Узип на схеме: Обозначение УЗИП на схемах – RozetkaOnline.COM

Содержание

Обозначение УЗИП на схемах – RozetkaOnline.COM

Устройства защиты от импульсных перенапряжений, сокращенно УЗИП, оберегают электрооборудование от грозовых и коммутационных импульсных токов, например, при удаленном ударе молнии.

Они применяются не только в промышленности, часто используются и в бытовых схемах электроснабжения, при строительстве частных домов.

Графическое обозначение УЗИП

Общий вид УЗИП для схем, регламентируется в ГОСТ Р МЭК 61643-12-2011 (Читать PDF) «Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах. Принципы выбора и применения», согласно которому, условное обозначение выглядит следующим образом (см. изображение ниже):

Современные модульные ограничители импульсных перенапряжений, устанавливаемые в электрических щитах (ВРУ, ЩС и т.д.), в зависимости от типа, включают и другие дополнительные средства защиты.

Например, в одном корпусе содержат как ограничивающие напряжение, так и ток компоненты. В таких случаях, допустимо к стандартному схематическому обозначению, добавлять и маркировку соответствующих контролируемых величин, например, так:

Также нередко на схемах, где применяется УЗИП, показывается графическое обозначение основного элемента, на котором он построен – Варистора, Разрядника или Газонаполненного разрядника:

Каждый из представленных видов защиты имеет свои плюсы и минусы, поэтому, информация из однолинейной схемы о том, какое оборудование установлено, бывает очень важна. Дополнительно, об этом сообщает и маркировка УЗИП на схемах буквенным кодом.

Буквенная маркировка

Для устройств защиты от импульсных перенапряжений отдельного буквенного кода нет. Поэтому, на однолинейных схемах, принято маркировать УЗИП согласно ГОСТ 2-710-81 (ЧИТАТЬ PDF) “Обозначения буквенно-цифровые в электрических схемах” двумя возможными кодами, в зависимости от основного компонента, используемого в конкретной модели УЗИП:

FV – на разрядниках

RU – на варисторах

На изображении ниже, пример правильного обозначения узип на однолинейной схеме простейшего электрического щита:

На схеме показано устройство в которое, после вводного двухполюсного автомата, подключен нулевой и фазный проводники, а третяя клемма – соединена с шиной защитного заземления электрощита PE.

обозначение трехфазного узип на схеме

Для трехфазных УЗИП допустимо использовать стандартное, представленное выше обозначение , дополнительно показывая количество подключаемых проводников.

Но встречаются схемы, на которых трехфазные УЗИП, показаны в виде трех отдельных элементов, например варисторов, объединенных в одном корпусе. Оба этих вида правильные, но для удобства, простоты и лучшей читаемости чертежа, лучше пользоваться первым вариантом.

УЗИП для частного дома: 6 схем подключения

Парадокс наших дней — задал простой вопрос десятку знакомых: вы понимаете, что от удара молнии может сгореть стиралка, холодильник, морозильник и дорогая электроника: компьютер, телевизор, домашний кинотеатр?

Спастись от этой беды можно. Достаточно подключить УЗИП для частного дома в отдельном щитке и возложить на него защиту от случайной аварии.

Только один человек сказал, что планирует решить этот вопрос. Остальные же отложили его рассмотрение до лучших времен. Вот я и решил объяснить его подробнее.

Содержание статьи

Для чего предназначены внутренние устройства молниезащиты и как они работают при разрядах

Стихийное возникновение молнии происходит внезапно, создавая огромные разрушения.

Защитить дом от него позволяет внешняя молниезащита, состоящая из молниеприемника, распложенного над крышей, а также молниеотвода и контура заземления.

Ток разряда, проникающий кратковременным импульсом по подготовленной цепи, имеет очень большую величину. Он наводит в близкорасположенной проводке здания и токопроводящих частях перенапряжения, способные сжечь изоляцию, повредить бытовые приборы.

Предотвратить опасные последствия грозового разряда предназначены внутренние устройства молниезащиты, представляющие собой комплекс технических устройств и приборов на основе модулей УЗИП с подключением их к системе заземления.

Они надежно работают не только при непосредственном ударе молнии по дому, но и гасят разряды, попадающие в:

  1. питающую ЛЭП;
  2. близлежащие деревья и строения;
  3. почву, расположенную рядом со зданием.

Если с ударом по ЛЭП обычно вопросов не возникает, то в последних двух случаях перенапряжение способно импульсом проникнуть в домашнюю проводку по контуру земли, трубам водопровода, канализации, другим металлическим магистралям, как показано на самой первой картинке

Работа внутренней молниезащиты происходит за счет подключения проникшего высоковольтного импульса на специально подобранный разрядник или электронный элемент — варистор.

Он включается на разность двух потенциалов и для обычного напряжения обладает очень большим сопротивлением, когда токи через него ограничиваются, не превышают нескольких миллиампер.

При попадании на схему варистора аварийный импульс открывает полупроводниковый переход, замыкая его накоротко. Через него начинает стекать опасный потенциал на защитное заземление.

После варистора опасное напряжение значительно ограничивается. На базе этих электронных компонентов созданы современные модули защиты — УЗИП.

Устройство защиты от импульсных перенапряжений: как правильно выбрать и установить модуль

Представьте картинку, когда накопленная энергия статического электричества между движущимися на больших расстояниях облаками разряжается молниеносным ударом по зданию или питающей его ЛЭП.

Усредненная форма импульса тока приведена ниже. Она вначале круто возрастает примерно за 10 микросекунд, а затем, достигнув своего апогея, начинает плавно снижаться. Причем спад до середины максимального значения тока происходит через 350 мкс и продолжается дальше до нуля.

Этот импульс грозового разряда создает перенапряжение в сети, которое примерно повторяет форму тока, но может отличаться за счет работы ограничителей перенапряжения, установленных на воздушной ЛЭП.

Форма такого импульса, обработанного разрядниками, показана чуть правее, а обычная синусоида частотой 50 герц для сравнения ниже.

Ограничители перенапряжения ЛЭП работают за счет пробивания калиброванного воздушного зазора повышенным импульсом разряда. В обычном состоянии его сопротивление исключает протекание токов от напряжения нормальной величины.

У высоковольтных линий электропередач ограничители имеют довольно внушительные размеры.

На воздушных ЛЭП 0,4 кВ их габариты значительно меньше. Они располагаются на опоре рядом с изоляторами.

Ограничители перенапряжения ВЛ способны погасить очень высокое напряжение разряда молнии только до 6 киловольт. Такой импульс имеет измененную форму нарастания и спада напряжения с характеристикой 8/20 мкс. Он поступает на вводные устройства вашего дома.

Защита перенапряжения ЛЭП его сильно урезала и преобразовала. Но этого явно недостаточно для обеспечения безопасности оборудования и жильцов.

Бытовая проводка 220/380 вольт выпускается с изоляцией, способной противостоять импульсам 1,5÷2,5 кВ. Все, что больше, ее пробивает. Поэтому требуется использовать дополнительное устройство защиты от импульсных перенапряжений для частного дома.

Ассортимент таких конструкций обширен. Их необходимо уметь правильно выбирать и монтировать.

УЗИП для сети 0,4 кВ выпускаются на 2 режима возможной аварии для гашения:

  1. тока разряда с формой 10/350мкс, который не претерпел изменений от ОПН воздушной ЛЭП;
  2. импульса перенапряжения с характеристикой 8/20мкс.

По этим факторам удобно при выборе УЗИП пользоваться алгоритмом, который я показал картинкой ниже.

Однако следует представлять, что практически нет устройств, способных разово погасить импульс 6 киловольт до безопасной для бытовой проводки величины в 1,5 кВ.

Этот процесс происходит в три этапа. Под каждый из них используется свой класс УЗИП, хотя есть небольшие исключения из этого правила.

Модули класса 1 способны снизить импульс перенапряжения с 6 до 4 кВ, который проникает:

  • после ограничителей ЛЭП;
  • или наводится от тока разряда молнии, стекающего по молниеотводу;
  • либо ее удара в близко расположенные строения, деревья, почву.

УЗИП класса 1 устанавливают во вводном щиту здания внутри отдельной герметичной пожаробезопасной ячейки. Пренебрегать этим правилом опасно.

При монтаже следует правильно прокладывать защищаемые кабели. Они не должны пересекаться с отводом аварийных токов на контур земли и приходящими, не подвергнутыми защите магистралями.

От сверхтоков модули спасают силовыми предохранителями с плавкими вставками.

Автоматические выключатели для этих целей не приспособлены. Их контакты не выдерживают создаваемые импульсные перегрузки. Они привариваются, а повреждение продолжает развиваться.

Следующий класс УЗИП №2 снижает импульс перенапряжения с четырех до 2,5 кВ. Его ставят в следующем по иерархии распределительном щите, например, квартирном. Он дополняет работу предшествующего модуля, но может использоваться и автономно.

Класс №3 устройства защиты от импульсных перенапряжений может выполняться модулями, устанавливаемыми на DIN-рейку или комплектами, встраиваемыми в бытовые приборы, удлинители, сетевые фильтры.

УЗИП класса 3 способен обеспечивать безопасность только после срабатывания защиты класса №2. Он ставится последовательно за ней потому, что от 4-х киловольт сгорает.

Производители побеспокоились о сложности выбора правильной конструкции УЗИП и предлагают комплексное решение этого вопроса общим модулем, называемым 1+2+3.

Он ставится в отдельном боксе. Однако, цена такой разработки не всем по карману.

Защита от импульсного перенапряжения: частный дом с однофазным питанием

Монтаж электропроводки в частном доме, особенно выполненном из древесины и горючих материалов, требует тщательного соблюдения правил электрической безопасности.

Необходимо учесть, что здание может быть запитано по разным схемам заземления:

  • типовой старой TN-C;
  • либо современной, более безопасной TN-S или ее модификациям.

Разберем оба случая.

Схема подключения УЗИП: 2 варианта по системе заземления TN-S

На картинке ниже представлена развернутая схема с защитой комбинированного класса 1+2, которое используется для установки после вводного автоматического выключателя.

Варистор ограничителя перенапряжения встроен в корпус модуля, защищает электрическую схему от прямых или удаленных атмосферных разрядов молний.

Традиционный для всех УЗИП сигнальный флажок имеет два цвета:

  1. зеленое положение свидетельствует об исправности устройства и готовности к работе;
  2. красное — о необходимости замены в случае срабатывания или перегорания.

Такой модуль может применяться во всех системах заземления, а не только TN-S. Он имеет 3 клеммы подключения:

  1. сверху слева L — фазный провод;
  2. сверху справа PE — защитный проводник заземления;
  3. снизу N — нулевой провод.

УЗИП защищает электросчетчик и все цепи после него.

На очередной схеме показан вариант использования защиты с УЗО. После него создается дополнительная шинка рабочего нуля N1, от которой запитаны все потребители квартиры.

Схема вроде понятна, вопросов не должно возникнуть.

Для дополнительных систем заземления TN-C-S и ТТ предлагаю к изучению и анализу еще две схемы. У них УЗИП монтируется тоже во вводном устройстве.

Цепи подключения счетчика, реле контроля напряжения РКН и УЗО, а также потребители подробно не показываю. Но принцип понятен: используется защитная шина PE.

А вот в старой системе заземления ее нет, за счет чего снижается надежность и безопасность. Но все же она осуществляет защиту, поэтому и рассматривается.

Схема подключения УЗИП по системе заземления TN-C

Отсутствие шины РЕ диктует необходимость подключения УЗИП только между потенциалами фазного провода и PEN. Других вариантов просто нет.

Слева показан способ монтажа защиты для однофазной проводки, а справа — трехфазной.

Импульс перенапряжения снимается по принципу создания искусственного короткого замыкания в питающей цепи.

Защита от импульсного перенапряжения: частный дом с трехфазным питанием

Разбираю принципы подключения УЗИП на примере разных систем заземления.

Схема подключения УЗИП для трехфазного питания дома по системе TN-S

Защита проводки возложена на:

  • трехполюсный вводной автоматический выключатель;
  • однополюсные и трехполюсные автоматы отходящих линий;
  • устройство защиты от импульсных перенапряжений комбинированного типа 1+2+3.

Учетом электроэнергии занимается трехфазный электросчетчик. После него в цепях рабочего нуля образована дополнительная шинка N1. От нее запитываются все потребители.

Шинки N и РЕ, модуль УЗИП подключены стандартным образом.

При раздельном использовании защит классов №1, 2, 3 следует распределять их по зонам I, II, III.

Проникновение импульсов перенапряжения со всех сторон потенциалов фаз, рабочего нуля и соединенного с контуром земли оборудования блокирует включение модулей между шинами фаз, нуля и РЕ.

Схема подключения УЗИП: 2 варианта для трехфазного питания дома по системе TN-C

В предлагаемой разработке показан не чистый вариант подключения защит под систему заземления TN-C, а рекомендуемая современными требованиями модификация перехода на TN-C-S с выполнением повторного заземления.

Проводник PEN по силовому кабелю от питающей трансформаторной подстанции подается на свою шинку, которая подключается перемычкой к сборке рабочего нуля и шине повторного заземления.

Трехполюсный УЗИП, включенный после вводного автомата, защищает электрический счетчик и все его цепи, включая УЗО, от импульсов перенапряжения. Напоминаю, что он должен монтироваться в отдельном несгораемом боксе.

При отсутствии повторного заземления нижняя клемма модуля УЗИП подключается на шину PEN проводника отдельной жилой, а проводка работает чисто по старой системе TN-C.

Еще одна методика снижения нарастающего фронта броска импульса перенапряжения показана ниже. Здесь работают специальные реактивные сопротивления — дросселя LL1-3 с индуктивностью от 6 до 15 микрогенри, подбираемые расчетным путем.

Они используются при близком расположении оборудования для создания небольшой задержки срабатывания защиты, необходимой по условиям селективности.

Их монтируют в отдельном защитном щитке совместно с УЗИП. Так проще выполнять настройки и периодические обслуживания, профилактические работы.

Считаю, что необходимо указать еще на один вариант использования ограничителей перенапряжения и разрядников, которым иногда пренебрегают владельцы сложной электронной техники.

В отдельных ситуациях, как было у меня в электротехнической лаборатории на подстанции 330 кВ. Настольный компьютер подвергался различным видам облучения электромагнитных полей с частотами низкого и высокого диапазонов. Это сказывалось на отображении информации и даже быстродействии.

Выход был найден за счет создания мощного экранирующего чехла и подключения его к отдельному функциональному заземлению.

Однако при ударе молнии в рядом расположенную почву или молниезащиту такой путь может стать источником опасности. Исправить ситуацию позволяет метод создания дополнительной гальванической развязки.

Ее создают подключением разрядника. У меня использовалась разработка компании Hakel, как показано на картинке выше.

3 главных ошибки электрика в схемах молниезащиты

Отвод случайного разряда молнии от здания и ликвидация опасных последствий перенапряжения — это сложная и ответственная техническая задача, требующая:

  1. тщательного инженерного расчета;
  2. надежного монтажа;
  3. своевременного профилактического обслуживания.

Три перечисленных пункта требуют профессиональных знаний и опыта, которыми обладает далеко не каждый специалист.

Отличает профессионала от других электриков не наличие диплома об образовании, количество сертификатов или положительных отзывов, а готовность взять на себя всю полноту материальной ответственности за проделанную работу и причиненный ущерб в случае допущения ошибки на любом вышеперечисленном этапе.

Расчет проекта молниезащиты

Он должен выполняться по двум направлениям:

  1. внешней схеме отвода тока разряда;
  2. внутренней ликвидации импульса перенапряжения с полным учетом местных условий.

На расчет конструкции влияют характеристики грунтов, форма и габариты здания, условия подключения электроэнергии и многие другие факторы.

Их требуется просчитать, смоделировать, подвергнуть испытаниям специализированными компьютерными программами и внести необходимые усовершенствования.

Но есть и другой путь — собрать доступную информацию самостоятельно, например, с интернета и рискнуть безопасностью дома и жильцов: вдруг пронесет. Грозы то бывают не каждый день, авось… (Так поступает большинство, причем часто по незнанию. )

Монтаж внутренней и внешней молниезащиты

Попробуйте ответить на простой вопрос: можно ли изготовить надежно работающую систему без точного проекта, учитывающего аварийные и эксплуатационные режимы?

А ведь так поступают многие владельцы домов. В итоге создаются контуры заземления с завышенным электрическим сопротивлением, ненадежные молниеотводы, что превращает задуманную защиту в ловушку молний, когда молниеприемник притягивает на себя грозовой разряд, а его энергия не отводится на потенциал земли, а прикладывается к зданию.

Ошибки монтажа внутренней молниезащиты ведут к выгоранию бытовой проводки, повреждению дорогого оборудования, бесполезной трате денег, времени.

Профилактическое обслуживание систем молниезащиты

Здесь надо учитывать, что любая техника не только морально изнашивается, но и естественно стареет.

Электрические характеристики грунта меняются в зависимости от погоды, сезона, влажности. Электронные защиты на УЗИП при срабатывании, как и их предохранители могут выгореть. Контактные соединения собранных цепочек со временем увеличивают сопротивление.

