Типы схем электроснабжения: Виды схем электроснабжения промышленных предприятий | СРС

Содержание

Виды схем электроснабжения промышленных предприятий | СРС

Электроснабжение от энергосистемы можно осуществить по двум схемам (рис. 1):
глубокого ввода двойной магистрали напряжением 35…220 кВ на территорию предприятия с подключением отпайкой от обеих испей нескольких пар трансформаторов;
с одной мощной ГПП на все предприятие. Первая схема (см. рис. 1, а) применяется на крупных предприятиях, занимающих большие территории и располагающих площадями для прохождения линии напряжением 35…220 кВ. Вторую схему (см. рис. 1, б) применяют на предприятиях средней мощности с концентрированным расположением нагрузок. Эти схемы являются основными электротехническими чертежами проекта, на основании которых выполняют все другие чертежи, производятся расчеты сетей и выбор основного электрооборудования.


Рис. 1. Схемы внешнего электроснабжения для крупных (а) и средних (б) предприятий

При проектировании электроснабжения промышленных пред приятии на схемах высокого напряжения должны быть показаны источники питания, распределительные пункты и трансформа торные подстанции со сборными шинами, основная коммутационная аппаратура (масляные или воздушные выключатели, реакторы), размещение устройств АВР, все трансформаторы и электроприемники высокого напряжения (высоковольтные электродвигатели, преобразовательные агрегаты, электропечи и др.

). Ря дом с соответствующими графическими обозначениями нужно указать номинальное напряжение сборных шин, типы выключателей, номинальные токи и реактивные сопротивления реакторов, номинальные мощности и напряжения обмоток трансформаторов и схемы их соединения, номинальные выпрямленные токи и напряжения преобразовательных агрегатов, номинальные мощности электродвигателей. Около изображений кабельных и воздушных линий указывают их длину, а также марки и сечения кабелей, материал (медь или алюминий) и сечения проводов воз душных линий и токопроводов.


Рис. 2. Магистральные схемы электроснабжения

:
а — одиночная; б — сквозная с двусторонним питанием; в — кольцевая; г — двойная; ТП1—ТП6 — трансформаторные подстанции

Напряжение 110 кВ наиболее широко применяют для электроснабжения предприятий от энергосистемы. Рост мощностей промышленных предприятий, снижение минимальной мощности трансформаторов на 110/6… 10 кВ до 2500 кВ А способствуют использованию напряжения 110 кВ для питания предприятий не только средней, но и небольшой мощности.
Напряжение 220 кВ применяют для электроснабжения от энергосистемы крупных предприятий, создания глубоких вводов с разукрупнением подстанций. В некоторых случаях применению напряжения 220 к В в СЭС способствует близкое расстояние от предприятия до трассы линий напряжением 220 кВ энергосистемы.
Распределительная сеть напряжением 6 (10) кВ (реже 35 кВ) — это внутренняя сеть предприятия, служащая для передачи электроэнергии с шин ГПП и ПГВ в распределительные и трансформаторные пункты по воздушным, кабельным линиям и токопроводам. В зависимости от категории нагрузок и от их расположения распределительная сеть от одного или двух независимых источников строится по радиальной, магистральной или смешанной схеме.

Магистральные схемы могут быть одиночными, сквозными с двусторонним питанием, кольцевыми и двойными.
Одиночную схему (рис. 2, а) применяют для потребителей третьей категории. При этой схеме требуется меньшее число линий и выключателей. К одной магистрали подключают два-три трансформатора ТП мощностью 1000… 1600 кВ • А или четыре-пять трансформаторов мощностью 250…630 кВ А (ограничение вносит чувствительность релейной защиты). Недостаток схемы — отсутствие резервного канала электроснабжения на случай повреждения линии. Поэтому для кабельных линий такую схему не применяют, так как время отыскания мест повреждений и ремонта кабелей может превышать 24 ч.

Более надежна сквозная схема с двусторонним питанием (рис. 2, б). Магистраль присоединяют к разным источникам питания. В нормальных условиях она разомкнута на одной из подстанций. Схема применяется для питания потребителей второй категории.
Кольцевая схема (рис. 2, в) создается путем соединения двух одиночных магистралей перемычкой на напряжение 6 (10) кВ. Схема применяется для питания по воздушным линиям потребителей второй категории. В нормальном режиме кольцо разомкнуто и питание подстанций осуществляется по одиночным магистралям. Но при выходе любого участка сети питание ТП прерывается лишь на время операций по отключению в ремонт поврежденного участка и включению разъединителя перемычки.

Двойная схема (рис. 2, г) достаточно надежна, так как при любом повреждении на линии или в трансформаторе все потребители (в том числе первой категории) могут получать электроэнергию но второй магистрали. Ввод резервного питания происходит автоматически с помощью устройств АВР. Данная схема дороже, чем рассмотренные выше, так как расходы на сооружение линий удваиваются.


Рис. 3. Радиальные схемы электроснабжения для питания потребителей третьей (а), второй (б) и первой (в) категорий надежности электроснабжения

Радиальные схемы (рис. 3) применяют для питания сосредоточенных нагрузок и мощных электродвигателей. Для потребителей первой и второй категорий предусматривают двухцепные радиальные схемы, а для потребителей третьей категории — одноцепные схемы. Радиальные схемы надежнее и легче автоматизируются, чем магистральные.

Схема, показанная на рис. 3, а, предназначена для потребителей третьей категории. При подключении устройства автоматического повторного включения (АПВ) воздушной линии эту схему можно применять для потребителей второй категории, а при наличии аварийных источников питания — и для потребителей первой категории.
Схему, показанную на рис. 3, б, используют для потребителей второй категории. В некоторых случаях ее можно применять и для потребителей первой категории. При исчезновении напряжения на одной из секций шин часть потребителей, присоединенных к другой секции, остается в работе.
Схему, приведенную на рис. 3, в, применяют для потребителей первой категории. Питание потребителей при исчезновении напряжения на одной из секций шин восстанавливается автоматическим включением секционного выключателя.

Рис. 4. Смешанная схема электроснабжения
осуществляется по радиальным линиям, а резервное — по одной сквозной магистрали, показанной на рис. 4  штриховой линией.
На всех приведенных схемах секционные аппараты в нормальном режиме находятся в отключенном состоянии. В основном в распределительных сетях

Смешанные схемы сочетают элементы магистральных и радиальных схем (рис. 4). Основное питание каждого из потребителей
применяют разомкнутые схемы, отвечающие требованиям ограничения токов короткого замыкания и независимого режима работы секций.
Замкнутые сети применяют редко, так как в них значительно (до двух раз) повышаются токи короткого замыкания, требуются выключатели на обоих концах линий, усложняются релейные защиты. Однако замкнутые сети имеют ряд преимуществ: большую надежность питания приемников, которые всегда подключены к двум (или более) источникам питания; меньшие потери энергии благодаря более равномерной загрузки сети; меньшее падение напряжения. Эти достоинства особенно существенны при электроснабжении крупных установок. В таких установках пуск мощного электродвигателя может вызвать при разомкнутой схеме большие отклонения напряжения, делающие пуск и самозапуск двигателя под нагрузкой невозможными, поскольку пусковой момент становится ниже момента сопротивления на валу двигателя.

Включение трансформаторов и линий на параллельную работу резко (почти вдвое) уменьшает эквивалентное сопротивление сети питания и обеспечивает успешный пуск двигателя. В некоторых случаях такое включение используется только на время пуска основных двигателей (например, на крупных насосных, компрессорных станциях, где применяются двигатели соизмеримой с трансформаторами мощности).

Электроснабжение металлургических заводов, имеющих полный цикл производства (доменный, сталеплавильный и прокатный цехи), осуществляют, как правило, от ближайшей энергосистемы через подстанцию энергосистемы при напряжении 110 или 220 кВ и от местной заводской ТЭЦ (рис. 5). Местная заводская ТЭЦ обычно имеет связь с энергосистемой напряжением 110 кВ (220 кВ).
Ударные нагрузки прокатных цехов должны восприниматься энергосистемой. Это необходимо учитывать при разработке проекта электроснабжения металлургического завода. Энергосистема должна быть мощной, чтобы обеспечить минимальный допустимый уровень колебаний напряжения в питающей сети 110 кВ (220 кВ).
Для ограничения вредного влияния ударных циклических нагрузок на качество электроэнергии в системе электроснабжения рекомендуются следующие мероприятия.

  1. Ограничение реактивной мощности, потребляемой вентильными преобразователями при их работе с глубоким регулированием.
  2. Разработка и внедрение электроприводов с пониженным потреблением реактивной мощности.


Рис. 5. Структурная схема электроснабжения блюминга 1150 (ионный привод)

3. Приближение источников питания к электроприемникам с ударной нагрузкой; питание дуговых электропечей при повышенном напряжении; питание крупных электродвигателей непосредственно от ГПП или ПГВ, минуя соответствующую цеховую подстанцию, и т.п.

4. Уменьшение реактивного сопротивления линий, питающих крупные электроприемники, за счет применения кабелей и токопроводов с пониженной реактивностью, уменьшения реактивности реакторов и т.п.; применение выключателей с повышенным предельным отключаемым током.

 


Рис. 6. Схемы питания ДСП с использованием сдвоенного реактора

5. Присоединение ударных и спокойных нагрузок к разным ветвям сдвоенного реактора (рис. 6), параметры которого должны быть выбраны исходя из условий стабилизации напряжения на ветви реактора, питающей электроприемники со спокойным режимом работы.

    1. Применение на ГПП и ПГВ трансформаторов, имеющих расщепленные обмотки вторичного напряжения с коэффициентом расщепления Кр > 3,5, при выделении на одну из обмоток питания резкопеременных ударных нагрузок.
    2. Питание групп электроприемников с ударными нагрузками (при значительной их мощности) через отдельные трансформаторы.
    3. Применение синхронных компенсаторов с быстродействующим (тиристорным) возбуждением, а также синхронных электродвигателей, имеющих свободную реактивную мощность для ограничения влияния ударных и вентильных нагрузок.

Для синхронных электродвигателей, получающих питание от общих шин с ударными нагрузками, следует применять автоматические быстродействующие регуляторы возбуждения.
Из перечисленных схем наиболее широкое применение, особенно для предприятий средней мощности, находят схемы с расщепленными обмотками трансформаторов ГПП и сдвоенными реакторами (см. рис. 6).
Колебания напряжения на секциях со спокойной нагрузкой под влиянием резкопеременной нагрузки на других секциях будут меньше, чем при подключении всех нагрузок к одной секции шин.

Какими бывают виды схем электроснабжения? • Energy-Systems

Какие виды схем электроснабжения применяются на практике?

Одной из г

лавных задач проектировщика является обеспечение максимальной безопасности, надежности, а также возможности автономной работы отдельных линий подачи питания. Исходя из этого, могут выбираться различные виды схем электроснабжения, которые соответствуют конкретному случаю. Существуют две разновидности принципов организации подключения электроприборов. Наиболее распространенными являются магистральные линии, которые снабжают энергией несколько устройств, расположенных на одной линии относительного подстанции или иного источника питания. Радиальные линии допускают подключение только одного прибора к каждому кабелю.

Основные понятия, которые включает в себя определенные виды схемы электроснабжения

Магистралью называется линия, которая имеет относительно большую протяженность и объединяет в себе несколько потребителей. Именно такой принцип устройства подразумевает проект электропроводки для квартиры, где приборы освещения и точки подключения размещаются на общем кабеле. Провод, с помощью которого осуществляется связь прибора и магистрали, называется ответвлением. Если же говорить о линии, которая соединяет районную электрическую сеть со щитом, трансформатором или подстанцией, то ее любые виды схем электроснабжения обозначают, как фидер.

Объекты, для которых происходит разработка проектов, делятся на три категории. Для первой устанавливается наивысшая степень важности, соответствующая необходимости поддержания жизнеобеспечения человека или целостности ценного оборудования. Если город, в котором разрабатывается электропроект – Москва, то таковыми могут считаться котельные, медицинские и детские образовательные учреждения, предприятия коммунального транспорта.

Пример проекта детского электроснабжения сада

Назад

1из15

Вперед

Эти объекты всегда соединяются с двумя фидерами и оснащены автоматикой переключения. Для потребителей второй категории переключение производится вручную, а для третьей категории резервного источника питания не предусмотрено.

Преимущества и сфера применения для определенных видов схем электроснабжения

Магистральная сеть намного удобнее в организации, так как она не требует прокладывания множества проводов, а также расходов на закупку материалов. Вместе с тем она создает большую нагрузку на каждое подключение и обладает меньшей надежностью. Радиальная компоновка используется, когда каждый прибор, подключаемый к источнику питания, обладает достаточно высокой мощностью и относится к категории повышенной важности.

Однако на практике данные виды схем электроснабжения очень редко встречаются в чистом виде, в большинстве случаев применяются их комбинации. Примером может служить электрический проект промышленного предприятия, где распределение энергии между цехами организовано по магистральному признаку, а от внутрицехового щита – по радиальному.

Ниже вы можете воспользоваться онлайн-калькулятором для расчёта стоимости проектирования сетей электроснабжения:

Онлайн расчет стоимости проектирования

43. Выбор схемы распределительной сети предприятия.

 Выбор рациональной схемы электроснабжения наряду с выбором напряжения

является одним из главных вопросов, решаемых при разработке проекта реконст-

рукции системы электроснабжения. Оба данных вопроса рассматриваются в нераз-

рывной связи друг с другом.

    Проектируемая схема должна включать в себя элементы существующей при

соответствии их пропускной способности новым расчетным условиям. Равным об-

разом это касается ТП, РУ высокого напряжения, кабельных линий, токопроводов

и других элементов. При необходимости замены кабельных или воздушных линий,

их сечения выбираются на основании ТЭР /9/.

    Схема распределения электроэнергии строится с соблюдением принципов

приближения высокого напряжения к потребителям, отказа от холодного резерва,

раздельной работы линии и трансформаторов, глубокого секционирования. Схема

должна быть простой, удобной в эксплуатации, ремонтопригодной, предусматри-

вать применение комплектного электрооборудования и индустриальных способов

монтажа. При выборе схемы обязательно учитывается перспектива развития пред-

приятия на 8-10 лет. Существующая схема внешнего электроснабжения анализиру-

ется с точки зрения обеспечения требуемой степени бесперебойности питания. При

необходимости добавляются новые линии и трансформаторы.

Виды схем:

1)           Радиальные

2)           Магистральные

3)           Смешанные

Факторы влияющие на выбор схемы:

1)           Категория потребителя по надежности эл.снабж

2)           Расположение цехов относит. Друг друга и источника питания

3)           Режим работы эл. Оборудования в цехе, который определяет график нагрузки цеха

 

Радиальная схема — электроснабжение осуществляется линиями, не имеющими распределения энергии по их длинам (рис. 1, а). Такие линии называют радиальными. В электроснабжении городов радиальные линии называют питающими. Линии W1—W4 на рис. 1, а — радиальные. Питание потребителя П1 на рис. 1, а производится двумя линиями W1 и W2. Такая схема называется радиальной с резервированием. С целью повышения надежности, линии W1 и W2 приемников I категории подключают к разным НИП.

Рис. 1. Схемы электроснабжения: а— радиальная; б— магистральная; в— смешанная

Магистральная схема — линии, питающие потребителей (приемники), имеют распределение энергии по длине (рис. 1, б). Такие линии называют магистральными (линия W). При магистральном подключении ТП (на проходной ТП) целесообразно на некоторых из них на питающих или отходящих линиях использовать силовые выключатели с защитами, с целью локализации поврежденного участка сети и ограничения числа отключенных при этом ТП.

Смешанная схема — электроснабжение осуществляется радиальными и магистральными линиями. На рис. 1, в линия W1 — радиальная, W2 — магистральная, т. е. схема является смешанной.

Достоинство радиальных схем: максимальная простота; аварийное отключение радиальной линии не отражается на электроснабжении остальных потребителей.

Недостаток: большой расход кабельной продукции обусловливает высокую стоимость системы. Кроме того, при одиночных радиальных линиях невысока надежность электроснабжения.

Магистральные схемы имеют следующие достоинства:

— лучшая загрузка линий, т. к. к каждой линии подключена не одна, а группа ТП;

— меньший расход кабелей;

— на ЦП и РП нужно устанавливать меньшее количество выключателей.

Недостатки одиночных магистралей заключаются в трудностях при отыскании места повреждения магистрали и в более низкой надежности электроснабжения по сравнению с радиальной схемой. Последнее объясняется тем, что на надежность работы магистрали влияют показатели надежности стороны ВН ТП, включая силовые трансформаторы. Применение двухстороннего питания одиночных магистралей (петлевая схема) не решает проблемы обеспечения надежности и решения трудностей при отыскании места повреждения. Двойные магистрали с двухсторонним питанием (двухлучевые схемы) могут обеспечить достаточную надежность электроснабжения всех категорий электроприемников. Это обусловило их широкое распространение в электроснабжении городов.

С Сопоставив перечисленные схемы электроснабжения, можно сделать следующие выводы.

1. Наиболее простыми и отвечающими требованиям III категории надежности являются сети, выполненные по радиальной схеме без резервирования и с одиночными магистралями.

2. Требованиям II категории надежности отвечают широко распространенные магистральные многолучевые схемы, чаще всего двухлучевые.

3. Электроснабжение приемников I категории удобно производить с помощью радиальных схем с резервированием, а также двухлучевых схем. Во всех случаях питания приемников I категории должен применяться АВР.

В начало

Схемы электроснабжения. Схема питающих и распределительных сетей предприятия, производства.

Схема электроснабжения строительной площадки показывает связь между источниками питания и приемниками электроэнергии. В качестве источника электроснабжения района, как правило, выбирается государственная или районная энергосистема. Передача электроэнергии к распределительным пунктам или подстанциям осуществляется по питающим линиям.

На рис. 1, а показана схема электроснабжения строительства крупного промышленного предприятия, включающая ГПП и несколько потребительских подстанций (ТП). Источником питания является энергосистема. Электроснабжение может осуществляться от подстанции районной энергосистемы (рис. 1, б).  Распределение  электроэнергии  к  электроприемникам  на  напряжение  до 1000  B  осуществляется  по  распределительным  сетям  низкого  напряжения (рис. 1, в).

Рис. 1. Схемы электроснабжения строительных площадок: а – от энергосистемы; б – от районной энергосистемы; в – от потребительской подстанции: ЭС – энергосистема; РЭС – районная система; ГПП – главная понизительная подстанция; ТП – потребительская трансформаторная подстанция; М – нагрузка

Возможно электроснабжение строительных площадок и производств от смежных источников питания, например, от энергосистемы и от собственной электростанции (рис. 2). В качестве собственной электростанции может использоваться энергопоезд.

Напряжение на шинах РП от энергосистемы и собственной электростанции при   этом должно совпадать (рис. 2, а). При несовпадении напряжений применяется трансформация напряжения от энергосистемы через трансформаторы Т1 и Т2 (рис. 2, б). Возможно электроснабжение при двухстороннем питании.

Схемы электроснабжения с двухсторонним питанием повышают надежность электроснабжения, так как при повреждении одной из линий электроснабжение потребителей, питающихся от поврежденной линии, восстанавливается от второй линии через секционный выключатель на стороне низшего напряжения.

Рис. 2. Схема электроснабжения от энергосистемы и собственной электростанции: а – на одинаковом напряжении; б – с трансформацией напряжения; С – энергосистема; Г – генератор электростанции; РП – распределительный пункт; Т1, Т2 – понижающие трансформаторы; ТП – потребительская трансформаторная подстанция

Напряжение электрических сетей в системе внутреннего электроснабжения может быть 6, 10 и 20 кВ. Наиболее распространенным является напряжение 10 кВ. Оно является более экономичным по сравнению с напряжением 6 кВ по уровню потерь мощности и напряжения в сетях.

Рис. 3. Схемы распределения электроэнергии: а – радиальная; б – магистральная

Напряжение 6 кВ используется в системах, где переход на напряжение 10 кВ считается не рациональным в связи с заменой трансформаторов и электроприемников (например, электродвигателей). Напряжение 20 кВ пока применяется только в сетях, близких от ТЭЦ с генераторным напряжением 20 кВ.

Передача электроэнергии от ИП к распределительным пунктам (РП), ТП или  отдельным  электроприемникам  может  осуществляться  по  радиальным

(рис. 3, а), магистральным (рис. 3, б) или смешанным схемам, сочетающим элементы радиальных и магистральных схем.

Радиальные схемы обладают высокой надежностью. Линии электропередач по этим схемам отходят от источника питания «по радиусам» к РП или ТП. Недостатком схемы является то, что при аварийном отключении питающей линии может оказаться обесточенной большая группа потребителей. Этот недостаток устраняется применением резервирования.

При магистральной схеме одна питающая магистраль обслуживает несколько ТП или РП.  Распределение энергии осуществляется путем выполнения ответвлений от воздушной линии к отдельным подстанциям. Питание ТП можно осуществить путем поочередного ввода ЛЭП сначала от РП к одной ТП, затем от нее к другой ТП и т. д. При магистральных схемах уменьшается протяженность сетей, количество выключателей на РП, снижаются потери мощности в сетях, затраты на сооружение сетей.

Недостатком магистральных схем является снижение надежности по сравнению с радиальными схемами, так как при повреждении магистрали обесточенными оказываются все потребители, питающиеся от нее.

Рис. 4. Распределение электроэнергии по сквозным двойным магистралям: РП – распределительный пункт; ТП – трансформаторная подстанция; АВР – устройство автоматического резервирования

Надежность электроснабжения повышается при применении двухтрансформаторных  подстанций  и  использовании  сквозных  двойных  магистралей (рис. 4). В этом случае от каждой секции РП две магистрали заводятся поочередно на каждую секцию двухтрансформаторной подстанции ТП. Если на шинах низкого напряжения ТП применить устройство автоматического резервирования, например, на автоматических выключателях, то при выходе из строя любой питающей магистрали высшего напряжения электроэнергия будет подаваться потребителям по второй магистрали путем автоматического переключения на секциях шин низкого напряжения. Такие переключения называются автоматическим включением резерва (АВР).

Распределение электроэнергии в сетях до 1 кВ. Схема электроснабжения  объектов строительства зависит от их категории по надежности и бесперебойности электроснабжения. Для электроснабжения производственных электроприемников применяются радиальные, магистральные и смешанные схемы. Магистральная схема применяется для питания нескольких электроприемников отдельного технологического агрегата, или небольшого количества мелких электроприемников, не  связанных технологическим процессом (рис. 5,  а). По радиальной схеме подключаются наиболее мощные электроприемники или отдельные распределительные пункты.

Только радиальные или магистральные схемы применяются редко. Наибольшее распространение получили смешанные схемы, сочетающие и радиальные и магистральные признаки (рис. 5, б).

Рис. 5. Схемы электроснабжения производственных потребителей: а) – магистральная; б) – смешанная; ТП – трансформаторная подстанция; Т1, Т2 – трансформаторы двухтрансформаторной ТП

Схемы осветительных сетей. Электроснабжение светильников общего освещения зданий осуществляется при напряжении 380/220 В переменного тока при заземленной нейтрали и при напряжении 220 В при изолированной нейтрали. Для светильников местного освещения с лампами накаливания применяется напряжение не более 220 В в помещениях без повышенной опасности и не более 42 В в помещениях с повышенной опасностью. Для переносных ручных светильников в помещениях с повышенной опасностью применяется напряжение до 42 В. При стесненных условиях работы питание переносных светильников должно быть при напряжении до 12 В через специально предназначенные трансформаторы.

Схемы электроснабжения осветительной нагрузки в системе электроснабжения цеха (фермы) любого предприятия соответствуют схемам электроснабжения силовой нагрузки, которые рассматривались выше.

При этом к схемам электроснабжения осветительных нагрузок предъявляются следующие требования:

—          электроснабжение осветительной нагрузки должно обеспечиваться совместно с электроснабжением силовой нагрузки или раздельно от электроснабжения силовой нагрузки. Целесообразность совмещения питания электроприемников силовой и осветительной нагрузок должна подтверждаться техникоэкономическими расчетами;

—          схемы питания осветительных установок в зданиях (ремонтные цехи и мастерские, бетонные и растворные заводы, административные помещения) должны допускать автоматизированное управление освещением;

—          схемы питания осветительных установок должны обеспечивать надежность и безопасность электроснабжения.

Аварийное освещение требует создания для него самостоятельной системы электроснабжения, независимой от сети рабочего освещения. Независимым источником питания аварийного освещения является трансформатор, получающий питание от шин, не связанных с шинами рабочего освещения, генератор, приводимый каким-либо первичным двигателем или аккумуляторная батарея.

Схемы питания осветительных сетей показаны на рис. 6 – 8.

Рис. 6.  Схема совместного питания силовой и осветительной нагрузок от двух подстанций (ТП-1, ТП-2)

На рис. 6 приведена схема совместного питания силовой и осветительной нагрузки от двух однотрансформаторных подстанций. Схема совмещенного питания силовой и осветительной нагрузок от одного трансформатора снижает количество трансформаторов по сравнению со схемой раздельного питания этих нагрузок.

На рис 7 приведена схема питания светильников в производственных цехах (ремонтно-механический, столярный, арматурный) от двух трансформаторов.

Рис. 7.  Схема питания осветительной нагрузки в цехе от двух трансформаторов

В этой схеме чередуются ряды светильников, питающихся от разных трансформаторов. При исчезновении напряжения на одном из трансформаторов потеряет питание половина светильников. Освещенность в цехе снизится на 50%. Это позволяет продолжать работу, выполнять определенные технологические операции, не требующие высокой освещенности.

Схемы наружного и уличного освещения. Электроснабжение светильников  наружного  и  уличного  освещения  осуществляется  по  магистральной схеме с равномерной загрузкой фаз (рис. 8).

Рис. 8. Схема наружного и уличного электроснабжения

 

Схемы электроснабжения

Выбор правильной схемы электроснабжения — это один из главных вопросов, возникающих при организации системы распределения электроэнергии. Такая схема обязана служить обеспечению максимальной надежности питания электроприемников. Также она должна отвечать требованиям к сохранению технико-экономических показателей и удобству эксплуатации.

Элементы питающей сети.

При составлении схемы нужно четко различать два основных участка — питающую линию и распределительную сеть. Как правило, питание происходит за счет отдельных элементов, которым можно дать следующие определения:

Фидер — по сути, это и есть главная питающая линия, которая предназначена для поставки электроэнергии к распределительному устройству, магистрали или даже отдельному потребителю.

Магистраль — это транзитная линия, через которую передается электроэнергия другим распределительным пунктам или потребителям. Их присоединение может происходить в разных точках магистрали.

Ответвление — данный элемент представляет собой отходящую линию магистрали. Его назначение состоит в передаче электроэнергии группе потребителей или отдельному электроприемнику.

Все эти элементы являются составными частями питающей сети. Далее по схеме начинается распределительная сеть. Она имеет свои ответвления, особенности и, главное, свои способы распределения электроэнергии.

Схемы распределения электроэнергии.

Здесь выбор зачастую стоит между двумя основными типами распределения — радиальным или магистральным. Но на практике возможны комбинированные способы, тогда возникает смешанная схема распределения.

Радиальное электроснабжение. При такой схеме питание каждого потребителя происходит по независимой линии. То есть напрямую от питающего узла, отдельно от других электроприемников. Получается, что такие линии лучами расходятся из единого центра, образуя на схеме радиусы. Отсюда и возникает название — радиальное электроснабжение.

Данный способ организации распределительной сети удобен тем, что потребители не оказывают взаимного влияния друг на друга. Выход из строя или помехи на одной из линий не отразятся на работе сети в целом или их влияние будет минимальным. Еще один плюс радиальной схемы распределения состоит в том, что все электроприемники могут быть равноудалены от источника питания. Это дает равномерное распределение нагрузки.

Магистральное электроснабжение. Схема предусматривает передачу электрической энергии по одной или двум параллельным линиям. При этом потребители или распределительные пункты могут быть подсоединены к магистрали в различных ее точках. С экономической точки зрения такое решение имеет много преимуществ. Как минимум, результатом является экономия проводов и прочих материалов.

Наиболее актуальна магистральная схема распределения электроэнергии в отношении потребителей, которые расположены близко друг к другу и в одном направлении от ввода или распределительного пункта. Из минусов можно отметить низкую степень надежности, поскольку выход из строя магистрали приводит к отключению целого ряда потребителей. В связи с этим магистральное электроснабжение подходит только для питания потребителей второй и третьей категории надежности.

Также не стоит объединять в одну магистральную цепочку токоприемники разного технологического назначения. К примеру, электродвигатели станков совместно с нагревательными приборами или насосное оборудование совместно с осветительными приборами. То есть разные группы должны питаться от разных магистралей.

Практическое применение.

Наиболее часто вопрос правильной организации схемы электроснабжения возникает на объектах с повышенными требованиями к надежности. Речь идет о потребителях первой и первой особой категории. К их числу относятся объекты коммерческого назначения, промышленные предприятия, медицинские учреждения и др. Здесь ключевым моментом становится резервирование питания, задействование системы автоматического ввода резерва, секционирование и установка источников бесперебойного питания.

Схема для малого учреждения.

Итак, начнем с небольшого медицинского учреждения. В силу особенностей работы подобных заведений возможность использования ДГУ сразу отметаем. Так что будут задействованы два независимых ввода централизованного электроснабжения. К примеру, это могут быть не связанные между собой линии от разных силовых трансформаторов.

Первая категория надежности также обязывает установить автоматический ввод резерва. Для этих целей подойдет моноблочный АВР серии NZ7 или можно заказать типовой шкаф АВР на 2 ввода. Поскольку к особой группе будет относиться лишь часть оборудования, то используем секционирование, чтобы разделить потребителей по группам. Для особой группы включаем в схему автономный источник бесперебойного питания. Он должен поддерживать электроснабжение на протяжении 24 часов или более.

Схема для крупного учреждения.

В качестве примера можно взять промышленное предприятие с производственными цехами и т.п. Здесь не будет ограничений на использование ДГУ, поэтому в качестве третьего ввода используется генератор. Необходимость в наличии трех вводов объясняется тем, что производственные процессы крайне чувствительны к отключению электроэнергии. Даже кратковременное исчезновение нагрузки может вызвать выход из строя дорогостоящего оборудования, массовый брак продукции или создать опасность здоровью и жизни людей. Двойное резервирование за счет второго и третьего ввода позволит свести вероятность возникновения такой ситуации к минимуму.

Генераторная установка должна запускаться автоматически при отсутствии напряжения на первом и втором вводе. Значит, потребуется блок АВР, который способен посылать сигнал на запуск генератора. Также функциональные возможности должны включать установку выдержки по времени, чтобы исключить подключение нагрузки до того, как ДГУ выйдет на максимальную мощность. С этими задачами справится уже упомянутый блок АВР серии NZ7. Но в рамках крупного предприятия более целесообразно заказать готовое решение, например типовой шкаф АВР на 3 ввода.

Далее по схеме используется секционирование и разделение нагрузки, чтобы исключить взаимное влияние на случай помех. Такое решение заодно позволит снизить резервную мощность аварийного ИБП. По сути, этой мощности должно хватать для того, чтобы безаварийно остановить текущие рабочие процессы. Более мощные ИБП могут потребовать только в том случае, если это безостановочное производство.

Таким образом, каждая схема электроснабжения сугубо индивидуальна. Она зависит от масштабов предприятия, сферы деятельности компании, суммарной мощности и назначения потребителей электроэнергии, а также от категории надежности. Но всегда можно взять за основу типовые электрощиты и разработать на их основе индивидуальное решение.

Основные типы схем электрических сетей внутреннего электроснабжения

Характерные схемы внутреннего электроснабжения

Схемы электроснабжения, обеспечивающие питание предприятия на его территории, из-за большой разветвленности, большого количества аппара­тов должны быть значительно дешевле и надежнее, чем схемы внешнего электроснабжения. Это положение обеспечивается тем, что в зависимости от конкретных требований обеспечения питания приемников и потребителей применяют различные схемы питания.

Схемы радиального питания. Радиальными являются схемы, в которых электроэнергию от центра питания передают прямо к цеховой под­станции без ответвлений на пути для питания других потребителей. Применять радиальные схемы следует только для питания достаточно мощных потребителей.

Схема на рис. 9.14, а предназначена для питания потребителей 3-й категории или потребителей 2-й категории с пониженной ответственностью. Схема на рис. 9.14,б предназначена для потребителей 2-й категории. Схема на рис. 9.14, в предназначена для электроснабжения потребителей 1-й категории, но ее используют и для питания потребителей 2-й ка­тегории, перерыв в питании которых влечет за собой недоотпуск про­дукции и которые имеют народнохозяйственное значение в масштабе страны.

Схема магистрального питания. Магистральные схемы применяют в системе внутреннего электроснабжения предприятий в том случае, когда потребителей достаточно много и радильные схемы питания явно неце­лесообразны. На рис. 9.15 приведена схема магистрального питания. Эти схемы характеризуются пониженной надежностью питания, но дают возможность уменьшить число отключающих аппаратов и более удачно скомпоновать потребителей для питания.

Когда необходимо сохранить преимущества магистральных схем и обеспечить высокую надежность питания, применяют систему транзитных (сквозных) магистралей (рис. 9.16). В этой схеме при повреждении любой из питающих магистралей высшего напряжения питание надежно обеспе­чивают по второй магистрали путем автоматического переключения по­требителей на секцию шин низшего напряжения трансформатора, остав­шегося в работе.



Схемы смешанного питания. В прак­тике проектирования и эксплуатации систем электроснабжения промышлен­ных предприятий редко встречаются схемы, построенные только по радиаль­ному или только магистральному прин­ципу. Обычно крупные и ответственные потребители или приемники питают по радиальной схеме. На рис. 9.17 приведена такая схема смешанного питания.

 

Принципиальная Схема Электроснабжения — tokzamer.ru

Поэтому в городских электросетях применяют устройства телемеханики, подающие сигнал на соответствующий диспетчерский пункт об изменении положения в РП указателей сигнализации замыканий на землю, положения выключателей, и позволяющие производить измерения нагрузки и напряжения контролируемых объектов, а также телеуправление выключателями.


При нормальной работе пропускная способность линий составляет не менее половины расчетных нагрузок предприятия.

Программа автоматически определит тип комплектного устройства, рассчитает его стоимость, выполнит размещение оборудования.
Однолинейная схема электроснабжения предприятия. Часть 2.

Существуют компьютерные приложения, позволяющие самостоятельно разработать соответствующую ГОСТам схему.

Схемы питания должны выполняться отдельно для питающей и распределительной сетей.

В замкнутых кабельных сетях все кабельные линии напряжением до В включены параллельно замкнуты , а в трансформаторных подстанциях на силовых трансформаторах со стороны низшего напряжения установлены автоматы обратной мощности, отключающие трансформаторы от сети при повреждении распределительных кабелей напряжением выше В, или специальные предохранители, обеспечивающие селективное отключение поврежденного участка. Для электроприемников первой категории выполняют автоматику АВР на вводно-распределительных устройствах или в распределительных сетях, отходящих от вводно-распределительных устройств, и в этом случае электроснабжение осуществляется несколькими не менее двух линиями напряжением до 1 кВ от различных трансформаторов.

Такое подключение отлично демонстрирует однолинейная схема трансформатора КТП: Фото — однолинейная схема трансформатора ктп Примеры того, что должна включать однолинейная типовая схема электроснабжения поликлиники, квартиры, загородного или дачного дома, завода или прочих помещений: Точку, где объект подключается к электрической сети; Все ВРУ вводно-распределительные устройства ; Точку и марку прибора, который используется для подключения помещения в большинстве случаев, нужны также параметры щита ; Нужно не только начертить кабель питания, но и отметить на схеме его сечение и марку, иногда мастера помечают номинал; Проект должен содержать данные про номинальные и максимальные токи оборудования, которое используется на объекте.

Цифра в такой схеме отвечает за определение количества фаз, а перечеркнутая косыми отрезками линия — это определение фазы. Пример оформления однолинейной схемы электроснабжения промышленного предприятия Виды однолинейных электрических схем В зависимости от того, на каком этапе выполнения работ по созданию электрической сети объекта составляется однолинейная схема, зависит её вид и прямое предназначение.

Как читать Элекрические схемы

Принципиальные схемы электроснабжения

В особенности она необходима для подключения к локальной сети дома с АВР: Фото — дом с авр Чтобы бесплатно разработать однолинейную схему электроснабжения детского учреждения, частных построек гаражей, домов, квартир, киосков , многоэтажного жилого здания, завода СНТ , вахтовых вагонов, Вам понадобится ЕСКД. Порядок получения технических условий на подключение к электрическим сетям регламентирован рядом документов. При самостоятельном выполнении данной задачи необходимо помнить, что чертеж должен четко репрезентировать основные параметры электросети.

Программа XL Pro распространяется бесплатно и доступна для загрузки зарегистрированными пользователями Extranet. Назначение однолинейной схемы..

До точки подключения эксплуатационную ответственность несет поставщик электроэнергии владелец сетей , после нее — потребитель электроэнергии. Однолинейная схема должна быть информативной Как мы видим, однолинейная схема является одним из основополагающих документов в проекте электроснабжения.

К распределительной сети относятся также цепи всех назначений, связывающие первичные приборы и датчики с вторичными приборами и регулирующими устройствами. Граница балансовой принадлежности..

В замкнутых кабельных сетях все кабельные линии напряжением до В включены параллельно замкнуты , а в трансформаторных подстанциях на силовых трансформаторах со стороны низшего напряжения установлены автоматы обратной мощности, отключающие трансформаторы от сети при повреждении распределительных кабелей напряжением выше В, или специальные предохранители, обеспечивающие селективное отключение поврежденного участка. Высокая степень интерактивности интерфейса позволяет получать ответы на вопросы, часто возникающие в процессе создания схемы.

При нормальной работе пропускная способность линий составляет не менее половины расчетных нагрузок предприятия.

Высокая степень интерактивности интерфейса позволяет получать ответы на вопросы, часто возникающие в процессе создания схемы.
Как читать электрические схемы

Читайте дополнительно: Ту на укладку лэп под землю

Что такое однолинейная схема электроснабжения?

Почему схема однолинейная? Такие мероприятия необходимы для того, чтобы в дальнейшем не возникло ситуаций, которые приведут к материальным потерям предприятия.

Изображение должно содержать три фазы, питающие помещение, отходящие от них электролинии групповых сетей, данные о выключателях и устройствах защитного отключения, кабелях питания. Основное предназначение подобной исполнительной документации — информативность и предоставление визуального восприятия о конфигурации электрической сети объекта, необходимого для принятия решений при эксплуатации энергетического хозяйства.

Основные характеристики аппаратов схемы питания записываются в перечень, который оформляется в виде таблицы, заполняемой сверху вниз. Но все они как правило сложны в освоении, если Вы не занимаетесь этим профессионально. Главное, соблюсти некоторые основные требования, чтобы получившийся рисунок был понятен и нёс в себе максимум полезной информации.

Почему схема однолинейная? В схему в обязательном порядке нужно включить не только основные её составляющие кабеля ввода, заземления, УЗО , но и розетки, выключатели света в комнатах. Условные обозначения, используемые при составлении однолинейных схем Условные обозначения Визуальное представление различных элементов, составляющих систему энергоснабжения, регламентируется нормативными источниками. Однолинейная схема — это та же принципиальная схема, только выполненная в упрощенном виде: все линии однофазных и трехфазных сетей изображаются одной линией, отсюда и название.

Граница зоны ответственности отображается в Договоре на электроснабжение конкретного объекта. Какие сведения должны быть указаны на однолинейной схеме?


Монтажные — согласовываются с архитектурными нюансами с указанием всех точных данных по кабелям, размерам оборудования, элементам крепежа и другим. Все очень просто: возле линии, которая определяет многофазное питание ставится цифра и перечеркнутый штрих, как на фото ниже. Пример оформления однолинейной схемы жилого дома представлен на рис. Магистральные щитовые элементы имеют горизонтальную черту, отсекающую небольшой фрагмент внизу.

Также есть возможность создавать персональный каталог из устройств, которых нет в базе данных программы. В программе есть режим автоматического подбора ячейки нужной конфигурации с учетом ранее заданных критериев. Эти сети обеспечивают надежное электроснабжение потребителей, так как при отключении участка сети 6 — 10 кВ напряжение у потребителей сохраняется, но из-за сложности защиты от коротких замыканий в нашей стране применяются редко.

В большинстве случаев, электроснабжение предприятий осуществляется от энергосистем. Расчётная схема квартирного щита загородного дома На этапе эксплуатации объекта составляются однолинейные исполнительные схемы, на которых отображаются все изменения, вносимые в конфигурацию электрической сети в процессе её использования. В связи с этим все работы по проектированию схемы электроснабжения можно разбить на несколько этапов: Запрос и получение технических условий; Разработка однолинейной схемы электроснабжения на основании полученных документов; Согласование разработанной документации в организации, выдавшей технические условия.
Схема электрическая принципиальная

2.5. Принципиальные электрические схемы питания

Для проектируемых новых объектов выполняется расчетная однолинейная схема.

Сначала от заявителя требуется оформление запроса к компании, оказывающей услуги по электроснабжению, на выдачу технических условий на реализацию данной задачи.

С удалением связей то же были проблемы какие-то не удалялись. Такие учреждения есть в Белгороде, Москве, Санкт-Петербурге и других крупных и средних населенных пунктах.

К ним относят сооружения с массовым скоплением людей театры, стадионы, универмаги , электрифицированный транспорт метрополитен, железные дороги , больницы, предприятия связи, высотные здания, группы городских потребителей с суммарной нагрузкой выше кВА, некоторые силовые установки вращающиеся печи с дутьем. Вместо них используется определение фазы по количеству штрихов.

Статья по теме: Прокладка кабеля в земле гост

В чем нарисовать однолинейную электрическую схему

Также есть возможность создавать персональный каталог из устройств, которых нет в базе данных программы. У изображений рубильников, выключателей, автоматов, предохранителей схем распределительной сети их технические характеристики не проставляются. Её назначение скорее необходимо для выявления недочётов и нарушений и применяется при модернизации и перерасчёте электросети. В любом случае имеется следующее, что можно ограничить расчет небольшой базой типов оборудования и кабелей и менять уже по факту после расчетов.

Программа на русском языке. Поскольку в документе есть главное — информация. При маркировке схем рекомендуется цепям питания присваивать группы цифр от до Многие начинающие электрики могут усомниться в эффективности таких чертежей, ведь кажется, что непонятно, как их отобразить тогда трехфазное или двухфазное питание. Условные обозначения, используемые при составлении однолинейных схем Условные обозначения Визуальное представление различных элементов, составляющих систему энергоснабжения, регламентируется нормативными источниками.

Что такое однолинейная схема электроснабжения и зачем нужна

Монтажный проект требует согласования с архитектурно-конструкторскими решениями и строгого указания диаметров проводов и габаритов оборудования. Отнеситесь к оформлению однолинейной схемы со всей ответственностью и тогда у вас не будет проблем с согласованием и утверждением проекта.

Но при этом однофазная проводка обозначается одной линией с одним штрихом. Для однолинейных схем электроснабжения обозначения приборов, пускателей, контакторов, выключателей, розеток и прочих элементов применяют согласно ГОСТ 2. На схеме распределительной сети показываются: аппараты управления рубильники, выключатели, переключатели ; аппараты защиты автоматы, предохранители ; преобразователи выпрямители, трансформаторы, стабилизаторы и т. Сечения проводников питающей и распределительной сетей системы электропитания КИП и СА должны выбираться по условиям нагревания электрическим током и механической прочности с последующей проверкой по потере напряжения.
Автоматическая прорисовка однолинейной схемы

Классификация источников питания

и ее различные типы

Блок питания — это часть оборудования, которое используется для преобразования энергии, подаваемой из розетки, в полезную мощность для многих частей внутри электрического устройства. Каждый источник энергии должен управлять своей нагрузкой, которая к нему подключена. В зависимости от конструкции блок питания может получать энергию от различных типов источников энергии, таких как системы передачи электроэнергии, электромеханические системы, такие как генераторы и генераторы переменного тока, преобразователи солнечной энергии, устройства хранения энергии, такие как аккумулятор и топливные элементы, или другие источник питания.Существуют два типа источников питания: переменного и постоянного тока. В зависимости от электрических характеристик электрического устройства оно может использовать питание переменного или постоянного тока.


Что такое блок питания?

Источник питания можно определить как электрическое устройство, используемое для подачи электроэнергии на электрические нагрузки. Основная функция этого устройства — изменение электрического тока от источника на точное напряжение, частоту и ток для питания нагрузки. Иногда эти блоки питания можно назвать преобразователями электроэнергии.Некоторые типы расходных материалов представляют собой отдельные части грузов, тогда как другие изготавливаются из устройств, которыми они управляют.

Блок-схема источника питания

Цепь источника питания используется в различных электрических и электронных устройствах. Цепи питания подразделяются на различные типы в зависимости от мощности, которую они используют для обеспечения цепей или устройств. Например, схемы на основе микроконтроллера обычно представляют собой схемы регулируемого источника питания (RPS) 5 В постоянного тока, которые могут быть спроектированы с помощью различных методов для изменения мощности с 230 В переменного тока на 5 В постоянного тока.

Блок-схема источника питания и пошаговое преобразование 230 В переменного тока в 12 В постоянного тока обсуждаются ниже.

  • Понижающий трансформатор преобразует 230 В переменного тока в 12 В.
  • Мостовой выпрямитель используется для преобразования переменного тока в постоянный
  • Конденсатор используется для фильтрации пульсаций переменного тока, подаваемых на регулятор напряжения.
  • Наконец, регулятор напряжения регулирует напряжение до 5 В и, наконец, используется блокирующий диод для измерения пульсирующей формы волны.
Блок-схема источника питания

Классификация источников питания и их различных типов

Здесь мы обсудим различные типы источников питания, которые существовали на рынке.В таблице ниже указаны основные типы источников питания для следующих условий.

ВЫХОД = DC

ВЫХОД = AC

ВХОД = AC

  • Бородавка стенка
  • Настольные источники питания
  • Зарядное устройство
  • Разделительный трансформатор
  • Источник переменного тока
  • Преобразователь частоты

ВХОД = DC

Источник переменного тока

Различные напряжения переменного тока генерируются с помощью трансформатора.Трансформатор может иметь несколько обмоток или ответвлений, и в этом случае прибор использует переключатели для выбора различных уровней напряжения. В качестве альтернативы можно использовать регулируемый трансформатор (регулируемый автотрансформатор) для непрерывного изменения напряжения. Некоторые источники переменного тока включают измерители для контроля напряжения, тока и / или мощности.

Источник переменного тока

Нерегулируемый линейный источник питания

Нерегулируемые источники питания содержат понижающий трансформатор, выпрямитель, фильтрующий конденсатор и спускной резистор.Этот тип источника питания из-за простоты является наименее дорогостоящим и наиболее надежным для требований низкого энергопотребления. Главный недостаток — непостоянство выходного напряжения. Оно будет меняться в зависимости от входного напряжения и тока нагрузки, а пульсации не подходят для электронных приложений. Пульсации можно уменьшить, заменив конденсатор фильтра на фильтр LC (индуктор-конденсатор), но стоимость будет выше.


Нерегулируемый линейный источник питания
Входной трансформатор

Входной трансформатор используется для преобразования входящего линейного напряжения до необходимого уровня источника питания.Он также изолирует выходную цепь от сети. Здесь мы используем понижающий трансформатор.

Выпрямитель

Выпрямитель, используемый для преобразования входящего сигнала из формата переменного тока в необработанный постоянный ток. Пожалуйста, обратитесь по этим ссылкам. Доступны различные типы выпрямителей: однополупериодный и двухполупериодный выпрямители.

Фильтр-конденсатор

Пульсирующий постоянный ток от выпрямителя подается на сглаживающий конденсатор. Это устранит нежелательную рябь в пульсирующем постоянном токе.

Выпускной резистор

Bleeder Resistor также известен как резистор стока источника питания. Он подключается к конденсаторам фильтра для отвода накопленного заряда, поэтому питание системы не представляет опасности.

Программируемый блок питания

Этот тип источника питания позволяет дистанционно управлять его работой через аналоговый вход или цифровые интерфейсы, такие как GPIB или RS232. Контролируемые свойства этого источника питания включают ток, напряжение, частоту.Эти типы расходных материалов используются в широком спектре приложений, таких как производство полупроводников, генераторов рентгеновского излучения, мониторинг роста кристаллов, автоматическое тестирование оборудования.

Как правило, в этих типах источников питания используется необходимый микрокомпьютер для управления, а также мониторинга работы источника питания. Блок питания, снабженный интерфейсом компьютера, использует стандартные (или) проприетарные протоколы связи и язык управления устройством, такой как SCPI (стандартные команды для программируемых инструментов)

Блок питания компьютера

Блок питания в компьютере — это часть аппаратного обеспечения, которое используется для преобразования мощности, подаваемой из розетки, в полезную мощность для нескольких частей компьютера.Преобразует переменный ток в постоянный

Он также контролирует перегрев посредством управления напряжением, которое может изменяться вручную или автоматически в зависимости от источника питания. Блок питания или блок питания также называют преобразователем мощности или блоком питания.

В компьютере внутренние компоненты, такие как корпуса, материнские платы и блоки питания, доступны в различных конфигурациях, размеры которых известны как форм-фактор. Все эти три компонента должны быть хорошо согласованы, чтобы правильно работать вместе.

Регулируемый линейный источник питания

Регулируемые линейные источники питания такие же, как нерегулируемые линейные источники питания, за исключением того, что вместо стравливающего резистора используется трехконтактный стабилизатор. Основная цель этого источника питания — обеспечить нагрузку требуемым уровнем мощности постоянного тока. Источник питания постоянного тока использует источник переменного тока в качестве входа. Для разных приложений требуются разные уровни атрибутов напряжения, но в настоящее время источники питания постоянного тока обеспечивают точное выходное напряжение. И это напряжение регулируется электронной схемой, так что оно обеспечивает постоянное выходное напряжение в широком диапазоне выходных нагрузок.

Блок-схема регулируемого источника питания

Здесь представлена ​​основная принципиальная схема регулируемого линейного источника питания, представленная ниже.

Регулируемый линейный источник питания

Основными особенностями этого источника питания являются следующие.

  • КПД данного блока питания составляет от 20 до 25%
  • Магнитные материалы, используемые в этом источнике питания, представляют собой сердечник из CRGO или стали.
  • Он более надежный, менее сложный и громоздкий.
  • Дает более быстрый ответ.

К основным преимуществам линейного источника питания можно отнести надежность, простоту, дешевизну и низкий уровень шума. Наряду с этими преимуществами есть и недостатки, например,

.

Они лучше всего подходят для нескольких приложений с низким энергопотреблением, поскольку требуется высокая мощность; недостатки становятся более очевидными. К недостаткам этого источника питания можно отнести большие потери тепла, габариты и низкий уровень эффективности. Когда линейный источник питания используется в приложениях большой мощности; для управления мощностью требуются большие компоненты.

Сглаживание

После выпрямления из сигнала переменного тока необходимо сглаживать постоянный ток, чтобы удалить изменяющийся уровень напряжения. Для этой цели обычно используются конденсаторы большой емкости.

Регулятор напряжения

Линейный стабилизатор имеет активное (BJT или MOSFET) проходное устройство (последовательное или шунтирующее), управляемое дифференциальным усилителем с высоким коэффициентом усиления. Он сравнивает выходное напряжение с точным опорным напряжением и регулирует проходное устройство для поддержания постоянного уровня выходного напряжения.Есть два основных типа линейных источников питания. Узнайте больше о различных типах регуляторов напряжения с принципом работы.

Регулятор серии

Это наиболее широко используемые регуляторы для линейных источников питания. Как следует из названия, в схему помещается последовательный элемент, как показано на рисунке ниже, и его сопротивление изменяется с помощью управляющей электроники, чтобы гарантировать, что правильное выходное напряжение генерируется для потребляемого тока.

Концепция последовательного регулятора напряжения или последовательного регулятора прохода
Шунтирующий регулятор

Шунтирующий стабилизатор менее широко используется в качестве основного элемента в регуляторе напряжения.При этом переменный элемент размещается поперек нагрузки, как показано ниже. Сопротивление истока установлено последовательно со входом, а шунтирующий регулятор регулируется, чтобы гарантировать, что напряжение на нагрузке остается постоянным.

Шунтирующий регулятор напряжения с обратной связью

Импульсный источник питания (SMPS)

SMPS имеет выпрямитель, конденсатор фильтра, последовательный транзистор, регулятор, трансформатор, но он более сложен, чем другие источники питания, которые мы обсуждали.

Импульсный источник питания

Показанная выше схема представляет собой простую блок-схему.Напряжение переменного тока выпрямляется до нерегулируемого постоянного напряжения с помощью последовательного транзистора и регулятора. Этот постоянный ток прерывается до постоянного высокочастотного напряжения, что позволяет значительно уменьшить размер трансформатора и позволяет использовать источник питания гораздо меньшего размера. Недостатки этого типа источника питания состоят в том, что все трансформаторы должны изготавливаться на заказ, а сложность источника питания не подходит для низкопроизводительных или экономичных применений с низким энергопотреблением. Пожалуйста, перейдите по этой ссылке, чтобы узнать все о SMPS.

Импульсный источник питания (SMPS)

Источник бесперебойного питания (ИБП)

ИБП

— это резервный источник питания, который в случае сбоя или колебаний напряжения дает достаточно времени для правильного отключения системы или запуска резервного генератора. ИБП обычно состоит из группы аккумуляторных батарей и схем измерения и кондиционирования мощности. Кроме того, ознакомьтесь с принципиальной схемой ИБП и различными типами, пожалуйста, перейдите по этой ссылке, чтобы узнать больше о принципиальной схеме и работе ИБП.

Источник бесперебойного питания (ИБП)

Источник питания постоянного тока

Источник питания постоянного тока — это источник постоянного напряжения, обеспечивающий его нагрузку постоянным напряжением. Согласно его плану, источник питания постоянного тока может управляться от источника постоянного тока или от источника переменного тока, такого как сеть электропитания.

Источник питания постоянного тока

Это все о различных типах источников питания, включая линейные источники питания, импульсный источник питания, источник бесперебойного питания. Кроме того, для реализации проектов в области электроники и электротехники или любой информации о типах источников питания вы можете оставить свой отзыв, чтобы дать свои предложения, комментарии в разделе комментариев ниже.

Базовая электроника

— различные типы источников питания

В предыдущих статьях мы обсуждали пассивные электронные компоненты, такие как резисторы, конденсаторы, катушки индуктивности и трансформаторы. Пассивные компоненты особенно полезны при разработке различных аналоговых схем.

Настоящее развлечение современной электроники начинается с полупроводников и цифровой электроники. Электроника — это все, что связано с сигналами (в форме напряжения или тока) и обработкой сигналов компонентами и схемами.Полупроводниковая электроника стала возможной благодаря обработке электронных сигналов как двоичных значений (0 и 1 или Low и High). Это применение полупроводниковой электроники для обработки сигналов как двоичных значений приводит к реализации булевой логики в форме цифровой электроники. Так началось использование электроники для «вычислений». Вскоре инженеры и исследователи разработали способы измерения различных физических величин путем преобразования их в аналоговые электрические сигналы и оцифровки этих аналоговых сигналов в цифровые значения.Они также разработали способы преобразования цифровых сигналов в эквивалентные аналоговые электрические сигналы. Теперь компьютеры также могут взаимодействовать и реагировать на физический мир.

Большая часть современной электроники связана с «электронными вычислениями» и их приложениями в реальном мире. Электронные вычисления в сочетании с технологиями отображения и электронными устройствами ввода / вывода приводят к развитию компьютеров общего назначения. Электронные вычисления в сочетании с различными коммуникационными технологиями приводят к развитию телекоммуникационных, телевизионных и интернет-технологий.Электронные вычисления в сочетании с беспроводной связью и датчиками привели к развитию мобильной электроники и носимых устройств. Электронные вычисления в сочетании с датчиками и исполнительными механизмами приводят к развитию таких приложений, как встроенные системы, робототехника и автоматизация.

Но, прежде чем мы начнем нескончаемый путь полупроводников и цифровой электроники, будет лучше иметь некоторое базовое представление об источниках питания. Это источник питания, дающий жизнь любой электронной схеме или устройству.Каждая электронная схема или устройство, по сути, должна иметь секцию источника питания или может потребоваться подключение в качестве нагрузки к внешней цепи источника питания.

Источником электроэнергии могут быть линии электропередачи (электросеть), электромеханические системы (генераторы и генераторы), солнечная энергия или устройства хранения, такие как элементы и батареи. Источники питания — это преобразователи мощности, которые преобразуют электрическую энергию от источника в напряжение, ток и частоту, подходящие для цепи нагрузки.Источником электроэнергии может быть переменный или постоянный ток. Как и генераторы и сеть, электричество обеспечивает питание переменного тока, в то время как батареи и солнечные устройства являются источником постоянного тока. Схема источника питания может вводить мощность от источника переменного или постоянного тока и выводить мощность переменного или постоянного тока, преобразованную в соответствии с нагрузкой. Таким образом, цепи питания можно разделить на блоки питания переменного тока, переменного тока, постоянного тока и постоянного тока.

Различные источники питания переменного тока включают источники переменного тока переменного тока, изолирующие трансформаторы и преобразователи частоты. Источники питания переменного тока в постоянный являются наиболее распространенными.Некоторые из источников питания переменного тока в постоянный включают нерегулируемый линейный источник постоянного тока, линейный регулируемый источник постоянного тока (настольный источник питания), импульсные регулируемые источники питания и источник питания с пульсационной стабилизацией. Источники питания на батарейках, солнечные источники питания и преобразователи постоянного тока в постоянный являются примерами источников питания постоянного тока. Источники питания на батарейках и солнечные источники питания используются для непосредственного питания электронных схем, в то время как преобразователи постоянного тока в постоянный обычно используются для преобразования входного постоянного тока на разные уровни для питания разных цепей в одном и том же устройстве, а не для использования разных переменных переменного тока. Источники постоянного тока для получения различных уровней напряжения / тока.Инверторы, генераторы и ИБП обычно используются в качестве источников питания постоянного тока.

Блок питания переменного тока
Блоки питания переменного тока разработаны с использованием трансформаторов или регулируемых автотрансформаторов. Они используются для преобразования уровней напряжения переменного тока в переменный. Для разработки такого источника питания можно использовать трансформатор с несколькими обмотками или ответвлениями, в противном случае можно использовать регулируемый автотрансформатор. Эти источники питания преобразуют уровни переменного напряжения и тока, в то время как частота источника питания остается неизменной.

Преобразователи частоты
Преобразователи частоты используются для преобразования частоты переменного тока. Они могут быть спроектированы с использованием электромеханических устройств, таких как двигатель-генератор, или с помощью набора выпрямитель-инвертор. Выпрямитель сначала преобразует переменный ток в постоянный, а затем инвертор преобразует постоянный ток обратно в переменный ток разных частот.

Изолирующие трансформаторы
Изолирующие трансформаторы используются для подачи переменного тока в переменный, когда требуется согласование импеданса между источником питания и цепью нагрузки.Изолирующие трансформаторы обычно не преобразуют уровни напряжения или частоту источника питания. Они полезны при подключении симметричных и несимметричных цепей.

Этот изолирующий трансформатор используется для повышения или понижения напряжения, сохраняя при этом сетевые и выходные цепи изолированными с помощью усиленной изоляции, сертифицированной CE. (Изображение: преобразователь сигналов)

Нерегулируемый линейный источник питания
Нерегулируемый линейный источник питания представляет собой простые источники питания переменного тока в постоянный.Они разработаны с использованием понижающего трансформатора, выпрямителя, конденсатора фильтра и резистора утечки. Сначала трансформатор преобразует сетевое напряжение в требуемый уровень напряжения переменного тока. Пониженное напряжение переменного тока затем преобразуется в напряжение постоянного тока с помощью полуволнового или двухполупериодного выпрямителя. Выпрямитель выполнен на диодах. Пульсирующий постоянный ток выпрямителя сглаживается конденсаторами фильтра. Для защиты параллельно конденсатору фильтра может быть подключен резистор утечки.

Нерегулируемые блоки питания просты и надежны.Однако их выходное напряжение может изменяться из-за изменения входного напряжения или тока нагрузки. Так что они не очень надежны. Кроме того, они могут быть предназначены только для вывода фиксированного напряжения и тока.

Линейно-регулируемый источник питания
Линейно-регулируемый источник питания — это источники питания переменного тока в постоянный. Это то же самое, что и нерегулируемые (грубая сила) источники питания, за исключением того, что они используют транзисторную схему, работающую в активной или линейной области, вместо истекающего резистора. Этот активный транзисторный каскад позволяет выводить на разные точные уровни постоянного напряжения.Существует несколько микросхем стабилизаторов напряжения, в которые встроена активная транзисторная схема. Источники питания с линейным регулированием стабильны, безопасны, надежны и бесшумны. Существуют микросхемы регуляторов напряжения, доступные для широкого диапазона входных и выходных напряжений, и они выдают фиксированные значения постоянного напряжения. Основными недостатками этих расходных материалов являются их стоимость, размер и энергоэффективность. Эти блоки питания теряют много энергии из-за рассеивания мощности, и может потребоваться использование радиатора с интегральными схемами регулятора.

Линейный источник питания от Acopian Power Supplies (вверху) в десять раз больше и тяжелее, чем сопоставимый импульсный источник питания (внизу), который также от Acopian, но линейный блок имеет преимущества, которым не может соответствовать источник питания коммутатора.

Импульсный регулируемый источник питания
Импульсный регулируемый источник питания — это комплексные источники питания переменного тока в постоянный, сочетающие в себе преимущества нерегулируемых и регулируемых источников питания. В SMPS линейное напряжение выпрямляется в постоянное, а затем снова преобразуется в прямоугольный переменный ток с помощью переключающих транзисторов.Эта высокочастотная прямоугольная волна затем понижается или повышается, а затем снова выпрямляется. Выпрямленное постоянное напряжение фильтруется перед подачей его на нагрузку.

Источник питания, регулируемый пульсацией
Источник питания, регулируемый пульсацией, представляет собой улучшенный вариант нерегулируемого источника питания переменного тока в постоянный. Он разработан путем объединения нерегулируемого источника питания с транзисторной схемой, работающей в области насыщения. Схема транзистора передает мощность постоянного тока на конденсатор для поддержания уровня напряжения.Основным преимуществом пульсирующего источника питания является его энергоэффективность.

Регулируемые регулируемые источники питания
Линейные регулируемые источники питания можно модифицировать для обеспечения диапазона регулируемых напряжений с помощью переменного резистора на оконечном каскаде. Переменный резистор может понижать выходное напряжение до регулируемых значений. Такой регулируемый источник питания может затем подавать напряжения в диапазоне от нуля до максимального напряжения, регулируемого источником. Симметричные линейные регулируемые источники питания также могут быть модифицированы для подачи напряжения отрицательной полярности.

Батареи и источники питания от солнечных батарей
Батареи, элементы и солнечные панели обеспечивают питание постоянного тока. Энергия от накопителей или солнечных панелей должна быть сначала отфильтрована, чтобы удалить пульсирующую рябь. Затем его можно регулировать до желаемых уровней постоянного напряжения с помощью микросхем регулятора напряжения. Если необходимо увеличить напряжение питания от аккумулятора или солнечной панели, это можно сделать с помощью транзисторов в качестве усилителей.

Преобразователи постоянного тока в постоянный
Преобразователи постоянного тока в постоянный используются для повышения или понижения напряжения постоянного тока.Преобразователи постоянного тока в постоянный ток могут быть полупроводниковыми, электромеханическими или электрохимическими. ИИП постоянного тока, такие как двухтактный преобразователь, понижающий преобразователь, повышающий преобразователь, понижающий-повышающий преобразователь, являются некоторыми примерами преобразователей постоянного тока полупроводникового типа. Эти источники обычно используются для преобразования постоянного тока (выпрямленного из электросети или другого источника переменного тока) для обеспечения различных уровней постоянного тока вместо использования множества источников переменного тока в постоянный в устройстве.

Пример блока питания постоянного / постоянного тока мощностью 2 Вт в SMD (Изображение: Recom).

Источники питания постоянного тока в переменный ток
Эти типы источников питания обычно используются для резервного питания. Инверторы, ИБП и генераторы являются примерами таких систем электроснабжения.

Инженеры и любители электроники чаще всего используют источники питания с линейным регулированием и аккумуляторные источники питания. Другие типы источников питания обычно разрабатываются и производятся для конкретных приложений или схем. Для некоторых схем может потребоваться проектирование источника питания с использованием солнечных панелей.

Для новичков всегда удобно начать с линейно регулируемого источника питания, обеспечивающего обычно используемые напряжения постоянного тока, такие как 12 В, 9 В, 5 В и 3 В. Для переносных схем такие же напряжения могут быть достигнуты с помощью регулируемых источников питания на основе батарей. Регулируемые источники питания на базе батарей могут потребовать регулярной замены батареи. Таким образом, линейно регулируемый источник питания, обеспечивающий обычно используемые уровни постоянного напряжения, лучше всего подходит для прототипирования и тестирования электронных схем. Затем производственные цепи могут получать питание от батарей или цепей на солнечных батареях, если это необходимо.

В следующей статье мы обсудим элементы и батареи.


В рубрике: Рекомендуемые, Учебные пособия


Основные принципы проектирования источников питания для печатных плат

Одним из самых фундаментальных законов физики является Закон сохранения энергии, который можно резюмировать следующим образом:

«В закрытой системе энергия не может быть создана или уничтожена, а только изменить форму».

В принципе, это можно интерпретировать как изолированную систему, которая не взаимодействует с какой-либо внешней силой, сохраняет постоянный уровень внутренней энергии.Эта предпосылка стала катализатором многих схем построения самоподдерживающихся энергетических систем, которые могли бы работать бесконечно. Пока что полностью изолировать систему так, чтобы не было накопления или потери энергии, оказалось трудным. Это означает, что системы, требующие энергии, необходимо периодически подзаряжать, как и мы.

Цепи питания являются источником подзарядки электронных систем и печатных плат. Некоторые платы содержат подсхемы питания; однако печатные платы также часто используются в качестве источников питания.Эти платы на самом деле являются преобразователями, поскольку они преобразуют входной источник энергии в выход, который соответствует требованиям нагрузки, системы или схемы. Независимо от требований к источнику и нагрузке, всегда важно сделать сборку вашей платы неотъемлемой частью макета печатной платы для вашего дизайна. Сначала давайте обсудим различные типы цепей питания, а затем определим основные принципы проектирования источников питания, которые следует применять при их разработке.

Типы плат питания

Являясь преобразователями или мостами между входным электрическим источником и электронной нагрузкой, цепи питания можно классифицировать в одну из групп в таблице ниже.

Типы цепей питания

Выходы

Выход переменного тока Выход постоянного тока
Вход переменного тока Изоляция, преобразователь частоты Выпрямитель
Вход постоянного тока Инвертор Преобразователь постоянного тока в постоянный

Как показано выше, схемы источника питания в основном используются для изменения энергии из одного состояния в другое, переменного в постоянный или наоборот, для изменения уровней, повышения или понижения напряжения или частоты.Источники питания AC-AC также могут использоваться для изоляции входных цепей от выходов. В дополнение к перечисленным выше типам цепи питания можно разделить на регулируемые и нерегулируемые. К регулируемым источникам питания относятся устройства для поддержания уровня выходного напряжения. Эти регуляторы напряжения отсутствуют в нерегулируемых источниках питания, а выходная мощность зависит от входа и изменения тока нагрузки.

Цепи питания также классифицируются по принципу действия. Двумя основными рабочими типами являются линейный и переключаемый или переключаемый.

Линейный источник питания

Пример схемы линейного источника питания

Линейный источник питания, указанный выше, используется для преобразования сетевого входа переменного тока, первичной стороны трансформатора TR1, в постоянный ток для распределения. Эта схема включает в себя регулятор напряжения IC1, который будет обеспечивать постоянное напряжение независимо от нагрузки R1. Этот линейный источник питания демонстрирует базовую работу этих схем, которые могут иметь множество различных конфигураций. Линейные источники питания обычно используются в системах с низким энергопотреблением.Преимуществами являются простота, невысокая стоимость, надежность и низкий уровень шума; однако они неэффективны, что вызывает большую озабоченность в приложениях с более высокой мощностью.

DFM для высокоскоростных цифровых плат

Загрузить сейчас

Импульсный источник питания

Альтернативой использованию линейного источника питания является импульсный источник питания или SMPS, показанный на рисунке ниже.

Пример схемы блока питания SMPS

Источник питания SMPS содержит схему переключения; например, транзистор T1 выше, который преобразует выпрямленный постоянный ток из мостовой схемы B1 в высокочастотный переменный ток.Уровень частоты определяется или устанавливается управляющим сигналом, который включает и выключает транзистор. В приведенной выше схеме выходной сигнал сглаживается или регулируется LC-фильтром перед подачей на нагрузку R1. Как правило, схемы SMPS более сложны, чем линейные источники питания, и переключение вызывает шум, который может создавать электромагнитные помехи, которые могут повлиять на маршрутизацию трассировки во время разводки печатной платы. Однако эти источники питания более эффективны и могут использовать меньшие компоненты, чем линейные источники питания.SMPS чаще всего используются в цифровых системах.

Основы проектирования источников питания

При разработке SMPS или платы линейного источника питания есть общие проблемы. К ним относятся тепловые характеристики, электромагнитные помехи или шум, а также в зависимости от веса меди на уровне мощности. Еще одно важное соображение — это конструкция фильтра блока питания. Хотя ваши конкретные требования к конструкции будут диктовать конкретный выбор конструкции, существуют общие основы проектирования источников питания для печатных плат, которым следует всегда следовать, как указано ниже.

  • Оптимизируйте свой дизайн фильтрации

Производительность вашей схемы фильтрации зависит от выбора соответствующих значений компонентов фильтра, индуктивности, емкости и сопротивления. Поскольку фактические доступные значения компонентов могут не совпадать с расчетными значениями, вам следует использовать комбинацию значений компонентов, которая обеспечивает наилучший отклик, определенный с помощью моделирования.

  • Выберите соответствующую массу меди

Токи блока питания могут быть довольно высокими; Следовательно, необходимо убедиться, что ширина дорожек и толщина или вес меди могут выдерживать необходимые токи.Также важно убедиться, что ваш макет соответствует допускам зазоров, установленным правилами DFM вашего контрактного производителя (CM).

  • Выберите материал, соответствующий типу плиты

Для цепей большой мощности убедитесь, что ваша плата может выдерживать уровни температуры, которые будут генерироваться путем выбора материалов с подходящим коэффициентом теплового расширения (CTE). Для ИИП, если это высокоскоростная конструкция, такие свойства, как диэлектрическая постоянная, dk, коэффициент рассеяния, df, диэлектрические потери, потери в проводнике, Ploss, становятся важными и должны определять ваш выбор материала.

  • Убедитесь, что ваша плата имеет достаточное рассеивание тепла

Одна, если не самая большая проблема для плат блока питания — это отвод избыточного тепла. Очень важно, чтобы ваша конструкция включала адекватные методы рассеивания тепла. Например, использование термопрокладок и радиаторов. Напротив, для сборки печатной платы также важно, чтобы ваша плата имела соответствующее тепловое сопротивление, чтобы можно было достичь хорошего качества паяного соединения.

Система электроснабжения

| А.C. Схема источника питания

Система электроснабжения:

Передача электроэнергии от электростанции к помещениям потребителей известна как система электроснабжения.

Система электроснабжения состоит из трех основных компонентов, а именно электростанции, линий передачи и системы распределения. Электроэнергия вырабатывается на электростанциях, которые расположены в благоприятных местах, как правило, вдали от потребителей.Затем он передается на большие расстояния к центрам нагрузки с помощью проводов, известных как линии передачи. Наконец, он распространяется среди большого количества мелких и крупных потребителей через распределительную сеть.

Систему электроснабжения в целом можно разделить на

(i) постоянный ток или c. система

(ii) надземная или подземная система.

В настоящее время 3-фазный, 3-проводный переменный ток Система повсеместно принята для производства и передачи электроэнергии как экономичное предложение.Однако распределение электроэнергии осуществляется по 3-фазному, 4-проводному переменному току. система. Подземная система дороже, чем надземная. Поэтому в нашей стране для передачи и распределения электроэнергии в основном * принята воздушная сеть.

Схема источника питания переменного тока:

Большая сеть проводов между электростанцией и потребителями может быть в общих чертах разделена на две части, а именно, систему передачи и систему распределения. Каждую часть можно дополнительно разделить на две части: первичная передача и вторичная передача, первичная передача и вторичная передача.Рис. 7.1. показывает схему типичного переменного тока. схема электроснабжения по однолинейной схеме. Можно отметить, что не обязательно, чтобы все схемы питания включали все каскады, показанные на рисунке. Например, в определенной схеме мощности может не быть вторичной передачи, а в другом случае схема может быть настолько маленькой, что будет только распределение, а не передача.

1.Генераторная станция: На рис. 7.1 G.S. представляет собой генерирующую станцию, где электроэнергия вырабатывается 3-фазными генераторами переменного тока, работающими параллельно.Обычное напряжение генерации — 11 кВ. Для экономии при передаче электроэнергии напряжение генерации (т.е. 11 кВ) повышается до 132 кВ (или более) на генерирующей станции с помощью трехфазных трансформаторов. Передача электроэнергии при высоком напряжении имеет несколько преимуществ, включая экономию материала проводника и высокую эффективность передачи. Может показаться целесообразным использовать максимально возможное напряжение для передачи электроэнергии для экономии материала проводника и получения других преимуществ.Но есть предел, до которого это напряжение можно увеличить. Это связано с тем, что повышение напряжения передачи приводит к проблемам с изоляцией, а также к увеличению стоимости распределительного и трансформаторного оборудования. Следовательно, выбор подходящего напряжения передачи — это, по сути, вопрос экономики. Обычно первичная передача осуществляется при напряжении 66, 132, 220 или 400 кВ.

2. Первичная передача: Электроэнергия 132 кВ передается по трехфазной трехпроводной воздушной сети на окраины города.Это формирует первичную передачу.

3. Вторичная передача: Первичная линия передачи оканчивается на приемной станции (RS), которая обычно находится на окраине города. На приемной станции напряжение понижается до 33 кВ понижающими трансформаторами. С этой станции электроэнергия 33 кВ передается по трехфазной трехпроводной воздушной сети на различные подстанции (ПС), расположенные в стратегических точках города. Это формирует вторичную передачу.Рис.7.2

4. Первичное распределение: Вторичная линия передачи заканчивается на подстанции (ПС), где напряжение снижается с 33 кВ до 11 кВ, трехфазное, трехпроводное. Линии 11 кВ проходят вдоль основных дорог города. Это формирует первичное распределение. Можно отметить, что крупным потребителям (имеющим потребность более 50 кВт), как правило, предоставляется мощность 11 кВ для дальнейшей обработки на их собственных подстанциях.

5. Вторичное распределение: Электроэнергия от первичной распределительной линии (11 кВ) подается на распределительные подстанции (ДР).Эти подстанции расположены вблизи населенных пунктов потребителей и понижают напряжение до 400 В, 3-х фазные, 4-х проводные для вторичного распределения. Напряжение между любыми двумя фазами составляет 400 В, а между любой фазой и нейтралью — 230 В. Однофазная осветительная нагрузка жилого помещения подключается между любой одной фазой и нейтралью, тогда как трехфазная нагрузка двигателя 400 В подключается к трехфазным линиям. напрямую.

Здесь стоит упомянуть, что вторичная распределительная система состоит из фидеров, распределителей и обслуживающей сети.На рис. 7.2 показаны элементы системы распределения низкого напряжения. Питатели (SC или SA), излучающие электроэнергию от распределительной подстанции (DS). Подают электроэнергию распределителям (AB, BC, CD и AD). Прямое подключение от фидеров к потребителю не предоставляется. Вместо этого потребители подключаются к дистрибьюторам через их сервисные сети.

Примечание. Практическая энергосистема имеет большое количество вспомогательного оборудования (например, предохранители, автоматические выключатели, устройства контроля напряжения и т. Д.).Однако такое оборудование не показано на рис. 7.1. Это потому, что количество информации, включенной в диаграмму, зависит от цели, для которой диаграмма предназначена. Здесь наша цель — показать общую схему энергосистемы. Поэтому расположение автоматических выключателей, реле и т. Д. Не имеет значения.

Далее структура энергосистемы представлена ​​однолинейной схемой. Полная трехфазная цепь редко требуется для передачи даже самой подробной информации о системе.Фактически, полная диаграмма скорее скроет, чем прояснит информацию, которую мы ищем с точки зрения системы.

Три типа источников питания постоянного тока

Поскольку контролируемая электрическая энергия полезна во множестве тестовых ситуаций, источник питания является чрезвычайно популярным элементом электронного испытательного оборудования. Хотя все, что обеспечивает питание, например двигатель внутреннего сгорания, в широком смысле можно определить как источник питания, мы ограничим наше обсуждение типами источников питания постоянного тока, которые обычно используются для разработки, обслуживания, измерения и тестирование.

Постоянное напряжение / ток

Источник питания постоянного напряжения / постоянного тока, который, как следует из названия, обеспечивает как постоянное напряжение, так и постоянный ток, является, пожалуй, самой популярной разновидностью источников питания. При работе в режиме постоянного тока эти источники питания поддерживают заданный ток даже при изменении сопротивления нагрузки. Источники питания с постоянным напряжением / постоянным током часто имеют функции, в том числе дистанционное измерение, соединения ведущий / ведомый и аналоговое программирование (клеммы удаленного программирования.)

Множественный выход

Источники питания с несколькими выходами обычно имеют два или три выхода. Если вы обнаружите, что во время тестирования вы часто используете несколько напряжений, источник питания с несколькими выходами является экономически эффективным выбором. Многие пользователи выбирают источник питания с тремя выходами, который обеспечивает один выход для цифровой логики и два выхода для биполярных аналоговых схем. Некоторые общие функции включают работу по времени, настраиваемые ограничения напряжения, регистры хранения до пятидесяти состояний прибора и возможность подключения двух каналов параллельно или последовательно для более высокого тока или напряжения.

Программируемый

Поскольку они обычно используются вместе с компьютерной системой для производства и тестирования, программируемые источники питания часто называют «системными» источниками питания. В прошлом в системных источниках питания использовался ряд компьютерных интерфейсов, два из которых — IEEE-488 или GPIB (интерфейсная шина общего назначения) и последовательная связь RS-232 — получили широкое распространение. Интерфейсы Ethernet и USB также были довольно распространены.

Кроме того, в этих источниках питания есть языки команд для отправки инструкций на прибор через цифровой интерфейс.Эти языки включают проприетарный, SCPI (стандартные команды для программируемых инструментов) и подобные SCPI. Возможность управления программируемым источником питания через компьютер вместо нажатия клавиш на передней панели прибора делает этот тип источника питания особенно полезным при работе со сложными установками.

Как выбрать блок питания

Руководство покупателя питания: основные сведения об источниках питания

Есть старая поговорка: «Используйте правильный инструмент для работы!» Но иногда для работы существует несколько «правильных инструментов», так как же узнать, какой из них использовать? Чтобы правильно выбрать источник питания, необходимо понять некоторые важные основы.

Линия электропитания Jameco Electronics включает широкий выбор источников питания. Они обеспечивают все ваши потребности в источниках питания от настенных адаптеров и настольные блоки питания для открыто/ закрытые источники питания переменного тока в постоянный и преобразователи постоянного тока в постоянный / инверторы постоянного тока. Какой бы инструмент вы ни выбрали в качестве источника питания, вы можете быть уверены, что получите продукцию отличного качества, подходящую для вашей работы.

Условия подачи питания

Прежде всего, давайте проясним некоторые термины, которые часто сбивают с толку людей, но которые важны при выборе правильного источника питания для настенного адаптера.«Импульсные» источники питания переменного тока в постоянный по сравнению с «линейными» источниками питания часто вводят в заблуждение тех, кто с ними не знаком.

Линейные источники питания принимают входной переменный ток (обычно 120 или 240 В переменного тока), понижают напряжение с помощью трансформатора, затем выпрямляют и фильтруют входной сигнал в выход постоянного тока.

Импульсный источник питания принимает входной переменный ток, но сначала выпрямляет и фильтрует в постоянный ток, затем преобразует обратно в переменный ток на некоторой высокой частоте переключения, понижает напряжение с помощью трансформатора, затем выпрямляется и фильтруется в выход постоянного тока.

Разница между линейным и коммутационным процессами заключается в том, что они позволяют использовать разные компоненты. Линейный источник питания обычно менее эффективен, использует более крупный и тяжелый трансформатор, а также более крупные компоненты фильтра. Импульсный источник питания подразумевает более высокий КПД из-за высокой частоты переключения, что позволяет использовать более компактный и менее дорогой высокочастотный трансформатор, а также более легкие и менее дорогие компоненты фильтра. Импульсные источники питания содержат больше общих компонентов, поэтому, как правило, они дороже.

Примечание:
Существует разница между «переключением» на стороне входа и «переключением» на стороне выхода. То, что мы только что обсудили, относится к переключению на выходной стороне. Говоря о стороне входа, существует 2 типа «переключаемых» источников питания:

1) Переключение — автоматически переключает между входами переменного тока и частотами, или
2) Переключаемый — есть ручной переключатель на источнике питания, который меняет диапазон и частота входного переменного тока.

Суммирование, хотя линейный процесс кажется более эффективным из-за более короткого процесса, импульсный источник питания на самом деле более эффективен.


Astec ACV15N4,5 — линейный источник питания 15 В, 4,5 А
Размер: 7,0 «Д x 4,8» Ш x 2,7 «В
Mean Well PS-65-15 — Импульсный источник питания 15 В, 4,2 А
Размер: 5,0″ Д x 3,0 «Ш x 1,7» В

Также возникает много вопросов, когда говорят о «регулируемых» и «нерегулируемых» источниках питания. Эти термины относятся к схеме управления источником питания.

В нерегулируемом источнике питания переключающий транзистор работает с постоянным рабочим циклом, поэтому нет ничего, что могло бы управлять выходом. Выходы не имеют определенного значения; вместо этого они немного колеблются при приложении различных нагрузок.Только очень низкое напряжение приведет к отключению источника питания.

В регулируемом источнике питания выходная мощность поддерживается очень близкой к ее номинальной выходной мощности за счет изменения рабочего цикла для компенсации изменений нагрузки. Это обеспечивает лучшую защиту ваших устройств и более точные выходные данные.

Основные отличия регулируемых источников питания от нерегулируемых — это защита и цена. Регулируемые источники питания обеспечивают лучшую эффективность и защиту, но нерегулируемые источники питания значительно дешевле по стоимости.


Регулируемый линейный настенный адаптер Jameco ReliaPro 12 В, 1 А
1-шт. Цена: $ 14.95
Jameco ReliaPro 12V, 1A Нерегулируемый линейный настенный адаптер
, 1 шт. Цена: $ 9.95
Теперь, когда вы знаете, что искать, убедитесь, что у вас есть все необходимые детали. Если по какой-то причине вы не можете найти то, что вам нужно, просто напишите нам, и мы сделаем все возможное, чтобы найти это для вас.

Есть еще вопросы? Напишите нам на [адрес электронной почты защищен]

Вернуться в центр энергоресурсов >>

Управление блоком питания — принципы, проблемы и детали

Введение

Разработчики источников питания используют гибкие схемы контроля, последовательности и настройки питания для управления своими системами.В этой статье рассказывается, почему и как.

Мониторинг и управление растущим числом шин напряжения питания были жизненно важны для безопасности, экономии, долговечности и правильной работы электронных систем в течение многих лет, особенно для систем, использующих микропроцессоры. Определение того, находится ли шина напряжения выше порогового значения или в пределах рабочего окна, и включается или выключается это напряжение в правильной последовательности по отношению к другим шинам, имеет решающее значение для эксплуатационной надежности и безопасности.

Существует множество методов решения различных аспектов этой проблемы. Например, простая схема, использующая прецизионный резистивный делитель, компаратор и эталон, может использоваться для определения того, находится ли напряжение на шине выше или ниже определенного уровня. В генераторах сброса , таких как ADM803, эти элементы объединены с элементом задержки для удержания устройств, таких как микропроцессоры, специализированные ИС (ASIC) и процессоры цифровых сигналов (DSP), в сброс при включении .Этот уровень мониторинга подходит для многих приложений.

Там, где необходимо контролировать несколько шин, несколько устройств (или многоканальных компараторов и связанных с ними схем) используются параллельно, но увеличивающиеся возможности требуют мониторинга ИС, которые делают больше, чем простое сравнение пороговых значений.

Например, рассмотрим общее требование для последовательности источников питания: производитель FPGA (программируемой вентильной матрицы) может указать, что напряжение ядра 3,3 В должно подаваться за 20 мс до 5-VI / O (вход / выход ) напряжения, чтобы избежать возможных повреждений при включении устройства.Выполнение таких требований к последовательности может иметь такое же решающее значение для надежности, как и поддержание напряжения питания и температуры устройства в заданных рабочих пределах.

Также резко увеличилось количество шин питания во многих приложениях. Сложные дорогие системы, такие как коммутаторы LAN и базовые станции сотовой связи, обычно имеют линейные карты с 10 или более шинами напряжения; но даже чувствительные к стоимости потребительские системы, такие как плазменные телевизоры, могут иметь до 15 отдельных шин напряжения, многие из которых могут требовать мониторинга и определения последовательности.

Многие высокопроизводительные ИС теперь требуют нескольких напряжений. Например, отдельные напряжения ядра и ввода / вывода являются стандартными для многих устройств. В конце концов, DSP может потребовать до четырех отдельных источников питания на устройство. Во многих случаях множество устройств с несколькими источниками питания могут сосуществовать в одной системе, содержащей FPGA, ASIC, DSP, микропроцессоры и микроконтроллеры (а также аналоговые компоненты).

Многие устройства используют стандартные уровни напряжения (например, 3,3 В), в то время как другим может потребоваться напряжение, зависящее от устройства.Кроме того, может потребоваться независимая установка определенного стандартного уровня напряжения во многих местах. Например, могут потребоваться отдельные аналоговые и цифровые источники питания, такие как 3,3 В ANALOG и 3,3 В DIGITAL . Многократная генерация одного и того же напряжения может потребоваться для повышения эффективности (например, шины памяти, работающие на сотни ампер) или для удовлетворения требований к последовательности (3,3 В A и 3,3 В B необходимы отдельным устройствам в разное время).Все эти факторы способствуют распространению источников напряжения.

Мониторинг и последовательность напряжения могут стать довольно сложными, особенно если система должна быть спроектирована так, чтобы поддерживать последовательность включения, последовательность отключения питания и множественные реакции на все возможные неисправности на различных шинах питания в разных точках во время работы. Центральный контроллер управления питанием — лучший способ решить эту проблему.

По мере увеличения количества питающих напряжений вероятность того, что что-то пойдет не так, намного выше.Риск увеличивается пропорционально количеству расходных материалов, количеству элементов и сложности системы. Внешние факторы также увеличивают риск. Если, например, основная ASIC не полностью охарактеризована во время первоначального проектирования, разработчик источника питания должен взять на себя обязательство установить пороговые значения для контроля напряжения и временные последовательности, которые могут изменяться по мере разработки спецификаций ASIC. Если требования изменятся, возможно, придется пересмотреть печатную плату — с очевидными последствиями для графика и затрат.Кроме того, спецификации напряжения питания для некоторых устройств могут изменяться в процессе их разработки. В таких обстоятельствах способ быстрой регулировки источников питания был бы полезен любому центральному администратору энергосистемы. Фактически, гибкость для контроля, последовательности и регулировки шин напряжения в таких системах является жизненно необходимой.

Оценка устойчивости выбранной защиты от сбоев и временной последовательности может быть значительной задачей, поэтому устройство, упрощающее этот процесс, ускорит оценку платы и сократит время вывода на рынок.Регистрация неисправностей и оцифрованные данные о напряжении и температуре являются полезными функциями как в полевых условиях, так и на всех этапах проектирования от ранней разработки печатной платы до оценки прототипа.

Базовый мониторинг

На рисунке 1 показан простой метод мониторинга нескольких шин напряжения с использованием компаратора ADCMP354 и эталонной ИС. Для каждой рейки используется индивидуальная схема. Резистивные делители уменьшают напряжение, устанавливая точку срабатывания при пониженном напряжении для каждого источника питания. Все выходы связаны вместе для генерации общего сигнала с хорошим энергопотреблением .

Рис. 1. Обнаружение пониженного напряжения на основе компаратора с общим выходом «power-good» для системы с тремя источниками питания.

Базовая последовательность операций

На рисунке 2 показано, как можно реализовать базовую последовательность операций с дискретными компонентами, используя логические пороги вместо компараторов. Шины 12 В и 5 В были созданы в другом месте. Необходимо ввести временную задержку, чтобы гарантировать правильную работу системы. Это достигается за счет использования комбинации резистор-конденсатор (RC) для медленного увеличения напряжения затвора на n-канальном полевом транзисторе последовательно с источником питания 5 В.Значения RC выбираются таким образом, чтобы обеспечить достаточную временную задержку до того, как полевой транзистор достигнет порогового значения напряжения и начнет включаться. Шины 3,3 В и 1,8 В генерируются регуляторами с малым падением напряжения (LDO) ADP3330 и ADP3333. Время включения этих напряжений также определяется RC-цепочками. Никаких серийных полевых транзисторов не требуется, поскольку RC управляет выводом выключения (/ SD) каждого LDO. Значения RC выбраны для обеспечения достаточных временных задержек ( t 2 , t 3 ) до того, как напряжение на выводах / SD поднимется выше их пороговых значений.

Рисунок 2. Базовая дискретная последовательность для системы с четырьмя источниками питания.

Этот простой и недорогой подход к упорядочиванию источников питания требует небольшой площади на плате и вполне приемлем во многих приложениях. Он подходит для систем, в которых стоимость является основным фактором, требования к последовательности просты, а точность схемы последовательности не имеет решающего значения.

Но во многих ситуациях требуется более высокая точность, чем это доступно с RC цепями запаздывания. Кроме того, это простое решение не позволяет устранять неисправности структурированным образом (например,g., сбой питания 5 В в конечном итоге приведет к выходу из строя других шин).

Секвенирование с помощью ИС

На рис. 3 показано, как микросхемы упорядочивания питания ADM6820 и ADM1086 могут использоваться для точного и надежного упорядочивания шин питания в аналогичной системе. Внутренние компараторы обнаруживают, когда напряжение на шине превышает точно установленный уровень. Выходы утверждаются после программируемых задержек включения, что позволяет регуляторам ADP3309 и ADP3335 в желаемой последовательности. Пороги устанавливаются соотношениями сопротивлений; задержка устанавливается конденсатором.

Рисунок 3. Последовательность работы системы с четырьмя источниками питания с ИС для мониторинга.

Доступен широкий выбор ИС для упорядочивания источников питания. Некоторые устройства имеют выходы, которые можно использовать для непосредственного включения силовых модулей, и доступны многочисленные конфигурации выходов. Некоторые из них включают в себя встроенные генераторы напряжения с подкачивающим насосом . Это особенно полезно для низковольтных систем, которым необходимо упорядочить шины, которые генерируются в восходящем направлении, но не имеют источника высокого напряжения, такого как шина 12 В, для управления затвором полевого транзистора с каналом n .Многие из этих устройств также имеют разрешающие контакты, которые позволяют внешнему сигналу — от кнопочного переключателя или контроллера — перезапустить последовательность или отключить управляемые направляющие, когда это необходимо.

Интегрированное управление энергосистемой

В некоторых системах так много шин питания, что дискретные подходы, использующие большое количество ИС и устанавливающие временные и пороговые уровни с помощью резисторов и конденсаторов, становятся слишком сложными и дорогостоящими и не могут обеспечить адекватную производительность.

Рассмотрим систему с восемью шинами напряжения, для которой требуется сложная последовательность включения питания.Каждую рейку необходимо контролировать на предмет повреждений при пониженном и повышенном напряжении. В случае неисправности все напряжения могут быть отключены, или может быть инициирована последовательность отключения питания, в зависимости от механизма отказа. Действия должны выполняться в зависимости от состояния сигналов управления, а флаги должны генерироваться в зависимости от состояния источников питания. Реализация схемы такой сложности с дискретными устройствами и простыми ИС может потребовать сотен отдельных компонентов, огромного пространства на плате и значительных совокупных затрат.

В системах с четырьмя или более напряжениями может иметь смысл использовать централизованное устройство для управления источниками питания. Пример этого подхода можно увидеть на рисунке 4.

Рис. 4. Централизованное решение для контроля последовательности и мониторинга для системы с восемью источниками питания.

Централизованный мониторинг и последовательность

Семейство ADM106x Super Sequencer продолжает использовать компараторы, но с некоторыми важными отличиями. Для каждого входа выделено два компаратора, что позволяет реализовать обнаружение пониженного и повышенного напряжения, обеспечивая тем самым оконный мониторинг шин, созданных преобразователями постоянного тока ADP1821 и ADP2105 и LDO ADP1715.Ошибка пониженного напряжения — это нормальное состояние шины перед подачей питания, поэтому эта индикация используется для определения последовательности. Состояние перенапряжения обычно указывает на критическую неисправность — например, короткое замыкание полевого транзистора или катушки индуктивности — и требует немедленных действий.

Системы с большим количеством расходных материалов обычно имеют большую сложность и, следовательно, имеют более жесткие ограничения по точности. Кроме того, установка точных пороговых значений с помощью резисторов становится сложной задачей при более низких напряжениях, таких как 1,0 В и 0,9 В. Хотя допуск 10% может быть приемлемым для шины 5 В, этот допуск обычно недостаточен для шины 1 В.ADM1066 позволяет устанавливать пороги компаратора входного детектора в пределах 1% наихудшего случая, независимо от напряжения (всего 0,6 В) — и во всем диапазоне температур устройства. Он добавляет к каждому компаратору внутреннюю фильтрацию сбоев и гистерезис. Его логические входы могут использоваться для запуска последовательности включения питания, отключения всех шин или выполнения других функций.

Информация из банка компараторов, поступающая в мощный и гибкий ядро ​​сценической машины, может быть использована для различных целей:

Последовательность: Когда выходное напряжение недавно включенного источника питания попадает в окно, может быть запущена временная задержка для включения следующей шины в последовательности включения питания.Возможна сложная последовательность, с несколькими последовательностями включения и выключения, или совершенно разными последовательностями для включения и выключения питания.

Тайм-аут: Если задействованная шина не включается должным образом, можно предпринять соответствующие действия (например, создание прерывания или выключение системы). Чисто аналоговое решение просто зависло бы в этой точке последовательности.

Мониторинг: Если напряжение на какой-либо шине выходит за пределы предустановленного окна, можно предпринять соответствующие действия — в зависимости от неисправной шины, типа возникшей неисправности и текущего режима работы.Системы с более чем пятью источниками питания часто дороги, поэтому комплексная защита от сбоев имеет решающее значение.

Встроенная подкачка заряда используется для генерации примерно 12 В управления затвором, даже если максимальное доступное напряжение системы составляет всего 3 В, что позволяет выходам напрямую управлять полевыми транзисторами серии n . Дополнительные выходы включают или отключают преобразователи или регуляторы постоянного тока в постоянный, позволяя выходу внутренне подтягиваться к одному из входов или к регулируемому напряжению на плате.Выходы также могут быть заявлены с открытым стоком. Выходы также могут использоваться как сигналы состояния, такие как power good или power-on reset. При необходимости светодиоды состояния могут управляться напрямую с выходов.

Корректировка предложения

В дополнение к мониторингу нескольких шин напряжения и обеспечению решения для сложной последовательности, интегрированные устройства управления питанием, такие как ADM1066, также предоставляют инструменты для временной или постоянной регулировки напряжения отдельных шин.Выходное напряжение преобразователя или регулятора постоянного тока может быть изменено путем регулировки напряжения в узле подстройки или обратной связи этого устройства. Обычно резистивный делитель между выходом и землей модуля устанавливает номинальное напряжение на выводе подстройки / обратной связи. Это, в свою очередь, устанавливает номинальное выходное напряжение. Простые схемы, включающие переключение дополнительных резисторов или управление переменным сопротивлением в контуре обратной связи, изменят напряжение подстройки / обратной связи и, следовательно, отрегулируют выходное напряжение.

ADM1066 оснащен цифро-аналоговыми преобразователями (ЦАП) для прямого управления узлом подстройки / обратной связи.Для максимальной эффективности эти ЦАП не работают между землей и максимальным напряжением; вместо этого они работают через относительно узкое окно с центром на номинальном уровне подстройки / обратной связи. Значение ослабляющего резистора масштабирует инкрементное изменение на выходе силового модуля с каждым изменением младшего разряда ЦАП. Эта регулировка разомкнутого контура обеспечивает уровни увеличения и уменьшения запаса, эквивалентные тем, которые получаются при цифровом переключении сопротивления в опорной цепи, и будет регулировать выходной сигнал с аналогичной точностью.

ADM1066 также включает в себя 12-разрядный аналого-цифровой преобразователь (АЦП) для измерения напряжения питания, поэтому можно реализовать схему регулировки питания с обратной связью . При заданной настройке выхода ЦАП выходное напряжение силового модуля оцифровывается АЦП и сравнивается с заданным напряжением в программном обеспечении. Затем можно настроить ЦАП для калибровки выходного напряжения как можно ближе к целевому напряжению. Эта схема с обратной связью обеспечивает очень точный метод регулировки подачи.При использовании метода с обратной связью точность внешних резисторов не имеет значения. На рисунке 4 выходное напряжение DC-DC4 регулируется одним из встроенных ЦАП.

Есть два основных применения схемы регулирования подачи. Первый — это концепция , на которой расходуются с запасом, то есть проверка реакции системы на работу с запасами на границах указанного диапазона напряжения питания оборудования. Производители оборудования для передачи данных, телекоммуникаций, сотовой инфраструктуры, серверов и сетей хранения данных должны тщательно тестировать свои системы перед отправкой конечным клиентам.Все источники питания в системе должны работать с определенным допуском (например, ± 5%, ± 10%). Маржа позволяет отрегулировать все расходные материалы на борту до верхнего и нижнего пределов допустимого диапазона с проведением тестов для обеспечения правильной работы. Централизованное устройство управления питанием с возможностью регулировки питания можно использовать для выполнения этого испытания на запас, при этом сводя к минимуму потребность в дополнительных компонентах и ​​площади печатной платы, необходимой для выполнения функции, которая требуется только один раз — во время испытания запаса на испытательном полигоне производителя.

Четыре- углов Тестирование, т. Е. Тестирование в рабочем диапазоне напряжения и температуры оборудования, часто требуется, поэтому ADM1062 объединяет измерение температуры и обратное считывание в дополнение к схеме запаса источника питания с обратной связью.

Второе применение схемы регулировки подачи — это компенсация колебаний подачи системы в полевых условиях. У таких различий много причин. В краткосрочной перспективе довольно часто напряжения незначительно изменяются при изменении температуры.В долгосрочной перспективе значения некоторых компонентов могут незначительно изменяться в течение срока службы продукта, что может привести к дрейфу напряжения. Цепи АЦП и ЦАП можно активировать периодически (например, каждые 10, 30 или 60 секунд) в сочетании с циклом программной калибровки, чтобы поддерживать напряжение там, где оно должно быть.

Гибкость

ADM1066 имеет встроенную энергонезависимую память, что позволяет его перепрограммировать столько раз, сколько необходимо, в то время как потребности системы в последовательности и мониторинге развиваются в процессе разработки.Это означает, что проектирование аппаратного обеспечения может быть завершено на ранних этапах процесса прототипа, а оптимизация мониторинга и последовательности может выполняться по мере выполнения проекта.

Такие функции, как цифровое измерение температуры и напряжения, упрощают и ускоряют процесс оценки. Инструменты маржирования позволят регулировать шины напряжения во время цикла разработки. Таким образом, в ситуации, когда ключевой ASIC, FPGA или процессор также находятся в разработке, а уровни напряжения питания или требования к последовательности находятся в постоянном изменении по мере поставки новых версий кремния, простую настройку можно выполнить через графический интерфейс программного обеспечения. .Таким образом, устройство управления питанием можно перепрограммировать за несколько минут, чтобы учесть изменения, без необходимости физического изменения компонентов на плате или, что еще хуже, перепроектирования оборудования.

Заключение

Растущее количество шин напряжения и появление последовательности источников питания повысили требования к проектировщикам питания во всех видах устройств и систем — от ноутбуков, телевизионных приставок и автомобильных систем до серверов и хранилищ, сотовой связи. базовые станции и системы Интернет-маршрутизации и коммутации.Также представляют интерес более строгие процедуры тестирования, новые уровни сбора информации и быстрое и простое программирование, особенно в системах среднего и высокого уровня. Для повышения устойчивости и надежности, а также для добавления этих жизненно важных новых функций доступно множество новых интегральных схем управления питанием, которые помогают решать эти проблемы безопасно, эффективно и с минимальной площадью платы, сокращая при этом время вывода на рынок.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *