторами, и беспокоиться за их подзарядку, всё это будет зависеть от фантазии конструкторов и потребностей заказчика;
— перспектива изготовления энергетических губок мощностью в десятки киловатт с гарантированным сроком службы не менее тридцати лет.

На наш взгляд к вопросу производства долговечных энергетических губок с мощностью исчисляемой киловаттами надо подходить плавно и глубоко обдуманно.

Энергетическая независимость членов общества при всех положительных эффектах может легко привести к коллапсу самого общества.

— энергетические губки большой мощности способны эффективно снижать, как естественный, так и наведённый радиационный фон в окружающей их среде, а так же создавать градиент температур в десятки градусов.

Этот вопрос надо рассматривать отдельно, например, в контексте осуществления климат контроля заданного объема пространства путем изготовления энергетических губок в виде обоев, жалюзи, тканей, облицовочных плиток для полов и стен, карнизов и плинтусов, индивидуальных розеток, само клеек, картин, предметов интерьера, мебели, монтажных блоков, портативных холодильников, целевых контейнеров, медицинских боксов и т.д.

— После патентования двух вышеуказанных устройств дальнейшие разработки не приостановлены.
Нами ведутся исследования по альтернативным источникам электроэнергии в восьми — девяти абсолютно не зависимых друг от друга направлениях.

Публикаций о них пока нет, и поэтому, хотя бы с некоторыми из направлений, я попытаюсь Вас ознакомить, — как можно кратко и с привлечением нескольких любительских фильмов и фотографий первых образцов.

Пожалуйста, перед просмотром фильмов, для более полного понимания принципа работы устройств, ознакомьтесь с сопроводительной аннотацией по теме.

Конструкция и принцип работы супер конденсатора (ионистора) позаимствовано из интернета в рубрике ионистор своими руками. Самодельный ионистор – рисунок 1.

На рисунке 1 изображена конструкция ионистора. Он состоит из двух металлических пластин, плотно прижатых к «начинке» из активированного угля.

Уголь уложен двумя слоями, между которыми проложен тонкий разделительный слой вещества, не проводящего электроны. Все это пропитано электролитом.

При зарядке ионистора, — в одной его половине на порах угля образуется двойной электрический слой с электронами на поверхности, — в другой с положительными ионами.

После зарядки ионы и электроны начинают перетекать навстречу друг другу.

При их встрече образуются нейтральные атомы металла, а накопленный заряд уменьшается и со временем вообще может сойти на нет.

Чтобы этому помешать, между слоями активированного угля и вводится разделительный слой. Он может состоять из различных тонких пластиковых пленок, бумаги и даже ваты.

В ионисторах, электролитом служит 25%-процентный раствор поваренной соли, либо 27%-процентный раствор гидроокиси калия.

В качестве электродов применяют медные пластины с заранее припаянными к ним проводами.

Для хорошего сцепления пластины должны быть обезжирены. Обезжиривание пластин производится в два этапа. Вначале их промывают мылом, а затем натирают зубным порошком и смывают его струей воды.

Активированный уголь, купленный в аптеке, растирают в ступке и смешивают с электролитом до получения густой пасты, которой намазывают тщательно обезжиренные пластины.

При первом испытании пластины с прокладкой из бумаги кладут одна на другую.

Этот ионистор, можно, очень простым и потому высоко технологичным способом, практически не изменяя существующих технологий производства ионисторов, переконструировать в генератор постоянного тока.

На наш взгляд, очень важен тот факт, что уже существующие и налаженные в производстве ионисторов технологии, не надо изменять при внедрении предлагаемого изобретения в реальное производство, — что позволяет быстро внедрить изобретение и запустить экономически выгодную технологию в производство.

Экономика торжествует!

Поставленная цель достигается элементарно — путем введения в электролит демона Максвеллаа.

Следует, отметь, что в настоящее время демон Максвелла уже не является мысленным экспериментом 1867 года, в подтверждение приведу общеизвестные примеры.

— Для подтверждения вышесказанного и для того чтоб более детально разобраться в сути вопроса, — заинтересованным компаниям необходимо найти в интернете публикации Японских и Американских ученных о демоне Максвелла или перевести несколько дополнений на русском языке, предоставленных ниже.

Как видно из предоставленных описаний достижений мировой науки, — из-за высокой себестоимости, демон Максвелла пока не доступен для рядового потребителя.

Нами найдено решение получения высоко технологичного и не дорогого для производства демона Максвелла, с себестоимостью, на уровне цен традиционно применяемых электролитов и уже использующихся во многих странах в производстве ионизаторов.

В подтверждение демонстрируем фотографии первых сделанных образцов.

Также демонстрируем образцы сделанные по другой технологии.

Дополнительно предоставляем возможность просмотреть документальные фильмы на нашем сайте и в интернете.
1) http://www.youtube.com/watch?v=D0eX2ZPzJik

Предоставленная информация, а также, фильмы и фотографии, доказывают, — что за пройденное время, работы не прекращаются и, достигнут вполне ощутимый прогресс.

А именно, что в «условиях кухни», руками, уже собраны источники получения электроэнергии нетрадиционными методами, в десятки раз меньше по размеру и в сотни раз мощнее существующих устройств.

Уверенны, что после достигнутых результатов, — возможно и целесообразно, рассматривать вопрос реального производства.

На наш взгляд, — возможно:

— купить (от Китая-Кореи-Индии-Турции до Германии и США) готовую линию по производству ионисторов стоимостью $ 100 000-$ 800 000, в зависимости от производительности и страны изготовителя,

— заранее согласовав с изготовителем линии геометрические размеры ионистров с размерами традиционных батареек,

— установить реконструированную линию в наиболее экономически удачной стране,

— добавить нового, улучшенного нами демона Максвелла,

— и после этого выбросить на рынок новый продукт и занять лидирующие позиции.

Следует отметить, что экспериментальные ионисторы двухлетней давности и более свежие полугодовой давности отличаются увеличенной площадью двойного электрического слоя за счет природы карбоновых электродов и более совершенными свойствами секционируемого нами демона Максвелла.

В связи с тем, что исследования в этом направлении нами продолжаются, мы можем уже продемонстрировать, пока самую первую, элементарную ячейку абсолютно твердотельного ионистора изготовленную уже методом вакуумного напыления.

Абсолютно твердое тело ионистора и его, не превзойденные электротехнические свойства, достигаются использованием в качестве материала электродов АПП (алмазоподобных пленок), превосходящих в десятки раз углеродные нано трубки по удельной поверхности, а также использованием твердых электролитов и более совершенного нашего демона Максвелла.

Предполагаем, что такой технологический подход, позволит нам в ближайшее время получить технологию производства не дорогих самозаряжающихся ионисторов превосходящих по своей удельной электрической емкости литиевые батарейки.

А новый экологически чистый и экономически выгодный подход в получении электрической энергии, позволит изобретению занимать лидирующие позиции длительное время в 21 веке.

На наш взгляд демон Максвелла для обывателя продемонстрирован, а сама уникальность предмета изобретения доказана наяву.

Хочу подчеркнуть, что предоставленная информация по демонстрации изобретения, не является цирковым фокусом,

— так как у нас нет необходимости создания иллюзии за кадром, потому что мы не можем позволить себе заниматься обманом.

Во всем увиденном на фото и видео репортаже, можно убедиться при демонстрации во время личной встречи.

Предоставленная для ознакомления информация, еще раз подчеркивает, что все сделанное на экране, преследует единственную цель – обеспечить наглядность демонстрации изобретения, и ни в коем случае не попытку напустить туману для поднятия имиджа.

Осталось на словах предоставить информацию, что элементарную ячейку можно изготовлять с самовосстанавливающимся напряжением 2,5 вольта,

— при этом энергетическая мощность будет прямо пропорциональна электрической емкости ячейки, а сроки непрерывной эксплуатации предлагаемых ионизаторов нового поколения, будут работоспособными сотням тысяч моточасов.

Для большей ясности по теме проекта, ознакомьтесь с предоставленной ниже дополнительной информацией с интернета.

При заинтересованности, — предоставим дополнительную информацию и обеспечим сопровождение проекта авторским надзором при внедрении технологии.

p.s. Ожидаем взаимовыгодных предложений по сотрудничеству.

Если Вас заинтересовало изобретение, ознакомитесь с дополнительной информацией с интернета.

Японцы создали демона Максвелла.

membrana , 16 ноября 2010.

Основа опытной установки: ротор из пары микросфер и четыре электрода (A-D), на которые подаётся синусоидальное напряжение со смещёнными фазами (шарики и электроды показаны в разном масштабе) (иллюстрация Shoichi Toyabe, Eiro Muneyuki, Masaki Sano /Nature Physics).

Демона Максвелла — мысленный эксперимент, покушающийся на второе начало термодинамики, удалось поставить в реальности физикам из университетов Тюо (Chuo University) и Токио (University of Tokyo).

Японцы создали два связанных шарика полистирола диаметром 0,3 микрометра каждый. Один находился на поверхности стекла, второй мог вращаться вокруг первого. Установку при этом заполняла жидкость. Её молекулы хаотично подталкивали шарики (броуновское движение), естественно, с равной вероятностью, как по часовой, так и против часовой стрелки.

Системы с обратной связью, говорят японские физики, могут представлять собой машины нового типа, преобразующие информацию в энергию.

Теоретически в будущем подобные устройства могли бы питать за счёт броуновского движения микромашины. На рисунке показана условная схема эксперимента.

Положение вращающегося ротора тут заменено шариком, прыгающим по ступенькам случайным образом. Когда шарик прыгает вверх, умный демон Максвелла ставит барьер, не позволяющий шарику скатиться обратно.

При этом «демон» сам не подталкивает шарик (иллюстрация Mabuchi Design Office /Yuki Akimoto).

Далее авторы добавили слабое электрическое поле, которое создавало крутящий момент. Это был аналог лестницы, по которой шарик мог «взбираться», увеличивая потенциальную энергию. Иногда молекулы толкали ротор против действия поля (подъём), иногда в сторону поля (прыжок по ступенькам вниз). Но в целом ротор вращался туда, куда его толкало внешнее поле.

Каждый раз, когда ротор в броуновском движении делал шаг против поля, компьютер сдвигал последнее так, что шарик мог повернуться, но когда ротор пытался вращаться обратно, поле блокировало его.

Так был создан аналог открываемой и закрываемой демоном Максвелла дверцы: ротор увеличивал свою энергию за счёт теплового движения молекул.

Законов природы, впрочем, установка не нарушает, поскольку для работы «демона» (камеры, системы коррекции напряжения) необходима энергия.

Но японцы подчёркивают: данный опыт впервые на практике доказал реальность теплового насоса — демона Максвелла, теоретически обоснованного Лео Сцилардом в 1929 году.

Такая машина извлекает энергию из изотермической окружающей среды и преобразует её в работу.

Общий принцип теплового насоса – демона Максвелла («двигатель Сциларда»).

Макроскопическая система (компьютер) управляет событиями в микроскопической системе (в реальности – ротор и поле, а условно – комната с молекулами и перегородкой) за счёт получения информации о ней.

Энергия в микроскопической системе растёт (и может производить полезную работу), но не вполне бесплатно, поскольку «демон» потребляет энергию на получение информации и управляющие действия (иллюстрация Shoichi Toyabe, Eiro Muneyuki, Masaki Sano /Nature Physics).

Учёные посчитали, сколько бит содержали кадры с положением ротора, и установили, что при комнатной температуре один бит, превращается в 3 х 10 -21 джоулей, в полном соответствии с теорией, — сообщает New Scientist.(Читайте о других экспериментах, — с ротаксаном и нано трубками — в которых наблюдалась аналогия с демоном Максвелла.)

Демон позапрошлого века нарушил равновесие круглых молекул.
Владислав Карелин , 2 февраля 2007.
Раньше считали, что демон Максвелла мог караулить только сообщающиеся сосуды с газом. Теперь оказалось, что его можно заставить работать и с хитрыми молекулами, надетыми на другие молекулы (иллюстрация Peter Macdonald, Edmonds UK).

Мистика не чужда точной науке. Даже физики порой вынуждены прибегать к помощи оккультных сил. Набравшись смелости и начитавшись об одном таинственном существе почти полуторавекового возраста, учёные взялись за работу и — изумлённым исследователям явился демон!

К счастью, ситуацию удалось удержать под контролем.
Природа способна на всякие технологические чудеса.
Она часто использует в важных биологических процессах механизмы, которые можно назвать молекулярными двигателями. Эти «естественные моторы» вдохновляют учёных на создание чего-то похожего в своих лабораториях.
Однако сотворить такие устройства на молекулярном уровне не так просто.
Тепловая энергия в микромире проявляет себя не так, как в привычных для нас макро условиях. На микроуровне тепло превращается в кинетическую энергию мельчайших частиц, которые постоянно дёргаются, находясь в непрерывном броуновском движении.
Темп этих перемещений столь велик, траектория молекул из-за постоянных столкновений так непредсказуема, а их самих так много, что эти частички схватить не удастся никаким пинцетом.
Однако контролировать движение молекул в некоторых случаях учёным очень хотелось бы. Проблема эта достаточно давняя и беспокоит умы с середины XIX века, хотя значительных прорывов в этой области было сделано мало.
Максвелл придумал несколько разных режимов работы своего демона.
A) Демон Максвелла устраивает жёсткий фей контроль для молекул. Пропускает только синие (предположим, что они холодные), красным (горячим) вход закрыт.
Через некоторое время в одном сосуде остаются горячие, а во втором собираются холодные. В итоге – очевидный температурный дисбаланс.
®
B) Другой случай. На этот раз демон готов пропускать кого угодно. В одном сосуде молекул становится больше, чем в другом, но итог такой же, как в первом случае: один из сосудов (где молекул много) становится горячее (иллюстрация с сайта s119716185.websitehome.co.uk).
Скорость движения молекул связана с теплотой. Если у учёных появится возможность управлять ими, то, значит, они смогут управлять и температурой различных систем.
Размышляя над такими проблемами, английский физик Джеймс Клерк Максвелл (James Clerk Maxwell) предложил простой способ «администрировать» поведение молекул.
Речь идёт всего лишь о мысленном эксперименте, который, правда, оставил огромный след в науке и вошёл во все учебники физики. Придуманная Максвеллом система состоит из двух сосудов, наполненных газом и сообщающихся между собой.
Отверстие, которое соединяет ёмкости, может закрываться и открываться с помощью очень лёгкой затворки, которой управляет демон (этого мистического субъекта, пришлось допустить в теорию).
Правда, что это за демон, откуда он и как его зовут – не уточняли, поэтому впоследствии (для соблюдения научной последовательности) демона так и прозвали – демон Максвелла.
Демон должен следить за тем, какие молекулы в результате своего хаотического движения подлетают к отверстию.

В зависимости от их скорости демон открывает заслонку, «сортируя» молекулы так, чтобы в одном сосуде оставались «холодные» (медленные), а в другом – «горячие» (быстрые).

Джеймс Клерк Максвелл (1831-1979 годы).

Помимо прочих достижений в области физики и математики великий ный описал принцип работы термодинамического демона.
Но как его следует изображать на картинках – не уточнил. Поэтому в науке не сложилось единого мнения о том, красный демон или зелёный, и должны ли у него быть рога, хвост и трезубец (фото с сайта ifi.unicamp.br).
Если бы такой демон мог существовать в реальности, то его работа привела бы к нарушению Второго закона термодинамики. Напомним, закон гласит, что тепло не может самопроизвольно переходить от холодного тела к горячему.
А ведь, нарушив этот запрет, можно было создать тепловую машину, которая работала бы без потребления топлива и энергии…

Разумеется, у Максвелла не было никаких планов насчёт разрушения термодинамики, да и строить вечных двигателей он не хотел. Физик всего-то задумал проиллюстрировать статистическую природу Второго закона.
Однако впоследствии эта «демоническая модель» нередко вдохновляла многих – от изобретателей до философов, хотя и оставалась в стороне от практики «большой науки».
Однако демон оказался живуч и заявил о себе спустя ровно 140 лет.
Может быть, это даже не демон, а какой-нибудь джинн, способный томиться веками в безвестности, терпеливо ожидая своего часа. Жаль, что Максвелл в этом не признался.
Но, так или иначе, химики университета Эдинбурга (University of Edinburgh) из исследовательской группы Дэвида Лея (David A. Leigh) создали молекулярную машину, принцип действия которой основан на работе такого демона.

Профессор Дэвид Лей. Он смог приручить демона Максвелла для экспериментов в области термодинамики, хотя это и было непросто. Сможет ли он сделать то же самое в области карточных игр – пока неизвестно (иллюстрация с сайта s119716185.websitehome.co.uk).
Эта нано машина представляет собой ротаксан.
Ротаксаны – это молекулярные структуры, состоящие из замкнутой циклической молекулы, нанизанной на линейную молекулу, у которой на концах имеются объёмные группы, которые не дают кольцевой молекуле соскочить.
В последнее время эти структуры стали пользоваться большой популярностью в различных нано технологических экспериментах (например, мы рассказывали о солнечном моторе на основе ротаксана).
Как правило, в предыдущих опытах использовались перемещения молекулы-кольца. Это движение имеет случайный характер, и теперь учёные решили придумать способ как-то им управлять.

Для этого они сделали несколько модифицированный ротаксан.

Во-первых, в линейную молекулу «вставлена» молекула углеводорода стильбена. Стильбен разделяет молекулу на две части и служит своего рода воротами (об этом дальше).

Кроме того, в каждом отсеке линейной молекулы есть «липкое место» – область, к которой молекула «прилипает», то есть выше вероятность обнаружить её именно там. Причём в одном «куске» молекулы этот участок находится ближе к воротам, а в другом – ближе к концу.
Плюс к этому, система способна реагировать на свет.

Слева изображены изменения исследованного ротаксана, а справа – изменения, которые должны были бы происходить в результате действий демона над сосудами с газом.
Красная окружность – круговая молекула, нанизанная на линейную, оттенками синего и зелёного показаны «липкие» участки. a) В первоначальном положении линейная молекула «закрыта» (ворота указаны стрелкой). b)
В результате освещения ворота открываются, и из-за теплового колебания круговая молекула переходит на другую часть линейной © и прикрепляется к «липкому» месту, после чего (d) ворота закрываются. Равновесие сместилось.
При облучении данной конфигурации круговая молекула, скорее всего, не откроет ворота и не перейдёт на прежнюю позицию (иллюстрация Viviana Serreli, Chin-Fa Lee, Euan R. Kay, David A. Leigh).
В исходном состоянии ворота стильбена закрыты. Если излучение падает на циклическую молекулу, то она сигнализирует об этом воротам.
Это проявляется в том, что кольцо передаёт воротам некоторую энергию, которой хватает им, чтобы открыться и закрыться за короткий промежуток времени.
Так как в одной части молекулы кольцо находится ближе к воротам, то выше вероятность того, что открытые ворота молекула пройдёт именно из этой части, и что энергетический сигнал от неё дойдёт до ворот.
Работая с большим количеством таких систем, учёные увидели то, что и ожидали: в итоге большинство кольцевых молекул оказалось в одной части ротаксана. Равновесие оказалось смещённым.

Циклические молекулы, как им и полагается, колеблются — так как обладают некой тепловой энергией (опыт проводился при 25 градусах по Цельсию).
А это значит, что вместе со смещением молекул в пространстве произошло и смещение теплового равновесия.

Если таким образом равновесие будет смещено, скажем, в большом количестве ротаксановых структур, то сдвиг будет очень заметен.

А итог – тот самый, который Максвелл предсказал только теоретически – нарушение Второго закона термодинамики: одна часть системы станет холоднее другой.

А одна художница, вдохновившись демоном Максвелла-Лея, решила возложить на него ответственность не только за ворота, но и за кольца. Вот такой симпатяга (иллюстрация Regina Fernandes – Illugraphics).
Впрочем, со столь скоропалительными выводами торопиться не будем.
В формулировке закона говорится о невозможности перехода, происходящего спонтанно. То есть – без дополнительного подведения энергии.
А в данном эксперименте некий расход энергии был – световое излучение. Так что за термодинамику можно быть спокойным – она осталась целой и невредимой.
К тому же, реализованный проект даже не очень-то похож на вечный двигатель – как ни как, достигнутое соотношение энергии между двумя частями ротаксанов в среднем составляло 7:3, не более.
Это, конечно, очень впечатляющее значение для экспериментальной физики, но далёкое от всякой фантастики. Что ж, возрадуемся снова: и на этот раз никаких посягательств на классическую физику не случилось.
При этом интересно, что поведение разработанной системы описывается моделью с демоном Максвелла.
Пусть и не с всемогущим, но зато с тем самым, о котором великий физик рассказывал в XIX веке.

Демон Максвелла во плоти или ещё один вариант нано мотора.

Наступает эра бестопливной энергетики — Энергетика и промышленность России — № 08 (148) апрель 2010 года — WWW.EPRUSSIA.RU

Газета «Энергетика и промышленность России» | № 08 (148) апрель 2010 года

Но мировые тенденции научно-технического прогресса, а именно, распространение информации о способах генерирования энергии, не требующих топлива, в ближайшие годы неизбежно разрушат устаревшую экспортно-сырьевую концепцию развития энергетики. Очевидно, что для России и других стран, активно экспортирующих углеводородное топливо, нужны срочные меры по созданию других источников дохода в бюджет страны, так как спрос на топливо и наши прибыли будут резко снижаться.

Свободная энергия

В настоящее время во многих странах появляются научно-технические разработки и опытные образцы автономных энергоприводов, не использующих топливо. Фактически, в ближайшее десятилетие сформируется новый сектор на мировом рынке энергоресурсов. В англоязычной литературе данные разработки относят к классу «free energy» – устройств, которые работают на принципах «свободной энергии», а не за счет преобразования материи, то есть топлива.

Доминирующим направлением на рынке небольших мощностей (от 5 до 100 кВт) являются энергоприводы на постоянных магнитах, в которых перемещение ротора обеспечивается градиентом магнитного поля постоянных магнитов. Для оценки нижнего уровня себестоимости энергии, генерируемой такими приводами, разумно изучить данные по китайским разработчикам. Например, исследовательская группа под руководством Ван Шун-хо разработала привод на постоянных магнитах мощностью 5 кВт. По оценкам авторов, при несерийном производстве его цена на рынке оценивается в 1200 долларов США, а при серийном производстве она может составить 300 долларов. Итак, уровень цен на приводы, не требующие топлива, может составлять от 60 до 250 долларов США за 1 кВт генерируемой мощности.

Необходимо отметить, что такие приводы могут найти применение только в секторе рынка частных потребителей и в автомобилестроении. Уровни в сотни киловатт и более мощные приводы на постоянных магнитах представляются не совсем практичными. Для таких мощностей существуют другие технические решения.

В данном конструктивном направлении развивается фирма ЕВМ, ведущая свои разработки более 30 лет в лабораториях Торонто, Лондона, Хьюстона и Будапешта. Компания декларирует производство автономных электромагнитных энергоприводов, имеющих ротор и статор специальной топологии, мощностью от 50 кВт до 150 МВт. Для начала работы требуется внешний источник питания, но после достижения номинальной мощности привод внешнего источника не требует. Патент на данный способ получен профессором Венгерского национального университета Ласло Шабо 10 лет назад.

Не опоздать

ЗАО «Резонанс» начало переговоры с компанией ЕВМ по приобретению лицензии на производство приводов данной конструкции в России, но уже сейчас очевидно желание владельцев компании удержать монопольную позицию. Такими методами они пытаются сохранять высокий уровень цен, которые в несколько раз выше цен на газотурбинные приводы аналогичной мощности. Тем не менее потребителей привлекает бестопливный режим работы, при котором генерирующее оборудование окупается за несколько лет. Надо отметить, что производитель дает 30 лет гарантии и обеспечивает техобслуживание.

Перспективно создание в России серьезного партнерства, чтобы успешно провести переговоры с компанией ЕВМ и начать российское производство генераторов энергии, не требующих топлива. Конструктивно данная технология незначительно отличается от обычных электрогенераторов. Основные материалы – электротехническая сталь и медь. При серийном производстве в России возможно снижение себестоимости одного киловатта установочной мощности до уровня 500‑300 долларов.

Наиболее интересными представляются перспективы внедрения технологий Николы Теслы. Сегодня стало широко известно имя грузинского изобретателя Тариэля Капанадзе, который демонстрирует генераторы энергии высоковольтного типа по концепции Теслы. Капанадзе заявил о создании 5‑киловаттного генератора еще несколько лет назад, а в 2009 году он получил международные патенты совместно с турецкой фирмой TMZ. Турецкие разработчики представили демонстрационный образец 100‑киловаттного трехфазного генератора, который работает в автономном режиме и требует всего 2 кВт для запуска и поддержания рабочего номинального режима. Данный тип генератора не имеет вращающихся частей и дешевле в производстве по себестоимости, чем приводы ЕВМ. К сожалению, развитие контактов с турецкой компанией разработчиков для российских предприятий складывается очень сложно.

Работы подобного характера требуют не только финансовых, но и организационных мер на достаточно высоком уровне власти. Примеры с технологиями ЕВМ и TMZ не являются единственными вариантами развития событий. Известны несколько авторов и компаний, получивших практические результаты в области создания источников энергии, не требующих топлива. Дальнейшего развития таких технологий по обычному бизнес-плану не происходит, для решения комплекса задач, возникающих в подобных проектах, целесообразно создать специализированный фонд или ассоциацию альтернативной энергетики при участии государственных структур.

Российский путь

При получении необходимого финансирования и организационной поддержки на всех уровнях власти можно будет заключить контракты с ведущими российскими и мировыми разработчиками данных технологий, организовать патентование и приобрести лицензии. Затем, на базе российских предприятий, можно будет создать производственный цикл по выпуску унифицированного ряда генераторов электроэнергии для различных отраслей промышленности, военно-промышленного комплекса, сельского хозяйства и для бытовых нужд. В структуре данного производства будет также организовано специализированное конструкторское бюро с привлечением российских ученых и разработчиков, что позволит объединить лучшие технические решения различных исследовательских групп для создания отечественного продукта и выхода на новый сектор мирового рынка – продажи генераторов электроэнергии, не требующих топлива.

Применение новых технологий не только позволит уменьшить нагрузку на существующие энергосети. Эти технологии постепенно приведут к качественным изменениям в энергетическом секторе экономики. Генерирование энергии в любом месте, то есть без строительства линий электропередачи, позволит начать развитие пустующих российских территорий и их промышленное освоение, что является важнейшим условием решения демографической проблемы. Снижение себестоимости продукции даст положительный эффект во всех отраслях российской экономики, особенно в сельском хозяйстве, где цены на энергоносители существенно влияют на цены продуктов питания.

Необходимо также отметить роль данных технологий в создании новых энергоемких типов вооружения и боевой техники. Благодаря внедрению новых технологий бюджет страны будет ежегодно экономить на расходах на топливо, а также на ремонте устаревшего оборудования. Экспорт высокотехнологичных продуктов на мировой рынок новой энергетики восполнит потери российского бюджета от снижения спроса на углеводородное топливо и атомные электростанции. Эти процессы потребуют значительных изменений в сырьевой и энергетической отраслях промышленности, но разумный подход при активной государственной поддержке позитивно изменит экономику страны.

Внедрение новых технологий в других странах уже началось, и это может поставить Россию перед глубоким экономическим кризисом, если не начать собственные шаги в данном направлении. Необходимо срочно инвестировать достаточные средства на приобретение образцов новых технологий. Еще раз отмечу, что здесь речь не идет о науке и исследованиях. Пришло время просто разумно сменить устаревшую топливную концепцию на концепцию свободной энергетики и закупить лицензии на реальные технологии, приобрести образцы оборудования и организовать работу специалистов в данной области для технического переоснащения энергетической отрасли.

Изменения не должны быть революционными и катастрофическими. Постепенное развитие новых технологий будет уменьшать роль топливно-энергетического сектора экономики. В связи с этим сегодня необходимо осознать перспективы структурного изменения всего энергетического сектора. Разумно принять меры по созданию в Министерстве энергетики отдельного департамента альтернативной энергетики с особыми функциями и задачами, чтобы перераспределить финансирование задач в общем секторе энергетики от устаревших направлений в сторону перспективных технологий.

Итак, новый этап развития цивилизации приближается. Новый мир не будет зависеть от топливных ресурсов, и их роль значительно уменьшится. Это не значит, что мы должны прекратить торговать нефтью и газом. В современном мире еще есть спрос на топливо, поэтому надо торговать и повышать цены… пока есть спрос. При этом крайне важно понимать тенденции развития энергетики при решении задач реконструкции, планирования или строительства новых генерирующих мощностей, чтобы не инвестировать свои и бюджетные средства в заведомо устаревшие технические решения, которые вскоре будут неконкурентоспособны. Выигрывает тот, кто видит перспективу.

Как отличить реальную схему рабочего БТГ от пустышки? © СЕ ФИЗИКА

Вопрос как отличить реальную схему рабочего БТГ от пустышки, заботит и начинающих искателей свободной энергии и людей которые уже потратили годы на эксперименты. Я сталкиваюсь и с теми и с другими, и не всегда наше общение оказывается полезным. Достаточно часто встречаю людей, наивно считающих, что услышат от меня конкретные советы как за день-два собрать БТГ на 10 и более КВт из ничего. При этом, интерес к БТГ  чрезвычайно прост: не хочу платить за отепление или хочу сделать теплицу чтобы заработать на торговле овощами.

Сразу хочу предупредить, что слесарей по сборке БТГ, я не обучаю принципиально. И терпеть не могу когда люди уверенно полагают, что в БТГ главное знать сколько витков и куда намотать. Нужно быть очень наивным, чтобы не понять, что таких желающих халявщиков очень много. Не стоит считать себя пупом Вселенной.

Иногда поступают совсем примитивные запросы типа: «Я купил осциллограф. Научи меня делать БТГ». И даже: «Я решил заняться БТГ. Дай мне схему». Ни здрасьте не досвиданья. Ты, человек, сначала разговаривать научись. Да закончи учебное заведение по специальности электроника или хотя бы электрика. Я тебе не буду объяснять где какие выводы у транзистора. Ни за какие деньги. Просто зайди на Странник и тебе там быстро и совершенно бесплатно объяснят какой ты одаренный.

Есть люди, которым я отсылаю инструкции за не слишком большие деньги, далеко не тысячи долларов. Все инструкции включают подробное объяснение принципа работы конкретной схемы. Когда затем, клиент начинает задавать вопросы, ответы на которые содержаться в инструкции, я таких квалифицирую как безнадежных. И после нескольких попыток уговорить изучить теорию, прекращаю общение.

После этого обычно возникают реакции двух видов: клиент пишет только матом и угрожает всем, что способен придумать, вплоть до проклятия через знакомую гадалку. Второй тип — клиент решает, что я не хочу выдать ему секрет и предлагает сумму в десятки раз больше. В обеих случаях я общение не продолжаю. Такие люди просто неадекватные.

Некоторые клиенты нарушают авторское соглашение об индивидуальном использовании интеллектуальной собственности, и выкладывают мои инструкции на форумы. В этой связи я обычно составляю инструкции так, чтобы без подсказок генератор не заработал. В БТГ много тонкостей и существенных мелочей.

Бывает, что подвожу клиента к БТГ на 90%. Решив, что поймал жар-птицу, человек преображается. Начинает писать, что он это всё знал, что ничего полезного я ему не сказал, требует вернуть деньги и самое интересное: дает гарантию, что сотрет мой файл с инструкцией как будто не получал. Попробуйте вернуть в магазин книгу или компакт-диск на том основании, что я это уже знал, хотя и не читал и не смотрел. Вызовут санитаров.

Затем жар-птица человека покидает, потому, что своего ума на оставшиеся 10% у болезного не хватает. Он звереет и снова начинает требовать подсказки от меня дурака ему умному. Но разве дураки умным подсказывают?

Выше сказанным, хочу упредить от общения со мной хитромудрых личностей, преследующих меркантильные интересы и наивно полагающих, что я это не вижу и не понимаю. Халява не пройдет. Пройдет только вдумчивый интерес к теме, когда я вижу, что человеку можно дать определенные знания. Что он не погубит этими знаниями себя и меня. Что он реально хочет знать как работают сверхединичные устройства.

Для тех же, кто впервые общается на открытых форумах по СЕ тематике, хочу сообщить, что 90% посетителей этих форумов реально психически больнее люди. У половины расстройство психики существенное. Вы не представляете, что они мне пишут об Акуле, Кулабухове, Васмусе, Алексееве, Чипе, Капанадзе и прочих известных се-шниках.

Внимание! Свободная энергия калечит людям психику 


Теперь можно приступить к предмету статьи. В общем виде формула сверхединичного генератора выглядит так:

СЕ = электростатика + ультразвук + ортогональное магнитное поле


Отсутствие чего нибудь одного из трех делает БТГ бесполезным доединичным устройством с КПД гораздо меньше 1. Схемотехника БТГ обычно настолько несовершенная, что прибавка вытягивается из КПД 20-30%, и она как минимум должна быть пятикратной чтобы восполнить только лишь потери.

Что такое электростатика вы не знаете. Думаю что знаю не одно и то же что знаю. Если вы думаете что знаете, сразу смотрите предупреждение выше. Вы уже страдаете завышенным самомнением.

Всё, что вы выучили по учебникам, касается только доединичных систем. Других академическая физика не изучает и относит их к категории аномалий. Физической сути электростатики в классической физике нет. Мало того, эта физика дает не верное определение электрического тока.

Соответственно, чтобы понять где рабочая схема, а где пустышка, вам нужно знать что такое электрический ток и электростатика. Это разное по сути электричество.

Вы также должны представлять как работает в металлах и полупроводниках ультразвук. Как ультразвук воздействует на заряды, и самое главное что такое эти заряды. Они имеют вполне реальную физическую сущность и не являются теми элементарными зарядами о которых говорится в классической физике.

Вам необходимо представлять что такое магнитное и электрическое поля. У вас в голове должны иметься соответствующие образы, а не силовые линии из учебников.

Вероятно я много хочу от читателя. Но тем не менее. Человек разумный должен отличаться от просто человека прямоходящего. Иначе БТГ для вас останется некой чудесной шкатулкой. Вы будет знать о его работе столько же сколько и обезьяна. Сумасшедшая обезьяна с гранатой выходит за рамки статьи.

Уникальность Тариэля Капанадзе


Капанадзе делает свои генераторы на ощупь. Можете плакать или смеяться, но это так. У человека специфический дар, которого более ни у кого из СЕ-шников нет. Скажем, вы снимаете осциллограмму, а он просто трогает катушку ладонью. Многие СЕ-шники испытают ужас при мысли прикоснуться к высоковольтной части схемы, работающей в режиме выдачи десятка киловатт в нагрузку.

Все схемы у Тариэля абсолютно рабочие, хотя он часто использует элементы схемы так, что дипломированный электронщик схватится за голову в полном недоумении. Например, тиристоры в лавином режиме, катушки на закоротке, массивные стальные сердечники на высоких частотах, провод в ПВХ изоляции со значительными потерями.

Поскольку Капанадзе архитектор по образованию и подзабыл русский язык, он не может объяснить как работают его генераторы. Выпытывать у него бесполезно. Он думает не так как те, кто спрашивает.

И я думаю не совсем так, но у вас имеется возможность понять мои мысли. Во-первых, благодаря моей СЕ физике, а во-вторых, я электронщик по образованию. Если же вы полагаете, что СЕ-физика противоречит вашей физике, тогда в добрый и бесполезный путь. У вас не будет ни одного шанса сделать БТГ. А однажды вы просто потеряете рассудок.

СВОБОДНАЯ ЭНЕРГИЯ ПРОРЫВА — bibliotekar.kz

 СВОБОДНАЯ ЭНЕРГИЯ ПРОРЫВА

Возможны ли системы и устройства, работающие на свободной энергии Вселенной? Не просто возможны. Они уже существуют в разных видах и вариантах.

 

Прежде всего, такими системами или устройствами являются живые организмы. Наглядным и неотразимым примером служит простая форель, которая в горном потоке скоростью десятки метров в секунду может стоять почти неподвижно. Аномальные энергетические проявления демонстрируют дельфины. Их изучение позволило английскому зоологу Джеймсу Грею еще в 1936 году сформулировать свой известный парадокс: определив мышечные возможности дельфина, исследователь пришел к выводу, что для того, чтобы плыть с такой скоростью, с какой он плывет, дельфин должен развивать мощность раз в семь большую, чем позволяет его организм. Настоящим энергетическим чудом является также майский жук и все подобные ему создания, которые теоретически не могут летать, но летают.

 

Как видим, живая природа всегда использовала и использует свободную энергию Вселенной, не подозревая о запрете науки на «вечный двигатель». Ей не знаком и «принцип Карно», устанавливающий верхний предел КПД, недостижимый ни для одной машины. Форель, дельфин, майский жук и миллионы других существ с легкостью преодолевают «запреты» и «принципы» техноцентризма, развивая мощность больше теоретически возможной. А вот для нас они пока святы, хотя именно они стоят на пути внедрения в практику новых энерготехнологий, одновременно стимулируя рост потребления органического топлива.

 

Настоящая альтернативная энергетика может базироваться только на свободной энергии Вселенной. Ее вокруг нас много. Безгранично много. Собственно, она неисчерпаема. Ей полон воздушный океан, в котором мы живем, — атмосфера Земли. Установлено, что между различными ее точками, находящимися на разной высоте, имеется разность электрических потенциалов. В среднем, вблизи земной поверхности величина изменения потенциала с высотой составляет около 1,3 вольт на сантиметр. А если есть разность потенциалов, есть и напряжение, может течь ток. То есть, никто не запрещает получать электричество фактически из воздуха. Вопрос только в том, как это сделать. Никола Тесла его решил. Нужно разместить одну металлическую пластину как можно выше над поверхностью земли, вторую заглубить в землю. Соединив эти пластины с противоположными обкладками конденсатора, зарядить его. Подсоединив к конденсатору разрядник и первичную катушку, создан» условия для периодического процесса: заряд — разряд — импульс тока. Поместив внутрь первичной катушки вторичную многовитковую катушку, получить в ней индуцированный усиленный электрический импульс тока высокого напряжения. Тесла так и поступил. И построил не что иное, как «вечный двигатель». Однако его работа не нарушает никаких законов природы. Он действует, потому что существует градиент электростатического поля планеты «я источник свободной энергии Вселенной. Ее-то — с помощью элементарной схемы — и использует трансформатор Тесла.

 

Чрезвычайно прост и «вечный двигатель» знаменитого белорусского академика А. Вейника: в вакуумированном сосуде непрерывно горит микронеоновая лампочка, использующая разность температур 0,3 градуса Цельсия. Вейник в 1979 году получил на свое устройство авторское свидетельство. Но, конечно, не на «перпетуум мобиле», а на «псевдо перпетуум мобиле». Ведомствам, регистрирующим открытия и изобретения, пришлось вводить такую парадоксальную категорию, иначе — конфуз. К ней стали относить реально работающие опытные машины, имеющие КПД больше единицы. Например, беспроводной холодильник В. Зысина, производящий холод за счет тепла охлаждаемых тел. Авторское свидетельство было выдано автору в 1978 году. Да и как его было не выдать, если машина не нарушала закона сохранения энергии? Она нарушала «принцип Карно», но, как говорится, тем хуже для принципа.

 

Так не пора ли сдать в архив сам термин «вечный двигатель»? Не пора ли вводить другие понятия, подкрепленные реальными примерами из практики, примерами самоорганизующихся, самообеспечивающихся систем, в том числе объектов живой природы? Пора сделать базовым понятие прорывных технологий жизнеобеспечения, едва или не главными из которых являются альтернативные энергетические технологии. Прорывными считаются технологии, КПД которых не ниже 62 процентов, а верхний предел не ограничен. Только при КПД 0,62 и выше возможно устойчивое развитие — то, которое идет с нарастанием полезной составляющей мощности и поэтому само себя поддерживает и усиливает.

 

К прорывным технологиям относятся, например, вихревые технологии немецкого ученого, изобретателя, конструктора Виктора Шау-бергера (1885-1958), летательные аппараты которого, построенные и испытанные в Третьем рейхе, породили версию о земном происхождении «летающих тарелок». Суть вихревых технологий в том, что поток, если организовать его в форме динамической структуры (атмосферного торнадо или вихря Ленгмюра з водоеме), может одновременно выступать насосом, увеличивающим энергию потока — сам себя подпитывать, превращаясь в «вечный двигатель». Никто этот парадокс не замечал, а Шаубергер заметил и развил новое направление в технике, очень нужное и в энергетике, и в авиации, и в космонавтике, и в экологии. Однако — не востребованное. Вихревые технологии мало кому известны и практически никому не нужны. Как и множество удивительных энергетических и энергоэкологических технологий. Поэтому приходится признать, что вопрос развития альтернативной энергетики — вопрос не столько научный и технический, или, сказать иначе, научный и технический в довольно небольшой степени. Прежде всего, это вопрос мировоззренческий, экономический и политический.

 

Вместо долгих рассуждений сошлемся здесь на пример Николы Тесла. «Славянский гений», как его называют в мире, на изобретениях которого фактически основаны вся современная электротехника и все современное электроснабжение, продав патенты трансформаторов, ЛЭП, электродвигателей, еще до завершения их внедрения разработал принципы другой электротехники и электроэнергетики. Они не требовали проводов для передачи электроэнергии, не требовали генераторов для ее производства, так как электричество можно было вырабатывать в любой точке пространства. Но, увы, маховик выжимания прибыли из вложенных в электрификацию средств уже раскрутился. Никола Тесла не смог внедрить ни свои свободно-энергетические устройства, ни свои бестопливные генераторы. Процесс освоения экологически чистых, не требующих добычи, транспортировки и сжигания топлива технологий затормозился почти на сто лет. Его, процесс, надо начинать заново. Если, конечно, на то есть желание и воля. Если не собираемся опять ограничиться благими разговорами об альтернативной энергетике.

 

Радует только то, что за век появилось много новых альтернативных энергетических технологий. Выбор широк. Однако начнем обзор с предшественников Тесла. Джон Уоррел Кили (John Worrell Keely) (1827 — 1898) в своей лаборатории в Филадельфии, США, в течение более 25 лет демонстрировал удивительные эксперименты, сотрудничая со скрытыми силами природы, рождающими неисчерпаемую энергию. Кили назвал основанную им науку Sympathetic Vibratory Physics — «физика симпатических (ответных) вибраций». Говоря современным языком, это «физика волновой резонансной синхронизации», которую развивал в Объединенном институте ядерных исследований в Дубне профессор Ф.А. Гареев. Законы Кили связывают электричество, магнетизм и гравитацию, поскольку все они порождаются вибрациями и, следовательно, являются только частными случаями некоторого единого закона.

 

В 1881 году российский исследователь Н. Слугинов открыл энергетическую асимметрию в процессе электролиза воды. В его опытах энергия на выходе была почти на треть больше, чем энергия на входе, хотя должно бы быть наоборот. Спустя сто лет, в 1980 году, группа американских ученых воспроизвела эксперименты, доказав, что при использовании сбросного тепла паровой турбины КПД электролиза воды достигает 120 процентов.

 

В 1885 году Никола Тесла зажег без проводов от генератора Ниагарской ГЭС угольные лампы накаливания в радиусе 25 миль. После этого один из его проектов получил финансовую поддержку, и Тесла на специальном полигоне создал установки, использовавшие энергию вакуума. Однако в 1898 году все установки и полигон были уничтожены, так как стало очевидным, что если дать им дорогу, то органическое топливо человечеству больше никогда не потребуется…

 

В России доктор физики Филиппов, повторив эксперимент Н. Тесла, зажег на расстоянии без проводов электролампы в Царском Селе от созданной им установки, находившейся в Санкт-Петербурге. Филиппов погиб в 1914 году при невыясненных обстоятельствах…

 

В 1921 году появляется электромагнитный генератор А. Хаббарда, в 1928 году — Л. Нидершота. И тот, и другой работают без подвода внешней энергии.

 

В 1927 году Т. Браун (Англия) получает патент на способы создания движущей силы и мощности за счет электрического поля. Позднее, в 1955 году, работая во Франции, он демонстрирует движущуюся установку, используя поле до 2 киловольт… В 1934 году Н. Тесла демонстрирует автомобиль с электродвигателем, источником энергии для которого был генератор неизвестной конструкции.

 

В первой половине 90-х годов москвичи Рощин и Годин построили генератор свободной энергии. При весе в 350 килограмм он выдавал до 10 киловатт электроэнергии, не потребляя топлива и не требуя крутящего момента извне, то есть, работая без внешнего подвода энергии. Вокруг установки появлялось характерное розовое свечение, она теряла в весе до 120 килограмм, а температура в лаборатории понижалась на 8 градусов. В 1993 году по чьей-то «указке» лаборатория Рощина и Година была закрыта — фактически, разгромлена.

 

В 1957 году под руководством И. Филимоненко разработан агрегат, который не просто производил энергию (в виде пара высокого давления), но и давал на выходе водород и кислород, да, к тому же, подавлял радиацию. По этой машине в 1960 году было издано специальное секретное постановление ЦК КПСС и СМ СССР, инициированное «тремя К» (академиками Келдышем, Курчатовым, Королевым). Однако после смерти Курчатова работы начали «сворачивать», а после смерти Королева — закрыли вообще. Установку специальная комиссия АН СССР признала «противоречащей законам природы». И. Филимоненко уволили и исключили из партии. В 1980-1991 годах работы были частично возобновлены. Несколько опытных установок заложили в Челябинской области, но так и не достроили, а использовать передвижной агрегат для ликвидации аварии на Чернобыльской АЭС отказались.

 

В 1960 году Л. Стовбуненко, по разработкам которого было принято специальное решение ВПК, демонстрировал на стареньком «Москвиче» свои электродвигатели, позволявшие ездить целый день по городу на обычном аккумуляторе…

 

Уже неплохо, правда? И это далеко не все. Есть еще электростатический генератор Ефименко, использующий разность потенциалов между поверхностью планеты и ионосферой, которая составляет около 100 вольт на один метр высоты. Ее же, мы говорили, использовал Тесла, а вообще подобные устройства известны с 1800-х годов… Есть еще генераторы В.Соболева из Волгограда, которые, как писали, будет строить для всех желающих российско-канадское предприятие. Даже называлась сумма подписанного договора — 168 миллионов долларов. Но не строят… Есть генератор свободной энергии О. Грицкевича, опытный образец которого мощностью 1500 киловатт работал в Армении. Там же он и пропал во время армяно-азербайджанского конфликта. Правительство России о нем прекрасно знало, обещало изобретателю всяческую поддержку. Но почему-то не поддержало…

 

Есть, наконец, устройство А. Мельниченко, позволяющее при минимальной исходной мощности получить мощность на нагрузке в 10-15 раз большую за счет автоматической резонансной синхронизации источника с нагрузкой. Если снабдить таким преобразователем типовую трансформаторную подстанцию, можно снимать мощности в десятки мегаватт и питать от нее энергией половину Москвы. Мельниченко удостоился положительного отзыва на преобразователь от Отдела теоретических проблем РАН, возглавляемого Э. Анрианкиным, что совершенно беспрецедентно — ведь речь шла, по сути, о «вечном двигателе». Старший научный сотрудник Н. Невесский и ученый секретарь А. Долгов написали, что проверенное ими устройство представляется крайне перспективным. Надо ли говорить, что внедрять его никто и подумал? А Отдел теоретических проблем РАН, подбиравшийся, по словам Андриан-кина, «человечек к человечку», славный научным свободомыслием и, главное, прорывными результатами, вскоре тихо прикрыли…

 

Это все наши. Советские, впоследствии российские. Теперь посмотрим на иностранцев. Отметим мотор Клема и «Тестатику» Бауманна.

 

В 1972 году техасец Ричард Клем, работая с оборудованием для закачки и распыления жидкого асфальта, заметил, что асфальтовый конический насос после выключения питания продолжает работать еще минут тридцать. Этот факт натолкнул Клема на идею нового бестопливного мотора. Сделать его было нетрудно. Поставив мотор на свой автомобиль, Клем часто ездил по центральной магистрали Далласа, пропагандируя свое изобретение и предлагая желающим оснастить их машины подобными двигателями, не требующими бензина. Необходимо лишь через каждые 250 тысяч километров (!) менять масло, заявлял Клем. Он никогда не подавал заявку на патент, поскольку его конструкция основывалась на ранее запатентованной конструкции асфальтового насоса. Возможно, поэтому 15 фирм отклонили его изобретение, прежде чем большая угольная компания предложила ему финансовую поддержку по выпуску и продаже моторов. Однако развернуть дело Клем не успел, он вскоре неожиданно умер от сердечного приступа, а все его документы были изъяты новоявленными партнерами. Пытаясь спасти хоть что-то, сын изобретателя отвез один из двигателей на ферму неподалеку от Далласа, запустил, поместил в яму на глубину 10 футов и залил бетоном. После заливки мотор не остановился. Он продолжал работать несколько лет!.. Пытаясь объяснить этот феномен, эксперты пришли к выводу, что он питается от ядерного источника, чего, разумеется, не было. Мотор Клема использовал неведомую экспертам энергию — свободную энергию Вселенной. 

 

Что же касается Пауля Бауманна, не то скромного швейцарского физика, не то часовых дел мастера, а еще — предводителя христианской общины из 500 человек в одной из деревень Швейцарии, то с его именем связан качественный скачок в истории электротехнических «перпетуум-мобиле». В 1980 году в общине начали работать электростатические машины его конструкции суммарной мощностью 750 киловатт, обеспечивающие все бытовые нужды поселения. Таким образом, на карте мира появился населенный пункт, который раз навсегда решил все энергетические проблемы, забыв о поставках какого-либо топлива и мифах о «энергетическом кризисе».

 

Свой странный двигатель, или, может быть, генератор, названный «Тестатика», Бауманн придумал полтора десятка лет тому назад. Он напоминает обычную школьную электростатическую машину с лейденскими банками, имеет два акриловых диска с наклеенными на них 36 узкими секторами из тонкого алюминия, которые вращаются в разные стороны. Никаких внешних источников энергии машине не требуется. Чтобы запустить ее, нужно просто раскрутить диски. После пуска они вращаются самостоятельно неограниченно долго со скоростью 50-70 оборотов в минуту. При этом в электрической цепи развивается напряжение постоянного тока 300-350 вольт при силе тока до 30 ампер. «Теста-тика» вырабатывает мощность от 200 ватт до 30 киловатт в зависимости от модели. Интересно, что никому до сих пор, несмотря на кажущуюся простоту, не удалось построить аналогичную работающую машину, а сам изобретатель не выдает секрет ее устройства, мотивируя это тем, что новые знания могут быть использованы во вред человечеству.

 

Чтобы разобраться в секретах «Тестатики», профессор, директор Института фундаментальной физики в Граце (Австрия) Стефан Маринов специально вступил в общину Бауманна и даже вошел в ее правление. Однако ему не удалось убедить старейшин обнародовать тайну генератора. Все они, кроме него самого, проголосовали против, ссылаясь на незрелость человечества и его неготовность к восприятию этого открытия. Маринову ничего не оставалось, как проводить изыскания на свой страх и риск. Об их результатах профессор сообщил в ряде публикаций. По-видимому, он близко подошел к разгадке, и подпускать еще ближе его не собирались. 15 июля 1997 года кто-то выбросил Маринова из окна университетской библиотеки в центре Граца. Преступника, как водится, не нашли, а дело закрыли…

 

В обзоре использованы материалы кафедры устойчивого инновационного развития Университета природы, общества и человека «Дубна».

Журнал «Человек. Энергия. Атом»,№5, 2009

Право граждан на Свободную энергию. Поставьте задачу Академии наук изучить действующие системы бесплатной электростатической генерации в швейцарских установках «Testatika»; преобразования в электроэнергию силы тяжести в установках немецкой компании «Rosh Innovations»; избыточную генерацию электричества машинами без «реакции якоря» венгерской компании «Energy By Motion» и других. Организуйте постановку на производство бестопливных источников для полной энергетической независимости каждого дома, хозяйства, предприятия. Это способно решить большинство социальных и экономических проблем в стране. Сделайте шаг в шестой технологический уклад впереди всей планеты.

Предложение
о реализации права человека на Свободную энергию

Есть способ сделать жильё людей тёплым, а жизнь — сытой.
Для этого нужно отладить в лабораторных условиях образцы установок Cвободной энергии мощностью до 20 кВт (для транспорта — 100 кВт), часть более сложных поставить на производство, а часть более простых выложить в виде схем с описанием в Интернет для самостоятельного изготовления энтузиастами и предпринимателями. Установки свободной энергии вырабатывают от единиц Ватт до десятков МегаВатт электричества из окружающих и генерируемых ими самостоятельно физических полей. Практика показывает, что собранные как фирмами, так и энтузиастами установки свободной энергии – действительно вырабатывают электричество (примеры ниже) без потребления углеводородного или иного топлива.
Пора открыто сообщить людям — да, есть возможность поставить в сарае «тумбочку», от которой будут идти провода в дом/парник/хлев/мастерскую, к которым можно подключить всё, как к обычной электросети. После этого не нужно запасать на зиму ни уголь, ни дрова. Не нужно ставить столбы и получать техусловия на электроподключения, вообще не нужно взаимодействовать с энерготоргующими компаниями, их зона работы – промышленность. При наличии собственной электроэнергии в личном хозяйстве, не нужно населению и покупать природный газ (его нужно использовать разумно – для производства удобрений, пластмасс, плавки металлов в промышленности).
Пожалуйста, ознакомьтесь с примерами.
1. Более 30 лет в горной христианской духовной общине «Метерница» («Methernitha») возле города Linden в Швейцарии электростатические машины Баумана «Testatika» вырабатывают мощность более 750 кВт электроэнергии на потребности посёлка и его жителей. При этом использования какого-либо топлива – не происходит, в машинах применяется электризация поверхностей и кулоновское отталкивание зарядов для самовращения дисков. Профессор Маринов из Болгарии делал успешные репликации на 300 Вт и на 1 кВт.
2. 10.02.2018 г. в Хорватии (г. Славонски Брод) произведен запуск промышленной электрогенерирующей установки мощностью 1 МВт фирмой «Rosch Innovations» (Германия), утилизирующей Архимедову силу (гравитацию). Компания активно строит бестопливные электростанции в Испании, Корее, планируется открытие рабочей станции в Гамбурге для демонстрации простейших принципов её работы. Ранее в популярной литературе примеры подобных установок приводились, как научные заблуждения. Но практика заставляет подходить к классическим законам с другой стороны, уточняя область их действия и находя способы обхода классических запретов на новом этапе развития технологий.
3. Большое количество электрогенерирующих установок Свободной энергии изготавливается одиночными изобретателями и энтузиастами, например: Руслан Кулабухов в Прибалтике — 4 кВт; Роман Карноухов в Казахстане — 2 кВт.
4. Российская разработка «Святогор-8М», Санкт – Петербург. Используются сверхъёмкие конденсаторы — ионисторы, которые определённым образом переключаются так, что через нагрузку всё время идёт ток (схема коммутатора Тесла – «Tesla switch»). Ионисторы с электронными схемами обвязки (стабилизатор напряжения на стороне источника и стабилизатор тока на стороне приёмника энергии), позволяют при уменьшении напряжения на разряжаемом ионисторе (источнике) обеспечить на выходе модуля источника стабилизированное постоянное напряжение, которым заряжается другой ионистор (приёмник). После разрядки первого, ионисторы со стабилизаторами переключаются местами так, что не первый заряжает второй, а второй – первый. При этом цепь протекания токов из ионистора в ионистор является замкнутой и количество электронов, перетекающих из источника в приёмник – не изменяется, электроны не теряются. Так как есть постоянное движение электронов (электрический ток), в место между заряжающим модулем напряжения и заряжаемым модулем тока включается нагрузка (лампа, мотор, электропечь и пр.), через которую идёт ток с краткими перерывами на перекоммутацию электронным способом. Очень перспективная конструкция с малой массой и габаритами, легко адаптируется на мощности в сотни килоВатт. Мобильная, не требует заземления, бесшумная.
5. Механоэлектрические системы — «ротовертеры» – это электрогенераторы, объединённые с электромоторами, выдающие больше энергии, чем затрачивается на их вращение за счёт использования (как вариант) постоянных магнитов и генератора по схеме Грамма, имеющем неявнополюсные обмотки, намотанные через спинку вокруг статора. Это позволяет направить обратный магнитный поток по магнитному пути с меньшим магнитным сопротивлением – по кольцу статора, взаимодействие обратного потока через воздушный зазор с полюсными наконечниками ротора ослабляется на порядок. В результате, на вращение системы затрачивается значительно меньше электроэнергии, чем снимается с генератора. Ротовертеры не содержат электроники, предназначены для стационарной установки в технических помещениях. Достаточно большая масса, вибрации и шум, свойственные работающим электродвигателям.

Приведенные источники Свободной энергии изготовлены в разных странах, имеют разные принципы работы и используют разные физические эффекты.

Россия, как экспортёр углеводородов, частью 6 пункта 12 раздела II указа Президента РФ № 208 от 13.05.2017 г., к вызовам и угрозам своей экономической безопасности отнесла «изменение структуры мирового спроса на энергоресурсы и структуры их потребления, развитие энергосберегающих технологий и снижение материалоёмкости, развитие «зелёных технологий».
Для России Свободная энергия — это угроза. Для Украины Свободная энергия может стать основой национальной стратегии, ведущей к расцвету.

Представляется правильным:
1. Официальное признание Академией наук Украины возможности генерации электроэнергии бестопливным (в традиционном смысле) способом, за счёт правильного использования естественных гравитационных, электрических и магнитных явлений и процессов (ветряки и солнечные панели становятся прошедшим этапом технического развития).
2. Создание специализированной государственной лаборатории в целях расчёта и подготовки к постановке на производство бытовых и промышленных моделей источников Свободной энергии.
3. Создание государственной программы энергоперевооружения с основой на источниках Свободной энергии.

Утаивание таких возможностей автономного энергоснабжения нарушает Право человека на свободную энергию и является преступлением против развития цивилизации вцелом.

Как работают машины, работающие на свободной энергии?

Категория: Физика Опубликовано: 24 марта 2013 г.

Машины бесплатной энергии не работают. Ни одна машина не может создавать энергию из ничего, так как это нарушило бы закон сохранения массы-энергии, который является фундаментальным и универсальным. Закон сохранения энергии массы гласит, что энергия массы никогда не может быть создана или уничтожена. Его можно только перераспределить по пространству и трансформировать в разные состояния. Масса может быть преобразована в энергию, а энергия может быть преобразована в массу, но вместе они должны сохраняться.Например, когда позитрон из индикаторной жидкости медицинского ПЭТ-сканирования попадает в электрон в теле пациента, позитрон и электрон полностью разрушают друг друга, и вся их масса превращается в энергию. Эта энергия излучается в виде двух гамма-частиц (свет высокой энергии), которые разлетаются почти в противоположных направлениях. Аппарат ПЭТ обнаруживает гамма-лучи, использует их для точного определения местоположения события аннигиляции позитронов и электронов и, следовательно, обнаруживает, где в теле пациента собирается индикаторная жидкость.Ядерные бомбы и ядерные реакторы также преобразуют массу в энергию, но это преобразование очень неэффективно, и только часть массы бомбы преобразуется в энергию. Масса также преобразуется в энергию при радиоактивном распаде.

Медицинские сканеры

PET во многом зависят от закона сохранения массы-энергии. Public Domain Image, источник: NIH.

Напротив, в ускорителях частиц, таких как LHC, энергия преобразуется в массу. В ускорителях частиц большие следы магнитов ускоряют такие частицы, как электроны и протоны, до невероятных скоростей.Таким образом, частицы получили большое количество кинетической энергии от магнитов. Затем частицы направляются для столкновения с неподвижной мишенью (или столкновения с другими частицами, которые были ускорены в противоположном направлении). При столкновении кинетическая энергия теряется, потому что частицы останавливаются. Но энергию нельзя просто уничтожить; он должен куда-то уйти. В результате энергия преобразуется в массу, и при столкновении создаются сотни новых частиц. Эти новые частицы обнаруживаются и дают физикам понять, какие типы частиц могут существовать.Каждый раз, когда используется ускоритель частиц, включается ядерный реактор или проводится медицинское ПЭТ-сканирование, экспериментально проверяется сохранение массы-энергии. Фактически, энергия, получаемая или выделяемая обычными химическими реакциями, является результатом преобразования энергии в массу и массы в энергию. В химических реакциях масса системы до реакции отличается от массы системы после реакции. Разница в массах мала, но измерима и является источником энергии.По этой причине каждый когда-либо проводившийся химический эксперимент является подтверждением сохранения массы-энергии. Из всех когда-либо проведенных научно обоснованных повторяемых экспериментов нарушение закона сохранения массы-энергии никогда не наблюдалось. Если бы закон был нарушен и энергия была создана из ничего, то в первую очередь это наблюдалось бы в ускорителях элементарных частиц. Ускорители элементарных частиц имеют огромные стеки чувствительных детекторов, которые могут отслеживать движение каждого последнего бита массы и энергии в системе; электроны, протоны, фотоны и т. д.Вдобавок ускорители накачивают частицы невероятным количеством энергии, так что экзотические и редкие явления легко наблюдать. Если бы немного неучтенной энергии действительно появилось, детекторы бы ее заметили, но никогда не видели.

Теория требует закона сохранения массы-энергии. Если энергия могла бы возникнуть из ничего, тогда в такой большой старой вселенной энергия в конечном итоге возникла бы из ничего.Если убрать ограничивающий механизм сохранения, энергия, которая появляется из ничего, может достигать бесконечности. По мере того, как возраст Вселенной становится большим, вероятность того, что бесконечная энергия появится из ничего, станет 100%. Проблема в том, что бесконечная энергия (или даже небесконечная, достаточно большая) разрушила бы нашу Вселенную. Тот факт, что наша Вселенная все еще существует, является прямым доказательством того, что закон сохранения массы-энергии является фундаментальным и универсальным.Если бы этот закон применялся на Земле, но не на Альфе Центавра, то бесконечная энергия вырвалась бы из ничего на Альфе Центавра и разрушила бы Вселенную. Универсальность сохранения массы-энергии буквальна и строга. Люди, которые верят в машины свободной энергии, также должны логически верить в то, что Вселенной не существует.

Сторонники свободной энергии могут утверждать, что закон сохранения массы-энергии обычно соблюдается , но может быть нарушен в экзотических экспериментах.Центр звезд и сверхновых — гораздо более экзотическая среда, чем подвал мастера. Нарушение закона сохранения массы-энергии будет наблюдаться в звезде гораздо раньше и легче, чем в настольной конструкции изобретателя. И тем не менее, этого никогда не наблюдалось. Бесплатная энергия может быть соблазнительной для людей, которые чего-то хотят даром. Если бы вы могли построить машину, создающую энергию из ничего, тогда вы могли бы продавать энергию, и каждый стал бы богатым, даже не выполняя никакой работы.

Машины на свободной энергии, которые, кажется, должны работать, всегда являются продуктом принятия желаемого за действительное и небрежной науки.Если вы построили машину и недооценили количество массы-энергии, которое вы должны вложить в машину, чтобы она заработала, а переоценили количество массы-энергии, которое она выдаст при запуске, то ваши вычисления предсказывают, что масса-энергия энергия была создана из ничего. Но этот конечный результат явился результатом плохих оценок, а не новаторской науки. Большинство людей, которые «чувствуют», что должна работать некая машина свободной энергии, просто не понимают, сколько массы-энергии требуется, чтобы заставить машину работать.Например, магнитные машины на свободной энергии по сути являются вращающимися электромагнитными двигателями. Машина подключена к источнику электричества, от которого вращается моторное колесо. Затем машину отключают от сети, и колесо продолжает вращаться по собственной инерции. Затем из прялки извлекается электрическая энергия. Эта энергия не была создана из ничего. Он был вставлен в колесо исходной электрической мощностью, подаваемой на двигатель. Электрическая мощность, извлекаемая из колеса, в конечном итоге всегда будет меньше, чем электрическая мощность, заложенная в колесо в первую очередь.Энергия просто преобразуется из электрической в ​​кинетическую (вращение колеса — это форма энергии), а затем обратно в электрическую, при этом часть энергии преобразуется в отходящее тепло из-за трения. Когда изобретатель машины «свободной энергии» или «сверх единства» заявляет, что его изобретение действительно создает энергию из ничего, он либо обманывает себя, либо откровенно лжет, чтобы воспользоваться другими. Самообман обычно происходит из-за того, что изобретатель не осознает, какое большое количество внешней энергии он вложил в свою машину, чтобы включить ее, а это больше, чем он когда-либо мог получить.Прямое измерение всей энергии, подводимой к его машине, и всей выделяемой энергии быстро не обнаружит фактической свободной энергии. Но заниматься настоящей наукой сложно, поэтому бесчисленные «изобретатели» возятся в своих гаражах и думают, что «крутящееся колесо» = «свободная энергия», не проводя никаких реальных измерений. Те, кто проводит реальные измерения, думают, что всегда на шаг отстают от достижения сверхединичности; вера в то, что добавление еще одного сложного устройства к их машине приведет их к вершине, хотя на самом деле они никогда не достигают результата в отношении свободной энергии.

Рассмотрим канал воды, протекающий через турбину. Турбина вырабатывает электричество. Затем электричество используется для перекачки всей воды из нижней части канала в верхнюю часть канала, где она может снова войти в турбину и повторить цикл. Это похоже на замкнутую систему, которая может работать вечно и непрерывно производить электричество; это бесплатная энергия! Но если вы действительно проведете измерения или расчеты, вы обнаружите, что электроэнергии, генерируемой турбинами, никогда не будет достаточно, чтобы перекачать всю воду обратно в верхнюю часть канала.Потребуется энергия извне, чтобы вернуть воду наверх и, таким образом, работать непрерывно. Но на тот момент это не машина для получения свободной энергии. Это просто сложное колесо, работающее от внешнего источника. Речные турбины извлекают энергию из рек, но эта энергия не возникает ниоткуда. Речная вода приобрела свою гравитационную потенциальную энергию, когда она была помещена в исток реки в процессе испарения-осаждения. Речная вода когда-то была океанской водой, которая поглощала солнечную энергию солнца и превращала ее в потенциальную гравитационную энергию при испарении.Энергия, выделяемая солнцем, является результатом преобразования массы в энергию в его ядре. Масса Солнца была создана медленным накоплением межгалактической пыли, образовавшейся в результате Большого взрыва. Поскольку массовая энергия не может быть создана или уничтожена, каждый бит массы-энергии во Вселенной можно проследить до ее создания во время Большого взрыва. Настоящие речные турбины не производят энергию из ничего. Они просто извлекают энергию, созданную Большим взрывом, и преобразуют ее в полезную форму.

Некоторые люди неправильно понимают энергию вакуума и считают, что это форма свободной энергии, которую можно извлечь.Абсолютный вакуум действительно содержит квантовые флуктуации, но они не составляют полезную энергию. Эффекты энергии вакуума уже учтены в повседневных реакциях. Строго говоря, вы уже используете эффекты энергии вакуума каждый раз, когда зажигаете свечу или ведете машину, но все еще нет постоянного удаления энергии из вакуума. Каждая частица «одета» или окружена облаком квантовых флуктуаций в дополнение к своим регулярным полям. Если бы вы каким-то образом удалили облако, частица осталась бы обнаженной и совершенно иначе взаимодействовала бы с миром.Масса-энергия, полученная при удалении облака, компенсирует потерю массы-энергии, изменяя способ взаимодействия частицы с миром, так что в конечном итоге масса-энергия все равно сохранится. Вы все равно получите полную энергию, созданную из ничего, равную нулю. Например, в эффекте Казимира две пластины расположены очень близко друг к другу, так что облако квантовых флуктуаций между пластинами менее плотное, чем облако, окружающее пластины. В результате пластины притягиваются друг к другу.Казалось бы, этот эффект извлекает энергию из ничего. На самом деле энергия, которая выходит из системы в виде движущихся пластин, исходит от частиц в пластинах. По мере изменения облака квантовых флуктуаций они теряют массу. Даже квантовые флуктуации подчиняются закону сохранения массы-энергии.

Исторически машины на свободной энергии назывались «вечными двигателями». Это название сбивает с толку, потому что вечное движение возможно, вы просто не можете извлечь свободную энергию из объекта, находящегося в вечном движении.Земля находится в вечном движении, поскольку она постоянно вращается вокруг Солнца. Если бы мы построили гигантский генератор и извлекли бы большую часть энергии, содержащейся в орбитальном движении Земли, это разрушило бы орбиту, и Земля по спирали устремилась бы к Солнцу. С социально-экономической точки зрения также должно быть очевидно, что машины, работающие на свободной энергии, не работают. Если бы машина, работающая на свободной энергии, действительно работала, она мгновенно обогатила бы своего изобретателя. Если бы такие машины на свободной энергии были возможны, высокотехнологичные корпорации, такие как Intel или Apple, преследовали бы их, потому что они буквально приносили бы бесконечную отдачу от инвестиций.И все же ни одна крупная технологическая компания не продает машины, работающие на свободной энергии, и даже не изучает их возможности. Корпорации знают, что чтение, исследование или разработка машин бесплатной энергии — бесполезная трата времени и энергии, которые лучше направить на более продуктивные каналы.

Темы: сохранение энергии, энергия, энергетическая революция, свободная энергия, сверхъединство, вечное движение, энергия нулевой точки

Как получить бесплатную энергию от генератора и батареи

Один из читателей, г-н.Эдвард Пиццо по поводу решения проблемы с цепью. Идея относится к очень интересной концепции получения свободной энергии через механизм, который однажды запущен, продолжает работать непрерывно.

Использование генератора переменного тока и двух аккумуляторов

Заряженная батарея №1 сначала используется для запуска генератора переменного тока, который продолжает работать за счет энергии от аккумуляторной батареи №1 и, в конечном итоге, вырабатывает достаточно энергии для работы нескольких бытовых приборов и для зарядка другого аккумулятора # 2.Как только предыдущая батарея №1 разряжается, позиции батарей (№1 и №2) просто меняются местами, чтобы система могла работать почти вечно.

Вот проблема со схемой:

Как должен работать бесплатный генератор

Я неплохо разбираюсь в конструировании и изготовлении
Я ходил в школу 20 лет назад, изучал электронику и связь, и это принесло мне пользу.

Проблема в том, что я знаю достаточно, чтобы быть опасным, но, похоже, я просто не могу добраться до конца решения проблемы того, что мне нужно сделать.

У меня есть схема бифилярной катушки, которую мне нужно изменить, чтобы включить нагрузку 10 ампер при 110 вольт там, где идет неоновый свет. Я знаю, как подключить батареи последовательно и параллельно, чтобы получить то, что мне нужно, однако я не могу восстановить схему, чтобы увеличить силу тока, я продолжаю взрывать вещи.
Вот оригинальная схема, на которой я основывал свой дизайн.

Он вдохновлен концепцией Бедини о генерировании бесплатной энергии. В моем прототипе у меня есть сторона схемы, которая запускает катушку, которая, в свою очередь, запускает двигатель, а другая сторона заряжает батарею.Когда я не заряжаюсь, я хотел бы запустить мотор, где горит неоновая лампа 110.

Любая помощь будет очень признательна. Я хотел бы увеличить это, чтобы работать от 24 вольт и 48 вольт и в конечном итоге поставить схему переключения на верхнем мониторе, когда батарея заряжается, чтобы перевернуться, чтобы я мог поддерживать батареи в рабочем состоянии непрерывно.

Я использую проволоку размером 22 и 18 сечением около тысячи витков для катушки, заполненной железом, для запуска магнитного колеса, которое я построил

В своем небольшом масштабе он работает безупречно, однако я не могу понять, как усилить компоненты чтобы получить большую силу тока через цепь, не взрывая ее.

Проволока катушки намотана на деревянную катушку примерно на тысячу витков, затем я набиваю их железом. В центре, чтобы сделать сердечник, я использую сварочный стержень в качестве сердечника. Магнитный двигатель — это 12 магнитов на колесе, все полюса обращены в одном направлении.

Когда вы добавляете источник питания, магнитное колесо начинает вращаться от пусковой катушки, однако сторона работы катушки заряжает вторичную батарею. Когда вторая батарея отключена, включается неоновая лампа, так как мне нужно, чтобы это напряжение куда-то упало.Я продолжаю ставить транзисторы большего номинала, но продолжаю сжигать другие части схемы. Если

я это пойму, я не смогу управлять своим домом без потребности в энергетической компании. Это включая и работающие блоки переменного тока.

Я не помню имени парня, который разработал схему. Я нигде не могу найти его форум. Это было 2 года назад, и он постоянно работает в моем гараже без перерыва. В конце концов я решил попытаться включить его, изменив способ работы катушки.

Она работает непрерывно 2 года. Сейчас я вручную переключаю батареи с начала на зарядку, когда одна сторона заряжает систему, а другая разряжает ее.Эта система на самом деле выдает больше напряжения, чем использует, поэтому всегда присутствует избыточное напряжение, постоянно поддерживающее полностью заряженную сторону заряда.
Я спроектировал статор, который будет работать в доме на очень низких оборотах, поэтому, если я смогу решить эту часть схемы при более высоком номинальном токе и быть стабильным, не перегорая, электрическая компания уйдет в прошлое.
Ed

Анализ схемы генератора свободной энергии:

Вышеупомянутая идея выглядит неплохо, но предполагает вечный вид механизма, а, как мы все знаем, вечный механизм никогда не может быть осуществим.

Вышеупомянутая идея могла бы работать, но она никогда не может обеспечить 100% -ный КПД, даже 80%, я полагаю.

Тем не менее, я все еще ценю эту концепцию, даже наши коммерческие гидроэлектростанции требуют силы тяжести и огромного количества воды для выполнения операций, у всего есть недостатки, и настоящая идея не является исключением.

Мне интересно узнать от мистера Эдварда, как схема будет производить больше тока, чем то, что она фактически потребляет для работы бытовой техники ?? Это выглядит слишком хорошо, чтобы быть правдой.

Потому что, если это правда, то вышеупомянутая идея может произвести революцию в концепции производства электроэнергии.

Возвращаясь к реальной проблеме, я думаю, что для получения большего количества токов нам просто нужно пропорционально утяжелить соответствующую обмотку. Батареи также должны быть согласованы по выводам обмоток.

Если вышеупомянутая пара вещей оптимизирована в соответствии с потребностями, общий рейтинг устройства может быть увеличен до любых желаемых пределов.

Операции обновления могут выполняться с помощью цифрового мультиметра, выходы соответствующей обмотки можно проверять и настраивать, вращая их вручную.

Вместо транзистора можно попробовать МОП-транзистор для повышения эффективности. Ответ на Эд

Всегда есть износ движущихся частей, особенно разряд батареи, если я могу удерживать батареи от падения ниже 50% их заряда

Я могу хранить их намного дольше, чем полностью разряженные батареи. Я предоставлю видео, где я смогу показать вам напряжение, которое поддерживает вращение системы

И количество напряжения, которое заряжает систему, я не собирался вступать в дискуссию о любых вечных двигателях такого рода, я так же скептически настроен, как и кто угодно.

Итак, мне нужно создать и протестировать большинство утверждений самостоятельно, однако это работает именно так, как задумал дизайнер. Несколько модификаций, которые я сделал, основаны на идее, с которой я хотел поиграть в то время, но не смог завершить из-за того, что я сжег части схемы.

Бифилярный провод на тысячу витков с магнитами, которые я использую, определенно является ключом к моим проблемам.

Тем не менее, при использовании магнита меньшего класса, скажем из радиорубки, я предполагаю, что, возможно, 5 или 10 ne не изменили выходное напряжение, однако, когда я переключился на магнит 42ne, напряжение соответствует более слабым или меньшим магнитам, но крутящий момент Я разработал изменения, которые позволили мне перепроектировать систему, включив в нее статор с низкой частотой вращения, который может производить 1500 кВт, чего достаточно для работы приборов точно так же, как ветряная мельница управляет домом или фермой (задача номер 1 заключалась в создании достаточного крутящего момента на моем основном двигателе. Схема для преодоления эффекта засорения статора для вращения на минимально возможных оборотах для выработки 1500 кВт.Задача завершена.)

Мне удалось сделать систему достаточно большой для этого, но не без других проблем.

В настоящее время в этой базовой системе я покажу вам, что она использует от 9 до 12 вольт для работы системы, что связано с состоянием пусковой батареи или стороны работы цепи. Выходная сторона обычно будет примерно на 1–1 / 2–2 вольта выше.

Я возьму свою камеру, когда выйду с работы, и я могу показать вам, как система работает, как было задумано, она работает в моем гараже уже долгое время, единственное, что мне нужно построить, это схема с триггером на основе состояние заряда работающей батареи, когда она опускается ниже номера батареи 2 на x процентов или когда батарея 2 достигает полного заряда, просто переверните схему, я еще не уверен, насколько плохо это настроено.

Дизайн, который я использую для дома, основан на этой схеме, но я изменил ее, чтобы она действительно работала быстрее, и в ней намного больше катушек.

Но я продолжаю сгорать от него. Отсюда мой вопрос к вам, как написано.
Я знаю, что мне не хватает чего-то очень простого или нет, мне может потребоваться добавить конденсаторы в некоторых местах и, возможно, создать фильтры для сглаживания или, возможно, выравнивания выходного сигнала.

Мне нужно сначала узнать, как это сделать, поэтому я тоже учусь, когда строю эту схему.(альтернативный вариант — сдать всю эту систему на более эффективный двигатель в будущем, но сначала мне нужно изучить основы)

Всегда будут скептики, поэтому, пока вы не построите его самостоятельно, что, вероятно, будет стоить менее 50 долларов, это 2 сечения провода вам нужно всего около 500 витков транзистора 2 диода они должны быть разными по времени и потенциометру для настройки производительности и уровня выходного сигнала.

И немного сварочного прутка без флюса для вашего железного сердечника. Могут быть аккумуляторы от ваших автомобилей, или те, которые я использовал, для небольшого мотоцикла, который у меня лежал.

Я сейчас работаю над тем, чтобы полностью избавиться от батареек в системе для дома. Но мне все еще нужен способ запустить систему, в статоре используется инвертор постоянного тока, подключенный к обратной петле, чтобы система работала, но это тоже взорвалось в эти выходные, поэтому я отправил вам электронное письмо, которое побудило меня искать помощи.

Предлагаемая схема генератора свободной энергии работает Я просто недостаточно знаю о проектировании или перепроектировании электронной системы, чтобы не допустить взрыва [(пока) время также не на моей стороне, и я хотел бы знать больше вчера, но я знаю нет].Я великолепен и создаю концепции и фабрикацию.

Я могу строить, сваривать и фрезеровать любые детали, которые мне нужны для выполнения механической части, и я могу создавать базовые схемы для получения определенных результатов, но на данный момент я сталкиваюсь с проблемой, когда я понимаю, почему мне нужно иметь конкретный компонент для внесения расчетных изменений или улучшений в схему.

Однако чем больше электроники, тем меньше эффективность.

Я использую метод KISS только для того, чтобы простая часть уравнения становилась все более и более сложной, поскольку я продолжаю строить, чтобы исправить мелкие проблемы, чтобы решить второстепенные проблемы.Глупая часть уравнения, в которой у меня нет недостатка, кажется, вполне уместна. Я знаю, что он смотрит мне в лицо, но мне не хватает какой-то части головоломки, которая могла бы объединить все это воедино.

Я использую настольный шлифовальный станок Duel для подшипников, которые работают вечно и действительно прочные. Таким образом, отпадает необходимость в ремнях или шкивах, как во многих других системах.

Я использую первичную систему для запуска вторичной. Я могу заставить вторичную систему питать первичную, как только она заработает и наберет скорость.Все, что делает эта система, — это вырабатывает мощность и вращает магниты с крутящим моментом, достаточным для питания вторичной обмотки. Вторичный не заботится о том, что от него запускается, пока первичный работает на такой скорости, чтобы преодолеть засорение.

Проблема в том, что мне нужно перестать сжигать компоненты на достаточно долгое время, чтобы это было полезно. Я могу получить около 6 или 7 минут до того, как все начнет жариться, и на нем будет работать блок переменного тока 7,2 ампер при 110 вольт, около дюжины лампочек на 100 Вт, поэтому у меня есть больше, чем просто выключить вторичный статор для обратной подачи и запустить небольшой 24 В или Система 48 В, но я не могу получить стабильную первичную обмотку при таком напряжении.Я уверен, что для большинства из вас эта часть будет детской забавой, так что, возможно, с вашей помощью мы сможем это запустить и запустить.

Обо мне (Эдвард Пиццо)

За эти годы я работал над многими проектами, одними профессионально, а другим нравился этот как хобби и поиск лучших идей, которые могут помочь.

Окружающая среда и люди, связанные с ней. Но остается загадкой, как промывают мозги большинству людей. У меня есть машина, которая едет по воде, и никто не хочет иметь с ней ничего общего. Теперь у меня есть устройство, которое, вероятно, будет бесплатно управлять домом всю жизнь, и оно никому не будет интересно.

Я слышу все крики о помощи каждый день, но когда мне предлагают, все это отвергается как жульничество. Думаю, если бы я упаковал его и продал в коробке за 4000 долларов, возможно, люди захотели бы его. Таким образом, я мог бы заплатить инженеру, чтобы он определил недостающие части и делал ежегодные обновления моей системы.

У меня есть сосед, который только что потратил 52 000 долларов на установку Solar на своей крыше. Я показал ему свою систему и сказал, что плохо сделаю его, просто заплатил за детали до 1200 долларов, и он сказал мне, извините, что это не сработает. ????? и он все еще должен заплатить энергетической компании.Я в недоумении

Как построить генератор ротовертера

Затем двигатель и генератор надежно устанавливаются в точном совмещении и соединяются вместе. Переключение направления корпуса на приводном двигателе позволяет всем перемычкам находиться на одной стороне двух блоков, когда они соединены вместе, лицом друг к другу:

Входной привод может быть от инвертора, питаемого от батареи, заряжаемой через солнечную панель. Систему нужно «настроить» и протестировать.Это включает в себя поиск лучшего «пускового» конденсатора, который будет включаться в цепь на несколько секунд при запуске, и лучшего «рабочего» конденсатора.

Подводя итог: это устройство принимает маломощный вход переменного тока 110 В и выдает гораздо более мощный электрический выход, который можно использовать для питания нагрузок, значительно превышающих входные. Выходная мощность намного выше входной. Это свободная энергия под любым именем, которое вы хотите называть. Одно из преимуществ, которое следует подчеркнуть, заключается в том, что требуется очень мало конструкции и используются стандартные двигатели.Кроме того, не требуется никаких знаний в области электроники, что делает это одним из самых простых в изготовлении устройств на свободной энергии, доступных в настоящее время. Один небольшой недостаток состоит в том, что настройка двигателя «Prime Mover» зависит от его нагрузки, и большинство нагрузок время от времени имеют разные уровни потребляемой мощности.

Необязательно строить RotorVeter точно так, как показано выше, хотя это наиболее распространенная форма конструкции. Мотор Мюллера, упомянутый ранее, может иметь выходную мощность 35 киловатт при точной конструкции, как это сделал Билл Мюллер.Таким образом, одним из вариантов является использование одного двигателя Baldor с перемычкой в ​​качестве приводного двигателя «Prime Mover», и он должен приводить в действие один или несколько роторов типа Muller Motor для выработки выходной мощности:

Поскольку цель состоит в том, чтобы увеличить выходную мощность и попытаться сохраняйте нагрузку двигателя как можно более равномерной, чтобы можно было настроить потребляемую мощность двигателя как можно ближе к «сладкой» резонансной точке его работы, приходит на ум еще одна альтернатива. Генератор выходной мощности, который имеет наименьшее изменение мощности на валу для изменения выходной электрической мощности, а именно генератор Эклина-Брауна, как описано в главе 1:

Электрическая мощность, вырабатываемая в катушках, намотанных на двутавровую секцию, является значительной, и ключевой Фактором является то, что мощность, необходимая для вращения вала, почти не зависит от тока, потребляемого от катушек приема.Эти генераторные установки могут быть установлены последовательно и при этом облегчают настройку приводного двигателя «Prime Mover»:

Фил Вуд, имеющий многолетний опыт работы со всеми разновидностями электродвигателей, придумал очень умную вариацию схемы для система RotoVerter. В его конструкции используется двигатель Prime Mover на 240 вольт, приводимый в действие переменным током на 240 вольт. Обновленная схема теперь имеет автоматический запуск и обеспечивает дополнительный выход постоянного тока, который можно использовать для питания дополнительного оборудования. Его схема показана здесь:

Фил определяет диодные мосты на 20 ампер, 400 вольт, а выходной конденсатор на рабочий ток от 4000 до 8000 микрофарад, 370 вольт.Переключатель ВКЛ / ВЫКЛ на выходе постоянного тока должен быть на 10 А 250 В переменного тока при работе. Схема работает следующим образом:

Зарядный конденсатор «C» должен быть полностью разряжен перед запуском двигателя, поэтому нажимается кнопочный переключатель, чтобы подключить резистор 1 кОм к конденсатору для его полной разрядки. Если вы предпочитаете, кнопочный переключатель и резистор можно не устанавливать, а переключатель нагрузки постоянного тока замкнуть до того, как будет подан вход переменного тока. Затем необходимо разомкнуть выключатель и подключить переменный ток.Пусковой конденсатор «S» и конденсатор «R» работают с полным потенциалом, пока конденсатор «C» не начнет заряжаться. Когда конденсатор «C» проходит фазу зарядки, сопротивление конденсаторов «R» и «S» увеличивается, а их потенциальная емкость становится меньше, автоматически следуя кривой емкости, необходимой для правильной работы двигателя переменного тока при запуске.

Через несколько секунд работы включается выходной выключатель, подключая нагрузку постоянного тока. Изменяя сопротивление нагрузки постоянного тока, можно найти правильную точку настройки.В этот момент сопротивление нагрузки постоянного тока поддерживает работу обоих конденсаторов «R» и «S» при потенциально низком значении емкости.

Работа этой схемы уникальна: вся энергия, которая обычно тратится впустую при запуске двигателя переменного тока, собирается в выходном конденсаторе «C». Другой бонус — это когда нагрузка постоянного тока запитывается бесплатно, в то время как конденсаторы «R» и «S» поддерживаются в их оптимальном рабочем состоянии. Необходимо отрегулировать сопротивление нагрузки постоянного тока, чтобы найти значение, при котором цепь будет работать автоматически.Когда это значение будет найдено и станет постоянной частью установки, тогда переключатель можно оставить включенным при запуске двигателя (что означает, что его можно не устанавливать). Если переключатель остается включенным в течение фазы запуска, конденсатор «C» может иметь меньшее значение, если сопротивление нагрузки постоянного тока достаточно велико, чтобы позволить конденсатору пройти фазовый сдвиг.

Значения конденсаторов, показанные выше, были такими, которые, как было установлено, хорошо работали с испытательным двигателем Фила, который был трехобмоточным, мощностью 5 лошадиных сил и напряжением 240 вольт.В ходе испытаний, приводя в движение вентилятор, двигатель потребляет максимум 117 Вт, а для нагрузки постоянного тока использовалась дрель с регулируемой скоростью 600 Вт. В этой цепи двигатель работает на свой полный потенциал.

Для работы от сети переменного тока 120 В для схемы потребуются разные конденсаторы. Фактические значения лучше всего определить путем тестирования двигателя, который будет использоваться, но следующая диаграмма является реалистичной отправной точкой:

Двигатель 120 В переменного тока работает очень плавно и бесшумно, потребляя только 20 Вт входной мощности.

Продвигая конструкцию еще дальше, Фил теперь создал чрезвычайно умную конструкцию, представив дополнительный двигатель / генератор постоянного тока, соединенный с двигателем «Prime Mover». Соединение номинально механическое, при этом два двигателя физически связаны вместе ремнем и шкивами, но электрическое соединение таково, что два двигателя синхронизируются автоматически, если механическое соединение отсутствует. Я хотел бы выразить ему свою благодарность за то, что он бесплатно поделился этой информацией, диаграммами и фотографиями.

Эта схема очень умна, поскольку двигатель / генератор постоянного тока автоматически регулирует работу двигателя переменного тока как при запуске, так и при переменной нагрузке. Также не так важен выбор конденсаторов и ручное вмешательство при запуске не требуется. Кроме того, двигатель / генератор постоянного тока можно использовать как дополнительный источник электроэнергии.

Читать здесь: Extra Energy Collection

Была ли эта статья полезной?

Источники энергии, Возобновляемые источники энергии, Нефть, Уголь

СВОБОДА! Я стою в захламленной комнате, окруженной обломками электрического энтузиазма: обрывками проводов, кусочками меди, желтыми разъемами, изолированными плоскогубцами.Для меня это инструменты свободы. Я только что установил на крышу с десяток солнечных панелей, и они работают. Измеритель показывает, что 1285 ватт мощности направляются прямо от солнца в мою систему, заряжают мои батареи, охлаждают мой холодильник, гудят в моем компьютере, освобождая мою жизнь.

Эйфория энергетической свободы вызывает привыкание. Не поймите меня неправильно; Я люблю ископаемое топливо. Я живу на острове, на котором нет инженерных сетей, но в остальном мы с женой ведем нормальную американскую жизнь.Нам не нужны пропановые холодильники, керосиновые лампы или компостные туалеты. Нам нужно много розеток и устройство для приготовления капучино. Но когда я включаю эти панели, ничего себе!

Может быть, это потому, что для меня, как и для большинства американцев, тот или иной энергетический кризис омрачил большую часть последних трех десятилетий. От кризиса в ОПЕК в 1970-х годах до стремительного роста цен на нефть и бензин сегодня озабоченность мира по поводу энергетики преследовала президентские речи, кампании в Конгрессе, книги о бедствиях и мое собственное чувство благополучия с той же мучительной тревогой, которая была характерна для холодная война.

Как сообщал National Geographic в июне 2004 года, нефть, которая больше не дешевая, может скоро подешеветь. Нестабильность там, где находится большая часть нефти, от Персидского залива до Нигерии и Венесуэлы, делает этот спасательный трос хрупким. Природный газ трудно транспортировать, и он подвержен дефициту. В ближайшее время у нас не закончится уголь или в значительной степени неиспользованные месторождения битуминозных песков и горючего сланца. Но очевидно, что углекислый газ, выделяемый углем и другими ископаемыми видами топлива, нагревает планету, как сообщил этот журнал в сентябре прошлого года.

Избавиться от этого беспокойства заманчиво. С моими новыми панелями ничто не стоит между мной и безграничной энергией — никакой иностранной нации, никакой энергетической компании, никакой вины за выбросы углерода. Я свободен!

Ну почти. Вот и облако.

Тень крадется по моим панелям и моему сердцу. Счетчик показывает всего 120 Вт. Придется запустить генератор и сжечь еще бензина. В конце концов, это будет непросто.

Проблема с энергетической свободой в том, что она вызывает привыкание; когда получаешь мало, хочется много.В микрокосме я похож на людей в правительстве, промышленности и частной жизни во всем мире, которые попробовали немного этой любопытной и неотразимой свободы и полны решимости найти больше.

Некоторые эксперты считают это стремление даже более важным, чем война с терроризмом. «Терроризм не угрожает жизнеспособности нашего высокотехнологичного образа жизни», — говорит Мартин Хофферт, профессор физики Нью-Йоркского университета. «Но энергия действительно есть».

Экономия энергии может предотвратить расплату, но, в конце концов, вы не можете сберечь то, чего у вас нет.Так что Хофферт и другие не сомневаются: пришло время активизировать поиск следующего великого топлива для голодного двигателя человечества.

А такое топливо есть? Краткий ответ: нет. Специалисты произносят это как мантру: «Серебряной пули не бывает». Хотя несколько истинно верующих утверждают, что между нами и бесконечной энергией космического вакуума или ядра Земли стоят только обширные заговоры или недостаток средств, правда в том, что в основе уравнения или в конце сверла.

Увлечение водородными автомобилями может произвести неверное впечатление. Водород не является источником энергии. Он находится вместе с кислородом в простой старой воде, но его нельзя принимать. Водород должен быть освобожден, прежде чем он станет полезным, а это стоит больше энергии, чем водород возвращает. В наши дни эта энергия в основном поступает из ископаемого топлива. Никакой серебряной пули.

Однако длинный ответ о нашем следующем топливе не такой уж мрачный. Фактически, множество претендентов на энергетическую корону, в настоящее время удерживаемую ископаемым топливом, уже под рукой: ветряная, солнечная, даже ядерная, и это лишь некоторые из них.Но преемником должен быть конгресс, а не король. Практически каждый энергетический эксперт, которого я встречал, делал что-то неожиданное: он продвигал не только свою, но и все остальные.

«Нам понадобится все, что мы можем получить из биомассы, все, что мы можем получить от солнечной энергии, все, что мы можем получить от ветра», — говорит Майкл Пачеко, директор Национального центра биоэнергетики, входящего в Национальную лабораторию возобновляемых источников энергии ( NREL) в Голдене, Колорадо. «И все же вопрос в том, сможем ли мы насытиться?»

Большая проблема — большие числа.В мире ежедневно используется около 320 миллиардов киловатт-часов энергии. Это равно примерно 22 непрерывно горящим лампочкам на каждого человека на планете. Не зря искры видны из космоса. По оценкам группы Хофферта, в следующем столетии человечество сможет использовать в три раза больше. Ископаемые виды топлива удовлетворяют растущий спрос, потому что они упаковывают энергию Солнца за миллионы лет в компактную форму, но мы больше не найдем им подобных.

Воодушевленный моим вкусом энергетической свободы, я начал искать технологии, которые могут решить эти проблемы.«Если у вас есть большая проблема, вы должны дать серьезный ответ», — говорит гениальный гуру энергетики по имени Герман Шеер, член парламента Германии. «Иначе люди не верят».

Ответы есть. Но всем им требуется еще одна вещь от нас, людей, которые ютятся вокруг костра ископаемого топлива: нам придется сделать большой прыжок — в мир другого типа.

Солнечная энергия: Бесплатная энергия по цене

В пасмурный день недалеко от города Лейпциг в бывшей Восточной Германии я прошел через поле со свежей травой мимо пруда, где паслись дикие лебеди.Поле было также засеяно 33 500 фотоэлектрическими панелями, высаженными рядами, как серебряные цветы, повернутые к солнцу и плавно изгибающиеся по контурам земли. Это одна из самых больших солнечных батарей в истории. Когда появляется солнце, поле производит до пяти мегаватт энергии, чего в среднем достаточно для 1800 домов.

Рядом зияющие карьеры, где поколениями добывали уголь для питания электростанций и фабрик. Небо было коричневым от дыма и едким от серы. Теперь шахты превращаются в озера, а энергия, которая когда-то производилась из угля, производится в печи, находящейся на расстоянии 93 миллионов миль (150 миллионов километров).

Солнечные электрические системы получают энергию непосредственно от солнца — без огня и выбросов. Некоторые лаборатории и компании испытывают взрослую версию детской лупы: гигантские зеркальные чаши или желоба для концентрации солнечных лучей, выделяющих тепло, которое может приводить в действие генератор. Но на данный момент солнечная энергия в основном означает солнечные батареи.

Идея проста: солнечный свет, падающий на слой полупроводника, толкает электроны, создавая ток. Тем не менее, стоимость клеток, некогда астрономическая, по-прежнему высока.Моя скромная система стоила более 15000 долларов (США), около 10 долларов за ватт емкости, включая батареи для хранения энергии, когда солнце не светит.

Как и многие другие электронные устройства, солнечная энергия становится все дешевле. «Тридцать лет назад использование спутников было рентабельным, — говорит Дэниел Шугар, президент PowerLight Corporation, быстрорастущей калифорнийской компании, которая построила солнечные установки для клиентов, включая Toyota и Target. «Сегодня это может быть рентабельным для электроснабжения домов и предприятий», по крайней мере, там, где электроэнергия дорогая или недоступна.Завтра, говорит он, это будет иметь смысл почти для всех.

Мартин Рошайзен, генеральный директор компании Nanosolar, видит это будущее во флаконах с красной крышкой, заполненных крошечными частицами полупроводника. «Я нанес немного этого на свой палец, и он исчез прямо на моей коже», — говорит он. Он не скажет, что именно представляют собой частицы, но «нано» в названии компании является намеком: они меньше ста нанометров в поперечнике — размером с вирус, и настолько малы, что проникают сквозь кожу.

Рошайзен считает, что эти частицы обещают недорогой способ создания солнечных элементов. Вместо того, чтобы делать ячейки из пластин кремния, его компания будет рисовать частицы на фольге, где они будут самоорганизовываться, образуя поверхность полупроводника. Результат: гибкий материал для солнечных батарей в 50 раз тоньше, чем сегодняшние солнечные панели. Roscheisen надеется продавать его листами примерно по 50 центов за ватт.

«Пятьдесят центов за ватт — это своего рода Святой Грааль», — говорит Дэвид Пирс, президент и генеральный директор Miasolé, одной из многих других компаний, работающих над «тонкопленочными» солнечными элементами.По этой цене солнечная энергия может конкурировать с коммунальными услугами и может стать популярной. Если цены продолжат падать, солнечные элементы могут полностью изменить представление об энергии, сделав ее дешевым и легким сбором для себя. Это то, что технари называют «прорывной технологией».

«Автомобили разрушили бизнес лошадей и багги, — говорит Дэн Шугар. «ПК совершили прорыв в индустрии пишущих машинок. Мы считаем, что солнечные электрические системы подорвут энергетику».

Но цена — не единственное препятствие для солнечных панелей.Есть такие мелочи, как облака и темнота, которые требуют лучших способов хранения энергии, чем громоздкие свинцово-кислотные батареи в моей системе. Но даже если эти препятствия будут преодолены, сможет ли солнечная энергия действительно производить большую энергию, в которой мы нуждаемся?

Поскольку сейчас солнечная энергия обеспечивает менее одного процента мировой энергии, это потребует «огромного (но не непреодолимого) масштабирования», — заявили Хофферт из Нью-Йоркского университета и его коллеги в статье в Science . При нынешнем уровне эффективности потребуется около 10 000 квадратных миль (25 900 квадратных километров) солнечных панелей — площадь больше, чем Вермонт, — чтобы удовлетворить все потребности Соединенных Штатов в электроэнергии.Но требования к земле звучат более устрашающе, чем есть на самом деле: открытая местность не должна быть покрыта. Все эти панели могли уместиться менее чем на четверть площади кровли и тротуаров в городах и пригородах.

Ветер: праздник или голод

Ветер, в конечном счете приводимый в движение нагретым солнцем воздухом, — это еще один способ сбора солнечной энергии, но он работает в пасмурные дни. Однажды днем ​​я стоял в поле недалеко от западного побережья Дании под таким темным и тяжелым небом, что мои собственные солнечные батареи могли бы впасть в кому.Но прямо надо мной мегаватт вырабатывал чистую энергию. Лезвие длиннее крыла самолета медленно вращалось на сильном южном ветру. Это был ветряк.

Ленивая развертка турбины вводила в заблуждение. Каждый раз, когда одно из трех 130-футовых (40-метровых) лезвий проходило мимо, оно шипело, рассекая воздух. Наклонная скорость может превышать 100 миль (161 км) в час. Эта единственная башня была способна производить два мегаватта, почти половину всей мощности солнечной фермы в Лейпциге.

В Дании вращающиеся лезвия всегда видны на горизонте, маленькими или большими группами, как спицы колес, катящихся в странный новый мир.Общая установленная энергия ветра в Дании в настоящее время составляет более 3000 мегаватт, что составляет около 20 процентов потребности страны в электроэнергии. По всей Европе щедрые стимулы, направленные на сокращение выбросов углерода и отлучение экономики от нефти и угля, привели к ветровому буму. Континент является мировым лидером в области ветроэнергетики — почти 35 000 мегаватт, что эквивалентно 35 крупным угольным электростанциям. Северная Америка, хотя и обладает огромным потенциалом ветроэнергетики, остается на втором месте с чуть более 7000 мегаватт.За исключением гидроэлектроэнергии, которая веками приводила в движение машины, но имеет мало возможностей для развития в развитых странах, ветер в настоящее время является самым большим успехом в области возобновляемых источников энергии.

«Когда я начинал в 1987 году, я много времени просидел в фермерских домах до полуночи, разговаривая с соседями, просто продав одну турбину», — говорит Ханс Буус. Он директор по развитию проекта датской энергетической компании Elsam. «Я не мог себе представить, какой он сегодня уровень.»

Он имеет в виду не только количество турбин, но и их размеры. В Германии я видел прототип из стекловолокна и стали, который имеет высоту 600 футов (183 метра), имеет лопасти длиной 200 футов (61 метр) и может генерируют пять мегаватт. Это не только памятник инженерной мысли, но и попытка преодолеть некоторые новые препятствия на пути развития ветроэнергетики.

Одно из них — эстетическое. Озерный край Англии — это захватывающий пейзаж, состоящий из заросших папоротником холмов и уединенных долин, в основном защищенных национальный парк.Но на гребне рядом с парком, хотя и не за пределами великолепия, запланировано 27 башен, каждая размером с двухмегаваттную машину в Дании. Многие местные жители протестуют. «Это качественный пейзаж», — говорит один из них. «Они не должны класть эти вещи сюда».

Датчане, кажется, любят турбины больше, чем британцы, возможно потому, что многие датские турбины принадлежат кооперативам местных жителей. Труднее сказать «не у меня на заднем дворе», если вещь на заднем дворе помогает оплачивать дом.Но противодействие окружающей среде — не единственная проблема, с которой сталкивается ветровое развитие. По всей Европе многие из самых ветреных мест уже заняты. Таким образом, немецкая машина мощностью пять мегаватт разработана, чтобы помочь перенести энергию ветра с ландшафта на новые места в море.

Многие береговые линии имеют обширные участки мелководного континентального шельфа, где ветер дует более устойчиво, чем на суше, и где, как выразился один эксперт по ветру, «чайки не голосуют». (Однако настоящие избиратели иногда все еще возражают против вида башен на горизонте.Строительство и обслуживание турбин на море обходится дороже, чем на суше, но подводный фундамент для башни мощностью пять мегаватт дешевле на мегаватт, чем фундамент меньшего размера. Отсюда немецкий гигант.

Есть и другие проблемы. Как и парусные лодки, ветряные турбины можно успокаивать на несколько дней. Чтобы сеть продолжала гудеть, другие источники, такие как угольные электростанции, должны быть готовы восполнить провисание. Но когда сильный ветер сбрасывает электроэнергию в сеть, другие генераторы должны быть отключены, а установки, сжигающие топливо, нельзя быстро отрегулировать.Золотое дно ветроэнергетики может превратиться в перенасыщение. Дания, например, иногда вынуждена выгружать электроэнергию по нерентабельной цене таким соседям, как Норвегия и Германия.

То, что нужно не только солнечной энергии, но и ветру, — это способ хранить большой избыток энергии. Уже существует технология, позволяющая превратить его в топливо, такое как водород или этанол, или использовать его для сжатия воздуха или вращения маховиков, аккумулируя энергию, которая позже может производить электричество. Но большинству систем еще предстоит пройти десятилетия до того, как они станут экономически целесообразными.

С другой стороны, и ветер, и солнце могут обеспечивать так называемую распределенную энергию: они могут производить энергию в небольшом масштабе рядом с пользователем. У вас не может быть частной угольной электростанции, но у вас может быть собственная ветряная мельница с батареями для спокойных дней. Чем больше домов или сообществ вырабатывают собственные ветряные электростанции, тем меньше и дешевле могут быть центральные электростанции и линии электропередачи.

В стремительном движении Европы к ветроэнергетике, турбины продолжают расти. Но во Флагстаффе, штат Аризона, компания Southwest Windpower производит турбины с лопастями, которые можно поднять одной рукой.Компания продала около 60 000 маленьких турбин, большинство из них для автономных домов, парусных лодок и удаленных объектов, таких как маяки и метеостанции. При мощности 400 Вт на штуку они не могут запитать больше, чем несколько ламп.

Но Дэвид Гэлли, президент Southwest, чей отец построил свою первую ветряную турбину из деталей стиральной машины, тестирует новый продукт, который он называет энергетическим прибором. Он будет стоять на башне высотой с телефонный столб, вырабатывать до двух киловатт при умеренном ветре и поставляться со всей электроникой, необходимой для подключения к дому.

Многие коммунальные предприятия США обязаны платить за электроэнергию, которую люди возвращают в сеть, поэтому любой, кто находится в относительно свежем месте, может установить энергетический прибор во дворе, использовать электроэнергию, когда это необходимо, и вернуть ее в сеть. когда это не так. За исключением больших нагрузок на отопление и кондиционирование воздуха, такая установка могла бы снизить годовой счет за электроэнергию дома почти до нуля. Если, как надеется Галлей, он сможет в конечном итоге продать энергетический прибор менее чем за 3000 долларов, он окупится за счет экономии энергии в течение нескольких лет.

Где-то в этой смеси грандиозного и личного могут быть и большие числа в ветре.

Биомасса: выращивание топлива

В Германии, проезжая от гигантской ветряной турбины недалеко от Гамбурга до Берлина, я регулярно чувствовал странный запах: своего рода аппетитный запах фаст-фуда. Это было загадкой, пока не проехал грузовик-цистерна с надписью «биодизель». Запах горелого растительного масла. Германия использует около 450 миллионов галлонов (1,7 миллиарда литров) биодизеля в год, что составляет около 3 процентов от общего потребления дизельного топлива.

Энергия биомассы имеет древние корни. Бревна в вашем огне — это биомасса. Но сегодня биомасса означает этанол, биогаз и биодизель — топливо, которое так же легко сжигать, как нефть или газ, но оно производится из растений. Эти технологии проверены. Этанол, произведенный из кукурузы, идет в бензиновые смеси в США; этанол из сахарного тростника обеспечивает 50 процентов автомобильного топлива в Бразилии. В США и других странах биодизель из растительного масла сжигается в чистом виде или в смеси с обычным дизельным топливом в немодифицированных двигателях. «Биотопливо — это топливо, которое легче всего вставить в существующую топливную систему», — говорит Майкл Пачеко, директор Национального центра биоэнергетики.

Что ограничивает биомассу, так это земля. Фотосинтез, процесс улавливания солнечной энергии в растениях, гораздо менее эффективен на квадратный фут, чем солнечные панели, поэтому улавливание энергии растениями поглощает еще больше земли. По оценкам, использование биотоплива для всех транспортных средств в мире означало бы удвоение площади земель, отведенных под сельское хозяйство.

В Национальном биоэнергетическом центре ученые пытаются сделать топливное земледелие более эффективным. Сегодняшнее топливо из биомассы основано на растительном крахмале, маслах и сахаре, но центр занимается тестированием организмов, которые могут переваривать древесную целлюлозу, которой много в растениях, чтобы из нее тоже могло получиться жидкое топливо.Также могут помочь более продуктивные топливные культуры.

Один из них — просо, растение, произрастающее в прериях Северной Америки, которое растет быстрее и требует меньше удобрений, чем кукуруза, источник большей части этанольного топлива, производимого в США. корм для животных, что еще больше снижает нагрузку на сельхозугодья.

«Предварительные результаты выглядят многообещающими, — говорит Томас Фуст, технический менеджер центра. «Если вы повысите эффективность автомобиля до уровня гибрида и воспользуетесь смесью просеянных культур, вы сможете удовлетворить две трети U.Спрос на горючее для транспорта без дополнительной земли ».

Но технически возможный не означает политически осуществимый. От кукурузы до сахарного тростника, у всех культур есть свои лоббисты.« Мы смотрим во многие переулки », — говорит Пачеко. «И в каждом переулке есть свои группы интересов. Откровенно говоря, одна из самых больших проблем с биомассой заключается в том, что существует так много вариантов ».

Ядерная энергия: все еще претендент

Деление ядер, казалось, лидировало в гонке как энергетическая альтернатива несколько десятилетий назад, когда страны начали строить реакторы.В настоящее время во всем мире около 440 станций вырабатывают 16 процентов электроэнергии на планете, а некоторые страны перешли на ядерную энергетику. Франция, например, получает 78 процентов электроэнергии за счет деления ядер.

Очарование очевидное: обильная мощность, отсутствие выбросов углекислого газа, никаких пятен на ландшафте, за исключением случайного защитного купола и градирни. Но наряду с известными бедами — авариями на Три-Майл-Айленде и Чернобыле, слабой экономикой по сравнению с установками, работающими на ископаемом топливе, и проблемой утилизации радиоактивных отходов — ядерная энергия далека от возобновляемой энергии.Легкодоступного уранового топлива хватит не более чем на 50 лет.

Но энтузиазм возрождается. Китай, столкнувшийся с нехваткой электроэнергии, начал строить новые реакторы быстрыми темпами — один-два в год. В США, где некоторые водородные автомобильные ускорители рассматривают атомные станции как хороший источник энергии для производства водорода из воды, вице-президент Дик Чейни призвал «по-новому взглянуть» на атомную энергетику. А Япония, которой не хватает собственной нефти, газа и угля, продолжает поощрять программу расщепления ядер.Юми Акимото, старший японский государственный деятель ядерной химии, еще мальчиком видел вспышку бомбы в Хиросиме, но при этом описывает ядерное деление как «столп следующего столетия».

В городе Роккашо на самой северной оконечности острова Хонсю Япония работает над ограничением поставок урана. Внутри нового комплекса стоимостью 20 миллиардов долларов США рабочие в бледно-голубых рабочих костюмах и с видом терпеливой поспешности. Я посмотрел на цилиндрические центрифуги для обогащения урана и бассейн, частично заполненный стержнями с отработавшим ядерным топливом, охлаждение.Отработавшее топливо богато плутонием и остаточным ураном — ценным ядерным материалом, для утилизации которого предназначена установка. Он будет «перерабатывать» отработанное топливо в смесь обогащенного урана и плутония, называемую МОКС-топливом, для получения смешанного оксидного топлива. МОКС-топливо можно сжигать в некоторых современных реакторах, и запас топлива может растянуться на десятилетия и более.

Заводы по переработке в других странах также превращают отработавшее топливо в МОКС. Но эти заводы изначально производили плутоний для ядерного оружия, поэтому японцы любят говорить, что их завод, который должен быть запущен в 2007 году, является первым таким заводом, построенным полностью для мирного использования.Чтобы убедить мир в том, что так и будет, комплекс Роккашо включает в себя здание для инспекторов Международного агентства по атомной энергии, ядерного сторожевого пса Организации Объединенных Наций, которые будут следить за тем, чтобы ни один плутоний не был перенаправлен на оружие.

Это не удовлетворяет противников атомной энергетики. Оппозиция усилилась в Японии после несчастных случаев со смертельным исходом на атомных станциях страны, в том числе одной, в результате которой погибли двое рабочих и подверглись облучению другие. Вскоре после моего визита в Роккашо около сотни протестующих вышли за пределы завода в метель.

Большой спор вызвал бы то, что некоторые сторонники ядерной энергетики считают важным следующим шагом: переход к реакторам-размножителям. Производители могут производить больше топлива, чем потребляют, в виде плутония, который может быть извлечен путем переработки отработавшего топлива. Но экспериментальные реакторы-размножители оказались темпераментными, и полномасштабная программа-размножитель может стать кошмаром по контролю над вооружениями из-за всего плутония, который она пустит в обращение.

Акимото, например, считает, что общество должно привыкнуть к переработке топлива, если оно хочет рассчитывать на ядерную энергию.Он говорил со мной через переводчика, но, чтобы подчеркнуть этот момент, он перешел на английский: «Если мы собираемся принять ядерную энергию, мы должны принять всю систему. Иногда мы хотим получить первый урожай фруктов, но забываем, как это сделать. выращивать деревья «.

Fusion: The Fire Some Time

Fusion — самая яркая из надежд, огонь звезд в человеческом очаге. Полученная при слиянии двух атомов в один термоядерная энергия может удовлетворить огромные потребности в будущем. Топлива хватило бы на тысячелетия.Термоядерный синтез не будет производить долгоживущих радиоактивных отходов и ничего, что террористы или правительства не могли бы превратить в оружие. Это также требует некоторых из самых сложных механизмов на Земле.

Несколько ученых заявили, что холодный синтез, который обещает энергию из простого сосуда, а не из высокотехнологичного тигля, может работать. Вердикт на данный момент: нет такой удачи. Горячий синтез с большей вероятностью увенчается успехом, но это будет длиться десятилетия и будет стоить миллиарды долларов.

Горячий синтез — это сложно, потому что топливо — разновидность водорода — необходимо нагреть до 180 миллионов градусов по Фаренгейту (100 миллионов градусов Цельсия) или около того, прежде чем атомы начнут плавиться.При таких температурах водород образует бурлящий непослушный пар электрически заряженных частиц, называемый плазмой. «Плазма — наиболее распространенное состояние материи во Вселенной, — говорит один физик, — но также и наиболее хаотичное и наименее управляемое». Создание и удержание плазмы настолько сложно, что ни один термоядерный эксперимент еще не дал более 65 процентов энергии, необходимой для начала реакции.

Сейчас ученые в Европе, Японии и США совершенствуют этот процесс, изучают лучшие способы управления плазмой и пытаются увеличить выработку энергии.Они надеются, что в испытательном реакторе ITER стоимостью шесть миллиардов долларов США загорится термоядерный костер — то, что физики называют «зажиганием плазмы». Следующим шагом будет демонстрационная установка для фактического производства электроэнергии, а через 50 лет — коммерческие установки.

«Я на 100 процентов уверен, что мы можем зажечь плазму», — говорит Джером Памела, руководитель проекта термоядерной машины под названием Joint European Torus, или JET, в британском научном центре Калхэма. «Самая большая проблема — это переход от плазмы к внешнему миру.«Он имеет в виду найти подходящие материалы для футеровки плазменной камеры ИТЭР, где они должны будут выдерживать бомбардировку нейтронами и передавать тепло электрическим генераторам.

В Калхэме я видел эксперимент в токамаке, устройстве, удерживающем плазму в магнитном поле в форме бублика — стандартная конструкция для большинства термоядерных ядер, включая ИТЭР. Физики послали огромный электрический заряд в заполненный газом контейнер, уменьшенную версию JET. Это повысило температуру примерно до десяти миллионов градусов по Цельсию, недостаточно, чтобы начать термоядерный синтез, но достаточно, чтобы создать плазму.

Эксперимент длился четверть секунды. Его запечатлела видеокамера, снимающая 2250 кадров в секунду. Во время воспроизведения слабое свечение расцвело в комнате, заколебалось, превратилось в дымку, видимую только на ее остывающих краях, и исчезло.

Это было… ну, разочаровывающе. Я ожидал, что плазма будет похожа на кадр из фильма взрывающегося автомобиля. Это было больше похоже на привидение в библиотеке, обшитой английскими панелями.

Но этот фантом был воплощением энергии: универсальной, но неуловимой магии, которую все наши разнообразные технологии — солнечная, ветровая, биомасса, деление, синтез и многие другие, большие или малые, обычные или сумасшедшие — стремятся сразиться на нашу службу.

Укрощение этого призрака — не просто научная задача. Проект ИТЭР сдерживается, казалось бы, простой проблемой. С 2003 года страны-участницы, в том числе большая часть развитого мира, зашли в тупик в вопросе о том, где строить машину. Выбор сводился к двум сайтам, одному во Франции и одному в Японии.

Как скажут вам все эксперты в области энергетики, это доказывает устоявшуюся теорию. Есть только одна сила, с которой труднее справиться, чем с плазмой: политика.

Хотя некоторые политики считают, что задача разработки новых энергетических технологий должна быть оставлена ​​на усмотрение рыночных сил, многие эксперты с этим не согласны.Это не только потому, что запускать новые технологии дорого, но и потому, что правительство часто может пойти на риск, на который частные предприятия не пойдут.

«Большая часть современных технологий, управляющих экономикой США, не возникла спонтанно благодаря рыночным силам», — говорит Мартин Хофферт из Нью-Йоркского университета, говоря о реактивных самолетах, спутниковой связи, интегральных схемах, компьютерах. «Интернет в течение 20 лет поддерживался военными и еще 10 лет — Национальным научным фондом, прежде чем его открыла Уолл-Стрит.«

Без большого толчка со стороны правительства, — говорит он, — мы можем быть обречены полагаться на все более грязные ископаемые виды топлива, поскольку более чистые, такие как нефть и газ, исчерпываются, что имеет ужасные последствия для климата». Если у нас не будет активных действий Энергетическая политика, — говорит он, — мы просто прекратим использовать уголь, затем сланец, затем битуминозные пески, и это будет постоянно уменьшаться, и в конечном итоге наша цивилизация рухнет. Но это не должно так заканчиваться. У нас есть выбор ».

Это вопрос личных интересов, — говорит Герман Шеер, член парламента Германии.«Я не призываю людей изменить свою совесть», — сказал он в своем берлинском офисе, где небольшая модель ветряной турбины лениво вращалась в окне. «Вы не можете ходить, как священник». Вместо этого его послание состоит в том, что создание новых форм энергии необходимо для экологически и экономически безопасного будущего. «Альтернативы нет».

Изменения уже возникают на низовом уровне. В США правительства штатов и местные органы власти продвигают альтернативные источники энергии, предлагая субсидии и требуя, чтобы коммунальные предприятия включали возобновляемые источники в свои планы.А в Европе финансовые стимулы как для ветровой, так и для солнечной энергии пользуются широкой поддержкой, даже несмотря на то, что они увеличивают счета за электричество.

Альтернативная энергия также завоевывает популярность в тех частях развивающегося мира, где это необходимость, а не выбор. Солнечная энергия, например, проникает в африканские общины, лишенные линий электропередач и генераторов. «Если вы хотите преодолеть бедность, на чем нужно сосредоточить внимание людей?» — спрашивает министр окружающей среды Германии Юрген Триттин. «Им нужна пресная вода и энергия.Для удовлетворения потребностей отдаленных деревень возобновляемые источники энергии весьма конкурентоспособны ».

В развитых странах есть ощущение, что альтернативная энергия — когда-то считавшаяся причудливым энтузиазмом хиппи — больше не является альтернативной культурой. Она постепенно становится мейнстримом. Энергетическая свобода кажется заразной.

Однажды днем ​​в прошлом году недалеко от деревни к северу от Мюнхена небольшая группа горожан и рабочих открыла солнечную электростанцию. Вскоре она превзойдет Лейпцигское месторождение, став крупнейшим в мире, с мощностью в шесть мегаватт .

Около 15 человек собрались на небольшом искусственном холме рядом с солнечной фермой и посадили четыре вишневых дерева на вершине. Мэр опрятного соседнего городка принес сувенирные бутылки шнапса. Глоток выпили почти все, в том числе и мэр.

Затем он сказал, что будет петь руководителю строительства проекта и художнику-пейзажисту, американским женщинам. Две женщины стояли вместе, ухмыляясь, а солнечные панели впитывали энергию позади них. Немецкий мэр поправил свой темный костюм, а остальные оперлись на лопаты.

Пятьдесят лет назад, подумал я, в городах Европы все еще были разрушенные бомбежкой руины. Советский Союз планировал Спутник. Нефть в Техасе стоила 2,82 доллара за баррель. В лучшем случае у нас есть 50 лет, чтобы заново создать мир. Но люди меняются, адаптируются и заставляют работать новые безумные вещи. Я подумал о Дэне Шугаре, говорящем о подрывных технологиях. «Есть чувство волнения», — сказал он. «Есть ощущение срочности. Есть ощущение, что мы не можем потерпеть неудачу».

На вершине холма мэр глубоко вздохнул.Он спел громким тенором, не пропустив ни одной ноты или слова, всю песню «O Sole Mio». Все приветствовали.

Исследователи использовали атомное движение графена для генерации электрического тока, который мог привести к созданию чипа для замены батарей. — ScienceDaily

Группа физиков из Университета Арканзаса успешно разработала схему, способную улавливать тепловое движение графена и преобразовывать его в электрический ток.

«Схема сбора энергии на основе графена может быть встроена в чип, чтобы обеспечить чистую, безграничную низковольтную мощность для небольших устройств или датчиков», — сказал Пол Тибадо, профессор физики и ведущий исследователь этого открытия.

Результаты, опубликованные в журнале Physical Review E , являются доказательством теории, разработанной физиками в Университете А три года назад, о том, что отдельно стоящий графен — единственный слой атомов углерода — колеблется и изгибается таким образом, что многообещающе для сбора энергии.

Идея получения энергии из графена является спорной, потому что она опровергает известное утверждение физика Ричарда Фейнмана о том, что тепловое движение атомов, известное как броуновское движение, не может работать.Команда Тибадо обнаружила, что при комнатной температуре тепловое движение графена действительно вызывает в цепи переменный ток (AC), что казалось невозможным.

В 1950-х годах физик Леон Бриллюэн опубликовал знаменательную статью, опровергающую идею о том, что добавление в схему одного диода, одностороннего электрического затвора, является решением для сбора энергии из броуновского движения. Зная это, группа Тибадо построила свою схему с двумя диодами для преобразования переменного тока в постоянный (DC).Когда диоды расположены напротив друг друга, позволяя току течь в обоих направлениях, они обеспечивают отдельные пути через схему, создавая пульсирующий постоянный ток, который выполняет работу на нагрузочном резисторе.

Кроме того, они обнаружили, что их конструкция увеличила количество передаваемой мощности. «Мы также обнаружили, что поведение диодов при включении-выключении и переключении на самом деле усиливает подаваемую мощность, а не снижает ее, как считалось ранее», — сказал Тибадо. «Скорость изменения сопротивления, обеспечиваемого диодами, добавляет дополнительный фактор к мощности.«

Команда использовала относительно новую область физики, чтобы доказать, что диоды увеличивают мощность схемы. «При доказательстве этого увеличения мощности мы опирались на зарождающуюся область стохастической термодинамики и расширили знаменитую теорию Найквиста почти столетней давности», — сказал соавтор Прадип Кумар, доцент физики и соавтор.

Согласно Кумару, графен и схема имеют симбиотические отношения. Хотя тепловая среда выполняет работу с нагрузочным резистором, графен и схема имеют одинаковую температуру, и тепло не течет между ними.

Это важное различие, сказал Тибадо, потому что разница температур между графеном и схемой в цепи, производящей энергию, противоречила бы второму закону термодинамики. «Это означает, что второй закон термодинамики не нарушается, и нет необходимости доказывать, что« демон Максвелла »разделяет горячие и холодные электроны», — сказал Тибадо.

Команда также обнаружила, что относительно медленное движение графена индуцирует ток в цепи на низких частотах, что важно с технологической точки зрения, поскольку электроника более эффективно работает на более низких частотах.

«Люди могут подумать, что ток, протекающий в резисторе, вызывает его нагрев, но броуновский ток — нет. Фактически, если бы ток не протекал, резистор остыл», — объяснил Тибадо. «Мы перенаправили ток в цепи и преобразовали его во что-то полезное».

Следующая цель команды — определить, можно ли хранить постоянный ток в конденсаторе для последующего использования. Эта цель требует миниатюризации схемы и нанесения ее на кремниевую пластину или микросхему.Если бы миллионы этих крошечных схем могли быть построены на микросхеме размером 1 на 1 миллиметр, они могли бы служить заменой маломощной батареи.

Видео: https://www.youtube.com/watch?v=KiLTEjm8zLw&feature=emb_logo

Университет Арканзаса имеет несколько заявленных патентов на эту технологию в США и на международном рынке и лицензировал ее для коммерческого применения через университетское подразделение Technology Ventures. Исследователи Сурендра Сингх, профессор физики университета; ; Хью Черчилль, доцент физики; Джефф Дикс, доцент кафедры инженерии, внес свой вклад в работу, которая финансировалась Фондом коммерциализации канцлера при поддержке Благотворительного фонда поддержки семьи Уолтонов.

(PDF) Бесплатная электронная схема электричества Николы Теслы

Mitra. J Electron Commun 2018, 1 (1): 1-6

Том 1 | Выпуск 1

* Автор, ответственный за переписку: Ману Митра, инженер-электрик-

, Университет Бриджпорта, Коннектикут, США,

Эл. Почта: [email protected]

Поступила: 26 октября 2017 г .; Принята в печать: 03 марта 2018 г .;

Опубликовано онлайн: 5 марта 2018 г.

Цитирование: Mitra M (2018) Бесплатная электроэнергия Николы Теслы

Электронная схема.J Electron Commun 1 (1): 1-6

Авторские права: © 2018 Mitra M. Это статья в открытом доступе, распространяемая в соответствии с условиями лицензии Creative Commons Attribution

, которая разрешает неограниченное использование, распространение и воспроизведение в любой носитель при условии указания автора и источника

.

Обзорная статья Открытый доступ

Журнал

Электроника и связь

• Страница 1 •

Бесплатная электрическая электронная схема Николы Теслы

Ману Митра *

Кафедра электротехники, Университет Бриджпорта, Коннектикут, США

Аннотация

Никола Тесла был изобретателем, который наиболее известен своим вкладом в разработку системы генерации переменного тока,

Системы электроснабжения и т. Д.Он получил около трехсот патентов по всему миру на свои изобретения, и некоторые из них

спрятаны в патентных архивах. Один из патентов, в которых обсуждается предоставление бесплатного электричества, «Метод использования лучистой энергии» был успешно продемонстрирован

, но так и не был завершен.

Внимательно прочитав статьи и патентную заявку Tesla; Конструкция электронной схемы для бесплатного электричества может быть построена

. Хотя нет очевидной причины генерировать киловатты энергии с помощью простой схемы.В этой статье

дается понимание и обзор изобретения Николы Теслы в области бесплатного электричества.

Ключевые слова

Никола Тесла, Лучистая энергия, Электронная схема, Электроника, Бесплатное электричество, Статическое электричество

Введение

Одной из попыток Николы Теслы обеспечить бесплатной энергией каждого

человека в мире была его World Power

Система

, метод передачи электроэнергии с помощью проводов через землю, которая так и не была завершена,

, но его мечта обеспечить энергией все точки на земном шаре

все еще жива [1].

Тесла намеревался сконденсировать энергию, захваченную между землей и ее верхними слоями атмосферы, и преобразовать ее в электрический ток. Он изобразил Солнце как

огромным электрическим шаром, положительно заряженным с потенциалом

около двухсот миллиардов вольт. С другой стороны,

— земля заряжена отрицательным электричеством. Тре-

взаимная электрическая сила между этими двумя телами составляла, по крайней мере частично, то, что он называл космической энергией.Он

менялся от дня к ночи и от сезона к сезону, но он

присутствует всегда [2].

В 1931 году Тесла объявил в Brooklyn Eagle, что

«Я использовал космические лучи и заставил их управлять двигателем.

». Более 25 лет назад я начал

своих попыток использовать космические лучи, и я добился успеха —

ред. Электроэнергия присутствует повсюду, в неограниченном количестве

качеств.  Эта новая энергия для привода

в мире машин

будет получена из энергии, которая действует в мире. вселенная, без потребности в угле, газе, нефти или

любом другом топливе «.

Настоящая причина интереса Николы Теслы к бесплатной энергии

заключалась в том, что он узнал, что на планете было потепление, вызванное

естественными и искусственными источниками атмосферного загрязнения —

муравьями. Возможно, Тесла был первым человеком, который узнал, что теперь это

, называемое «глобальное потепление» и «парниковый эффект».

Спустя много лет, в 2003 году Мартином Эберхардом и Марком была зарегистрирована компания Tesla

Motors.

Тарпеннинг имени Николы Теслы, компания

должна была коммерциализировать электромобили с использованием двигателя переменного тока. tor, который был построен на основе проекта, который

Никола спроектировал в 1882 году.В феврале 2004 года Илон Маск, соучредитель

PayPal, инвестировал в Tesla и стал председателем

компании. Tesla Motors создала

нескольких электромобилей, каждый из которых экономит на затратах на электроэнергию, а

помогают окружающей среде, производя нулевые выбросы. Вместо

заправочных станций, автомобили Tesla можно заряжать с помощью

любой из множества бесплатных зарядных станций, владельцы Tesla

могут просто подключить свои автомобили и примерно за 20 минут

полностью перезарядить свою машину, встряхнув. up the motor in-

Решение проблемы безуглеродной энергии

Abstract

В этом столетии произойдет серьезная трансформация в способах получения, хранения и использования энергии во всем мире.Толчком к этим изменениям является глубокое воздействие, которое как развитые, так и развивающиеся общества оказали на окружающую среду нашей планеты в течение последнего столетия, а также прогнозы относительно того, что произойдет, если мы не будем действовать трансформирующим образом в течение следующих двух десятилетий. В этом документе описывается основа для встречи, состоявшейся в октябре 2018 года, о необходимости декарбонизации в нашем энергетическом ландшафте, а также, в частности, о состоянии и проблемах науки, которая обеспечивает основу для таких технологий.В области декарбонизации при производстве энергии находится наука о преобразовании солнечной энергии с использованием новых или улучшенных фотоэлектрических материалов и искусственного фотосинтеза для расщепления воды и других реакций, накапливающих энергию. Тесно связанная проблема хранения возобновляемой энергии решается с помощью новых стратегий, материалов и подходов, которые в настоящее время исследуются и разрабатываются. Также была рассмотрена необходимость улучшения взаимодействия между учеными, работающими над этими взаимосвязанными, но отдельно рассматриваемыми проблемами, а также над переходом научных достижений к практическому применению, при этом были перечислены конкретные усилия.

Нынешнее столетие станет свидетелем серьезных преобразований в способах получения, хранения и использования энергии во всем мире. На данный момент, почти на пятой части пути XXI века, изменения явно заметны, но более глубокие изменения еще впереди. Проблемы, с которыми мы сталкиваемся при проведении этих преобразований, варьируются от научных и технологических до социальных, культурных и экономических в том, как мы живем, работаем и играем. Толчком к этим изменениям является глубокое воздействие, которое как развитые, так и развивающиеся общества оказали на окружающую среду нашей планеты в течение последнего столетия, и прогнозы будущих событий в отношении того, что произойдет в глобальном масштабе, если мы не будем действовать.Реальная и прогнозируемая урбанизация вместе с растущим населением мира ясно показывают, что мы должны действовать сейчас.

О влиянии индустриализации и современного общества на окружающую среду во всем мире много писали и обсуждали. Статистические данные о количествах CO 2 в глобальной атмосфере и повышении средних глобальных температур с начала индустриальной эры в сочетании с прогнозами климатологов, экологов и геологов по различным сценариям легли в основу исследования. дебаты и привели к предложенным направлениям действий, которые должны быть предприняты взаимосвязанными сторонами.В октябре 2018 года Межправительственная группа экспертов по изменению климата (МГЭИК) опубликовала обновленный анализ (1) мировой ситуации с более мрачными прогнозами глобального потепления, чем это было представлено ранее (2). В этом последнем отчете МГЭИК подчеркнула необходимость удерживать повышение средней температуры ниже 1,5 ° C в течение следующих 15 лет:

Пути, согласующиеся с потеплением на 1,5 ° C выше доиндустриального уровня, можно определить в диапазоне предположений об экономическом росте, развитии технологий и образе жизни.Однако отсутствие глобального сотрудничества, отсутствие управления необходимыми преобразованиями энергии и земель, а также рост ресурсоемкого потребления являются ключевыми препятствиями на пути к достижению траектории 1,5 ° C. … При выбросах в соответствии с текущими обязательствами по Парижскому соглашению (известными как определяемые на национальном уровне взносы или ОНВ) ожидается, что глобальное потепление превысит доиндустриальные уровни на 1,5 ° C, даже если эти обещания будут дополнены очень серьезным увеличением масштабы и амбиции смягчения последствий после 2030 года.… Эти более активные действия потребуют достижения пика выбросов CO 2 менее чем за 15 лет.

Актуальность решения проблемы изменения климата — центральная черта отчета МГЭИК. Чтобы избежать наихудших последствий изменения климата, глобальные выбросы углерода должны достичь пика к 2020–2030 годам, снизиться до нуля к 2050 году и стать отрицательными (т. Е. Мы должны удалить углекислый газ из атмосферы) после 2050 года (рисунок SPM3a в ссылке 1). . Глобальные выбросы углерода за последние 2 года показывают обратную динамику (рис.1). После длительного периода снижения роста выбросов и трехлетнего периода почти неизменного уровня выбросов казалось возможным, что мы достигли пика и будем двигаться к спаду. Вместо этого выбросы выросли на 2,0% в 2017 году и на 2,7% в 2018 году, что является почти самым большим увеличением с 1990 года (3).

Рис. 1.

Глобальные выбросы углекислого газа от сжигания ископаемого топлива растут темпами, почти равными крупнейшим за последние 30 лет. Этот резкий рост следует за 3-летним периодом почти неизменного уровня выбросов, с 2014 по 2016 год, и указывает на то, что мы находимся намного выше траектории, необходимой для сохранения потепления ниже 1.5 ° С. Данные из исх. 32 (Глобальный углеродный бюджет на 2018 г., https://www.globalcarbonproject.org/carbonbudget/18/files/GCP_CarbonBudget_2018.pdf, кадр 9). Адаптировано с разрешения Организации научных и промышленных исследований Содружества, под лицензией CC BY 4.0.

Очевидно, что общим знаменателем в усилиях по борьбе с изменением климата и критическим фактором уровней CO в атмосфере 2 является насущная необходимость декарбонизации мировой энергетики при одновременном удовлетворении потребностей в энергии для мирового развития.Еще в 2016 году более 80% энергии, производимой во всем мире, приходилось на углеродсодержащие ископаемые виды топлива (нефть, уголь и природный газ). Хотя увеличение использования природного газа для замены угля можно рассматривать как положительный шаг, утечка метана в окружающую среду сводит на нет выгоду от его использования, поскольку метан является более сильным парниковым газом, чем CO 2 . Хотя в самом последнем отчете МГЭИК (1) основное внимание уделяется необходимости общих стратегий и политики, в нем отсутствуют конкретные способы достижения необходимой технологии безуглеродной энергетики и лежащих в ее основе научных исследований.

10–12 октября 2018 г. Национальная академия наук провела симпозиум в рамках программы коллоквиума Саклера «Состояние и проблемы декарбонизации нашего энергетического ландшафта». Основное внимание на этой встрече было уделено представлению и обсуждению текущих научных достижений и необходимых областей исследований, чтобы добиться удаления углерода из наших источников энергии. В то время как симпозиум касался энергетических исследований на самом фундаментальном уровне, он также выдвинул на первый план возможные пути развития производства и хранения энергии с нулевым выбросом углерода, как это предусмотрено экспертами в этой области.Кроме того, встреча предоставила платформу для взаимодействия и обсуждения участников, придерживающихся самых разных точек зрения.

Коллоквиум открылся лекцией бывшего министра энергетики Эрнеста Мониса (2013–2017 гг.) Под названием «Ускорение трансформации чистой энергии» в рамках программы «Отличительные голоса» Национальной академии наук. Последующие презентации были разделены на 4 секции, посвященные накоплению возобновляемой энергии и преобразованию солнечной энергии в электрическую энергию или топливо под рубрикой искусственного фотосинтеза.Предметы охватили состояние фотоэлектрических (ФЭ), текущие и планируемые разработки аккумуляторных батарей, расщепление воды с помощью солнечной энергии, искусственный фотосинтез и производство нефоссийского водорода и углеводородного топлива, а также другие темы. Проблема декарбонизации энергии сегодня затрагивает все сферы жизни. В 2016 году менее 20% произведенной в мире энергии пошло на производство электроэнергии, при этом 80% использовалось в других крупных секторах использования энергии, включая транспорт и промышленное производство.Хранение и использование возобновляемых источников энергии во всех этих секторах необходимо решать с помощью новых и развивающихся достижений науки и технологий.

Презентации и докладчики Коллоквиума Саклера перечислены ниже в порядке их выступления на 4 сессиях:

  • Инновации для ускорения преобразования чистой энергии, Арун Маджумдар, Стэнфордский университет

  • Разработка новых катализаторов и устойчивых процессов для производства и использование топлива и химикатов, Томас Джарамилло, Стэнфордский университет

  • Экономически ориентированный дизайн проточных окислительно-восстановительных батарей для сетевого хранения, Фикиле Брушетт, Массачусетский технологический институт

  • Использование твердотельных протонных проводников для электрохимических технологий преобразования энергии , Соссина Хайле, Северо-Западный университет

  • Проблема тераватта в преобразовании солнечной энергии и роль хранения, Дэвид Джинли, Национальная лаборатория возобновляемых источников энергии (NREL)

  • Проточные батареи на органической основе для массового хранения электроэнергии, Майкл Азиз, Харва rd University

  • Альтернативные водные батареи как сетевые решения для электрохимического хранения энергии, Линда Назар, Университет Ватерлоо

  • Удовлетворение растущей потребности в долговременном хранении энергии, Йет-Мин Чианг, Массачусетский технологический институт

  • Возможности, проблемы и ошибки в производстве водорода, Джон Тернер, NREL

  • Солнечная энергия в масштабе: взгляд из окопов, Раффи Гарабедян, First Solar

  • Наши химические вещества и жидкое топливо, Карен Голдберг, Пенсильванский университет

  • Биотопливо: все еще необходимо после всех этих лет, Ли Линд, Дартмутский университет

  • Углеродно-отрицательное солнечное удобрение и восстановление земель, Дэниел Носера, Гарвардский университет

  • Пути трансформации двуокиси углерода с использованием солнечного света, Гарри Атвотер, Калифорнийский институт техники

  • Solar Solved — Next, Carbon Negative Technology, Эли Яблонович, Калифорнийский университет, Беркли

  • Making Solar Fuels, Tom Meyer, University of North Carolina

Презентации коллоквиума Саклера можно посмотреть на YouTube (https: / / www.youtube.com/playlist?list=PLGJm1x3XQeK3MBYldrPidvT-RRCNVh-QJ). И Мониш, и Маджумдар помогли определить текущую ситуацию и важность фундаментальных исследований в координации со структурой поддержки и финансирования, которая стимулирует инновации и потенциально прорывные технологии. Это не просто нестандартное мышление; скорее, это структура и культура, которые поощряют нестандартное поведение и работу. Проблема накопления возобновляемой энергии была проанализирована с нескольких точек зрения, включая твердотельные батареи и электрохимические пары различных типов, а также жидкостные проточные батареи, в которых 2 раствора различных окислительно-восстановительных агентов протекают через общую мембрану, проницаемую для положительных ионов. миграция, в то время как электроны проходят через внешнюю цепь с определенным потенциалом для выполнения работы.Стоимость элементов, составляющих окислительно-восстановительные пары в батареях всех типов, является важным фактором в этих различных подходах, как и другие факторы, такие как динамика переноса заряда электронов и ионов, возможность разделения компонентов и долговечность системы. Все эти вопросы рассматриваются в текущих исследованиях.

Доминирующая тенденция в хранении энергии — это появление множества приложений, которые появляются по мере преобразования электросетей и транспорта для решения проблемы изменения климата, повышения производительности и снижения затрат.Приложения для аккумуляторов электромобилей, интеграция возобновляемых источников энергии, распределенные энергоресурсы, интеллектуальное управление энергопотреблением и электрические полеты для воздушных такси, доставка посылок и пассажирские перевозки на короткие расстояния еще десять лет назад выходили за рамки технологических достижений. Обычные литий-ионные батареи стали доминирующими на рынке отчасти из-за их резкого падения цены, но они сталкиваются с серьезными проблемами стоимости и производительности, чтобы удовлетворить растущие потребности. Все больше внимания уделяется значительным изменениям в базовой литий-ионной платформе, такой как твердотельные электролиты и аноды на основе лития, магния, цинка или металлического кальция, и даже более прорывным инновациям, таким как катоды на основе молекулярного кислорода или серы. вместо кристаллических сульфидов, оксидов и фосфатов переходных металлов или для проточных батарей с заменой ванадия на более сложные и универсальные органические окислительно-восстановительные агенты.

Одним из многообещающих достижений является новый тип литий-кислородной батареи, способной выдерживать 700 циклов, которые работают в обычном воздухе (4). Очень высокая теоретическая плотность энергии и низкая стоимость материалов литий-кислородных батарей привлекательны для многих приложений, включая электромобили, грузовые автомобили дальнего следования и электрические полеты. В новой батарее в качестве опоры для кислородного катода используются наночастицы MoS 2 , защитный слой Li 2 CO 3 на аноде из металлического лития и ионная жидкость в качестве электролита, как показано на рис.2. Эти новые функции решают основные проблемы литий-кислородных батарей: рост дендритов на литиевом металлическом аноде, побочные реакции анода и катода с влагой, диоксидом углерода и азотом в воздухе, а также растворение и возможные побочные реакции продукта разряда. Li 2 O 2 в жидком электролите. Новая батарея проработала более 700 циклов без каких-либо признаков побочных реакций на аноде или катоде. Обширная теория функционала плотности и моделирование молекулярной динамики выявили атомные и молекулярные источники необычной кинетической и термодинамической стабильности батареи.

Рис. 2.

Самобытная архитектура литий-воздушной батареи, способной работать более 700 циклов в воздухе, содержащем водяной пар, углекислый газ и азот в атмосферных концентрациях. 3 нововведения предотвращают вредные побочные реакции: защитный слой Li 2 CO 3 для литий-металлического анода, стабильный ионный жидкий электролит и носитель MoS 2 для катода, который катализирует реакцию разряда и связывает продукт разряда Li 2 O 2 .Печатается с разрешения исх. 4, Springer Nature: Nature, авторское право 2018.

Водные электролиты привлекают повышенное внимание из-за их низкой стоимости, превосходных сольватационных характеристик и высокой ионной подвижности, как это обсуждалось Назаром для сетевых приложений (5). Брушетт обсудил новые окислительно-восстановительные органические полимеры для проточных батарей, которые могут значительно снизить стоимость и повысить производительность (6). Батареи Flow, хотя и не являются концептуально новыми, за последнее десятилетие стимулировали множество новых исследований по их использованию для хранения возобновляемой энергии (рис.3). Ключевые вопросы касаются среды, в которой они работают (водной или органической), сольватационной среды, окружающей активные ионы, и прочности их окислительно-восстановительных пар. Эти аспекты создают проблемы для исследований на нескольких уровнях, и все они направлены на экономичное хранение энергии в большом масштабе (7). Как массовая, так и объемная плотность энергии проточных батарей делают их более подходящими для стационарного хранения энергии, чем мобильные приложения на основе электромобилей.

Рис. 3.

Органические проточные окислительно-восстановительные батареи, основанные на различных основных мотивах, таких как оксиды олигоэтилена, к которым могут быть добавлены низко- и высокопотенциальные окислительно-восстановительные центры для увеличения объемной емкости на порядок и предотвращения деградации окислительно-восстановительной стабильности.Печатается с разрешения исх. 8. Авторское право Американского химического общества, 2018 г. 8 , 9). Также обсуждались родственные топливные элементы на основе H 2 от Haile и новые проточные батареи длительного действия от Chiang, основанные на недорогой, широко распространенной на Земле S, O 2 и воде (10, 11).Низкая стоимость материалов этой батареи позволяет хранить большое количество энергии для экономически целесообразного длительного разряда (рис. 4).

Рис. 4.

Установленная стоимость долговременного хранения с помощью гидроаккумулятора (PHS) и накопителя энергии сжатого воздуха (CAES) по сравнению с установленной стоимостью литий-ионных и ванадиевых проточных батарей с окислительно-восстановительным потенциалом (VRFB) и стоимостью химикатов материалов для воздушно-реактивных батарей на водной основе. Печатается по исх. 10, с разрешения Elsevier.

После первого дня лекций состоялась широкая панельная дискуссия по теме хранения возобновляемой энергии, которая включала научные, материальные и технологические проблемы, которые необходимо решить, чтобы обеспечить широкую интеграцию переменного ветра и солнечной энергии в сети и транспортных средств на батареях и топливных элементах при транспортировке. Безотлагательность в достижении агрессивных целей декарбонизации в следующие 15 лет была центральной в этих обсуждениях.

Во второй день встречи акцент сместился на преобразование солнечной энергии в электричество напрямую с использованием фотоэлектрических материалов и сборок или в накопленную химическую энергию посредством фотосинтеза.Рост фотоэлектрических установок за последнее десятилетие был огромным, а цены за киловатт-час стали конкурентоспособными с электрической энергией, полученной из ископаемого топлива. Технологическим ключом к этому результату стала возможность производить кремний фотоэлектрического класса в огромных количествах, в основном в Китае. Тонкопленочные фотоэлектрические элементы, состоящие из покрытий, содержащих селенид меди, индия, галлия и GaAs, обещают значительно более высокую эффективность, но в настоящее время также более дороги в производстве.Выступления Гаррабедиана из First Solar и Atwater Объединенного центра искусственного фотосинтеза Министерства энергетики показали, что такие системы приближаются к теоретическому пределу Шокли – Квайссера для преобразования света в электрическую энергию в системе с одним переходом (12, 13). Яблонович, чья работа по тонкопленочному GaAs также примечательна (14), считает, что с такой конструкцией можно было бы решить фундаментальную научную задачу, связанную с широким использованием фотоэлектрических материалов, хотя стоимость остается ключевой проблемой.

В то время как естественный фотосинтез в конечном итоге приводит к накоплению химической энергии в форме углеводов, именно восстановление протонов вместе с образованием кислорода из воды обеспечивает накопленный химический потенциал. В то время как другие возможные реакции накопления энергии под действием света существуют под рубрикой искусственного фотосинтеза, в настоящее время основное внимание уделяется расщеплению воды на водород и кислород под действием света. Даже в естественном фотосинтезе накопление энергии включает ключевые этапы окисления воды до O 2 и восстановления протонов (в превращении NADP + в NADPH).Последующее восстановление CO 2 происходит за счет темных реакций, протекающих по термодинамически благоприятной химии, что означает, что свет не требуется для включения CO 2 в углеводные продукты после того, как были образованы восстанавливающие эквиваленты в форме NADPH. В то время как другие реакции накопления энергии были предложены и исследованы для искусственного фотосинтеза, было обнаружено, что ни одна из них не обладает качествами и полезностью расщепления воды для накопления энергии. Это особенно верно, если реакция высвобождения энергии осуществляется с использованием технологии водородных топливных элементов (обсуждается ниже).

Основная проблема, связанная с расщеплением воды под действием света, возникает при катализе обеих полуреакций — образования H 2 из воды и окисления воды до O 2 — что может быть вредным для стабильности катализатора в долгосрочной перспективе. Для полуреакции окисления воды процесс может включать образование активных форм кислорода, которые могут атаковать катализатор, чтобы сделать его неактивным. В своих лекциях Мейер описал свои усилия в этой области с использованием фотоэлектросинтетических клеток (рис.5; ссылки 15 и 16), в то время как Носера кратко рассказал о своих исследованиях искусственного листа, который генерирует H 2 и O 2 , с использованием поглотителя света на основе Si с необходимыми восстанавливающими и окисляющими эквивалентами (17). Однако в исследованиях искусственных листьев было обнаружено, что факторы стоимости и стабильности светопоглотителя слишком высоки для практического применения в настоящее время.

Рис. 5.

Принципиальная схема тандемной сенсибилизированной красителем фотоэлектросинтезирующей ячейки (DSPEC) для разделения воды под действием солнечной энергии на H 2 и O 2 .Катализатор окисления воды и катализатор восстановления воды сокращенно обозначаются WOC и WRC соответственно, а хромофор для каждой полуреакции обозначается как Ch. Возбуждение света, перенос электронов, перенос дырок и миграция протонов показаны зелеными, синими, розовыми и серыми стрелками соответственно. Печатается с разрешения исх. 16. Авторское право Американского химического общества, 2016 г.

Ячейка для фотоэлектросинтеза, сенсибилизированная красителем, показанная на рис. 5, объединяет оксидные полупроводники с большой шириной запрещенной зоны и наночастицы со светопоглощающими и каталитическими свойствами спроектированных сборок хромофор-катализатор для разделения воды.Также проводится дополнительная модификация катодного отсека электролизера для использования восстановительных эквивалентов H 2 для преобразования CO 2 в органические оксигенатные топлива (16). Стоит отметить, что хотя усилия по использованию антропогенного диоксида углерода для материалов и полимеров продолжаются, количество CO 2 , произведенное в процессе производства энергии, намного больше, чем требуется для материалов и полимеров.

Другой подход, представленный Харамилло, следует по пути, в котором эффективность существующих фотоэлектрических технологий и фотоэлектрических технологий ближайшего будущего сочетается с отдельными водяными электролизерами для поколений H 2 и O 2 , а не через единый интегрированный светопоглотитель-каталитическая система (18).Это объединит необходимость фотоэлектрических поглотителей большой площади для относительно рассеянной солнечной энергии с эффективностью более централизованного электрохимического реактора для производства H 2 и O 2 . При быстром снижении цен на фотоэлектрические элементы проблемой становится стоимость и эффективность водяного электролизера.

Хотя водород в качестве топлива имеет много положительных качеств — он генерирует больше энергии, чем любое химическое топливо на единицу массы при окислении, и его запасы безграничны — есть аспекты его использования, которые представляют собой препятствия и проблемы.Одной из проблем является хранение H 2 , поскольку он не является легко конденсируемым газом. В процессе сжижения H 2 , который в настоящее время производится в промышленности для удобной и недорогой доставки, расходуется примерно треть его стоимости в качестве топлива (19). Вторая проблема — это доставка водорода на заправочные станции для транспорта, который потребляет больше энергии, чем производство электроэнергии. Электромобили на топливных элементах (FCEV), работающие на водороде, нуждаются в заправочных станциях, доставляющих H 2 при давлении 70 МПа.По состоянию на 2018 год в Калифорнии насчитывается около 50 таких заправочных станций для поддержки ограниченного числа FCEV в качестве пилотного проекта их использования в безуглеродных перевозках. Следует отметить, что Япония взяла на себя серьезные долгосрочные обязательства в отношении FCEV с прогнозируемым количеством автомобилей и заправочных станций в течение следующих 8 лет в размере 800 000 и 2 000, соответственно (20). Также существуют пригородные электропоезда на топливных элементах производства Alstom в Германии (21, 22). Все эти усилия идут в дополнение к быстрорастущему сектору электромобилей, работа которого основана на батареях, а не на топливных элементах.

Как только H 2 может быть получен с помощью фотоэлектрических водных электролизеров, он может заменить водород, который в настоящее время используется в промышленности и производится путем риформинга природного газа (с сопутствующим образованием CO 2 ). Самый крупный промышленный процесс с использованием водорода — это синтез аммиака Габера – Боша; он производит 4,5 × 10 9 кг NH 3 для сельского хозяйства и производства продуктов питания, с глобальным потреблением от 3 до 5% природного газа в год. Этот процесс имеет решающее значение для обеспечения биологической доступности азота в масштабах, необходимых для прокормления жителей планеты.Роль, которую играет аммиак в сегодняшнем мире, может также значительно расшириться в энергетическом ландшафте будущего как источник «хранимого» водорода (23). Аммиак в качестве возможного топлива уже давно признан (хотя широко не используется), и термодинамика его образования подтверждает его возможную роль в качестве хранимого источника водорода. Принимая во внимание тот факт, что обращение с аммиаком в больших масштабах уже выполнено, он может лучше подойти для распределения H 2 в центры FCEV вместо сжиженного водорода.Тем не менее, еще предстоит провести гораздо больше исследований, особенно в отношении источника водорода, используемого в синтезе аммиака, и любое нагревание, необходимое для запуска процесса, не может происходить из природного газа, как это делается в настоящее время.

Другая стратегия снижения годового количества CO 2 , попадающего в атмосферу в результате окисления углеводородного топлива, была описана как «улавливание углерода», при котором выхлоп CO 2 улавливается на электростанции, а затем каким-то образом улавливается ( 24). Яблонович обсудил эту стратегию «отрицательного углерода», основанную на относительно простом анализе затрат, а затем предположил, что лучший способ довести это решение до завершения — это закопать образовавшийся CO 2 .В других беседах Линд и Носера рассмотрели стратегию использования модифицированных организмов для снижения CO 2 до углеводного уровня химического потенциала, чтобы такие соединения можно было использовать в качестве источников энергии. Таким образом, использование такого топлива будет углеродно-нейтральным, что позволит восстановить CO 2 для получения топлива, которое при окислении регенерирует такое же количество CO 2 . Система из лаборатории Nocera показана на рис.6, в которой водород, полученный при расщеплении воды, потребляется Ralstonia eutropha для выращивания и производства биомассы или для более сложных версий для производства жидкого топлива, такого как изопропанол (25, 26). .

Рис. 6.

( A ) Биоинженерная схема преобразования энергии, показывающая, как H 2 , генерируемый расщеплением солнечной воды, используется в тандеме с R. eutropha для производства кислородсодержащего топлива (изопропанола). ( B ) График иллюстрирует термодинамику полуреакций и перенапряжения, необходимые для различных стадий. Печатается с разрешения исх. 25.

Взаимное превращение соединений из оксигенатов углерода в углеводы и другие восстановленные углеродные соединения обсуждалось Голдбергом с точки зрения проблем, связанных с катализом таких реакций восстановления CO 2 , и того, как эти превращения могут быть осуществлены с помощью разработки новых селективных катализаторов. .Подробности можно найти в их соответствующих выступлениях, доступных на сайте Коллоквиума.

Отличительной чертой коллоквиума Саклера было присутствие 2 панельных дискуссий в конце презентаций каждый день, в течение которых вопросы, комментарии и мнения могли быть самыми разными и выходить за рамки обычных дискуссий на научных встречах. Каждая панельная дискуссия создавала живое взаимодействие между аудиторией и спикерами. Одной из провокационных тем была перспектива достижения декарбонизации в короткие сроки, необходимые для предотвращения критического изменения климата.Цель длительного хранения энергии — серьезный барьер на пути декарбонизации электросети. Литий-ионные аккумуляторы, которые сейчас находятся на стадии планирования, обычно имеют время разряда 4 часа, которого достаточно, чтобы переместить солнечное электричество после обеда на вечернее или для того, чтобы покрыть спокойный полдень, когда ветер может не дуть. Тем не менее, требуется гораздо более продолжительное хранилище, чтобы преодолеть несоответствие спроса между будними и выходными днями, дневные и еженедельные погодные условия в тихие, пасмурные или ненастные дни, перебои в работе из-за экстремальных погодных условий и сезонные колебания потребности в отоплении и охлаждении (10).

Обсуждение относительных преимуществ аккумуляторов по сравнению с хранением водорода, полученного путем искусственного фотосинтеза или электролиза с помощью фотоэлектрической энергии, проиллюстрировало не только научные проблемы, но и важность низкой стоимости в обеспечении широкого распространения. Хотя батареи и фотоэлектрические батареи являются образцом быстрого развертывания, основанного на затратах, каждый из них стал возможен благодаря длительным инкубационным периодам, необходимым для понимания основных материалов и явлений. Важность таких периодов открытия видна в других секторах, таких как гидроразрыв и светоизлучающие диоды, которые получили широкое распространение после быстрого снижения затрат.По-разному, хотя искусственный фотосинтез и электрокатализ все еще находятся в своей фундаментальной науке и методах открытий, необходимо сократить сроки практического внедрения.

Часто подчеркивалась важность сильного междисциплинарного взаимодействия для содействия прогрессу. Фундаментальная электрохимия, лежащая в основе исследований батарей, топливных элементов, катализа и фотосинтеза, обеспечивает общую связь между учеными, придерживающимися различных подходов к исследованиям декарбонизации энергии.Мы все согласились с тем, что поиск способов обмена информацией и идеями в разных областях имеет решающее значение для ускорения темпов открытий и инноваций. Одна из платформ для обмена информацией и стимулирования идей — это численное моделирование молекул и материалов до того, как они будут созданы в лаборатории. В настоящее время существует множество обширных баз данных о равновесных свойствах материалов и молекул, таких как кристаллическая, молекулярная, электронная и магнитная структуры, энергии образования, потенциалы ионизации и сродство к электрону (27–29).Эти базы данных позволяют быстро проверять тысячи материалов или молекул на предмет наиболее многообещающих кандидатов для данной области применения.

Моделирование материалов может быть поднято на новый уровень с двумя нововведениями, которые меняют правила игры. Первый — это единая интерактивная поисковая машина, которая может получить доступ к множеству отдельных баз данных, созданных и поддерживаемых отдельными исследовательскими группами. Ярким примером является Google: он собирает данные из удаленных источников, сортирует и представляет информацию за секунды в ответ на поисковый запрос.Поисковая машина в стиле Google, способная получить доступ ко всем специализированным материалам и молекулярным базам данных и быстро сортировать результаты поиска, ускорит генерацию новых идей и позволит их оценивать в гораздо более короткие сроки, чем это возможно сейчас.

Второе достижение в моделировании материалов — это выход за рамки равновесных свойств идеальных материалов и молекул, охватывающий дефекты, беспорядок, легирование, динамику, подвижность, возбужденные состояния, метастабильные фазы и химические реакции.Все это важные особенности реалистичных систем, которые по большей части недоступны для существующих высокопроизводительных симуляторов. При наличии достаточно больших компьютеров некоторые из этих свойств, такие как дефекты, беспорядок и легирование, теперь можно моделировать. Другие, такие как динамика, возбужденные состояния, метастабильные фазы и химические реакции, требуют разработки новых вычислительных подходов, чтобы стать мейнстримом. Машинное обучение и искусственный интеллект, которые долгое время использовались для открытия лекарств, но только сейчас применяются к материалам для получения энергии, могут выявить скрытые корреляции между материалами и свойствами, для которых нет хорошего понимания первых принципов, таких как возбужденные состояния и неравновесная динамика (30). .Моделирование, выходящее за рамки равновесных свойств, которые сейчас можно вообразить, но еще не доведено до практического применения, значительно ускорит открытие новых материалов и явлений для декарбонизации и поможет сократить расходы, необходимые для широкого внедрения.

В статье для Всемирного экономического форума, озаглавленной «Откуда наша энергия будет поступать в 2030 году и насколько она будет экологичной?» Кэтрин Гамильтон, директор Проекта чистой энергии и инноваций и сопредседатель Совета глобального будущего по вопросам будущего энергетики, заявила следующее (31):

Энергетический сектор уже меняется очень быстро.Мы надеемся, что он переходит в сторону большей способности удовлетворять потребности в энергии растущего населения мира с уменьшенным использованием углерода, поддерживая непрерывный экономический рост экологически устойчивым образом.

Но этот переход не обязательно произойдет сам по себе. Нам нужно собрать в одной комнате ключевых игроков, которые могут поделиться своим опытом и взглядами, и коллективно придумывать лучшие идеи, чем любой из нас мог бы самостоятельно, а затем решать, как реализовать эти идеи.Отсюда и необходимость в этом Совете глобального будущего.

Какие ключевые игроки должны быть задействованы?

Разумеется, важны действующие операторы — крупные энергетические компании, которые владеют и контролируют инфраструктуру, особенно в промышленно развитых странах. Их часто критикуют как часть проблемы, но они также должны быть частью решения. Кроме того, нам нужны новаторы — предприниматели, которые придумывают идеи, чтобы подорвать сектор.И нам нужен вклад потребителей энергии, в том числе крупных корпораций и муниципалитетов.

Представители финансового сектора важны — эксперты в области облигаций, рисков и страхования. Есть много капитала, который ищет хорошие проекты для финансирования, но основным препятствием для инвесторов является уверенность в том, что эти проекты найдут рынок. Создание уверенности — это одна из важных вещей, которые политики и лица, определяющие политику, могут сделать, чтобы помочь, и именно им, в конечном счете, понадобится видение для определения целей энергетического сектора и разработки политики для их достижения.

Заключительные замечания, сделанные Гамильтоном, аналогичны тем, которые были высказаны Монисом и Маджумдаром при создании структуры для поддержки и продвижения инноваций. Однако в ключевых фигурах Гамильтона явно не было «ученых». Такие люди — исследователи, которые открывают и разрабатывают многообещающие новые материалы и методы преобразования и хранения энергии, на которых будут строиться энергетические технологии будущего. Наука, представленная на коллоквиуме Саклера, включала открытия более эффективных материалов для поглощения света, мембраны для разделения сторон окисления и восстановления в реакциях накопления энергии, понимание фотофизики и фотохимии, которые приводят к электрическому току и / или накопленному химическому потенциалу, и методологии и системы обратимого накопления и преобразования энергии в полезную работу.Хотя за последние несколько десятилетий во всех аспектах «энергетической науки» были достигнуты большие успехи, временные рамки, указанные МГЭИК для широкомасштабного внедрения безуглеродной энергии, были значительно сокращены. Многие ключевые проблемы в науке о декарбонизации энергии остаются, и, учитывая более сжатые временные рамки для достижения этой цели, в ближайшей перспективе необходимо сделать упор на увязку фундаментальной науки с технологиями в масштабе.

Благодарности

Мы благодарим следующие источники и агентства за поддержку исследований в критических областях преобразования солнечной энергии и хранения возобновляемой энергии.Для R.E .: Отделение химических наук, наук о Земле и биологических наук, Управление фундаментальных энергетических наук, грант Министерства энергетики США DE-FG02-09ER16121 и грант Национального научного фонда на совместные исследования CHE-1151789; для H.B.G .: Национальный научный фонд, Центр химических инноваций (NSF CCI Solar Fuels), грант CHE-1305124; и для G.W.C .: Объединенный центр исследований в области накопления энергии, центр энергетических инноваций, финансируемый Министерством энергетики США, Управлением науки и фундаментальных энергетических наук.

Сноски

  • Авторы: R.E., H.B.G. и G.W.C. проанализировал данные и написал статью.

  • Авторы заявляют об отсутствии конфликта интересов.

  • Настоящий документ является результатом Коллоквиума Артура М. Саклера Национальной академии наук «Состояние и проблемы декарбонизации нашего энергетического ландшафта», состоявшегося 10–12 октября 2018 г. в Национальном центре имени Арнольда и Мейбл Бекман. Академии наук и инженерии в Ирвине, Калифорния.Коллоквиумы НАН начались в 1991 году и с 1995 года публикуются в PNAS. С февраля 2001 года по май 2019 года коллоквиумы поддерживались щедрым подарком от Фонда искусств, наук и гуманитарных наук Дамы Джиллиан и доктора Артура М. Саклера в память мужа дамы Саклер, Артура М. Саклера. Полная программа и видеозаписи большинства презентаций доступны на веб-сайте NAS http://www.nasonline.org/decarbonizing.

  • Эта статья представляет собой прямое представление PNAS.

.

Добавить комментарий

Ваш адрес email не будет опубликован.