Все эти процессы требуется контролировать внешним и внутренним осмотром, выполнением электротехнических измерений точными специализированными приборами.

Внутри многоэтажного здания вопросами внутренней и внешней молниезащиты занимается эксплуатирующая организация ЖКХ со своими работниками. Владелец частного дома решает их самостоятельно и выполнить их обязан надежно и качественно привлечением специалистов лабораторий.

В статье я привел типовые схемы, показывающие как подключить УЗИП для частного дома и постарался кратко объяснить принципы их работы.

Дополняет этот материал видеоролик владельца Василия Юферева. Обратите внимание на комментарии: отдельные люди так и не поняли роль этой защиты.

Если у вас возникли вопросы по изложенной теме, то воспользуйтесь разделом комментариев. Обсудим.

Особенности монтажа УЗИП первого класса на линии питания

Особенности монтажа УЗИП первого класса на линии питания

При монтаже УЗИП первого и второго классов на вводах питания в объект зачастую возникают непредвиденные ситуации, ухудшающие общую защищенность оборудования объекта от импульсных перенапряжений. Подобные проблемы, как правило, возникают на объектах, проектирование системы защиты оборудования от импульсных воздействий (перенапряжений) которых выполнено в «общих чертах», без указания конкретных монтажных решений и конкретных схем установки оборудования защиты (УЗИП).

Например, в разделе проекта «Внутренняя молниезащита» или «Защита от импульсных перенапряжений» указано следующее …Установить на вводе питания в объект УЗИП типа …. . УЗИП смонтировать по схеме ….

Далее в проекте приведена обычно однолинейная схема питания объекта, где на схеме, например, вводного щита показано подключение УЗИП определенного типа.

Работоспособность подобного проектного решения целиком и полностью зависит от монтажных решений и грамотности (осведомленности) в области импульсных воздействий специалистов монтажной организации.

Если проектировщики информированы о требованиях нормативных документов, то монтажники, как правило, за редким исключением, не представляют, о чем вообще идет речь, и какие такие УЗИП нужно монтировать. Иногда требования по монтажу дополнительного оборудования воспринимаются как некая «блажь» проектировщиков, особенно с точки зрения монтажников с большим стажем работы.

Поэтому если проект выполнен «в общих чертах», и все на объекте отдано на откуп монтажной организации, то либо УЗИП не будут закуплены и установлены вообще, либо их монтаж может быть проведен с нарушениями.

При этом если монтаж выполнен некорректно, в случае нештатной работы устройств защиты все стороны несут большие риски – от финансовых до репутационных.

Давайте еще раз разберемся в правилах монтажа УЗИП на вводе питания в объект, а также какие именно конструктивные решения должны быть обязательно прописаны в проектной документации.

УЗИП для защиты оборудования объекта со стороны линий питания выбираются исходя из следующих условий объекта:

  1. Уровень защиты объекта, который дает нам оценку тока молнии «сверху», на который предельно рассчитан объект. Это те самые 200КА, 150КА или 100КА тока молнии.
  2. Тип внешней системы молниезащиты. Внешняя система молниезащиты может быть совмещенной с объектом или отдельностоящей (и та, и другая могут быть различных конструкций: стержневой, тросовой, сеточной или комбинированной). Это дает нам форму импульсного тока 10/350 для совмещенных и 8/20 для отдельностоящих систем внешней молниезащты.
  3. Конфигурация внешних сетей объекта. Расчет направлений растекания импульсного воздействия и учет направлений прихода энергии в зависимости от типа сетей (наземные, надземные или подземные). Это дает нам расчет УЗИП по отводимым токам.

Таким образом, даже правильный выбор УЗИП по отводимым токам, грамотное решение по выбору места установки УЗИП на однолинейной схеме объекта нашими специалистами совместно с проектной организацией не гарантирует нас от возможных проблем, описанных выше. При небрежном (неконкретном) общем описании проектных решений вся дальнейшая работа УЗИП может быть загублена некачественным монтажом.

Поэтому в проектных решениях должны быть указаны не только типы УЗИП и примерное место установки на однолинейной схеме, но и конкретные конструктивные решения. Должна быть указана не только точка установки УЗИП, но и предельная длина проводников, подключающих УЗИП к электроустановке объекта.

Рис. 1

На рис. 1 показана правильная организация потенциалоуравнивающего соединения между проводниками линии питания и ГЗШ объекта. Как видно из рисунка, максимальная длина подключающих проводников, должна быть не более 0,5 метра.

Следует помнить, что контроль основного параметра УЗИП (уровня защиты) при его изготовлении производится при определенной длине подключающих проводников. Дополнительно в проектном решении следует прописать сечение этих проводников – оно выбирается из таблицы сечений проводников в описании конкретного УЗИП. Там же прописаны номиналы предохранителей для аварийного отключения УЗИП, если это позволяет номинал вводного предохранителя (автомата).

При несоблюдении требований по длине подключающих проводников возможно следующее. Протекание импульсных токов вызовет на «длинных» проводниках с увеличенной погонной индуктивностью дополнительное падение напряжения. Эта разность потенциалов добавится к уровню защиты правильно выбранного УЗИП, и в итоге суммарная разность потенциалов в этом случае превысит стандартный уровень пробивного импульсного напряжения конкретного оборудования. В итоге УЗИП запроектированы, смонтированы, а оборудование сгорело.

На объекте может сложиться ситуация, при которой невозможно выполнить требования по длине подключающих УЗИП проводников менее 0,5 метра. В этом случае применяется схема организации потенциалоуравнивающего соединения между проводниками линии питания и ГЗШ объекта, изображенная на рис. 2.

Рис. 2

В этом случае за счет V-образного соединения на УЗИП и организации дополнительной шины уравнивания потенциалов (шины защитного провода), к которой и подключается защищаемое обрудование, дополнительная погонная индуктивность не приводит к последствиям, описанным выше. При правильном соблюдении изображенной схемы включения уровень защиты УЗИП нормально прикладывается ко входу защищаемого оборудования и не увеличивается за счет погонной индуктивности проводников.

Если в проектной документации все указано грамотно и четко, то сразу становится ясно, где была допущена ошибка. В этом случае наши специалисты совместно с сотрудниками проектной организации могут выступить в роли экспертов при разборе ситуации, возникшей на объекте, и продолжить дальнейшее плодотворное сотрудничество с проектной организацией.

Но так как любых разбирательств на объекте заказчика лучше не допускать, то для предотвращения подобных нештатных ситуаций наиболее продуктивно вести просветительную работу не только в среде проектировщиков, но и в среде наиболее подготовленных активных представителей монтажных организаций.

Лещинский В. Г., Руководитель направления технического обучения по системам молниезащиты и защиты от импульсных перенапряжений

Схема подключения узип — советы электрика

Схема подключения УЗИП

Здесь привожу несколько типовых схем подключения устройств защиты от импульсных перенапряжений (УЗИП). Ниже вы найдете однофазные и трехфазные схемы для разных систем заземления: TN-C, TN-S и TN-C-S. Они наглядные и понятные для простого человека.

Сегодня существует большое количество производителей УЗИП. Сами устройства бывают разных моделей, характеристик и конструкций. Поэтому перед его монтажом обязательно изучите паспорт и схему подключения. В принципе, суть подключения у всех УЗИП одинаковая, но все же рекомендую сначала прочитать инструкцию.

Во всех выложенных схемах присутствуют УЗО и групповые автоматические выключатели. Их я указал для наглядности и полноты распределительного щитка. Эта “начинка” щитка у вас может быть совсем другая.

1. Схема подключения УЗИП в однофазной сети системы заземления TN-S

На данной схеме представлен УЗИП серии Easy9 производителя Schneider Electric. К нему подключаются следующие проводники: фазный, нулевой рабочий и нулевой защитный.

Здесь он устанавливается сразу после вводного автомата. Все контакты на любом УЗИП обозначены. Поэтому куда подключать “фазу”, а куда “ноль” можно легко определить.

Зеленый флажок на корпусе указывает на исправное состояние, а красный флажок сигнализирует о неисправной касете.

Обратите внимание

Представленное устройство относится к классу 2. Оно одно самостоятельно не способно защитить от прямого удара молнии. Грамотный выбор УЗИП это сложная и уже отдельная тема.

Также рекомендуется защищать устройства УЗИП с помощью предохранителей.

Думаю тут все понятно…

Ниже представлена аналогичная схема подключения УЗИП, но уже без электросчетчика и с использованием общего УЗО.

2. Схема подключения УЗИП в трехфазной сети системы заземления TN-S

На схеме также изображен УЗИП производителя Schneider Electric серии Easy9, но уже для 3-х фазной сети. На рисунке изображено 4-х полюсное устройство с подключением нулевого рабочего проводника.

Еще существует 3-х полюсное УЗИП этой же серии. Оно применяется в системе заземления TN-C. В нем нет контакта для подключения нулевого рабочего проводника.

3. Схема подключения УЗИП в трехфазной сети системы заземления TN-C

Здесь изображен УЗИП фирмы IEK. Данная схема представляет собой обычный вводной щит для частного дома. Он состоит из вводного автомата, электросчетчика, УЗИП и общего противопожарного УЗО. Также на схеме показан переход с системы заземления TN-C на TN-C-S, что требуется современными нормами.

На первом рисунке изображен 4-х полюсный вводной автомат, а на втором 3-х полюсный.

Выше представлены наглядные схемы подключения УЗИП. Думаю они понятны вам. Если остались вопросы, то жду их в комментариях.

Улыбнемся:

Источник: http://sam-sebe-electric.ru/zashchita-ot-perenapryazheniya/120-skhema-podklyucheniya-uzip

Схема подключения узип

Во время грозы в сети часто возникают импульсные помехи. Также их можно наблюдать при поломке трансформатора. Для защиты электрооборудования в доме используются специальные устройства УЗИП. Устанавливаются они в щитки разных комплектаций.

Различие модификаций заключается в величине параметров выходного напряжения, пороговой частоты и проводимости. Стандартная модель состоит из блока и контактов. Резисторы устанавливаются различных типов. Модулятор в устройствах соединяется с трансивером. В данном элементе имеются проводники, а также триод. Для того чтобы больше узнать об УЗИП, следует рассмотреть принцип работы модели.

Принцип работы

На рынке представлены различные устройства защиты от импульсных перенапряжений. Принцип работы их основан на изменении проводимости. Для этого в устройстве имеются контакты. Стабилизация пороговой частоты осуществляется за счет модулятора.

Триод играет роль проводника. При подаче напряжения на выходные контакты параметр проводимости тока меняется. Если рассматривать устройства с расширителем, то у них контакты устанавливаются на пластине.

Изменение положения элементов осуществляется за счет работы резистора.

Схема подключения устройств первой степени

Устройства защиты от импульсных перенапряжений первой степени подходят для щитков серии РВ. В данном случае для подключения моделей используется трансивер.

Выходное напряжение в среднем обязано составлять 14 В. Параметр проводимости УЗИП зависит от типа резисторов. Как правило, они используются с усилителем. Для подключения контактов применяются фиксаторы.

Параметр пороговой проводимости в среднем равен 4,5 мк.

Перед подключением УЗИП проверяется общее сопротивление в цепи. Указанный параметр для устройств первой серии равен 50 Ом. Также модификации указанного типа подходят для щитков типа СР.

Они установлены во многих жилых домах. Подключение к щитку происходит через трансивер. Параметр общего сопротивления в цепи не должен превышать 55 Ом.

Для щитков серии РР устройство не подходит из-за высокой проводимости тока.

Применение модификаций второй степени

Устройства защиты от импульсных перенапряжений второй степени — это устройства, которые подключаются к щиткам серии РР. В данном случае соединение осуществляется за счет проводников.

Если рассматривать модификации на расширителях, то модуляторы используются с обкладкой. Перед подключением оборудования проверяется выходное напряжение на стабилизаторе. Указанный параметр колеблется в районе 13 В.

Расширитель используется двухконтактного типа.

Если рассматривать щитки серии РР20, то у них установлен изолятор. Для подключения УЗИП используется сеточный триод. Наиболее часто он применяется на операционном усилителе. Также важно отметить, что в щитках серии РР21 имеются интегральные выпрямители. Указанные элементы необходимы для преобразования тока.

Устройства защиты третьей степени

Устройства защиты от импульсных перенапряжений третьей степени подходят для щитков, у которых используется динистор проходного типа. Получение оборудования осуществляется через демпфер.

Контакты для соединения подбираются с медной обкладкой. Параметр общего сопротивления должен составлять около 40 Ом. Если рассматривать щитки серии РР19, то тиристор используется с усилителем.

В некоторых случаях модификации выпускаются с конденсаторными резисторами.

Подключение элементов указанного типа происходит с адаптером и без него. Если рассматривать первый вариант, то варикапы берутся переменного типа. Показатель общего сопротивления в среднем равен 30 Ом.

Важно

Если рассматривать второй вариант, то варикапы разрешается использовать переменного типа. Параметр пороговой перегрузки устройств составляет около 3 А.

Также важно отметить, что у моделей используются фильтры магнитного типа.

Однополюсные модификации РН-101М

Однополюсные устройства защиты от импульсных перенапряжений — что это такое? Указанные приборы представляют собой контактные блоки, которые подходят для сетей с переменным током.

Они часто подключаются к трансформаторам, у которых используется высоковольтное реле. В жилых домах устройства используются редко. Отличие моделей также заключается в выпрямителе. Он используется на демпферной основе.

Параметр общего сопротивления в среднем равен 22 Ом.

Также важно отметить, что выходное напряжение составляет около 200 В. Внутри устройства используются контакты, а также модулятор. Пластины чаще всего устанавливаются в горизонтальном положении. Трансивер для подключения подбирается линейного типа. Многие модификации оснащены тетродами. Для их нормальной работы применяются преобразователи. Наиболее часто они производятся с выпрямителем.

Схема подключения двухполюсной модификации РН-105М

Двухполюсные устройства защиты от импульсных перенапряжений разрешается подключать через пентоды. Параметр общего сопротивления должен составлять 40 Ом. Также важно отметить, что контакты устройства соединяются с динистором напрямую. У многих элементов используется компаратор. Указанный элемент дает возможность устанавливать поворотный регулятор.

Для щитков серии СР модель подходит. В данном случае проводимость зависит от модулятора УЗИП. Если он используется интегрального типа, то вышеуказанный показатель в среднем составляет 2,2 мк. Также у моделей часто устанавливается дуплексный модулятор. Параметр проводимости в цепи в среднем равен 3 мк.

Применение моделей серии АВВ

Устройства защиты от импульсных перенапряжений АВВ часто устанавливаются в жилых домах. Если рассматривать щитки типа РР, то подключение конденсаторов происходит через расширитель. Непосредственно модулятор соединяется с демпфером.

Во многих случаях выпрямитель не требуется. Если рассматривать щиток с обкладкой, то для нормальной работы устройства используется триод. Указанный элемент способен работать только с магнитным фильтром. Параметр проводимости тока в цепи составляет около 4 мк.

Показатель общего сопротивления равен 40 Ом.

Устройства серии ZUBR D40

D40 устройства защиты от импульсных перенапряжений — что это? Указанные приборы являются блоками, в которых расположены контакты. Подходят они для щитков, у которых имеется трансивер операционного типа.

Модулятор к прибору подсоединяется через компаратор. Параметр проводимости в среднем равен 5 мк. Также важно отметить, что модулятор разрешается подключать без обкладки. В некоторых случаях используется демпфер.

Указанный элемент играет роль стабилизатора.

Трансивер в щитке соединяется с контактами. Если рассматривать щитки серии РР20, то важно отметить, что у них имеется адаптер. Указанный элемент часто установлен с регулятором. Для подключения УЗИП необходим импульсный конденсатор. Указанный элемент должен иметь проводимость на уровне 6 мк. Показатель общего сопротивления в среднем равен 12 Ом.

Схема прибора серии ZUBR D42

Применение устройств защиты от импульсных перенапряжений указанной серии очень ограниченное. Для высоковольтных трансформаторов они подходят. Контакты у модели используются с пластинами.

Для подключения устройства к высоковольтному оборудованию используются демпферы. Если рассматривать электродные модификации, то подсоединение осуществляется благодаря триоду. Также есть модификации с операционными демпферами.

У них есть регулятор фазового типа. Для щитков серии РР указанная модель не подходит.

Применение моделей серии ZUBR D45

Устройство защиты от импульсных перенапряжений указанной серии отличается высокой проводимостью. Контакты у него установлены на пластинах. Варикап в данном случае используется с подкладкой.

Фильтры у модели применяются проводного типа. Для щитков серии РС устройства подходят. Подключение модулятора осуществляется через транзистор. Параметр общего сопротивления должен составлять около 20 Ом.

Также важно обращать внимание на выходное напряжение.

Если использовать демпфер, то указанный параметр в среднем равен 12 В. Также в щитках серии РС часто используются динисторы. В такой ситуации выходное напряжение не превышает 15 В. Также УЗИП указанной серии можно подключать к щиткам типа РР19.

В данном случае демпфер применяется многоканального типа. Динистор используется без фильтров. Модулятор подключается к сети через транзистор. Параметр выходной проводимости должен составлять около 4 мк.

Показатель общего сопротивления лежит в районе 40 Ом.

Устройства серии TESSLA D32

Устройства данной серии производятся с проходными модуляторами. Контакты у них применяются подвижного типа. Для щитков серии РР20 указанное устройство используется часто. Модулятор подсоединяется через расширитель. Чаще всего он используется с преобразователем. Для решения проблем с повышением частоты устанавливается тетрод.

Если рассматривать щитки серии РР10, то в них имеется кенотрон. Указанный элемент устанавливается на два или три выхода. В первом варианте модулятор устройства подключается через демпфер. Параметр выходной проводимости у него равен 3,3 мк. Общее сопротивление в цепи составляет 30 Ом. Если рассматривать второй вариант, то для УЗИП потребуется динистор.

Схема прибора серии TESSLA D35

Это компактное и высоковольтное устройство защиты от импульсных перенапряжений. Схема подключения модификации предполагает использование демпфера. Если рассматривать щитки типа РР19, то он применяется электродного типа. Динистор используется с обкладкой. Фильтры могут устанавливаться проходного либо сетевого типа. Модулятор УЗИП подсоединяется через расширитель.

Также устройство подходит для щитков серии РР20. Компараторы в них применяются переменного типа. Модулятор в таком случае подсоединяется со стабилитроном. Параметр выходной проводимости в среднем равен 3,5 мк. Показатель общего сопротивления составляет около 45 Ом.

Применение моделей серии TESSLA D40

Устройство защиты от импульсных перенапряжений (УЗИП) указанной серии подходит для трансформаторов, у которых установлен резистор. Модулятор к оборудованию подключается через демпфер. Чаще всего фильтры используются проходного типа.

Показатель выходной проводимости в среднем равен 3 мк. Параметр общего сопротивления не превышает 55 Ом. Транзисторы в устройствах указанной серии используются без пластин. Всего у модели имеется три пары контактов. Выходной разъем находится в нижней части конструкции.

Для щитков серии РР модель не подходит.

Устройства серии VC-115

Устройство защиты от импульсных перенапряжений (УЗИП) указанной серии подключается без обкладки. Для щитков типа РР20 модель подходит. Модулятор разрешается подключать через демпфер либо динистор. В первом варианте необходим выпрямитель.

Фильтр применяется проходного типа. Для увеличения пороговой частоты необходим выпрямитель. Если рассматривать схему с расширителем, то нормализовать выходную частоту можно только за счет конденсаторов. Параметр выходной проводимости в среднем составляет 4 мк.

Общее сопротивление в цепи равно 40 Ом.

Схема прибора серии VC-122

Устройство защиты от импульсных перенапряжений и помех указанной серии подходит для понижающих трансформаторов. Также модель активно используется в щитках серии РС. В первую очередь важно отметить, что у модели применяется высоковольтный модулятор. Параметр выходной проводимости у него равен 2 мк. Для щитков РС19 модель подходит. Модулятор в данном случае подсоединяется через обкладку.

Фильтры разрешается использовать лишь проходного типа. Если рассматривать щитки серии РС20, то у них имеется демпфер. Расширитель для подключения используется магнитного типа. Также важно отметить, что понижающие трансформаторы на 200 В применяться не могут.

Источник: http://electricremont.ru/shema-podklyucheniya-uzip.html

Установка УЗИП — схемы подключения, правила монтажа

Для всех нас стало нормой, что в распределительных щитках жилых домов, обязательна установка вводных автоматических выключателей, модульных автоматов отходящих цепей, УЗО или дифф.автоматов на помещения и оборудование, где критичны возможные утечки токов (ванные комнаты, варочная панель, стиральная машинка, бойлер).

Помимо этих обязательных коммутационных аппаратов, практически никому не требуется объяснять, зачем еще нужно реле контроля напряжения.

Устанавливать их начали все и везде. Грубо говоря оно защищает вас от того, чтобы в дом не пошло 380В вместо 220В. При этом не нужно думать, что повышенное напряжение попадает в проводку по причине недобросовестного электрика.

Вполне возможны природные явления, не зависящие от квалификации электромонтеров. Банально упало дерево и оборвало нулевой провод.

Также не забывайте, что любая ВЛ устаревает. И даже то, что к вашему дому подвели новую линию СИПом, а в доме у вас смонтировано все по правилам, не дает гарантии что все хорошо на самой питающей трансформаторной подстанции – КТП.

Там также может окислиться ноль на шинке или отгореть контакт на шпильке трансформатора. Никто от этого не застрахован.

Именно поэтому все новые электрощитки уже не собираются без УЗМ или РН различных модификаций.

Что же касается устройств для защиты от импульсных перенапряжений, или сокращенно УЗИП, то у большинства здесь появляются сомнения в необходимости их приобретения. А действительно ли они так нужны, и можно ли обойтись без них?

Подобные устройства появились достаточно давно, но до сих пор массово их устанавливать никто не спешит. Мало кто из рядовых потребителей понимает зачем они вообще нужны.

Первый вопрос, который у них возникает: ”Я же поставил реле напряжения от скачков, зачем мне еще какой-то УЗИП?”

Никакое реле напряжения от этого не спасет, а скорее всего сгорит вместе со всем другим оборудованием. В то же самое время и УЗИП не защищает от малых перепадов в десятки вольт и даже в сотню.

Например устройства для монтажа в домашних щитках, собранные на варисторах, могут сработать только при достижении переменки до значений свыше 430 вольт.

Поэтому оба устройства РН и УЗИП дополняют друг друга.

Гроза это стихийное явление и просчитать его до сих пор не особо получается. При этом молнии вовсе не обязательно попадать прямо в линию электропередач. Достаточно ударить рядышком с ней.

Даже такой грозовой разряд вызывает повышение напряжения в сети до нескольких киловольт. Кроме выхода из строя оборудования это еще чревато и развитием пожара.

Даже когда молния ударяет относительно далеко от ВЛ, в сетях возникают импульсные скачки, которые выводят из строя электронные компоненты домашней техники. Современный электронный счетчик с его начинкой, тоже может пострадать от этого импульса.

Совет

Общая длина проводов и кабелей в частном доме или коттедже достигает нескольких километров.

Сюда входят как силовые цепи так и слаботочка:

  • видеонаблюдение 

Все эти провода принимают на себя последствия грозового удара. То есть, все ваши километры проводки получают гигантскую наводку, от которой не спасет никакое реле напряжения.

Единственное что поможет и защитит всю аппаратуру, стоимостью несколько сотен тысяч, это маленькая коробочка называемая УЗИП.

Монтируют их преимущественно в коттеджах, а не в квартирах многоэтажек, где подводка в дом выполнена подземным кабелем. Однако не забывайте, что если ваше ТП питается не по кабельной линии 6-10кв, а воздушной ВЛ или ВЛЗ (СИП-3), то влияние грозы на среднем напряжении, также может отразиться и на стороне 0,4кв.

Поэтому не удивляйтесь, когда в грозу в вашей многоэтажке, у многих соседей одновременно выходят из строя WiFi роутеры, радиотелефоны, телевизоры и другая электронная аппаратура.

Молния может ударить в ЛЭП за несколько километров от вашего дома, а импульс все равно прилетит к вам в розетку. Поэтому не смотря на их стоимость, задуматься о покупке УЗИП нужно всем потребителям электричества.

Цена качественных моделей от Шнайдер Электрик или ABB составляет примерно 2-5% от общей стоимости черновой электрики и средней комплектации распредщитка. В общей сумме это вовсе не такие огромные деньги.

На сегодняшний день все устройства от импульсных перенапряжений делятся на три класса. И каждый из них выполняет свою роль.

Модуль первого класса гасит основной импульс, он устанавливается на главном вводном щите.

После погашения самого большого перенапряжения, остаточный импульс принимает на себя УЗИП 2 класса. Он монтируется в распределительном щитке дома.

Обратите внимание

Если у вас не будет устройства I класса, высока вероятность что весь удар воспримет на себя модуль II. А это может для него весьма печально закончится.

Однако давайте посмотрим, что говорит об этом не знакомый электрик, а ведущая фирма по системам грозозащиты Citel:

То есть в тексте прямо сказано, класс II монтируется либо после класса 1, либо КАК САМОСТОЯТЕЛЬНОЕ УСТРОЙСТВО.

Третий модуль защищает уже непосредственно конкретного потребителя.

Если у вас нет желания выстраивать всю эту трехступенчатую защиту, приобретайте УЗИП, которые изначально идут с расчетом работы в трех зонах 1+2+3 или 2+3.

Такие модели тоже выпускаются. И будут наиболее универсальным решением для применения в частных домах. Однако стоимость их конечно отпугнет многих.

Схема качественно укомплектованного с точки зрения защиты от всех скачков и перепадов напряжения распределительного щита, должна выглядеть примерно следующим образом.

На вводе перед счетчиком – вводной автоматический выключатель, защищающий прибор учета и цепи внутри самого щитка. Далее счетчик.

Между счетчиком и вводным автоматом – УЗИП со своей защитой. Электроснабжающая организация конечно может запретить такой монтаж. Но вы можете обосновать это необходимостью защиты от перенапряжения и самого счетчика.

В этом случае потребуется смонтировать всю схемку с аппаратами в отдельном боксе под пломбой, дабы предотвратить свободный доступ к оголенным токоведущим частям до прибора учета.

Однако здесь остро встанет вопрос замены сработавшего модуля и срыва пломб. Поэтому согласовывайте все эти моменты заранее.

После прибора учета находятся:

  • реле напряжения УЗМ-51 или аналог 
  • УЗО 100-300мА – защита от пожара
  • УЗО или дифф.автоматы 10-30мА – защита человека от токов утечки
  • простые модульные автоматы

Если с привычными компонентами при комплектации такого щитка вопросов не возникает, то на что же нужно обратить внимание при выборе УЗИП?

На температуру эксплуатации. Большинство электронных видов рассчитано на работу при окружающей температуре до -25С. Поэтому монтировать их в уличных щитках не рекомендуется.

Важно

Второй важный момент это схемы подключения. Производители могут выпускать разные модели для применения в различных системах заземления.

Например, использовать одни и те же УЗИП для систем TN-C или TT и TN-S уже не получится. Корректной работы от таких устройств вы не добьетесь.

Вот основные схемы подключения УЗИП в зависимости от исполнения систем заземления на примере моделей от Schneider Electric. Схема подключения однофазного УЗИП в системе TT или TN-S:

Здесь самое главное не перепутать место подключения вставного картриджа N-PE. Если воткнете его на фазу, создадите короткое замыкание.

Схема трехфазного УЗИП в системе TT или TN-S:

Схема подключения 3-х фазного устройства в системе TN-C:

На что нужно обратить внимание? Помимо правильного подключения нулевого и фазного проводников немаловажную роль играет длина этих самых проводов.

От точки подключения в клемме устройства до заземляющей шинки, суммарная длина проводников должны быть не более 50см!

А вот подобные схемы для УЗИП от ABB OVR. Однофазный вариант:

Трехфазная схема:

Давайте пройдемся по некоторым схемкам отдельно. В схеме TN-C, где мы имеем совмещенные защитный и нулевой проводники, наиболее распространенный вариант решения защиты – установка УЗИП между фазой и землей.

Каждая фаза подключается через самостоятельное устройство и срабатывает независимо от других.

В варианте сети TN-S, где уже произошло разделение нейтрального и защитного проводника, схема похожа, однако здесь монтируется еще дополнительный модуль между нулем и землей. Фактически на него и сваливается весь основной удар.

Совет

Именно поэтому при выборе и подключении варианта УЗИП N-PE, указываются отдельные характеристики по импульсному току. И они обычно больше, чем значения по фазному.
Помимо этого не забывайте, что защита от грозы это не только правильно подобранный УЗИП. Это целый комплекс мероприятий.

Их можно использовать как с применением молниезащиты на крыше дома, так и без нее.

Особое внимание стоит уделить качественному контуру заземления. Одного уголка или штыря забитого в землю на глубину 2 метра здесь будет явно не достаточно. Хорошее сопротивление заземления должно составлять 4 Ом.

Принцип действия УЗИП основан на ослаблении скачка напряжения до значения, которое выдерживают подключенные к сети приборы. Другими словами, данное устройство еще на вводе в дом сбрасывает излишки напряжения на контур заземления, тем самым спасая от губительного импульса дорогостоящее оборудование.

Определить состояние устройства защиты достаточно просто:

  • зеленый индикатор – модуль рабочий
  • красный – модуль нужно заменить

При этом не включайте в работу модуль с красным флажком. Если нет запасного, то лучше его вообще демонтировать.

УЗИП это не всегда одноразовое устройство, как некоторым кажется. В отдельных случаях модели 2,3 класса могут срабатывать до 20 раз!

Чтобы сохранить в доме бесперебойное электроснабжение, необходимо также установить автоматический выключатель, который будет отключать узип. Установка этого автомата обусловлена также тем, что в момент отвода импульса, возникает так называемый сопровождающий ток.

Он не всегда дает возможность варисторному модулю вернуться в закрытое положение. Фактически тот не восстанавливается после срабатывания, как по идее должен был.

В итоге, дуга внутри устройства поддерживается и приводит к короткому замыканию и разрушениям. В том числе самого устройства.

Автомат же при таком пробое срабатывает и обесточивает защитный модуль. Бесперебойное электроснабжение дома продолжается.

При этом многие специалисты рекомендуют ставить в качестве такой защиты даже не автомат, а модульные предохранители.

Объясняется это тем, что сам автомат во время пробоя оказывается под воздействием импульсного тока. И его электромагнитные расцепители также будут под повышенным напряжением.

Это может привести к пробою отключающей катушки, подгоранию контактов и даже выходу из строя всей защиты. Фактически вы окажетесь безоружны перед возникшим КЗ.

Обратите внимание

Есть конечно специальные автоматические выключатели без катушек индуктивности, имеющие в своей конструкции только терморасцепители. Например Tmax XT или Formula A.

Однако рассматривать такой вариант для коттеджей не совсем рационально. Гораздо проще найти и купить модульные предохранители. При этом можно сделать выбор в пользу типа GG.

Они способны защищать во всем диапазоне сверхтоков относительно номинального. То есть, если ток вырос незначительно, GG его все равно отключит в заданный интервал времени.

Есть конечно и минус схемы с автоматом или ПК непосредственно перед УЗИП. Все мы знаем, что гроза и молния это продолжительное, а не разовое явление. И все последующие удары, могут оказаться небезопасными для вашего дома.

Защита ведь уже сработала в первый раз и автомат выбил. А вы об этом и догадываться не будете, потому как электроснабжение ваше не прерывалось.

Поэтому некоторые предпочитают ставить УЗИП сразу после вводного автомата. Чтобы при срабатывании отключалось напряжение во всем доме.

Однако и здесь есть свои подводные камни и правила. Защитный автоматический выключатель не может быть любого номинала, а выбирается согласно марки применяемого УЗИП. Вот таблица рекомендаций по выбору автоматов монтируемых перед устройствами защиты от импульсных перенапряжений:

Если вы думаете, что чем меньше по номиналу автомат будет установлен, тем надежнее будет защита, вы ошибаетесь. Импульсный ток и скачок напряжения могут быть такой величины, что они приведут к срабатыванию выключателя, еще до момента, когда УЗИП отработает.

И соответственно вы опять останетесь без защиты. Поэтому выбирайте всю защитную аппаратуру с умом и по правилам. УЗИП это тихая, но весьма своевременная защита от опасного электричества, которое включается в работу мгновенно.

1Самая распространенная ошибка – это установка УЗИП в электрощитовую с плохим контуром заземления.

Толку от такой защиты не будет никакого. И первое же “удачное” попадание молнии, сожгет вам как все приборы, так и саму защиту.

2Не правильное подключение исходя из системы заземления.

Проверяйте техдокументацию УЗИП и проконсультируйтесь с опытным электриком ответственным за электрохозяйство, который должен быть в курсе какая система заземления используется в вашем доме.

3Использование УЗИП не соответствующего класса.

Как уже говорилось выше, есть 3 класса импульсных защитных устройств и все они должны применяться и устанавливаться в своих щитовых.

Источник: https://domikelectrica.ru/ustanovka-uzip-sxemy-podklyucheniya-pravila-montazha/

Схема подключения УЗИП: разновидности перенапряжений, классификация устройств, установка в частном доме

Для предохранения электрического и электронного оборудования от удара молнии предназначена система устройств защиты от импульсных перенапряжений (УЗИП). Схема подключения в частном доме осуществляется с целью безопасности или бесперебойности ее работы. В первом случае происходит полное отключение потребителей, а во втором — обеспечивается безопасная их работа.

Напряжение молнии исчисляется десятками, а иногда сотнями тысяч вольт. Поэтому за короткий период она наносит немалый вред, выводя из строя бытовую технику. У холодильников ломается компрессорный двигатель, в блоках питания выгорает первичная цепь преобразователя и т. д.

Большую опасность представляет в этот момент перенапряжение в электрической цепи, так как появляется высокая вероятность возникновения пожара. Причины возникновения скачков напряжения:

  1. Молнию характеризует стремительный импульс, который пробивает сеть, так как его мощность в несколько раз превышает значение у проводников. Он попадает в электрическую линию, а затем и оборудование внутри дома, и выражается отношением амплитуды напряжения в 10 кВ к длительности ее протекания — 350 мкс.
  2. К перенапряжению приводят неисправности в электрических цепях, вызванные коммутационными процессами. Это может быть результатом аварии на электростанции или при переключении с одного генератора на другой. В этот момент во вторичной сети может возникнуть мощный импульс, который наносит вред, соизмеримый с молнией.

Перенапряжение характеризуется как аварийное состояние системы во время генерации электрической энергии. Поэтому чтобы защитить электрооборудование от возникновения негативных импульсов, устанавливают УЗИП для частного дома.

Первичные средства

Монтаж устройств защиты от импульсных перенапряжений считается только частью процедуры по защите от возникновения очагов пожара или выхода из строя электрического оборудования. Предварительно следует обеспечить первичные средства защиты от воздействия молнии. В их число входят:

  1. Вокруг частного дома следует провести металлическую шину и замкнуть ее, что послужит в качестве заземления по всему периметру.
  2. К пластинам подключаются молниеотводы по краям дома.
  3. На крыше монтируется основной громоотвод. Если конструкция получается чересчур большой, то громоотводы разделяются на несколько элементов.
  4. Особенно это касается частных домов с металлической крышей, если рядом с ней проходит электрическая сеть.

Импульс проникает через телевизионный кабель и попадает в телевизор, который скорей всего выйдет из строя. Такая же ситуация может возникнуть с интернет-кабелем, перенапряжение по которым приводит в негодность персональный компьютер. В сложных ситуациях может возникнуть очаг возгорания.

Чтобы воспрепятствовать этим негативным явлениям, следует все линии и оборудование подключить к заземляющему контуру, а во время молний полностью их обесточивать. Вручную это обеспечить практически невозможно, поэтому существует автоматическая защита низковольтных сетей.

Классификация УЗИП

Существует 3 класса разновидности устройств защиты от импульсных перенапряжений. Класс 1 обладает способностью пропустить через себя и выдержать всю энергию от молнии.

Устанавливаются такие приборы в сельской местности с воздушными электрическими линиями. Кроме того, рекомендуется их монтаж в домах с громоотводами или зданиях, расположенных рядом с высокими объектами.

В квартирах или административных помещениях такие устройства не устанавливаются.

Прибор 2 класса не применяется без первого устройства, так как он не способен выдержать мощность удара молнии. Его эффективность проявляется только при совместном применении.

Устройство 3 класса не используется без двух предыдущих приборов и устанавливается оно непосредственно перед потребителем. К такому типу относится сетевой фильтр или защита в блоках питания некоторых бытовых агрегатов.

Схемы подключения

Для защиты низковольтных сетей существует несколько схем подключения УЗИП. Идеальным вариантом считается комплексное применение устройств, так как удар молний абсолютно не прогнозируем.

Внешняя система

Внешний элемент защиты принимается из расчета, что по его компонентам возможно протекание максимального тока. Защитное устройство устанавливается с возможностью выдержать 100 кА. Чтобы негативный импульс не причинил много бед, его следует отвести по пути наименьшего сопротивления.

Для этого в электрическом щите устанавливается комплексный УЗИП, включающий в себя три степени защиты. Это устройство обладает большой мощностью и скоростью срабатывания, предохраняя оборудование общей мощностью до 20 кВт.

Если это разделенное на два участка заземление, то в щитке монтируются две отдельные шины: нулевая, заземляющая. Между ними устанавливается перемычка, которая считается дополнительной защитой.

Установка защиты на ответвлении

Возможна установка УЗИП не в распределительном щитке, а непосредственно на ответвлении электрической сети. Например, где воздушная линия расходится на два соседних дома, а контур заземления не обладает молниеотводами.

Иногда устройство устанавливается перед входом в дом и применение УЗИП с 3 классом защиты нерационально. Монтируются приборы, обладающие 1 и 2 классом. Если расстояние от столба до дома превышает 60 м, то в электрическом щитке устанавливается дополнительное устройство со 2 классом защиты.

Отличается способ установки защиты, если дом подключен к подземному кабелю. Аварийная ситуация возникает от других внешних источников, поэтому длительность импульсных помех будет намного меньше. Для защиты достаточно будет установить в распределительный щит УЗИП 2 класса.

Кроме электрических линий, перенапряжение может возникнуть в телевизионных сетях. Часто высоковольтные помехи генерируются на антенных приемниках в домах, где нет молниеотводов. Возникновение кратковременного высокого напряжения в антенном кабеле приводит к выходу из строя селектора телевизора.

Важно

Устройство защиты представляет собой антенный переходник с заземляющим устройством. Существуют два типа приборов: для аналогового, спутникового или цифрового телевидения. Различить их можно по соответствующим надписям на корпусе: Radio/TV, SAT.

Источник: https://220v.guru/elementy-elektriki/shemy/shemy-podklyucheniya-uzip-dlya-chastnogo-doma.html

Схема подключения УЗИП для защиты частного дома и квартиры

загрузка…

Природа непредсказуема. И это знает каждый из благоразумных граждан. Именно поэтому многие решают установить в своем частном доме дополнительную защиту от перенапряжения. А это весьма опасный фактор, который обычно сказывается на всей электронике в вашем доме. По воле рока страдает практически всё: начиная от холодильника и заканчивая компьютерными блоками питания и материнскими платами.

Самое интересное то, что защититься от ненастья можно, если заранее предусмотреть установку в распределительном щитке специального устройства, которое в экстренной ситуации замкнет цепь защемления по наименьшему пути, обеспечив таким образом прохождение тока по пути наименьшего сопротивления.

Возможные повреждения из-за молний

Величина напряжения молнии измеряется даже не тысячами, а десятками и сотнями тысяч Вольт.

И пусть помеха имеет в прямом смысле слова молниеносный характер, но даже за доли секунд она успевает повредить многие внутренние элементы техники, выводя ее из строя.

В холодильниках обычно сгорает компрессор, в импульсных блоках питания выгорает первичная цепь преобразования напряжений, и так далее.

Но на этом беда не окончится, потому что выход из строя электронной техники, а в данном случае она просто сгорает, может привести к реальному возгоранию и, как следствие, к пожару. И, к сожалению, только в этот момент хозяин частного дома осознает, что был неправ, когда при монтаже распределительного щитка решил сэкономить на установке УЗИП для частного дома.

Типы импульсов

Перенапряжение — это общее понятие, которое характеризует аварийное состояние цепи в момент его генерации. Но характер и причины его возникновения могут быть различными:

  1. Для молнии характерен иглообразный импульс, который сначала медленно нарастает, заряжая линию, а потом резко пробивает ее насквозь, так как ее мощность в разы больше, чем у проводников. Форма импульса измеряется в кВ/мкс. То есть, если она попадает в воздушную линию, и частный дом от нее подключен, то форма будет выражена как 10/350 или 10 кВ амплитудой и 350 мкс длительностью.
  2. Неисправности в цепях, вызванные коммутационными процессами. Нередко причиной генерации мощного высоковольтного импульса является авария на станции или переключение с одного генератора на другой. В этот момент во вторичной сети из-за потребления большой мощности также возникает достаточно мощный импульс. Он имеет более пологую форму, но с несколько меньшей амплитудой игл.

В обоих случаях может быть нанесен равносильный вред, поэтому для защиты частного дома или квартиры рекомендуется использовать те же УЗИП.

Первичные средства защиты

Установка УЗИП в частном доме — это только часть мероприятий, которые действительно спасут вас от непредвиденного пожара или сгоревшего блока питания. Первым делом необходимо предусмотреть так называемые первичные средства защиты от удара молнией. И они заключаются в следующем:

  • Обустройства внешнего контура заземления по периметру здания. То есть необходимо вокруг строения закопать шину защитного заземления и замкнуть ее в квадрат.
  • К шине необходимо подключить молниеотводы, расположенные по углам здания. Это необходимо для того, чтобы увеличить мощность проходной шины и не допустить ее перегрев на местах сварки или утончения.
  • На крыше установить громоотвод. При этом, если она имеет значительные габариты, их необходимо установить несколько.
  • Особенно нужно позаботиться о защитном контуре заземления и молниеотводах в домах и строениях с металлической кровлей. Потому что именно на нее придется удар, который может вызвать короткое замыкание в проводке под козырьком, если, например, там расположен фонарь или осуществлен ввод.

Но, кроме фактора удара самой молнией, важно учесть всевозможные пути проникновения импульсных помех внутрь здания. А их может быть много, и к ним относятся:

  1. Сеть ввода 220/380 В при ударе молнии в элементы внешней защиты.
  2. Через сеть в случае удара в воздушную линию. Скачок напряжения в линии также может произойти в момент коммутации высоковольтных устройств на подстанциях.
  3. Кабельное ТВ или эфирная антенна. По ней высоковольтный импульс проникает в ТВ-приемник, который с высокой вероятностью выходит из строя.
  4. Сеть Интернет. Довольно часто недалеко от телефонной линии или коммутатора ударившая молния перерастает в высоковольтный и очень мощный импульс, который попадает на сетевой порт ПК и выпаливает его напрочь.
  5. Также местами проникновения высоковольтного импульса могут стать другие слаботочные линии, которые подводятся к внутренним устройствам приема и обработки данных.

Все это может стать причиной не только временного выхода из строя оборудования, но и возникновения пожара, который явно принесет массу дополнительных проблем. Чтобы предотвратить все вышеперечисленные неприятности, необходимо каждую из линий и устройств надежно экранировать, подключать к общему контуру заземления, а во время молний и вовсе отключать их от сети.

Чаще сделать это невозможно по той простой причине, что вас может не оказать дома в роковой момент. А погода, само собой, ждать не будет. Поэтому намного удобнее и практичнее использовать дополнительные элементы защиты низковольтных сетей.

Способы защиты сетей низковольтного питания

Для каждого типа УЗИП схема подключения будет своя, поэтому рассмотрим несколько способов защиты низковольтных сетей от импульсных помех. Но лучше всего применять их все в комплексе, так как погода непредсказуема, и удар молнии может произойти в любое место или устройство. Различают следующие системы защиты от импульсных перенапряжений в результате удара молний:

Система внешней молниезащиты

В случае удара молнии в этот элемент защиты необходимо принимать во внимание максимально возможный ток, который будет протекать по компонентам.

В данном случае величина тока, протекающего через защитное устройство, установленное в доме, будет равна 100 кА. Импульс будет иметь вытянутую форму длительностью до 350 мкс.

Чтобы он не причинил много бед, его необходимо отвести по пути наименьшего сопротивления. Следовательно, в щитке потребуется установить специальное устройство.

Справиться с энергией такой величины сможет только комбинированный компонент УЗИП, относящийся к классу 1+2+3. Он обладает достаточной мощностью и скоростью срабатывания, чтобы защитить от перенапряжения потребителей в эквиваленте потребляемой ими мощности до 20 кВт.

Напомним. На практике применяется несколько схем подключения заземления: TN — C — S и TT. В зависимости от этого фактора следует выбирать и тип устройства защиты от импульсных помех.

Первая представляет собой разделенное заземление, то есть в ней PEN проводник в определенном месте разделяется на два и далее отправляется к нагрузке. Разделение выполняется на ВРУ.

То есть в щитке должны быть установлены две отдельных шины: нулевая и шина заземления PE.

Между ними имеется перемычка. Сделано это из тех соображений, что УЗИП успевает своевременно отключить нагрузку, а в случае возникновения пробоя на нулевом проводе от подстанции успевает выгореть перемычка между шинами. То есть, по сути, получается две защиты.

Второй тип схемы подключения заземления заключается в следующем: все потребители глухо заземлены, как и нейтраль источника питания на подстанции.

Также на практике используются и другие типы схем заземлений: С, C — S, S, I — T. Но в частных и многоквартирных жилых домах чаще применяются именно TN — C — S и T. T. Поэтому и рассматривать УЗИП будем только для этих случаев.

Выбор УЗИП в соответствии со схемой подключения заземляющего проводника

Вспомнив, какие бывают схему подключения контура заземления, можно определиться и с выбором УЗИП. Для первого варианта подойдет PowerPro BCD TNS 25/100. Для второго, соответственно, TT 25/100.

Защита на ответвлении при ударе в воздушную линию

Защита от перенапряжения в сети 380 вольт, как и 220 вольт, заключается в установке УЗИП не в распределительном щитке, а на ответвлении. То есть там, где воздушная линия расходится на ваш и соседский дом. Только в таком случае контур заземления состоит лишь в заземляющем периметре, без использования громоотводов.

Также разместить УЗИП можно на вводе в здание или непосредственно на месте ответвления заземляющего проводника. Но в случае размещения защитного устройства ближе к источнику импульса, то есть на столбе в щитке, использовать УЗИП 3 класса нецелесообразно. Это связано с тем, что длинный проводник от столба может стать повторным генератором перенапряжения.

В этом случае лучше применить УЗИП класса 1+2. Но если расстояние от столба со щитком до дома более 60 м, то в здании также должен быть предусмотрен второй УЗИП со 2 классом. Для более точного подбора устройства воспользуйтесь таблицей ниже:

Место монтажаTN-C-STT
На столбе (ответвлении)PowerPro BC TNS 25/100 LE-373−950PowerPro BC TT 25/100 LE-373−920
На вводе при расстоянии от столба более 60 мEnerPro C TNS 275 LE-381−178EnerPro C TT 275 LE-381−180

Удар молнии возле подземной линии электропередачи

Третий способ подключения УЗИП используется в случае, когда к дому подводится питание не от столба (воздушной линии), а от подземного кабеля. В данном случае высоковольтные импульсные помехи возникают в основном по причине наведения их от других источников.

Поэтому длительность импульса и его амплитуда будут намного меньше. В результате наведения энергии происходит частичное попадание тока в сеть, поэтому величина энергии на порядок меньше, чем в первых двух случаях.

Но все же в такой сети также необходимо иметь надежное УЗИП, которое предохранит электронику от нежелательного воздействия.

Величина тока в этом случае будет равна всего 40 кА, а форма импульса 8/20 мкс также иная, за счет наличия гальванической развязки между источником и потребителем. Что касается типа контура заземления, то в этом случае чаще используется именно T. T.

Но также применяют на практике и TN — C — S. Для защиты приборов от перенапряжения рекомендуется установить ограничитель 2 класса.

Соответственно, для схемы TN — C — S подключения контура заземления рекомендуется устанавливать устройства LE -381−178, а для схемы TT необходимо использовать автоматы не ниже LE -381−180.

Защита от молний в частном доме

Перенапряжение — это фактор, который может возникать не только по сети переменного напряжения. Высоковольтные помехи довольно часто генерируются и телевизионных сетях, в частности, на антенных приемниках.

Ведь они находятся ближе всего к заряженным облакам, которым необходимо разрядиться по пути наименьшего сопротивления. Такое обычно встречается в тех домах, на которых либо нет громоотвода, либо он есть, но антенна прикреплена к нему.

Когда молния попадает в молниеотвод, то высоковольтный импульс обязательно наводится в канале передачи. Из-за чего выгорает селектор ТВ-приемника или приставки, к которой она была подключена.

Совет

Здесь также необходимо использовать УЗИП, только они представляют собой антенный переходник с отводом для заземления. По сути, это варисторный блок, который отводит наведенный импульс в контур заземления, не давая ему проникнуть далее в линию.

В зависимости от вида принимаемого сигнала различают два разных типа УЗИП:

  • для аналогового ТВ;
  • для спутникового или цифрового ТВ.

Соответственно, на первом будет написано Radio / TV, на втором SAT.

Защита от помех линии передачи Интернета

Чтобы полностью оградить свою жизнь и всю технику от нежелательного воздействия энергии стихии, рекомендуется подумать и об установке УЗИП для сетевого кабеля Ethernet.

Установку подобного элемента лучше всего предусмотреть непосредственно перед вводом кабеля в дом, чтобы минимизировать его длину под открытым небом.

Как и в случае с ТВ, блок заземляется толстым желто-зеленым проводом к общему контуру.

Источник: https://dachniki.guru/dom/elektrika/shema-podklyucheniya-uzip-dlya-zashhity-chastnogo-doma-i-kvartiry.html

Устройство защиты перенапряжений (УЗИП) – схема подключения

Импульсное перенапряжение (ИП) – это кратковременное, длящееся доли секунд, и резкое повышение (скачок) напряжения, которое опасно для электрической линии и электрического оборудования своим разрушающим воздействием.

Причины появления ИП

Существует две основных причины появления ИП, это природная и технологическая. В первом случае причиной является прямое или косвенное попадание молнии в линию электропередачи (ЛЭП) или в молниезащиту защищаемого здания. Во втором случае скачки напряжения появляются из-за коммутационных перегрузок на силовых трансформаторных подстанциях.

Назначение УЗИП

Чтобы обезопасить электрическую линию, электрическое оборудование и электрические приборы от  резких скачков напряжения и опасных электрических токовых импульсов применяют устройства защиты от импульсных перенапряжений (сокращённо УЗИП).

В состав УЗИП входит как минимум один нелинейный элемент. Если их несколько, то внутреннее подключение УЗИП может выполняться между разными фазами, между фазой и заземлением (землёй), а также между нулём и фазой, между нулём и заземлением. Кроме того, подключение нелинейных элементов выполняется и в виде определённой комбинации.

Виды УЗИП

По количеству вводов УЗИП бывают одновводные и двухвводные. Подключение первого вида выполняется параллельно защищаемой электрической цепи. УЗИП второго вида имеют два комплекта выводов – вводные и выводные.

По типу нелинейного элемента делятся на:

● УЗИП коммутирующего типа;

● УЗИП ограничивающего типа;

● УЗИП комбинированного типа.

  1. УЗИП коммутирующего типа в нормальном рабочем режиме обладает достаточно высоким значением сопротивления. Но в случае резкого скачка напряжения сопротивление УЗИП резко изменяется до очень низкого значения. УЗИП коммутирующего типа основаны на «разрядниках».
  2. УЗИП ограничивающего типа также изначально имеет сопротивление большой величины, но по мере увеличения напряжения в сети и увеличения волны электрического тока, сопротивление постепенно снижается. УЗИП данного типа нередко называют «ограничителями».
  3. Комбинированные УЗИП конструктивно состоят из элементов с функцией коммутации и элементов с функцией ограничения, соответственно они способны коммутировать напряжение, ограничивать повышение напряжения, а также способны выполнять эти две функции одновременно.

Классы УЗИП

УЗИП делят на три класса. УЗИП класса 1 применяют для защиты от ИП, вызванных прямым попаданием молнии в молниезащиту или в линию электропередачи.

УЗИП класса 1 обычно монтируют внутри вводного распределительного шкафа (ВРЩ) или внутри главного распределительного щита (ГРЩ).

УЗИП класса 1 нормируются импульсным электрическим током с формой волны 10/350 мкс. Это наиболее опасное значение импульсного тока.

УЗИП класса 2 применяются в качестве дополнительной защиты от попаданий молнии. Также их применяют, когда нужно выполнить защиту от коммутационных помех и перенапряжений. Монтаж УЗИП класса 2 выполняется после УЗИП класса 1.

УЗИП класса 2 нормируется импульсным током с формой волны 8/20 мкс. Конструкция УЗИП класса 2 – это основание (корпус) и специальные сменные модули, имеющие сигнализирующий индикатор. По индикатору можно узнать о состоянии УЗИП.

Зелёный цвет индикатора указывает на нормальный режим работы устройства, оранжевый цвет индикации указывает на необходимость замены сменных модулей.

Обратите внимание

Иногда в конструкции УЗИП используется специальный электрический контакт, который дистанционно передаёт сигнал о том, в каком состоянии находится устройство. Это очень удобно для обслуживания УЗИП.

УЗИП класса 1+2 применяются для защиты отдельных жилых зданий. УЗИП данного типа устанавливаются недалеко от электрооборудования. Они используются в качестве последнего барьера, защищаемого оборудование от небольших остаточных перенапряжений. В качестве УЗИП данного класса выпускаются специализированные электрические вилки, розетки и др.

Схемы подключения УЗИП в частном доме

УЗИП подключаются к однофазной сети 220В или к трёхфазной сети 380В. На промышленных объектах наиболее часто применяются трёхфазные УЗИП. Что касается частных домов и бытовой электрической сети, то используется УЗИП на напряжение 220В.

Поэтому полная схема, в которой используется УЗИП, должна быть выполнена на такое напряжение и с применением соответствующего типа УЗИП. Вариант схемы подключения и конструктивного исполнения применяемого УЗИП зависит от режима нейтрали.

Если нейтраль N и защитный проводник PE объединены в один общий проводник PEN, то для защиты от ИП применяется самое простое по конструкции УЗИП, которое состоит всего лишь из одного блока.

Схема подключения такого УЗИП выполняется в следующем виде: фазный провод, подключаемый на вход УЗИП – выходной провод, подключённый к PEN-проводнику – параллельно подключённое защищаемое электрооборудование или электрические аппараты.

По современным электротехническим требованиям нейтраль электрической сети должна выполняться отдельно от защитного проводника PE. В таком случае используется УЗИП с двумя модулями и отдельными клеммами L, N, PE.

Вариант такой схемы подключения выглядит следующим образом: фазный провод подключается на клемму устройства защитного отключения L и шлейфом идёт на защищаемое оборудование. Нулевой проводник подключается на клемму N устройства УЗИП и шлейфом также идёт на оборудование.

Клемма PE устройства УЗИП подключается на защитную шину PE. Аналогично заземляется и защищаемое оборудование.

Важно

Таким образом, и в первом и во втором случае при возникновении перенапряжений импульсные токи уходят в землю либо по проводнику PEN либо по защитному проводнику PE, не затрагивая защищаемое электрооборудование.

Источник: http://aquagroup.ru/articles/ustroystvo-zashchity-perenapryazheniy-uzip-shema-podklyucheniya.html

схема подключения защиты от импульсных перенапряжений

В любой цепи могут случиться скачки напряжения. При большом значении тока возможен выход оборудования из строя. Чтобы предотвратить это, используется УЗИП.

Что это такое

Приборы для защиты от перенапряжений сетей и электрооборудования с напряжением до 1 кВ называются УЗИП. Они предназначены для предотвращения порчи электрооборудования при скачках напряжения, а также в различных непредвиденных ситуациях. Они используются для ограничения переходных перенапряжений и устранения импульсов тока, чтобы снизить величину перенапряжений до уровня, который безопасен для электрических приборов. УЗИП используются на промышленных предприятиях и
в гражданском строительстве.

УЗИП

Основным российским положением, дающим определение УЗИП, является ГОСТ Р 51992-2002 «Оборудование для предотвращения скачков напряжения в низковольтных распределительных сетях».
SPD стремится обеспечить молниезащиту для систем молниеотводов и заземления зданий (сооружений) или воздушных линий электропередачи (LEP) для защиты высокочувствительного оборудования и устройств от скачков напряжения и скачков импульсного напряжения. Широкий ассортимент УЗИП с возможностью быстрого монтажа, который можно установить на DIN-рейку.

Принцип работы

Принцип действия данных приборов может быть основан на возникновении искрового разряда между двумя проводниками при прохождении тока высокого напряжения. Также имеются устройства, которые собраны на основе нелинейных резисторов. Оба варианты защищают оборудование от перенапряжения путем перенаправления тока в цепь заземления.

Виды

В зависимости от устройства и принципа действия УЗИП делятся на несколько видов.

Коммутирующие защитные аппараты

Также называются искровыми разрядниками. Принцип работы разрядника основан применении явления искрового промежутка. Конструкция имеет воздушный зазор в перемычке, которая соединяет каждую из линий электропередачи с контуром заземления. Цепь в перемычке разомкнута при номинальном напряжении. Если происходит разряд молнии из-за перенапряжения в линии электропередачи, произойдет пробой воздушного зазора, цепь между фазой и землей будет замкнута, а импульс высокого напряжения будет напрямую заземлен. Конструкция разрядника клапана в цепи с искровым разрядником обеспечивает резистор, на котором подавляются импульсы высокого напряжения. В большинстве случаев разрядники используются в высоковольтных сетях.

УЗИП-разрядник

Ограничители сетевого перенапряжения (ОПН)

Эти устройства заменили устаревшие, громоздкие разрядники. Чтобы понять принцип работы ограничителя, необходимо рассмотреть характеристики нелинейного резистора, так как принцип работы разрядника основан на его вольтамперной функции. Варисторы используются в качестве нелинейных резисторов в данных устройствах. Основным материалом для изготовления варистора является оксид цинка. В смеси с другими оксидами металлов образуется компонент, образующий p-n-переход с вольтамперными характеристиками. Когда напряжение в сети соответствует номинальному параметру, ток в цепи варистора близок к нулю. Когда в p-n-переходе возникает перенапряжение, ток резко увеличивается, что приводит к падению напряжения до номинального значения. После стандартизации параметров сети варистор возвращается в непроводящий режим, не влияя на работу устройства.

Ограничители

Комбинированные УЗИП

Комбинированные приборы работают по принципу разрядника, но также имеют в конструкции резистор. С помощью данной конструкции напряжение не только заземляется, но и параллельно стабилизируется в основной цепи.

Классы

Такие устройства которые можно разделить на несколько категорий:

  • Класс I. Предназначен для предотвращения прямого воздействия молнии. Эти устройства должны быть оснащены входным распределительным оборудованием (АСУ) для административных и промышленных зданий и жилых многоквартирных домов.
  • Класс II. Они обеспечивают защиту распределительной сети от перенапряжений, вызванных процессом переключения, и выполняют функцию вторичной защиты, чтобы предотвратить воздействие ударов молнии. Они установлены и подключены к сети в щитке.
  • Класс III. Они используются для защиты оборудования от импульсов напряжения, вызванных остаточными скачками и асимметричным распределением напряжения между фазовой и нейтральной линиями. Такие устройства также могут работать в режиме фильтра высокочастотных помех. Наиболее удобным для частных домов или квартир является то, что они подключены и установлены непосредственно потребителями. Особенно популярным является изготовление устройства в виде модуля, который можно быстро монтировать на DIN-рейку, или конфигурации с сетевой розеткой или штепсельной вилкой.

Как выбрать

При выборе УЗИП с любым рабочим элементом (варистор, искровой разрядник, пробойный диод) следует учитывать следующие факторы:

  • Параметры сети (номинальный ток, напряжение, параметры передачи), эффекты защиты (пропускная способность и уровень напряжения защиты).
  • Факторы, влияющие на установку (конструкция, условия подключения).

Принцип защиты силовой цепи заключается в установке УЗИП в соответствии с концепцией области, и при выборе типа важно надежно оценить его текущую нагрузку. Система защиты цепи управления и измерения основана на типе защищаемого сигнала и выборе УЗИП. Сначала необходимо определить параметры защищаемой цепи. В соответствии с номинальным выдерживаемым напряжением, сеть низкого напряжения 380/220 В подразделяется на 4 категории (I — IV) с нормированными значениями 1,5; 2,5; 4,0 и 6,0 кВ. Класс УЗИП соответствует уровню защиты: уровень I-≤4 кВ; уровень II-1,3 … 2,5 кВ; уровень III-0,8 … 1,5 кВ. Уровень защиты выбранного УЗИП не должен превышать выдерживаемое напряжение электросети.

Помимо этого, устройство имеет следующие параметры:

  • Номинальное напряжение.
  • Максимальное непрерывное рабочее напряжение (рабочее напряжение сети в течение длительного времени).
  • Амплитуда импульсного тока, который может пройти, по крайней мере, один раз без повреждений цепи и устройства защиты (для класса I).
  • Амплитуда импульса составляет 8/20 мкс, SPD, по крайней мере, один раз неразрушающий (для класса II).
  • Амплитуда импульса тока, протекающего через УЗИП, который устройство защиты от перенапряжений может выдерживать многократно.
  • Верхний уровень напряжения защиты — характеризует УЗИП, ограничивая напряжение на клемме при протекании тока.
  • Допустимый сопутствующий ток (для разрядников).
  • Время срабатывания.

Определение системы заземления

Тип системы заземления, используемой в доме, может быть определен тем, как разделены проводники PEN. Если все готово, проводка похожа на систему TN-C-S. В этом случае для трехфазной цепи пять главных проводов выходят из главного распределительного щита дома, а для однофазной цепи только три провода. PEN-проводники разделяются на PE и N компоненты.

На заметку! Если он не разделен, проводка будет работать в соответствии с системой TN-C, с 4 проводами от трехфазной системы и 2 проводами от однофазной системы, идущими от распределительного щита.

Основываясь на описанных принципах, можно легко определить тип системы заземления. Во всех случаях, когда система TN-C используется в частных домах, рекомендуется перенести ее на схему TN-C-S, которая является более перспективной и безопасной.

Значение защищаемого оборудования

Защищаемые объекты делятся на несколько классов:

  1. Специальные (критические) объекты вредные для окружающей среды, жизни человека и животных. Примеры: химическая и нефтехимическая продукция, биохимические и бактериологические центры, производство взрывчатых веществ, атомные электростанции и др. Надежность защиты от молниевого удара достигает 0,98 (для отдельных предметов в зонах категории A она может быть установлена ​​на более высоком уровне 0,995). Негативные последствия ударов молнии: пожары, взрывы, выбросы токсичных веществ, повышение радиации на больших площадях, экологические катастрофы, повлекшие за собой непоправимые материальные и человеческие жертвы
  2. Виды специальных объектов, которые представляют опасность для окружающей среды. Примеры: нефтепереработка, АЗС, мукомольные заводы, деревообрабатывающие заводы, производство изделий из пластмасс и др.
    Надежность защиты гарантированно будет равна 0,95. Негативное воздействие ударов молнии: пожары, взрывы в районе и вокруг него. Стены и потолки могут рухнуть, получить серьезные травмы и даже смерть сотрудников и посетителей. В этом случае значительные финансовые потери будут зафиксированы.
  3. Объект — специальная критическая инфраструктура. Типы объектов: предприятия связи и ИКТ, трубопроводный транспорт, линии электропередачи, оборудование центрального отопления, транспортная инфраструктура и др. Надежность защиты от удара гарантирована — 0,9. Негативные последствия ударов молнии: нарушение связи, частичная или полная потеря контроля, прерывание воды и отопления, временное снижение качества жизни и потеря материала.
  4. Общие, промышленные и гражданские объекты и связанная с ними инфраструктура. Примеры: жилые дома, промышленные здания (до 60 м высотой), дома и хижины в селах, объекты социально-культурного назначения, учебные заведения, больницы и музеи, храмы, церкви. Гарантия от ударов молнии −0,8. Негативные последствия ударов молнии: сильные пожары, повреждения зданий, нарушение транспорта, нарушение систем связи, возможная потеря исторического и культурного наследия. Значительные материальные и финансовые потери. Может привести к травмам или смерти людей.

На заметку! Из приведенной выше системы классификации видно, что любой тип защищаемого объекта отличается от другого с точки зрения характеристик и цели молниезащиты установки и типа заземляющего устройства, его конструкция определяется назначением и расположением конструкции.

Риск воздействия объекта

Подключение УЗИП различной классности совместно с системой заземления снижает риск поломки оборудования из-за скачка напряжения в сети или удара молнии на 80-99%.

Подключение в частном доме

Подключение в частном доме может производиться в однофазную и трехфазную сеть. При этом могут для УЗИП схема подключения может быть различной.

Однофазная электрическая схема (TN-S)

На рисунке показан прибор серии Easy9 от Schneider Electric. Следующие проводники подключены: фаза, нулевой проводник и нулевой для защиты. Здесь он устанавливается сразу после включения автомата. Все контакты для подключения на любом приборе указаны. Следовательно, легко определить, где «фаза», а где «ноль». Зеленая отметка на корпусе указывает на хорошее состояние, а красная отметка указывает на неисправность.

УЗИП схема включения TN-S

Предоставленное оборудование относится к классу 2. Одно это устройство не может предотвратить прямые удары молнии. Также рекомендуется защитить оборудование с помощью предохранителя.

Схема включения TN-S с общим УЗО

Схема трехфазного сетевого подключения (TN-S)

На этой схеме также показаны устройство серии Easy9, производимые Schneider Electric, но использовавшиеся в трехфазных сетях. На рисунке показано 4-полюсное устройство с нулевым рабочим проводником.

Существует также 3-полюсный прибор той же серии. Используется в системах заземления TN-C. Нет контактов для подключения нейтрального провода.

Защита от импульсных перенапряжений схема подключения TN-S в трехфазную сеть

Схема трехфазного сетевого подключения (TN-C)

На рисунке показан переход от TN-C к системе заземления TN-C-S, что требуется по современным стандартам. На первом рисунке показан 4-полюсный входной автоматический выключатель, а на втором — 3-полюсный вход.

Четырехполюный разрядник для защиты от перенапряжений схема подключения TN-C

УЗИП — устройство необходимое для полноценной защиты электрического оборудования.

Схема подключения трехполюсного прибора

Конструкция может быть собрана на основе резисторов или использовать метод искровых промежутков. Подключение производится по различным схемам к одно- и трехфазной сети.

Устройство защиты от импульсных перенапряжений (УЗИП)

Жизнь современного человека, особенно городского, наполнена разнообразной электроникой. Однако ее поломки, особенно в результате резкого скачка электроэнергии или его отключения. УЗИП для частного дома и квартиры защищает технику от перебоев.

УЗИП или реле напряжения

Устройства защиты от импульсного перенапряжения могут спасти приборы от выхода из строя. Реле напряжения, или РН, защищает от малых, до нескольких сотен вольт, скачков, но не защищают от мощных импульсов, вроде попадания грозы в высоковольтные линии, или обрыва нулевого провода. Для этого есть специальное устройство – УЗИП, оно выдерживает огромные, в несколько киловольт, импульсы напряжения.

Для защиты от скачков разной силы нужны разные устройства, поэтому выбор – УЗИП или реле напряжения – даже не стоит: необходимо ставить оба. В тандеме они обеспечат отличную защиту домашней электрической сети от форс-мажорных обстоятельств. Так что УЗИП – это такой ангел-хранитель для бытовой техники.

Принцип действия

После подключения УЗИП по соответствующей схеме он начинает пропускать ток. Как только случается скачок напряжения расчётной мощности, происходит сброс избыточной мощности на землю. Принцип работы позволяет устройству выдержать лишь определённое количество срабатываний, после чего потребует полной замены.

Для наглядности состояния пригодности, многие ОПН – ограничители переменного напряжения – снабжают цветовым индикатором:

  • зелёный цвет означает пригодность;
  • красный цвет сообщает о необходимости замены.

Если нет возможности заменить вышедший из строя аппарат, рекомендуется его демонтировать – так будет меньше проблем. Так, как работает УЗИП, не работают другие системы защиты.

Классификация УЗИП

Благодаря разделению электрических сетей по типам, устройства их защиты так же были разделены на типы. Существующие сегодня классы УЗИП имеют номерные и буквенные обозначения, соответствующие схеме подключения.

  • Устройства первого класса, они же класс B, ставятся в щитки, защищающие целые дома. Они принимают на себя первый удар, и снижают напряжение до допустимого для следующего класса уровня.
  • Второй класс обозначается буквой C. Установка УЗИП этого типа необходима для частных и небольших домов. Они ещё сильней смягчают стихийный импульс, который уже может быть без проблем заглушен сетевыми фильтрами, или самими домашними приборами.
  • ОПН третьего класса под литерой D доводят полученный импульс до обычного бытового значения. Такие устройства гораздо проще и дешевле, чем ограничители B класса, поэтому могут входить в состав бытовой техники.

Проще говоря, разницу между ними можно свести к определению: разная степень защиты, но дополнение в случае необходимости.

Как выбрать УЗИП

При покупке устройства конечный потребитель должен для начала определить, что надо защищать, и в каком месте находится защищаемое здание. Выбор УЗИП для частного дома обычно опирается на защиту бытовых устройств – компьютеров, сигнализации, музыкальных центров и прочей техники.

Современными ГОСТами определено четыре степени риска, помогающие потребителю выбрать УЗИП как для дома, так и для находящейся в нём аппаратуры. Риск определяется исходя из положения дома:

  • Первая, самая низкая степень риска – это город или пригород. Обычно власти на местах ставят необходимые защитные устройства, поэтому конечный потребитель может не заботиться об УЗИП первого и второго классов.
  • Вторая степень риска – открытая местность. Имеется в виду отсутствие всего, что может притянуть удар молнии. Здесь уже стоит озаботиться аппаратом защиты второго класса.
  • Третья степень риска возникает при близости здания к опорам ЛЭП, лесам, озёрам и горам. По ГОСТу такие объекты должны оснащаться трёхступенчатой защитой в обязательном порядке.
  • Четвёртая, самая высокая, степень риска требует согласования с инженерами, которые к трёхступенчатой защите могут поставить дополнительные устройства. Эта степень опасности присваивается зданиям, находящимся в пятидесяти и меньше метрах от громоотводов.

Четыре степени риска по ГОСТам объединяются в два типа:

  • Первый тип, объединяющий третью и четвёртую степень риска, требует установки разрядников с высокой ёмкостью на пару с громоотводом.
  • Второй тип рекомендует устанавливать разрядник по каскадному типу, после разрядников первого типа, либо отдельно.

Предпочтение в выборе устройств защиты рекомендуется отдавать какому-то одному из множества производителей. И дело тут не в коммерческой составляющей, а в возможной разнице характеристик, иногда играющей решающую роль.

Защита от молний в частном доме

Положение частного дома, его близость к опасным объектам и городу, влияет на выбор схемы защиты. Владельцу частного дома, находящемуся в зоне третьего риска, рекомендуется закупить громоотвод, установив его более чем в 50 метрах от дома.

Сам дом защищается в таком случае по трёхступенчатой схеме. Частные дома в городской черте могут обходиться и двухступенчатой защитой. Лучше перестраховаться, обратившись в соответствующую инженерную инстанцию. Там объяснят, как подключить линию защиты лучшим образом.

Три схемы подключения УЗИПа:

Существует два вида схемы TN-S, отличающиеся высокой стоимостью, но и высокой безопасностью; и TN-C, принятая ещё в СССР, дешёвая, но требующая дополнительной защиты устройств.

Идеальная для подключения УЗИП схема должна выбираться исходя не только из бюджета, но и из соображения безопасности. Любая схема действует как в частном доме, так и в многоквартирном жилье.

Однофазная сеть система заземления TN-S

Европейский стандарт, по которому питание идёт по двум проводам.

  • Один провод фазный, собственно, проводник электричества. Он подключается к сети, подключемой с нулевым проводом.
  • Нулевой провод идёт от нулевого контура, и не пересекается с контуром заземления.
  • В однофазной схеме подключения УЗИП третий провод – это глухое заземление. Он подключается к устройству защиты для сброса лишнего напряжения.

Трёхфазная сеть система заземления TN-S

Отличается от однофазной схемы тем, что использует три питающих проводника вместо одного. Схема используется по всей Европе, отечественный потребитель знает её по евророзеткам с тремя гнёздами. Подключение УЗИП в трёхфазной сети этого типа необходимо делать до вывода напряжения к конечным устройствам.

Общая характеристика схем TN-S

  • Отличие от устаревшей советской TN-C, европейская схема срабатывает быстрее, и предотвращает утечку энергии, что позволяет не заземлять сами защищаемые устройства.
  • Благодаря разделению линий заземления и нуля, их техническое обслуживание проводится реже, а эффективность защиты повышается.
  • Отпадает необходимость в перемычках между корпусом защитной аппаратуры и заземляющего контура, что работает на эстетичность, одновременно устраняя рабочие неудобства.
  • Повышается эффективность защиты чувствительной техники, за счёт устранения помех высоких частот.

Трехфазная сеть система заземления TN-C

Советская система заземления, особенностью которой является совмещение нулевого и заземляющего контура, для чего в современных домах с этой схемой и ставятся предохранитель перед УЗИП. А всё потому, что при расчёте третьей фазы в устаревших домах не учитывалась куча современной.

На сегодняшний момент данная схема хоть и существует в эксплуатации, но по возможности заменяется на более безопасные европейские схемы. Если же применение европейской схемы невозможно, например, в многоквартирном доме, то подключение своей электрической сети нужно комплектовать дополнительной защитой.

Ошибки при подключении

  • Плохое заземление: перед монтажом УЗИП необходимо удостоверится в надёжности заземления – оно должно выдерживать сбрасываемые на него импульсы и быть в исправном состоянии, иначе в первой же грозе сгорит, потянув за собой на тот свет всю электрощитовую.
  • Ошибка в схеме подключения: устройство надо ставить со знанием схемы заземления, используемой в щитке. Если такого знания нет, лучше доверить монтаж специалисту, обслуживающего домовые электролинии, либо максимально близко знакомого с ними.
  • Не тот класс, не в том месте: есть несколько классов УЗИП, и каждый из них предназначен для определённых типов щитовых. Неправильный подбор устройства может стоить жизни домашней технике.

Несмотря на состояние современных энергосетей, с их перебоями, устаревшей проводкой, и прочими радостями страны третьего мира, мы продолжаем использовать технику. И что бы ни случилось, можно надеется, в том числе, на окружающие защитные механизмы.

Что такое УЗИП

УЗИП: особенности выбора и применения

Даже кратковременные импульсные броски напряжения, в несколько раз превышающие номинальное, могут нанести непоправимый ущерб дорогостоящей электротехнике и электронике, а то и стать причиной пожара. Перенапряжение в сетях может возникать из-за грозы, аварий или переходных процессов. Например, импульсные перенапряжения могут стать следствием попадания молнии в систему молниезащиты или линию электропередач, переключения мощных индуктивных потребителей, таких как электродвигатели и трансформаторы, коротких замыканий.

 

Что такое УЗИП и для чего оно нужно?

Ограничитель перенапряжения в электроустановках напряжением до 1 кВ называют устройством защиты от импульсных перенапряжений – УЗИП. Устройства защиты от импульсных перенапряжений – как раз и призваны защитить электрооборудование от подобных ситуаций. Они служат для ограничения переходных перенапряжений и отвода импульсов тока на землю, снижения амплитуды перенапряжения до уровня, безопасного для электрических установок и оборудования. УЗИП применяются как в гражданском строительстве, так и на промышленных объектах.

Основной российский документ, определяющий, что такое УЗИП, это ГОСТ Р 51992-2002, «Устройства для защиты от импульсных перенапряжений в низковольтных силовых распределительных системах».

УЗИП призваны обеспечить защиту от ударов молнии в систему молниезащиты здания (объекта) или воздушную линию электропередач (ЛЭП), защитить высокочувствительное оборудование и технику от импульсных перенапряжений и коммутационных бросков питания. Широкое распространение получили УЗИП с быстросъемным креплением для установки на DIN-рейку.

Аппараты защиты от импульсных напряжений включают в себя устройства нескольких категорий:

Тип устройства

Для чего предназначено

Где применяется

I класс

Для защиты от непосредственного воздействия грозового разряда. Защищают от импульсов 10/350 мкс: попадание молнии в систему внешней молниезащиты и попадание молнии в линию электропередач вблизи объекта. Амплитуда импульсных токов с крутизной фронта волны 10/350 мкс находится в пределах 25-100 кА, длительность фронта волны достигает 350 мкс.

 

Устанавливаются на вводе питающей сети в здание (ВРУ/ГРЩ). Данными устройствами должны укомплектовываться вводно- распределительные устройства административных и промышленных зданий и жилых многоквартирных домов

II класс

Обеспечивают защиту от перенапряжений, вызванных коммутационными процессами, а также выполняющие функции дополнительной молниезащиты. Предназначены для защиты от импульсов 8/20 мкс. Они защищают от ударов молнии в ЛЭП, от переключений в системе электроснабжения. Амплитуда токов — 15-20 кА.

Монтируются и подключаются к сети в распределительных щитах. Служат дополнительной защитой от импульсов, которые не были полностью нейтрализованы УЗИП I класса

III класс

Для защиты от импульсных перенапряжений, вызванных остаточными бросками напряжений и несимметричным распределением напряжения между фазой и нейтралью. Также работают в качестве фильтров высокочастотных помех. Предназначены для защиты от остаточных импульсов 1,2/50 мкс и 8/20 мкс импульсов после УЗИП I и II классов.

Используются для защиты чувствительного электронного оборудования, поблизости от которого и устанавливаются. Характерные области применения — ИТ- и медицинское оборудование. Также актуальны для частного дома или квартиры — подключаются и устанавливаются непосредственно у потребителей. 

 

Конструкция УЗИП постоянно совершенствуется, повышается их надежность, снижаются требования по техническому обслуживанию и контролю.

 

Как работает УЗИП?

УЗИП устраняет перенапряжения:

 — Несимметричный (синфазный) режим: фаза — земля и нейтраль – земля.

 — Симметричный (дифференциальный) режим: фаза — фаза или фаза – нейтраль.

В несимметричном режиме при превышении напряжением пороговой величины устройство защиты отводит энергию на землю. 

В симметричном режиме отводимая энергия направляется на другой активный проводник. 

      

Схема подключения УЗИП в однофазной и трехфазной сети системы TN-S. В системе заземления TN-C применяется трехполюсное УЗИП. В нем нет контакта для подключения нулевого проводника.

По принципу действия УЗИП разделяются вентильные и искровые разрядники, нередко применяемые в сетях высокого напряжения, и ограничители перенапряжения с варисторами.

В разрядниках при воздействии грозового разряда в результате перенапряжения пробивает воздушный зазор в перемычке, соединяющей фазы с заземляющим контуром, и импульс высокого напряжения уходит в землю. В вентильных разрядниках гашение высоковольтного импульса в цепи с искровым промежутком происходит на резисторе.

УЗИП на основе газонаполненных разрядников рекомендуется к применению в зданиях с внешней системой молниезащиты или снабжаемых электроэнергией по воздушным линиям.

В варисторных устройствах варистор подключается параллельно с защищаемым оборудованием. При отсутствии импульсных напряжений, ток, проходящий через варистор очень мал (близок к нулю), но как только возникает перенапряжение, сопротивление варистора резко падает, и он пропускает его, рассеивая поглощенную энергию. Это приводит к снижению напряжения до номинала, и варистор возвращается в непроводящий режим.

УЗИП имеет встроенную тепловую защиту, которая обеспечивает защиту от выгорания в конце срока службы. Но со временем, после нескольких срабатываний, варисторное устройство защиты от перенапряжений становится проводящим. Индикатор информирует о завершении срока службы. Некоторые УЗИП предусматривают дистанционную индикацию.

 

Как выбрать УЗИП?

При проектировании защиты от перенапряжений в сетях до 1 кВ, как правило, предусматривают три уровня защиты, каждая из которых рассчитана на определенный уровень импульсных токов и форму фронта волны. На вводе устанавливаются разрядники (УЗИП класса I), обеспечивающие молниезащиту. Следующее защитное устройство класса II подключается в распределительном щите дома. Оно должно снижать перенапряжения до уровня, безопасного для бытовых приборов и электросети. В непосредственной близости от оборудования, чувствительного к броскам в сети, можно подключить УЗИП класса III. Предпочтительнее использовать УЗИП одного вендора.

Для координации работы ступеней защиты устройства должны располагаться на определенном расстоянии друг от друга — более 10 метров по питающему кабелю. При меньших дистанциях требуется включение дросселя, возмещающего недостающие активно-индуктивные сопротивления проводов. Также рекомендуется защищать УЗИП с помощью плавких вставок.


При каскадной защите требуется минимальный интервал 10 м между устройствами защиты.

Классы УЗИП не являются унифицированными и зависят от конкретной страны. Каждая строительная организация может ссылаться на один из трех классов испытаний. Европейский стандарт EN 61643-11 включает определенные требования по стандарту МЭК 61643-1. На основе МЭК 61643 создан российский ГОСТ Р 51992.


Оценка значимости защищаемого оборудования.

Необходимость защиты, экономические преимущества устройств защиты и соответствующие устройства защиты должны определяться с учетом факторов риска: соответствующие нормы прописаны в МЭК 62305-2. Критерии проектирования, монтажа и техобслуживания учитываются для трех отдельных групп:

Группа  

Что включает

Где определяется

Первая

Меры защиты для минимизации риска ущерба имуществу и вреда здоровью людей

МЭК 62305-3

Вторая

Меры защиты для минимизации отказов электрических и электронных систем

МЭК 62305-4

Третья

Меры защиты для минимизации риска ущерба имуществу и отказов инженерных сетей (в основном электрические и телекоммуникационные линии)

МЭК 62305-5

 


Оценка риска воздействия на объект.

Нормы установки молниезащитных разрядников прописаны в международном стандарте МЭК 61643-12 (Принципы выбора и применения). Несколько полезных разделов содержит международный стандарт МЭК 60364 (Электроустановки зданий):

 — МЭК 60364-4-443 (Защита для обеспечения безопасности). Если установка запитывается от воздушной линии или включает в себя такую линию, должно предусматриваться устройство защиты от атмосферных перенапряжений, если грозовой уровень для рассматриваемого объекта соответствует классу внешних воздействий AQ 1 (более 25 дней с грозами в год).

 — МЭК 60364-4-443-4 (Выбор оборудования установки). Этот раздел помогает в выборе уровня защиты для разрядника в зависимости от защищаемых нагрузок. Номинальное остаточное напряжение устройств защиты не должно превышать выдерживаемого импульсного напряжения категории II.


Выбор оборудования по МЭК 60364.

В качестве первой ступени лучше применять УЗИП на базе разрядников без съемного модуля. Вряд ли вам удастся найти варисторное устройство с номинальным током Iimp более 20 кА. Шкаф, в котором установлено УЗИП такого типа, должен быть из несгораемого материала.

Важнейшим параметром, характеризующим УЗИП, является уровень напряжения защиты Up. Он не должен превышать стойкость электрооборудования к импульсному напряжению. Для УЗИП I-го класса Up не превышает 4 кВ. Уровень напряжения защиты Up для устройств II-го класса не должен превышать 2,5 кВ, для III-го класса — 1,5 кВ. Это тот уровень, который должна выдерживать техника.

Ещё несколько важных параметров, которые необходимо знать для выбора УЗИП. Максимальное длительное рабочее напряжение Uc – действующее значение переменного или постоянного тока, которое длительно подаётся на УЗИП. Оно равно номинальному напряжению с учетом возможного завышения напряжения в электросети.


Минимальное требуемое значение Uc для УЗИП в зависимости от системы заземления сети.

Номинальный ток нагрузки IL – максимальный длительный переменный (действующее значение) или постоянный ток, который может подаваться к нагрузке. Этот параметр важен для УЗИП, подключаемых в сеть последовательно с защищаемым оборудованием. УЗИП обычно подключаются параллельно цепи, поэтому данный параметр у них не указывается.


Выбор защитной аппаратуры: чувствительное оборудование и оборудование здания.


Выбор защитной аппаратуры: бытовая техника и электроника.


Выбор защитной аппаратуры: производственное оборудование.


Выбор защитной аппаратуры: ответственное оборудование.

Сегодня многие крупные потребители электрической энергии с успехом используют на территории России высококачественные элементы УЗИП. Положительные результаты испытаний и эффективность применения УЗИП в России позволяют говорить о том, что их использование в российских условиях выгодно и удобно. Остается подобрать нужную модель устройства и установить ее на объекте. 

Как разархивировать ZIP-файлы на любом устройстве

  • Чтобы распаковать файл, вы можете использовать инструменты, которые предустановлены на вашем устройстве.
  • ZIP-файлы можно распаковывать как на компьютеры, так и на смартфоны, поскольку они являются одним из наиболее распространенных типов файлов.
  • После того, как вы распаковали файл, вы можете свободно использовать, просматривать, редактировать и удалять его содержимое.
  • Посетите техническую библиотеку Insider, чтобы узнать больше.
Идет загрузка.

Со временем, когда компьютеры становятся все более совершенными, размеры файлов продолжают расти. Файлы ZIP позволяют помещать несколько файлов — до сотен — в один «сжатый» файл с меньшим размером файла.Это отличный способ отправить кому-то много файлов, особенно если вы используете такое приложение, как Gmail, с ограничениями на размер файлов.

Но как только вы получили ZIP-файл, чтобы увидеть или использовать любой из его файлов, вам необходимо «разархивировать» его. К счастью, поскольку файлы ZIP настолько распространены, их невероятно легко распаковать.

Вот как распаковать файлы практически на любом устройстве, будь то компьютер, планшет или смартфон.

Как разархивировать файлы на ПК с Windows

В предыдущих версиях Windows вам приходилось загружать отдельное приложение для взаимодействия с файлами ZIP.Если вы собираетесь часто работать с файлами ZIP (или файлами RAR, которые похожи), мы все равно рекомендуем вам загрузить приложение, такое как WinRAR, для легкого доступа и дополнительных параметров настройки.

Если вам нужно работать с ZIP-файлами время от времени, вы можете использовать встроенный экстрактор файлов.

1. Найдите ZIP-файл, который вы хотите распаковать.

2. Если вы хотите извлечь один файл, дважды щелкните ZIP-файл, чтобы открыть его, а затем перетащите нужные файлы в другую папку или на рабочий стол.

Чтобы распаковать файлы, перетащите их из папки zip. Дэйв Джонсон / Инсайдер

3. Если вы хотите распаковать весь файл, щелкните его правой кнопкой мыши и выберите Извлечь все . Вас спросят, куда вы хотите поместить файлы — нажмите Обзор , чтобы выбрать место, а затем Извлечь , чтобы переместить их.

Вы также можете распаковать файлы, щелкнув правой кнопкой мыши ZIP-файл.Дэйв Джонсон / Инсайдер

Как разархивировать файлы на Mac

Как и на ПК, вы можете загружать такие приложения, как WinZip, чтобы лучше настраивать ваши ZIP-файлы.

Но чтобы быстро распаковать файл, просто дважды щелкните ZIP-файл . По умолчанию он открывается с помощью приложения Archive Utility, и появляется распакованная папка со всеми файлами.

Как только вы дважды щелкните ZIP-файл, он откроется. Уильям Антонелли / Инсайдер

Если по какой-либо причине он пытается открыть с помощью другого приложения, щелкните правой кнопкой мыши ZIP-файл и наведите указатель мыши на Открыть с помощью , а затем выберите Archive Utility .

Как распаковать файлы в Linux

Самый быстрый способ распаковать файлы на компьютере Linux — использовать команду терминала.

1. Откройте командное окно, нажав Ctrl + Alt + T .

2. В командном окне введите:

 unzip [имя файла] .zip 

А затем нажмите Введите . Вместо [имя файла] введите имя ZIP-файла, который вы пытаетесь распаковать.Файлы появятся в том же каталоге, что и ZIP-файл.

Команда «распаковать» позволяет распаковать или «раздувать» любой ZIP-файл. Кайл Уилсон / Инсайдер

Что делать, если Linux сообщает, что «unzip» недействителен

Когда вы впервые проходите через этот процесс, есть вероятность, что Linux может не распознать команду «unzip».Если это так, это означает, что у вас еще не установлена ​​команда unzip.

Чтобы исправить это, сначала введите и отправьте:

 sudo apt install unzip 

или

 sudo yum install unzip 

А затем снова попробуйте команду unzip. Используйте первый, если вы используете Ubuntu или Debian, или второй, если вы используете Fedora или CentOS.

Если вы никогда раньше не использовали команду unzip, возможно, вам придется ее установить.Кайл Уилсон / Инсайдер

Если вы хотите разархивировать файлы, используя графический интерфейс вместо командного окна, рассмотрите возможность загрузки такого приложения, как PeaZip.

Как распаковать файлы на Chromebook

На Chromebook нет инструмента автоматической распаковки, а это означает, что вам придется извлекать файлы вручную.

1. В приложении «Файлы» найдите и дважды щелкните ZIP-файл, чтобы открыть его.

2. Выберите все файлы, которые вы хотите извлечь из ZIP — вы можете удерживать Ctrl при щелчке, чтобы выбрать несколько элементов — а затем нажмите Ctrl + C , чтобы скопировать их все. Вы также можете щелкнуть их правой кнопкой мыши и выбрать Копировать .

3. Перейдите в папку, в которую вы хотите поместить разархивированные файлы, и либо нажмите Ctrl + V , либо щелкните правой кнопкой мыши и выберите Вставить .

Вам придется вручную распаковать файлы, вынув их из ZIP-папки. Уильям Антонелли / Инсайдер

Кроме того, вы можете перетащить файлы в другое окно папки.

Как разархивировать файлы на iPhone или iPad

Если вы сохранили ZIP-файл на свой iPhone или iPad, скорее всего, вы сможете найти его в приложении «Файлы».

1. Откройте приложение «Файлы» и найдите загруженный ZIP-файл.

2. Коснитесь ZIP-файла. Спустя мгновение рядом с ней появится разархивированная папка с таким же названием.

Нажатие на ZIP-файл преобразует его в распакованную папку для просмотра.Уильям Антонелли / Инсайдер

Затем вы можете перейти в папку и отредактировать или удалить файлы. Если это изображение, вы даже можете открыть его и нажать значок «Поделиться», чтобы сохранить его в фотопленке вашего устройства.

Как разархивировать файлы на телефоне или планшете Android

Когда вы загружаете ZIP-файл из электронной почты на Android, вы должны распаковать его — вы не можете сохранить сжатый ZIP-файл.Просто нажмите Извлечь , когда у вас будет такая возможность.

Однако, если вы загрузили ZIP-файл из Интернета, он будет сохранен в специальном файловом приложении Android. В зависимости от устройства это может называться «Файлы от Google», «Мои файлы» или что-то подобное. Вы сможете найти его в списке всех ваших приложений или выполнив поиск.

В любом случае откройте файловое приложение и найдите свой ZIP-файл. Найдя его, просто нажмите на него, и вам будет предоставлена ​​возможность распаковать его.

Выберите все файлы в ZIP-архиве и нажмите «Извлечь.» Уильям Антонелли / Инсайдер

После того, как вы извлечете все файлы, вы найдете распакованную папку, содержащую эти файлы в том же месте, что и ZIP.

Появится папка со всеми разархивированными файлами.Уильям Антонелли / Инсайдер

Как скачать и распаковать фотографии

Когда вы «загружаете все» свои изображения из Skribull, они будут в так называемом zip-архиве. Это сжатый файл, содержащий все ваши изображения. Для работы с картинками лучше всего «распаковать» их в папку. Это упростит их поиск, а также работу с ними в будущем.Мы постараемся сделать эти инструкции как можно более простыми, но вы можете сделать их гораздо более организованными, выполнив несколько дополнительных шагов. Эти инструкции основаны на платформе Windows 10, но я полагаю, что они похожи и на большинство других программ.

1. Загрузить все — это шаг для загрузки заархивированного файла на ваше устройство.
2. Сохранить файл — это позволит вам сохранить его на вашем устройстве. Обязательно нажмите «ОК», чтобы сохранить его.
3. Файлы, загруженные таким образом, обычно попадают в папку «Загрузки».Если вы не изменили расположение по умолчанию, именно здесь должен находиться загруженный zip-файл.
4. Щелкните правой кнопкой мыши заархивированный файл и выберите «Извлечь все». Обычно вы можете сказать, что это заархивированный файл, потому что значок файла представляет собой папку с застежкой-молнией.
5. Нажмите кнопку «ОК», чтобы извлечь все. — На этом шаге запрашивается местоположение, и для наших целей мы оставим это как есть. На картинке ниже я вижу, что он идет в папку «Загрузки».
6. При просмотре моей папки «Загрузки» мы видим две папки с одинаковыми именами. Папка без застежки-молнии — это папка с изображениями, которые вы будете использовать. Заархивированную папку можно сохранить для резервного копирования или удалить, если она вам не нужна. Обязательно оставьте тот, который я обвел красным, без застежки-молнии.
7. Теперь ваши изображения можно использовать во многих приложениях. В приведенном ниже примере вы можете увидеть путь к картинкам в верхней строке, начиная с загрузок.
Если у вас есть вопросы, не стесняйтесь обращаться к нам.

Свяжитесь с нами

Вкладка «Распаковать / Поделиться (Копировать)» — WinZip

Когда вы открываете Zip-файл, вкладка рядом с вкладкой File будет вкладкой Unzip / Share (верхняя часть рисунка). Если вы открываете WinZip пустым или находитесь в процессе создания нового Zip-файла, вкладка перемещается на одно место вправо и становится вкладкой Копировать в (Примечание : функции не работают в Копировать в вкладка, если ничего не добавлено).Раздел Share остается на первой позиции и не применяется при использовании вкладки Copy to . Функции на этой вкладке перечислены по разделам и описаны под изображением.

Распаковать в

  • Открытая папка Zip: Эта кнопка заменяет функцию распаковки одним щелчком. Если вы щелкните по нему, папка будет создана в том же месте, что и ваш Zip-файл, и все файлы из Zip-файла будут распакованы в нее.
  • Документы: Эта кнопка распаковывает в папку с тем же именем, что и у Zip-файла, как указано выше, но всегда помещает эту папку в папку «Документы».В раскрывающемся меню есть пункт, позволяющий выбрать другую папку, в которой также можно изменить имя кнопки.
  • Последняя папка распаковки: Эта кнопка активна только после того, как вы выбрали конкретную папку для распаковки файлов в предыдущем сеансе. Затем вы можете использовать его, чтобы снова разархивировать прямо в эту папку.
  • Мой компьютер или облако: Если вы хотите перейти к определенной папке, которую вы будете использовать для файлов, которые вы распаковываете, нажмите эту кнопку.
Распаковать на мой компьютер или в облако — единственная функция распаковки на вкладке Копировать в . Она работает так же, как кнопки Мой компьютер или Облако выше, и отображается, как показано на рисунке, когда вы работаете с несохраненным новым Zip-файлом.

Файлы для распаковки

  • Все файлы: Щелкните этот переключатель, чтобы все файлы и папки в этом Zip-файле были разархивированы (или скопированы)
  • Выбранные файлы: Щелкните этот переключатель, чтобы распаковать (или скопировать) только те файлы и папки, которые вы выбрали.
  • Поиск: Нажмите эту кнопку, чтобы найти и выбрать файлы, которые вы назначаете, или используйте раскрывающееся меню, чтобы выбрать все файлы / папки или инвертировать выбор

Совместное использование

  • Поделиться с помощью электронной почты: После добавления файлов в новый Zip-файл вы можете нажать эту кнопку, чтобы отправить его по электронной почте.В раскрывающемся меню есть 3 варианта совместного использования и доступ к настройкам. Параметры в списке запоминаются при следующем открытии WinZip.
    • Как вложение: отправьте новый Zip-файл в виде физического вложения к сообщению электронной почты
    • Использование облака: отправьте ссылку на новый Zip-файл после его загрузки в облачную службу
    • Выбрать автоматически: если размер Zip-файла превышает настроенный пороговый размер, он будет отправлен с помощью облачной службы; в противном случае он отправляется как физическое вложение файла (порог по умолчанию — 5 МБ)
    • Настройки
    • : открывает вкладку Электронная почта в параметрах WinZip, позволяющая настроить параметры электронной почты и автоматический пороговый размер
    • .
  • Поделиться с помощью другого: Нажмите эту кнопку, чтобы поделиться с помощью одного из следующих трех вариантов:
    • Социальные сети: Щелкните этот параметр, чтобы поделиться в Facebook, LinkedIn и / или Twitter; введите собственное имя или разрешите автоматическое именование; измените статусное сообщение, которое будет опубликовано, если хотите; и ссылка на ваш Zip-файл будет размещена в выбранных сетях после загрузки в облачный сервис
    • Мгновенный обмен сообщениями: выберите эту опцию, чтобы поделиться в Hangouts (Google Talk), Jabber, группах Office365 и Twitter; выберите службу чата, выберите один или несколько контактов и нажмите ОК, чтобы загрузить файл в облачную службу по умолчанию и отправить ссылку выбранному вами контакту
    • Windows Charms: щелкните этот параметр, чтобы выбрать Windows Charm (приложение), которое будет использоваться для совместного использования вашего файла после его загрузки в облачную службу.К ним относятся встроенное почтовое приложение, копирование ссылки, Microsoft OneNote и многое другое.
  • Expire Files: Нажмите эту кнопку, чтобы включить или выключить опцию Expire Files. Первый вариант в раскрывающемся меню такой же, а второй вариант — установить или сбросить срок действия.
  • Чем поделиться: Используйте это раскрывающееся меню, чтобы указать, будете ли вы предоставлять общий доступ. Этот файл WinZip или файл (ы) из облака . Сделав свой выбор, нажмите «Электронная почта», «Социальные сети» или «Мгновенные сообщения», чтобы поделиться своим выбором.По умолчанию этот файл WinZip будет открыт для общего доступа.

WinZip Express

  • Zip and Share: Нажмите эту кнопку, чтобы открыть диалоговое окно WinZip Express. С его помощью вы можете заархивировать выбранные файлы или все содержимое вашего Zip-файла, если ничего не выбрано, и использовать множество мощных функций WinZip Express.
  • Snap and Share: WinZip Pro Откройте WinZip Snap and Share, функцию WinZip Express, чтобы загружать и архивировать фотографии с цифровой фотокамеры, а также использовать множество функций, предоставляемых WinZip Express.
  • Сканировать и отправить: WinZip Pro Откройте WinZip Scan and Share, функцию WinZip Express, чтобы настроить параметры для использования с подключенным сканером, сканировать документ или изображение и использовать многие параметры, предоставляемые WinZip Выражать.

Статьи по теме:
Вкладка «Файл»
Вкладка «Создать / Поделиться (Редактировать)»
Вкладка «Резервное копирование»
Вкладка «Инструменты»
Вкладка «Настройки»
Вкладка «Просмотр»
Вкладка «Справка»
Купить сейчас / получить WinZip Pro Tab

Извлечение — MagicDraw 18.5 — Документация

Функция извлечения доступна в версиях Architect и Enterprise.

Функция извлечения позволяет переместить выбранную часть диаграммы во вновь созданную диаграмму. Ссылочный элемент будет создан на месте извлеченного элемента (ов) на исходной диаграмме.

Чтобы сделать диаграммы более читаемыми и удобными, вы можете извлечь определенную часть диаграммы на другую диаграмму. Используя извлечение, вы можете повторно использовать эту часть диаграммы для упрощения сложной системы.

Схема источника

Схема источника — это диаграмма, из которой извлекаются элементы.

Целевая диаграмма

Целевая диаграмма — это вновь созданная диаграмма, полученная в результате извлечения. Выбранные элементы перемещаются с исходной диаграммы на целевую.

Извлечение

Извлечение означает перемещение выбранных элементов из одного места в другое. Другими словами, выбранные элементы удаляются из исходной диаграммы и перемещаются на вновь созданную целевую диаграмму.

Ссылочный элемент

Ссылочный элемент создается в результате извлечения. Ссылочный элемент создается на исходной диаграмме и представляет элементы, перемещенные на целевую диаграмму во время извлечения.

Ссылочный элемент содержит ссылку на целевую диаграмму. Таким образом, двойной щелчок ссылочного элемента на панели диаграммы или в обозревателе моделей откроет целевую диаграмму.

Пересеченная связь

Пересеченная связь — это связь, выбранная на исходной диаграмме.Пересечение появляется, когда выделение пересекает отношение — выбран один конечный элемент связи, но не оба.

Функциональность извлечения можно использовать на следующих диаграммах:

  • Извлечение в диаграмме последовательности
  • Извлечение в диаграмме действий
  • Извлечение в диаграмме конечного автомата
  • Извлечение в диаграмме составной структуры

Для извлечения выбранной части


  1. На схеме выберите часть, которую нужно извлечь.
  2. В контекстном меню выбранной детали выберите Refactor > Extract . Откроется мастер извлечения для конкретного типа диаграммы.

Как заархивировать и разархивировать файлы и папки на Mac

Что нужно знать

  • Заархивируйте отдельный файл или папку: щелкните его, удерживая нажатой клавишу Control или правой кнопкой мыши, и выберите Сжать .
  • Заархивируйте несколько файлов или папок: щелкните их, удерживая нажатой клавишу «Shift». Щелкните выбранные файлы, удерживая клавишу Control или щелкните правой кнопкой мыши и выберите Сжать .
  • Распакуйте архив: дважды щелкните архив.

В этой статье объясняется, как заархивировать и распаковать файлы и папки на Mac с помощью утилиты архивирования, встроенной в macOS Big Sur (11.0) через Mac OS X 10.8.

Apple скрывает утилиту архивирования, потому что это основная служба операционной системы. Хотя эта утилита спрятана, Apple упрощает архивирование и разархивирование файлов и папок, выбирая их в Finder.

Как создать zip-файл на Mac: заархивируйте отдельный файл или папку

Сжимайте и распаковывайте отдельный файл или папку с помощью Finder для доступа к утилите архивирования, встроенной в Mac.

  1. Откройте Finder и перейдите к файлу или папке, которую вы хотите сжать.

  2. Щелкните элемент, удерживая клавишу Control или щелкните правой кнопкой мыши и выберите Сжать имя элемента .

  3. Найдите сжатую версию файла. Он имеет то же имя, что и исходный файл, с расширением .zip.

Утилита архивирования архивирует выбранный файл, оставляя исходный файл или папку нетронутыми.Сжатая версия находится в той же папке, что и исходный файл.

Архивировать несколько файлов и папок

Сжатие нескольких файлов и папок работает примерно так же, как сжатие одного элемента. Основное отличие — это имя zip-файла.

Обычно вы используете утилиту архивирования, не запуская ее. Однако, если у вас есть большое количество файлов для сжатия или распаковки, вы можете запустить утилиту и перетащить на нее файлы и папки. Утилита архивирования находится по адресу System > Library > CoreServices > Applications .

  1. Откройте папку, содержащую файлы или папки , которые вы хотите сжать.

  2. Выберите элементы, которые хотите включить в ZIP-файл. Щелкните, удерживая нажатой клавишу «Shift», чтобы выбрать диапазон файлов, или щелкните, удерживая клавишу «Command», чтобы выбрать несмежные элементы.

  3. Щелкните правой кнопкой мыши или щелкните любой из элементов, удерживая клавишу Control, и выберите Сжать . На этот раз слово «Сжать» соответствует количеству выбранных вами элементов, например, Сжать 5 элементов .

  4. Найдите сжатые элементы в файле Archive.zip , который находится в той же папке, что и оригиналы.

    Если у вас уже есть Archive.zip, после имени нового архива идет число. Например, Archive 2.zip, Archive 3.zip и т. Д.

Как разархивировать файлы

Чтобы распаковать файл или папку, дважды щелкните zip-файл . Файл или папка распаковываются в ту же папку, что и сжатый файл.

Если zip-файл содержит один файл, новый распакованный элемент будет иметь то же имя, что и исходный. Если файл с таким же именем существует, распакованный файл имеет номер, добавленный к его имени.

Тот же самый процесс именования применяется, когда zip-файл содержит несколько элементов. Если папка содержит архив, новая папка называется Архив 2.

Сторонние приложения для архивирования и распаковки файлов Mac

Встроенная система сжатия, которая может архивировать и распаковывать файлы в macOS и OS X, относительно проста, поэтому также доступны многие сторонние приложения.Беглый взгляд на Mac App Store показывает более 50 приложений для архивирования и распаковки файлов.

Если вам нужно больше функций сжатия файлов, чем Apple предлагает в своей утилите архивирования, эти сторонние приложения могут помочь.

Спасибо, что сообщили нам!

Расскажите, почему!

Другой Недостаточно подробностей Сложно понять

FILE_UNZIP

FILE_UNZIP

Процедура FILE_UNZIP распаковывает файлы ZIP. Распаковка отдельных файлов в ZIP-файле выполняется с помощью процедуры ZLIB_UNCOMPRESS.

Эта процедура написана на языке IDL. Его исходный код можно найти в файле file_unzip.pro в подкаталоге lib дистрибутива IDL.

Примечание: Из-за ограничений файлового ввода-вывода IDL результирующие файлы и каталоги не будут иметь никакой исходной информации о владельце файла, разрешений (режимы файлов) или отметок времени. Вместо этого файлы и каталоги будут иметь текущего владельца файла и разрешения по умолчанию, а также будут иметь отметку времени, равную текущему системному времени.

Примеры


В следующем примере мы заархивируем подкаталог resource / fonts в установке IDL, а затем разархивируем файл в наш текущий рабочий каталог:

 dir = FILEPATH ('', SUBDIR = ['ресурс', 'шрифты']) 
 FILE_ZIP, каталог, 'idlresources.zip' 
 FILE_UNZIP, 'idlresources.zip', / VERBOSE 

IDL отпечатков:

% шрифтов \ 
% шрифтов \ hersh2.chr, 44667 байт 
 ... 
% шрифтов \ tt \ ttfont.map, 305 байт 
% Всего 61 файл, 963401 байт 
% Истекшее время: 0,070999861 секунды. 

Здесь мы получаем список всех файлов в ZIP-архиве и извлекаем только первые пять файлов в наш текущий рабочий каталог:

 dir = FILEPATH ('', SUBDIR = ['ресурс', 'шрифты']) 
 FILE_ZIP, каталог, idlresources.zip '
 FILE_UNZIP, 'idlresources.zip', / LIST, FILES = файлы 
 FILE_UNZIP, 'idlresources.zip', EXTRACT_FILES = files [0: 4], / VERBOSE 

IDL отпечатков:

% шрифтов \ 
 Извлеченные файловые шрифты \ 
% шрифтов \ hersh2.chr, 44667 байт 
 Извлеченный файл шрифтов \ hersh2.chr 
% шрифтов \ ps \ 
 Извлеченные файловые шрифты \ ps \ 
% шрифтов \ ps \ Arimo-Bold.pfa, 70394 байта 
 Извлеченный файл шрифтов \ ps \ Arimo-Bold.pfa 
% fonts \ ps \ Arimo-BoldItalic.pfa, 69769 байт 
 Извлеченный файл fonts \ ps \ Arimo-BoldItalic.pfa 
% шрифтов \ ps \ Arimo-Italic.pfa, 61646 байт 
 Пропущенные шрифты файла \ ps \ Arimo-Italic.pfa 
 ... 
% шрифтов \ tt \ ttfont.map, 334 байта 
 Пропущенные файловые шрифты \ tt \ ttfont.карта 
% Всего 5 файлов, 5

0 байт
% Истекшее время: 0,05 

15 секунд.

Синтаксис


FILE_UNZIP, Файл [, DirectoryOut ] [, FILES = переменная] [, / LIST] [, / VERBOSE] [, / EXTRACT_FILES]

Аргументы


Файл

Задайте в этом аргументе скалярную строку, дающую файл для распаковки.

DirectoryOut

Задайте в этом необязательном аргументе скалярную строку, задающую выходной каталог.Этот каталог будет создан, если он в настоящее время не существует. Если DirectoryOut не указан, FILE_UNZIP будет распакован в текущий каталог File .

Ключевые слова


EXTRACT_FILES

Задайте для этого ключевого слова строку или массив строк с именами файлов, которые нужно извлечь из zip-архива. Неизвестные имена файлов будут проигнорированы.

ФАЙЛОВ

Установите это ключевое слово для именованной переменной.По возвращении эта переменная будет содержать строковый массив всех файлов, которые были распакованы.

СПИСОК

Задайте это ключевое слово для выполнения всех действий FILE_UNZIP без фактического разархивирования файла. Список файлов можно получить с помощью ключевого слова FILES, а ключевое слово VERBOSE выведет список каталогов и файлов в ZIP-файле.

VERBOSE

Задайте это ключевое слово для вывода дополнительной информации во время выполнения подпрограммы.

История версий


8.2.3

Представлен

8,7

Добавлено ключевое слово EXTRACT_FILES

См. Также


FILE_GZIP, FILE_GUNZIP, FILE_TAR, FILE_UNTAR, FILE_ZIP, ZLIB_COMPRESS, ZLIB_UNCOMPRESS

Как заархивировать файл

Вы когда-нибудь загружали папку, полную файлов, только для того, чтобы заметить, что все документы внутри зашифрованы и зашифрованы — в основном это цифровая версия Fort Knox? Это примеры неизменно прекрасного, но запутанного zip-файла, идентифицируемого по его расширению «.zip. »

Хотя дополнительные шаги, которые необходимо предпринять для открытия таких папок , могут быть незначительными неприятностями, zip-файлы действительно ваш друг. Вы можете не только сжимать огромные файлы в компактный размер для совместного использования, но и легко заблокируйте содержимое, чтобы только предполагаемый получатель мог видеть, что внутри.

Погрузитесь глубже. ➡ Прочтите лучшие в своем классе технические пояснения и получите неограниченный доступ к Pop Mech , начиная с этого момента.

Вот как работает zip-файл и как самостоятельно выполнить сжатие (и разархивирование).

Что такое ZIP-файл?

Этот контент импортирован с YouTube. Вы можете найти тот же контент в другом формате или найти дополнительную информацию на их веб-сайте.

Еще в 1980-х годах покойный программист Фил Кац изобрел набор алгоритмов сжатия файлов, чтобы они занимали меньше места. В его компании PKWARE, Inc. программы были известны как PKZIP и PKUNZIP. Первоначально программа была создана для сжатия файлов до 50–70 процентов от их первоначального размера, чтобы на физических гибких дисках поместилось больше файлов.

«ZIP-файл берет каталог, содержащий, скажем, 25 файлов, и превращает его в один файл», — сообщает Popular Mechanics Самир Хуллер, заведующий отделом компьютерных наук Северо-Западного инжиниринга.

Со временем алгоритмы сжатия стали настолько популярными, что другие компании, такие как Nico Mac и Netzip, начали разрабатывать программы zip и unzip. Сегодня основные алгоритмы zip / unzip являются общественным достоянием, поэтому теоретически любой может написать свою собственную программу, если захочет.

Большинство из нас больше не использует гибкие диски (надеюсь), поэтому zip-файлы больше предназначены для поддержания пространства RAM на наших ноутбуках или компьютерах, более быстрой загрузки файлов из Интернета или блокировки сжатых файлов в целях безопасности.

Одним из наиболее распространенных способов использования zip-файлов является загрузка программного обеспечения. Заархивирование программы экономит место на серверах компании, ускоряет ее загрузку и сохраняет вместе сотни или потенциально тысячи отдельных файлов.

Как работает сжатие?

Pick-uppath Getty Images

По своей сути, сжатие заключается в уменьшении количества битов и байтов в файле. При повторном доступе к папке или отдельному элементу алгоритм распаковки должен заполнить эти биты и байты обратно, и файл должен вернуться в исходное состояние.

Это связано с избыточностью, присущей многим типам файлов на наших компьютерах. В большинстве типов файлов — от фотографий .jpg до документов .pdf и даже видеороликов .mp4 — снова и снова используются одни и те же строки кода. Алгоритмы сжатия используют это повторение, перечисляя исходную информацию один раз и ссылаясь на нее в любом другом месте кода.

Этот контент импортирован из {embed-name}. Вы можете найти тот же контент в другом формате или найти дополнительную информацию на их веб-сайте.

Хуллер объясняет, что алгоритмы сжатия, подобные тем, которые используются в файлах .zip, будут оценивать файл и искать шаблоны. Основываясь на этих конкретных избыточностях в коде, алгоритм будет соответствующим образом скорректирован. Это означает, что каждое сжатие зависит от файла, и уникальный код для расширения файла до его исходного формата также сохраняется прямо в файле.

«Если я напишу книгу, есть большая вероятность, что многие слова появятся несколько раз», — говорит Хуллер.

Обратите внимание на следующее.Это известная цитата из инаугурационной речи президента Джона Ф. Кеннеди в 1961 году:

«Не спрашивайте, что ваша страна может сделать для вас, спрашивайте, что вы можете сделать для своей страны».

В этой строке 17 отдельных слов, но не все разные. Состоит из 61 буквы, 16 пробелов, запятой и точки. Если мы подумаем о том, что каждый из этих символов занимает одну единицу пространства, то общий размер файла для нашего предложения составляет 79 единиц. Чтобы подавить это, мы можем проверить дублирование.

Компьютеры

используют программы сжатия, которые, как правило, представляют собой разновидность алгоритма на основе адаптивного словаря LZ (LZ принадлежит Лемпелю и Зиву, создателям алгоритма). Конкретные системы размещения информации или словари могут различаться, но простой способ — использовать нумерованный список. Итак, в примере Кеннеди это может быть наш словарь:

(1) Спросите (2) Что (3) Ваша (4) Страна (5) Может (6) Сделать (7) F0r (8) Вы.

Теперь предложение можно переписать так: «1 не 2 3 4 5 6 7 8, 1 2 8 5 6 7 3 4.

Вы можете себе представить, что если программа прошла и переписала всю речь Кеннеди таким образом, она могла быть значительно сжата, поскольку слова в приведенном выше списке, скорее всего, будут появляться снова и снова.

Как заархивировать Файл

Этот контент импортирован с YouTube. Вы можете найти тот же контент в другом формате или найти дополнительную информацию на их веб-сайте.

🤐 На Mac:

Чтобы сжать файл или папку, нажмите Control + щелкните или коснитесь его двумя пальцами, затем выберите Сжать в контекстном меню.

Если вы сжимаете один элемент, сжатый файл принимает имя исходного элемента плюс расширение .zip. Поэтому, если изображение изначально называется «photo.jpg», можно ожидать, что сжатая версия получит имя «photo.jpg.zip».

🤐 В Windows 10:

Щелкните правой кнопкой мыши в пустой области рабочего стола> выберите Новый > выберите Сжатая (заархивированная) папка.

Как распаковать файл

Этот контент импортирован с YouTube.Вы можете найти тот же контент в другом формате или найти дополнительную информацию на их веб-сайте.

🤐 На Mac:

Чтобы развернуть элемент в формате .zip, просто дважды щелкните файл или папку. Исключение из этого правила, конечно, если папка защищена паролем или зашифрована, и в этом случае вам также понадобится пароль или ключ шифрования.

🤐 В Windows 10:

Просто щелкните правой кнопкой мыши папку, затем выберите Извлечь все .

Как создать свой собственный ZIP-файл

🤐 На Mac:

Выберите группу файлов, которые вы хотите сжать> щелкните правой кнопкой мыши и выберите Сжать [имя файла].

🤐 В Windows 10:

Перейдите к File Explorer на панели задач> выберите все файлы, которые вы хотите добавить в zip-папку> щелкните правой кнопкой мыши и выберите Отправить до > выберите сжатую (zip) папку > переименуйте свой zip-файл и нажмите Enter.

Как зашифровать zip-файл

Матиас Кулька Getty Images

Независимо от того, используете ли вы ПК или Mac, существуют две основные формы шифрования файлов .zip. Первый называется ZipCrypto, но его относительно легко взломать, по крайней мере, по данным организации Info-ZIP, которая оценила его как «довольно слабый».

Второй называется AES-256, который на самом деле не был разработан для zip-файлов — это надежный метод шифрования, широко используемый повсеместно.Пока вы используете надежный пароль, этот вариант практически невозможно взломать.

Этот контент импортирован с YouTube. Вы можете найти тот же контент в другом формате или найти дополнительную информацию на их веб-сайте.

Если вы выберете маршрут AES-256, вам понадобится сторонняя программа для шифрования заархивированной папки, потому что собственные программы для архивирования / распаковки как в Windows, так и в MacOS не поддерживают эту опцию. Популярной альтернативой в любом случае является 7-zip, который является бесплатным и открытым исходным кодом.После того, как вы загрузили это программное обеспечение, вы можете добавить пароль и заблокировать zip-файл.

⚠️Просто имейте в виду, что независимо от того, какой тип шифрования вы используете, любой, у кого есть zip-файл, может видеть его содержимое — имена файлов и все такое.

Самое замечательное в шифровании zip-файлов — это то, что оно настолько надежно — настолько , фактически, что один человек с биткойнами на сумму 300 000 долларов фактически заблокировал себя из своей учетной записи, потому что он полностью забыл закрытый ключ, который он необходимо использовать для получения цифровых денег.

Закрытый ключ был надежно спрятан внутри — как вы уже догадались — зашифрованной, заархивированной папки.

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *