Что можно проверить осциллографом: Проверка радиодеталей осциллографом

Содержание

Проверка радиодеталей осциллографом

При изготовлении и ремонте радиоэлектронной аппаратуры устанавливаются различные радиоэлементы. Чтобы убедиться в их исправности, проводится предварительный (входной) контроль, который можно осуществлять с помощью приставки к любому осциллографу.

Принципиальная схема

Принципиальная схема приставки изображена на рис. 1. Приставка к осциллографу позволяет проверять практически все элементы, устанавливаемые в радиоэлектронные устройства бытовой аппаратуры: от резисторов до управляемых вентилей (тиристоров), а также дает возможность оценить качество потенциометров, катушек индуктивности, исправность переключателей, реле, трансформаторов и т. д.

Таким образом, один осциллограф может заменить почти всю измерительную лабораторию входного контроля. Необходимо иметь в виду, что осциллограф служит не только для наблюдений различных процессов, связанных с изменением формы напряжения.

Рис. 1. Принципиальная электрическая схема приставки к осциллографу.

 

Осциллограф можно использовать как электронный вольтметр, омметр, а применяя приставку к осциллографу, можно наблюдать на экране осциллографа характеристики транзисторов, что расширяет возможности использования осциллографа в ремонтной и любительской практике.

Конструкция и работа с приставкой

Приставка собирается в металлическом или пластмассовом корпусе размерами 50 X 75 X 100 мм с использованием малогабаритного трансформатора, понижающего напряжение с 220 до 6,3 В. Мощность трансформатора небольшая (20 мВт), а потребляемый ток не превышает 2—3 мА.

Рис. 2. Соединение приставки с осциллографом.

Работа с приставкой. Выводы приставки 1, 2, 3 соединяют с соответствующими выводами осциллографа (рис. 2). Осциллограф переводят в режим работы с внешней синхронизацией или с разверткой от внешнего источника. Подключают приставку к сети. На экране появится горизонтальная линия (если выводы 1 и 2 не замкнуты).

Затем Нажимают кнопку КН1, линия на экране осциллографа должна при этом отклониться на некоторый угол.

Ручками «Усиление по горизонтали», «Усиление по вертикали» и «Установка по вертикали» добиваются того, чтобы линия располагалась в центре экрана под углом 45° к горизонтальной оси. Длина изображения должна быть равна половине диаметра экрана (рис. 3).

Проверяемый элемент всегда подключают к выводам приставки 3 я 2. Вертикальная линия на экране (см. рис. 3) свидетельствует о коротком замыкании, горизонтальная — об обрыве в цепи или в элементе. Характер изображения на экране осциллографа определяется зависимостью сопротивления испытуемого элемента от величины и полярности подводимого к нему синусоидального напряжения.

Проверка электронных компонентов

Покажем, что можно увидеть на экране осциллографа при исследовании следующих элементов.

Полупроводниковые диоды. Полярность включения и вид кривых на экране показаны на рис. 3, а, б. При обратном включении диода получается кривая, изображенная на рис. 3, в. Так можно определить выводы анода и катода диодов, у которых стерта маркировка.

Если вершина угла на экране скруглена или одна из его сторон много больше другой, или направление прямых сильно отличается от горизонтального и вертикального, то диод должен быть забракован.

Стабилитроны. Если напряжение стабилизации стабилитрона меньше 10 В, на горизонтальной линии появится излом (рис. 3,г). Расстояние от излома до вертикальной линии будет соответствовать напряжению стабилизации (в нашем случае 10 В).

Селеновые вентили. Если элемент исправный, то луч на экране будет вычерчивать горизонтальную линию, которая плавно переходит в вертикальную (рис. 3, д).

У неисправного элемента вертикальная часть осциллограммы будет очень короткой или с большим наклоном. Такая кривая свидетельствует о большом падении напряжения на вентиле при прохождении тока в прямом направлении. Падение напряжения на селеновых выпрямителях много больше, чем на германиевых или кремниевых.

Рис. 3. Осциллограммы, полученные при проверке электрорадиоэлементов

Туннельные диоды. Способ включения показан на рис. 3, е. Характеристика исправного диода изображена на рисунке (кривая 1). Иногда, увеличивая усиление по горизонтали, удается получить картину, показанную на рисунке (кривая 2), которая представляет собой типичную характеристику туннельного диода. Перед проверкой других деталей ручку «Усиление по горизонтали» необходимо перевести в положение, найденное во время калибровки.

Управляемые вентили (тиристоры) (рис. 3,ж). Вид Ірольтамперной характеристики для исправного элемента (с отключенным управляющим выводом—УЭ) показан на рис. 3, ж,1. Когда управляющий электрод соединяют с зажимом 2, тиристор открывается и луч рисует на экране кривую, похожую на характеристику дабычного диода, включенного в проводящем направлении (рис. 3, ж, 2),

Транзисторы. Подключение их к приставке показано на рис. 3, з. Если выводы эмиттера и коллектора поменять местами, рисунок иа экране не изменится (база остается не подключенной). первая осциллограмма, изображенная на рис. 3, з, будет соответствовать транзистору п-р-п.

Если при испытаниях транзисторов на экране не появится характеристика в виде буквы L, это значит, что в цепи электродов транзистора имеется обрыв. Когда один из отрезков осциллограммы (буквы L) изогнут, это означает, что неисправен один из р-п переходов транзистора.

Изгиб вертикальной линии свидетельствует о большом сопротивлении в прямом направлении, наклон горизонтальной линии — о малом Обратном сопротивлении перехода (большой обратный ток коллектора). Отклонение сторон угла от горизонтали и вертикали указывает на плохое качество переходов.

Обычно у мощных транзисторов (даже у самых лучших) всегда наблюдается большой обратный ток коллектора. Поэтому сначала надо испытать несколько исправных мощных транзисторов и затем уже по инм, как по эталонам, проверять другие. Явления, указывающие на короткое замыкание или обрыв в транзисторе, одинаковы для всех типов транзисторов.

Однопереходные транзисторы.

Схема включения показана на рис. 3, к. Сначала следует провести измерение с отключенным эмиттером. На экране осциллографа должна появиться прямая линия с наклоном 30° по отношению к горизонтальной оси (рис. 3, к,

1). Затем соединяют эмиттер с зажимом 2, при этом часть прямой на экране должна изогнуться вверх (рис. 3, к, 2). Если эмиттер подключить к зажиму 3 (к базе транзистора), вертикальным станет нижний конец прямой (рис. 3, к, 3).

Резисторы (постоянные и переменные). Измеряя транспортиром угол наклона прямой на экране относительно горизонтали, можно приблизительно определить величины сопротивлений различных резисторов. Для этого следует использовать схему рис. 3, л и график, изображенный на рис. 4. Для резисторов с сопротивлением до 100 Ом луч на экране будет вычерчивать вертикальную ось, свыше 100 кОм — горизонтальную.

Рис. 4. График для определения величины сопротивления постоянных и переменных резисторов.

Эти две прямые определяют диапазон измерений осциллографа. Перед измерением резистор следует подключить к зажимам 3 и 2. Один из крайних выводов и средний вывод регулируемого резистора (потенциометра) подключают к приставке. При повороте оси исследуемого переменного резистора наклон прямой на экране должен измениться. Нечеткое изображение линии на экране указывает на загрязнение подвижного контакта резистора.

Фоторезисторы подключают к зажимам 3 и 2. Если входное отверстие фоторегулятора прикрыть, то на экране появится прямая, имеющая небольшой угол наклона. Если прибор осветить, появится вертикальная прямая. Используя график, приведенный на рнс. 81, можно определить сопротивление прибора при освещении с различной интенсивностью. Так подбирают фоторезисторы с близкими характеристиками, а также калибруют фотоэкспонометры.

Конденсаторы любого типа также присоединяют к зажимам 3 к 2. Для исправных конденсаторов емкостью до 0,85 мкФ на экране появится эллипс с горизонтальной большой осью (см. рис. 3, м). При емкости, близкой к 0,85 мкФ, на экране получится круг, а при емкости, превышающей эту величину, снова эллипс, но с большой вертикальной осью.

Рис. 5. График для нахождения емкостей проверяемых конденсаторов.

Измеряя отношения большой и малой осей эллипса, можно по графику, приведенному на рис. 5, найти приблизительную емкость конденсатора. Если большая ось эллипса наклонена, это свидетельствует о слишком большом токе утечки конденсатора.

Катушки, реле и трансформаторы. Выводы катушек, реле и обмоток трансформаторов подключают к зажимам 3 и 2 приставки и наблюдают эллипс иа экране осциллографа. При индуктивности катушки меньше 5 Г на экране получится эллипс, большая ось которого слегка наклонена относительно вертикали, при индуктивности 5 Г на экране будет круг, а выше 5 Г — эллипс, большая ось которого немного отклонена от горизонтальной оси.

Естественно, что точность таких измерений не высока, так как на вид осциллограммы влияет не только индуктивность, но и емкость обмоток. Форма осциллограммы, отличающаяся от описанной, указывает на короткое замыкание в катушке. Имея катушки, индуктивность которых известна, измеряемую индуктивность можно определить сравнением.

Проверка электрических цепей. Так как устройство позволяет оценивать очень малые значения сопротивления между зажимами 3 и 2, его можно использовать для проверки выключателей, электроламп, предохранителей, монтажных проводов и электрических цепей.

Автомобильный осциллограф для диагностики автомобиля

Найти неисправность стало гораздо проще. Не надо разбирать и подкидывать каждую запчасть, что удешевляет поиск неисправности и экономит время. Автомобильный осциллограф применяется для диагностики двигателя, датчиков электронной системы управления, генератора, стартера, аккумулятора. Нужен при комплексной автомобильной диагностике, дополняет проверку сканером. Позволяет делать дефектовку мотора без вскрытия.

Осциллограф – это прибор, который снимает параметры времени и амплитуды электрического сигнала.

При неисправностях автомобиля, также нужны эти характеристики. То есть как изменяется сигналы датчика, катушки, форсунки по времени.

Какой выбрать осциллограф для диагностики авто

Рассмотрим наиболее удобные и информативные приборы.

USB Autoscope Постоловского

На первом месте в рейтинге практиков стоит осциллограф Постоловского USB Autoscope IV. Имеет обширные диагностические функции.

Преимущества
  • Профессиональные скрипты от Андрея Шульгина.
  • Удобный интерфейс.
  • Широкий диапазон измерения от 6 до 300 вольт.
  • Обработка скриптов в автоматическом режиме.
  • Информативный скрипт эффективности по цилиндрам CSS, показывающий работу форсунок, системы зажигания.
  • Тест аккумулятора, генератора, стартера. Показывает неисправности в автоматическом режиме. Легкий процесс съема характеристик: достаточно иметь доступ к плюсовой или минусовой клеммам АКБ.
  • Тест давления в цилиндре. Показывает метки системы газораспределения, правильно ли стоят фазы. Выявляет провернутый задающий диск.

Полная документация по работе с прибором. Подробно описаны скрипты, схемы подключения. Есть видео инструкция на сайте производителя. Отзывчивая поддержка.

Мотодок 3

Вторым в списке рейтинга осциллографов для диагностики автомобиля любой марки стоит Мотодок 3. Имеет схожие характеристики.

Преимущества и недостатки
  • Скрипт Андрея Шульгина эффективности цилиндров. Есть некоторые недостатки по синхронизации с некоторыми автомобилями, имеющими слабый сигнал с датчика коленчатого вала. Но это сглаживается удобством и быстрой работой.
  • Подключения на любое расстояние по кабелю RJ 45.
  • Качество картинки при диагностике, что не маловажно при работе.
  • Подробная документация на сайте производителя.

Для примера приведены только два осциллографа для диагностики авто. Существуют и другие приборы: отличаются ценой, производителем, но принцип измерения одинаков. Самое главное иметь опыт в чтении осциллограмм к каждой марке автомобиля.

Диагностика осциллографом автомобиля: как проводить

Пользоваться осциллографом не составляет особых трудностей у диагностов. Методика подробно описана в инструкциях к прибору. Главное знать места подключения к датчику положения коленчатого вала для проведения скрипта Шульгина по эффективности цилиндров. Для различных марок автомобилей ДПКВ может находится возле задающего диска или маховика.

Проверка датчиков осциллографом
ДПКВ

Датчик положения коленчатого вала. Нужен для синхронизации искры и форсунок по такту сжатия. Сигнал имеет синусоидальную форму с разрывом. Форма сигнала с одинаковой амплитудой. Если есть отклонения, значит задающий диск имеет не равномерность вращения или люфт.

Исправный ДПКВ

Методика измерения

  1. Подключаем измерительный щуп к сигнальному проводу осциллографа.
  2. Ставим диапазон измерения до 300-500 вольт.
  3. Нажимаем кнопку пуск и снимаем сигнал.
ДПРВ

Датчик положения распределительного вала. Имеет прямоугольную форму сигнала амплитудой 12,3 – 12,7 вольта. Полезно снимать одновременно сигналы ДПКВ и ДПРВ для определения фазы впрыска и смещения распределительных валов относительно друг друга. Но как правило этот параметр проверки ДВС есть на сканере.

 

Нижний фронт сигнала ДПРВ совпадает с разрывом зубьев на задающем диске, что говорит о правильной фазе впрыска.
ДМРВ

Датчик массового расхода воздуха применяется на бензиновых двигателях для измерения объема прошедшего воздуха. Основной параметр для диагностики — это его АЦП равное 0,996 вольт при включенном зажигании. При углубленной диагностике ДМРВ, нужно померить время релаксации – период, за который, датчик выходит в нулевое положение.

Исправный ДМРВ. Нулевое напряжения равно 0,996 вольт и скорость выхода на рабочий диапазон 0,5 мс.

Ниже представлена осциллограмма неисправного ДМРВ. Время перехода 20 мс, а напряжение при нулевом объеме воздуха 1,130 вольт. Авто с таким датчиком будет расходовать много топлива и терять мощность.

 

Неисправный дмрв

Немаловажно проверить пик выхода датчика на максимальный уровень напряжения. Для этого нужно снять сигнал с ДМРВ на заведенном ДВС, при резко нажатой педали газа. Чем больше показания к 5 вольтам, тем датчик имеет большую отдачу и авто будет эластичнее.

Сигнал напряжения ДМРВ под нагрузкой

Работа с автомобильным осциллографом не страшна для начинающих диагностов.  Нужно тщательно изучить инструкцию по работе с прибором и применять на практике. Чем больше опыт подключения к конкретной марке, тем быстрее и точнее поиск неисправностей.

ДПДЗ

Датчик положения дроссельной заслонки. Проверить легче всего сканером. Но при плавающей неисправности, когда автомобиль едет рывками, нужно проверить сигнал осциллографом. Подключаем сигнальный провод щупа к выходу ДПДЗ и снимаем сигнал открывая дроссель. Не должно быть резких скачков.

Исправный датчик положения дроссельной заслонкиНеисправный датчик положения дроссельной заслонки

Проверка массы двигателя осциллографом

Плохую массу двигателя можно проверить измерительным щупом осциллографа. Минус щупа соединяется с минусовой клеммой АКБ, а сигнальный с двигателем или кузовом. Значительные помехи говорят о плохой массе.

Хорошая масса

Диагностика катушек зажигания с помощью осциллографа  

Проверка системы зажигания возможна только по анализу сигнала вторичной или первичной цепи. Самодиагностика двигателя автомобиля способна только косвенно определить дефекты в высоковольтной части. Может выдать ошибку по пропускам зажигания. Коды неисправностей пропусков дают общую картину работы цилиндра. Они могут возникнуть как от неисправной катушки, свечи, высоковольтного провода, форсунки, низкой компрессии, подсоса воздуха. Для точного определения неисправной катушки зажигания нужна проверка осциллографом.

Ниже приведен пример типичного сигнала высоковольтного пробоя, по которому можно судить о работоспособности всей высоковольтной системы автомобиля. Любой дефектный элемент: катушка, провод, свеча проявится на этой осциллограмме.

Типичные неисправности системы зажигания Межвитковое замыкание в первичной цепи катушкиПробой высоковольтного проводаСвеча в сажеСлишком большое время накопления катушки. Дефект в электронном блоке управления двигателем.
Проверка индивидуальных катушек зажигания

Для диагностики индивидуальных катушек зажигания очень удобно использовать осциллограф АВТОАС-ЭКСПРЕСС М. Удобство заключается в его компактности и легкости подключения. Достаточно загрузить программу и приложить индуктивный или емкостной датчик прибора к самой катушке. Получаем осциллограмму как показано выше.

Диагностика топливной форсунки осциллографом

Форсунка бензинового двигателя состоит из запорного клапана, электромагнитный катушки. Соответственно движение этого клапана возможно проверить осциллографом.

Исправная форсункаНеисправная форсунка

Диагностика форсунок с помощью осциллографа требуется в случае тщательного поиска неисправности. В большинстве случаев достаточно сделать тест Андрея Шульгина на эффективность работы цилиндров.

Проверка датчика кислорода с применением осциллографа

Лямбда зонд служит для точного дозирования топливо – воздушной смеси и снижения уровня токсичности отработавших газов. Работает по принципу гальванического элемента. Вырабатывает напряжение в зависимости от присутствия свободного кислорода во внутренней и внешней ячейке датчика. Напряжение варьируется от 0,1 – 0,9 вольт, что соответствует бедной и богатой смеси.

Проверить работу датчика можно

  • Сканером
  • Осциллографом

Первый вариант быстрый и достаточный для оценки общей работы. Второй же вариант диагностики датчика кислорода более точный и позволяет оценить скорость сработки лямбда зонда в режиме обратной связи.

Неисправный датчик кислорода. Скорость реакции медленнаяДатчик кислорода полностью неисправен

Скрипт CSS Андрея Шульгина

Вот мы и добрались до самой сути диагностики автомобильных двигателей. Для диагностов любой марки это самый информативный скрипт. Он показывает работу форсунок, искры и компрессии за одну проверку. Для проведения этого теста достаточно снять сигнал с датчика положения коленвала и синхронизацию с искры первого цилиндра. Сложность может заключаться в подключении к ДПКВ некоторых марок, но это сглаживается информацией, которую дает скрипт.

Порядок записи сигнала применительно к осциллографу USB Autoscope:
  1. Подключиться параллельно сигнальным щупом осциллографа к выходу ДПКВ
  2. Если установлена система зажигания DIS поставить щуп синхронизации на первый цилиндр, индивидуальная катушка — воспользоваться индуктивным датчиком.
  3. Запустить двигатель и дать работать на холостом ходу.
  4. Активировать скрипт CSS
  5. Через 5-10 секунд плавно поднять обороты до 3000 и опустить.
  6. Спустя 5-10 секунд резко поднять обороты и выключить искру оставив педаль газа полностью нажатой.
  7. Остановить скрипт.

Анализ теста Андрея Шульгина
  1. Нажать кнопку «Выполнить скрипт»
  2. Задать входную информацию для анализа: количество и порядок работы цилиндров, угол опережения зажигания с погрешностью ±10°.
  3. Анализируем полученную картинку.
График скрипта CSS
  • Холостой ход — снижена эффективность 3 цилиндра.8.
  • Низкая компрессия в 3 цилиндре.

Таким образом, за 5 минут можно найти причину «троящего» двигателя, не откручивая свечи и не замеряя компрессию.

Порядок проведения теста эффективности на осциллографе Мотодок 3

Порядок снятия скрипта аналогичный USB Autoscope:

Анализ осциллограммы давления в цилиндре

Для снятия характеристики газодинамических процессов в цилиндре в комплекте с Мотортестером прилагается датчик давления на 16 атм. Двигатель должен быть прогрет до температуры 80-90 °C

Порядок проведения теста:

  1. Датчик давления вкрутить вместо свечи. Высоковольтный провод проверяемого цилиндра соединить с разрядником и подключить к нему датчик синхронизации первого цилиндра.
  2. Выключить форсунку в проверяемом цилиндре.
  3. Запустить прибор.
  4. Завезти двигатель и дать работать на холостых оборотах.
  5. Получить осциллограмму давления синхронизированную по ВМТ 0°C, как показано ниже.

Выпускной клапан открывается на 160° — метка смещена

Важно проанализировать две точки на осциллограмме:

  1. Момент открытия выпускного клапана. На моторах без фазовращателей значение 140-145°, с фазовращателями порядка 160°.
  2. Момент перекрытия, когда выпускной и впускной клапана открыты одновременно. Должен быть 360-360°.

При отклонениях от этих значений, можно говорить о смещении фаз газораспределения.

Все вышеприведенные методы работы с мотор тестером можно делать в различной последовательности. Все зависит от конкретного случая. Где-то достаточно провести тест Шульгина или снять характеристику давления в цилиндре. Главное найти неисправность меньшими потерями для владельца автомобиля.

Диагностика ЦПГ двигателя с помощью осциллографа.

В этой статье рассматриваются методы компьютерной диагностики состояния механики двигателя. Суть методов основана на том, что с помощью специальных датчиков при использовании многоканального цифрового осциллографа на базе ПК мы имеем возможность анализировать изменение состояния разных величин: разрежение во впускном коллекторе; давление в цилиндрах; пульсации давления отработавших газов в выхлопной трубе; пульсации давления картерных газов; пульсации давления масла в масляной магистрали; пульсации тока стартера. При этом мы можем засинхронизировать сигнал от индуктивного датчика, установленного на высоковольтный провод свечи первого цилиндра бензинового двигателя или от пьезодатчика, установленного на топливопроводе форсунки первого цилиндра дизельного двигателя. Таким образом, можно сделать вывод о принадлежности определенной аномалии конкретному цилиндру.

Предлагаемые методики полностью универсальны и применимы для диагностики как бензиновых, так и дизельных двигателей.

Проверка пульсаций разрежения во впускном коллекторе

Этот тест проводится в режиме прокрутки стартером. Для блокировки пуска двигателя нужно отключить систему зажигания и/или систему подачи топлива. Если двигатель исправен, сигнал носит синусоидальный характер.

Сигнал пилообразной формы

Сигнал приобретает пилообразную форму в случае, если ремень (цепь) установлен неправильно.

Сигнал имеет шумы в верхней части синусоиды

Такая осциллограмма разрежения во впускном коллекторе указывает на то, что впускные клапана закоксованы настолько, что нагар на тарелке клапанов препятствует эффективному наполнению цилиндров топливовоздушной смесью.

Неравномерность осциллограммы разрежения во впускном коллекторе

Такая осциллограмма указывает на нарушения в работе клапанного механизма, связанные с неправильной регулировкой тепловых зазоров в клапанном механизме, или на неисправность гидрокомпенсаторов. Этот тест также позволяет выделить неисправности только механической части двигателя, а время проведения, 5-6 сек, не имеет себе равных.

Проверка пульсаций отработавших газов в выхлопной трубе

Наверное, многие замечали, как опытный моторист анализирует работу двигателя, поднося руку к выхлопной трубе. Неравномерность пульсаций выхлопных газов ощущается даже рукой и указывает на наличие проблем в системе подачи топлива, зажигании, а также на проблемы механики двигателя. Характер пульсаций давления выхлопных газов несет в себе богатую информацию о работе двигателя. Для анализа неравномерности выхлопа используется датчик давления, который подсоединяется к выхлопной трубе.

Теперь двигатель нужно запустить и оставить работать на холостом ходу.

Осциллограмма пульсаций отработавших газов исправного двигателя.

Если в одном из цилиндров наблюдается уменьшение уровня пульсаций, и это отклонение носит систематичный характер, значит, один из цилиндров работает со сниженной эффективностью.

Проверка пульсаций картерных газов

Почти каждый автомобилист наблюдал, как «знатоки» открывали крышку маслозаливной горловины на работающем двигателе и пытались давать советы о состоянии поршневой группы. Газы, прорывающиеся в картер через изношенную цилиндропоршневую группу, вызывают там пульсации давления. Измерив уровень пульсаций давления картерных газов с помощью соответствующего датчика, можно судить о состоянии цилиндропоршневой группы. Осциллограмма пульсаций давления картерных газов исправного двигателя на холостом ходу.

Импульс давления одного из цилиндров на осциллограмме давления картерных газов резко выделяется на фоне остальных.

Такая осциллограмма указывает на то, что в одном из цилиндров может быть повреждение зеркала цилиндра, поломка или залегание поршневых колец, поломка перегородок или прогар поршня.

Осциллограмма давления в цилиндре

В отличие от теста замера разрежения во впускном коллекторе, этот тест дает более ценную информацию на работающем двигателе. Для проведения теста датчик давления должен быть вкручен вместо свечи зажигания.

Свечной провод должен быть подключен к разряднику. Двигатель будет работать с отключенным зажиганием в одном цилиндре на протяжении трех-пяти минут. Какую же информацию несет сигнал этого датчика?

Пик давления в цилиндре однозначно указывает на ВМТ поршня. Второй канал отображает сигнал индуктивного датчика, указывающий на момент зажигания. Зная обороты двигателя и разницу времени между импульсом зажигания и ВМТ, можно вычислить реальный угол опережения зажигания. Анализируя осциллограмму давления в цилиндре, можно измерить моменты открытия и закрытия клапанов.

Начало увеличения давления перед ВМТ такта сжатия указывает на момент закрытия впускного клапана. Момент, отмеченный на осциллограмме, соответствует началу открытия выпускного клапана. Следующая точка, которая нам интересна, – момент начала открытия впускного клапана, когда выпускной еще не закрылся. Начало открытия впускного клапана. Данный тест позволяет сделать вывод о работе газораспределительного механизма для каждого цилиндра отдельно. Имея технические данные исследуемого двигателя (углы открытия и закрытия клапанов) можно сделать вывод о степени износа кулачков распредвала. В заключение хочется сказать следующее: никакой самый современный диагностический прибор не в состоянии самостоятельно поставить достоверный диагноз. Диагностические приборы являются лишь инструментом в руках опытного диагноста. И правильность поставленного диагноза зависит от уровня квалификации специалиста.

Проверка зажигания осциллографом. как производится диагностика зажигания при помощи осцилографа

Как сократить время поиска неисправности при помощи осциллографа и почему иногда не стоит пользоваться светодиодным пробником

Пример 1. Автомобиль Kia Cerato, глохнет. Двигатель обычный, G4GA объёмом 1,6 литра, устанавливается на многие модели KIA и Hyundai. Ошибок, как обычно, нет.

Для начала нужно определиться, что пропадает в момент “заглохания”, тут не обойтись без осциллографа, поэтому:
– один канал на управление форсункой первого цилиндра
– второй на катушку зажигания
– третий на датчик положения распредвала
– четвёртый на ДПКВ.

Осциллограф включаю в режим самописца, завожу двигатель. Через минут двадцать мотор глохнет, смотрим осциллограмму.

Сигнал датчика положения коленвала пропал. После этого мотор завёлся, поработал пару минут, опять заглох, после чего уже заводится отказался. Датчик меняем на новый, чтобы ещё раз удостовериться в неисправности старого датчика замеряю его сопротивление

Оно около 1кОм, в норме. Нагреваю датчик феном

Сопротивление увеличивается до бесконечности, датчик неисправен.

Пример 2. Автомобиль Toyota Land Cruiser 200. Жалобы владельца: “Климат контроль периодически выключается”.

Для начала также нужно определиться, чего ему не хватает для работы. Открываю схему климата, A/C Amplifer имеет питание в виде двух постоянных плюсов (+BAT) и двух зажиганий (+IG), минусы, кстати, это тоже питание, но проверять начну с плюсов, подключаю четыре канала осциллографа, далее включение зажигания и запуск двигателя

И сразу такая удача: “на одном из зажиганий напряжение не поднимается выше 6,6В”.

Сейчас отопитель работает, скорее всего, он отключался когда напряжение совсем пропадало. Кстати, если в этом случае пользоваться светодиодным пробником, то он замечательно будет светиться и от 6В и заведёт вас в тупик, я так “попадал”, после чего светодиодный пробник отправился в мусорку. У разъёма видны следы вмешательства в проводку, разматываю изоленту

Провод зажигания разорван, к соединениям вопросов нет, всё качественно. Эти нештатные провода идут под капот и заканчиваются вот такой красотой:

На автомобиле установлен дополнительный отопитель “Webasto”, задачей этого реле была подача плюса на вход зажигания ЭБУ отопителя во время работы Webasto. Но время и влажность сделали своё дело, реле немного подгнило. Реле вместе с разъёмом заменили, немного переместили его, чтобы вода не попадала, теперь всё работает как надо.

Пример 3. Audi A4 1,8T глохнет, тут всё проще: в памяти куча ошибок, среди которых есть по датчику положения коленвала, но убедиться в его неисправности надо.

Подключаю осциллограф одним каналом на ДПКВ, вторым на ДПРВ – просто, чтобы сохранить рабочую синхронизацию датчиков для этого мотора. Через десять минут мотор глохнет

Как и ожидалось сигнал с ДПКВ пропал. Снимаю датчик, проверяю феном сопротивление и одновременно температуру датчика, после 80 градусов датчик уходит в обрыв.

Вот такие три обычные неисправности, где использование осциллографа значительно сократило время диагностики и ремонта.

Источники:

http://www.drive2.com/l/6657680/

Автомобильный осциллограф: понятие и принципы работы

http://auto-master.su/content/diagnostika-tspg-dvigatelya-s-pomoshchyu-ostsillografa

http://autodata.ru/article/all/tipichnye_neispravnosti_proverki_pri_pomoshchi_ostsillografa/

http://4pda.ru/forum/index.php?showtopic=892782

Диагностика автомобиля осциллографом! Советы… — Техническое обслуживание и ремонт автомобиля

Привет, всем читателям блога об устройстве и ремонте автомобиля! Сегодня вас ждет очень интересная тема, которая вам обязательно понравится. И это — диагностика автомобиля осциллографом.

Диагностика автомобиля очень щепетильный процесс, который требует большой аккуратности от владельца и о диагностике мы говорили уже очень много. Поэтому, для начала, я вам напомню о прошлой публикации на блоге. В прошедшем посте я вам рассказал про тюнинг масштабных автомобилей. Многим он может и не нравится, но есть люди, которые просто кайфуют, тюнингуя свои масштабные машинки.

Надеюсь, запись про тюнинг окажется вам очень интересной, и чтобы не пропускать больше таких публикаций советую подписаться на обновления блога. Это сделать очень легко и это не займет много времени…

Итак, начнем про диагностику автомобиля осциллографом. Достаточно много мастеров, которые по-настоящему любят свое дело, знают, как устроена проверка узлов электроники автомобиля. Они знают, что могут проверить с помощью осциллографа не только показатели напряжения в сетях электроники, но ещё и сам процесс изменения напряжения во время работы.

Нормальный осциллограф способен выявлять некоторые нарушения в следующих системах автомобиля:

  • Система топливоподачи (Проверка топливных форсунок; проверка на работоспособность датчиков температуры; а также проверка датчика массового расхода воздуха, положения дроссельной заслонки в карбюраторе, датчика кислорода и так далее… ).
  • Система зарядки и питания (Проверка системы зарядки аккумуляторной батареи; проверка работы генератора).
  • Система зажигания (Определение углов опережения зажигания; диагностика датчиков системы зажигания; определение неисправностей у катушки зажигания; определение состояния высоковольтных свечных проводов и свечей).
  • Система газораспределения (Проверка правильной установки ремня ГРМ; оценка относительной компрессии цилиндров при запуске стартером; оценка компрессии в работающем режиме двигателя и в режиме прокрутки; а также проверка работы клапанов).

Хочу отметить то, что осциллограф окажется незаменимой вещицей под вашими руками, если ваш автомобиль имеет слабую самодиагностику. Представьте себе что, чем хуже самодиагностика вашего авто, тем больше вам нужно выполнить работы по внешней проверке и тем больший объем работы будет переходить на внешнее оборудование по проверке. И именно в таких ситуациях нужен осциллограф. Этот прибор способен с легкостью определить проблемы системы управления автомобилем, а также проблемы, описанные выше и определить причины связанные с этими проблемами.

Одна из самых важных показателей в диагностике автомобиля осциллографом — это частотность. Аппарат способен показывать на его экране меняющиеся показатели частотности.

Технические возможности осциллографов.

Цепи осциллографов на входе имеют два выхода — положительный и отрицательный. Кроме этого, входные цепи многих приборов могут обеспечивать развязку входных и питающих цепей осциллографа. Эта отличная особенность дает возможность подключать выходы аппарата к любой точке проводки автомобиля, не боясь о том,что может случиться короткое замыкание.

При покупке осциллографа обращайте внимание на характеристику входного осциллографа. В настоящее время современные приборы имеют сопротивление, равное 100 Ком. Если вы не находите этой характеристики в тех. описании прибора, то нужно обязательно производить подключение строго по инструкции.

Также посоветую вам помнить в любом случае, используя осциллографы для диагностики автомобиля о том, что некоторые осциллографы имеют другие типы входных цепей, которые не смогут обеспечить той самой развязки входов от питающих цепей.

Как выбрать?

При выборе осциллографа вы должны знать строго, для чего именно он нужен, какие задачи вы хотите вместе с ним решить. Если вы выбираете аппарат для своего специализированного автосервиса, то тогда вам подойдет, специальный осциллограф, а для того, чтобы выполнить диагностику собственного автомобиля самостоятельно вам окажется достаточным обычный осциллограф.

Хочу также напомнить, что современные осциллографы имеют огромнейшее разнообразие датчиков, благодаря которым вы сможете выполнить диагностику автомобиля по многим параметрам.

Даже не смотря на это, могу вам сказать то, что и совсем обычные осциллографы могут выполнить качественно проверку всех электрических цепей и систем двигателя автомобиля.

Чтобы вы лучше поняли, как выглядит и как работает осциллограф, предлагаю посмотреть небольшой видео обзор нового осциллографа SIGLENT серии SHS800

Как пользоваться осциллографом

Введение

Вы когда-нибудь обнаруживали, что при поиске неисправностей в цепи вам требуется больше информации, чем может предоставить простой мультиметр? Если вам нужно получить такую ​​информацию, как частота, шум, амплитуда или любые другие характеристики, которые могут измениться со временем, вам понадобится осциллограф!

О-образные диафрагмы

— важный инструмент в лаборатории любого инженера-электрика. Они позволяют видеть электрические сигналы , поскольку они меняются с течением времени, что может иметь решающее значение для диагностики, почему ваша схема таймера 555 не мигает правильно или почему ваш генератор шума не достигает максимальных уровней раздражения.

Digilent Analog Discovery 2

В наличии TOL-13929

Digilent Analog Discovery 2 — это USB-осциллограф и многофункциональный прибор, который позволяет пользователям измерять, контролировать…

14

HAMlab — 160-6 10 Вт

Осталось всего 3! WRL-15001

HAMlab — это полнофункциональный SDR-трансивер с диапазоном 160-10 м и выходной мощностью 10 Вт, построенный на платформе STEMlab…

рассматривается в этом учебном пособии

Это руководство предназначено для ознакомления с концепциями, терминологией и системами управления осциллографов.Он разбит на следующие разделы:

  • Основы O-Scopes — Введение в осциллографы, что они измеряют и почему мы их используем.
  • Oscilloscope Lexicon — Словарь некоторых наиболее распространенных характеристик осциллографов.
  • Анатомия осциллографа — Обзор наиболее важных систем осциллографа — экрана, элементов управления по горизонтали и вертикали, триггеров и пробников.
  • Использование осциллографа — Советы и рекомендации для тех, кто впервые использует осциллограф.

Мы будем использовать Gratten GA1102CAL — удобный цифровой осциллограф среднего уровня — в качестве основы для обсуждения осциллографа. Другие o-области могут выглядеть иначе, но все они должны иметь одинаковый набор механизмов управления и интерфейса.

Рекомендуемая литература

Прежде чем продолжить изучение этого руководства, вы должны быть знакомы с приведенными ниже концепциями. Ознакомьтесь с руководством, если хотите узнать больше!

Видео


Основы O-Scopes

Основное назначение осциллографа — графическое изображение электрического сигнала, изменяющегося во времени .Большинство осциллографов создают двумерный график с временем по оси x и напряжением по оси y .

Пример дисплея осциллографа. Сигнал (в данном случае желтая синусоида) отображается на горизонтальной оси времени и вертикальной оси напряжения.

Элементы управления, окружающие экран осциллографа, позволяют регулировать масштаб графика как по вертикали, так и по горизонтали, что позволяет увеличивать и уменьшать масштаб сигнала.Также есть элементы управления для установки триггера на прицеле, который помогает сфокусировать и стабилизировать изображение.

Что могут измерить прицелы

В дополнение к этим основным функциям многие осциллографы имеют инструменты измерения, которые помогают быстро определять частоту, амплитуду и другие характеристики формы сигнала. Как правило, осциллограф может измерять характеристики как по времени, так и по напряжению:

  • Временные характеристики :
    • Частота и период — Частота определяется как количество повторений сигнала в секунду.И период является обратной величиной (количество секунд, которое занимает каждый повторяющийся сигнал). Максимальная частота, которую может измерить осциллограф, варьируется, но часто она находится в диапазоне 100 МГц (1E6 Гц).
    • Рабочий цикл — Процент периода, в течение которого волна является либо положительной, либо отрицательной (есть как положительные, так и отрицательные рабочие циклы). Рабочий цикл — это соотношение, которое показывает, как долго сигнал «включен» по сравнению с тем, как долго он «выключен» в каждом периоде.
    • Время нарастания и спада — Сигналы не могут мгновенно переходить от 0 В до 5 В, они должны плавно нарастать.Продолжительность волны, идущей от нижней точки к верхней точке, называется временем нарастания, а время спада измеряет обратное. Эти характеристики важны при рассмотрении того, насколько быстро цепь может реагировать на сигналы.
  • Характеристики напряжения :
    • Амплитуда — Амплитуда — это мера величины сигнала. Существует множество измерений амплитуды, включая размах амплитуды, который измеряет абсолютную разницу между точкой высокого и низкого напряжения сигнала.С другой стороны, пиковая амплитуда измеряет только то, насколько высокий или низкий сигнал превышает 0 В.
    • Максимальное и минимальное напряжение — осциллограф может точно сказать вам, насколько высоким и низким становится напряжение вашего сигнала.
    • Среднее и среднее напряжение — Осциллографы могут вычислять среднее или среднее значение вашего сигнала, а также могут сообщать вам среднее значение минимального и максимального напряжения вашего сигнала.

Когда использовать O-Scope

o-scope полезен в различных ситуациях поиска и устранения неисправностей, в том числе:

  • Определение частоты и амплитуды сигнала, которые могут иметь решающее значение при отладке входа, выхода или внутренних систем схемы.По этому вы можете определить, неисправен ли какой-либо компонент в вашей цепи.
  • Определение уровня шума в вашей цепи.
  • Определение формы волны — синус, квадрат, треугольник, пилообразная, сложная и т. Д.
  • Количественное определение разности фаз между двумя разными сигналами.

Осциллограф Lexicon

Научиться пользоваться осциллографом — значит познакомиться с целым словарем терминов.На этой странице мы познакомим вас с некоторыми важными модными словечками o-scope, с которыми вам следует ознакомиться, прежде чем включать его.

Основные характеристики осциллографа

Некоторые прицелы лучше других. Эти характеристики помогают определить, насколько хорошо вы можете ожидать от прицела:

  • Полоса пропускания — Осциллографы чаще всего используются для измерения сигналов определенной частоты. Однако ни один прицел не идеален: у всех есть пределы того, насколько быстро они могут видеть изменение сигнала.Полоса пропускания осциллографа определяет диапазон частот , который он может надежно измерить.
  • Цифровые и аналоговые — Как и большинство всего электронного, осциллографы могут быть аналоговыми или цифровыми. Аналоговые осциллографы используют электронный луч для прямого отображения входного напряжения на дисплей. Цифровые осциллографы включают микроконтроллеры, которые дискретизируют входной сигнал с помощью аналого-цифрового преобразователя и отображают это показание на дисплее. Как правило, аналоговые осциллографы старше, имеют меньшую полосу пропускания и меньше функций, но они могут иметь более быстрый отклик (и выглядеть намного круче).
  • Количество каналов — Многие осциллографы могут считывать более одного сигнала одновременно, отображая их все на экране одновременно. Каждый сигнал, считанный осциллографом, подается в отдельный канал. Очень распространены осциллографы от двух до четырех каналов.
  • Частота дискретизации — Эта характеристика уникальна для цифровых осциллографов, она определяет, сколько раз в секунду считывается сигнал. Для осциллографов с более чем одним каналом это значение может уменьшиться, если используется несколько каналов.
  • Время нарастания — Указанное время нарастания осциллографа определяет самый быстрый нарастающий импульс, который он может измерить. Время нарастания осциллографа очень тесно связано с полосой пропускания. Его можно рассчитать как Время нарастания = 0,35 / Пропускная способность .
  • Максимальное входное напряжение — Каждая электроника имеет свои пределы, когда дело касается высокого напряжения. Все осциллографы должны быть рассчитаны на максимальное входное напряжение. Если ваш сигнал превышает это напряжение, есть большая вероятность, что прицел будет поврежден.
  • Разрешение — Разрешение осциллографа показывает, насколько точно он может измерять входное напряжение. Это значение может изменяться при настройке вертикального масштаба.
  • Вертикальная чувствительность — Это значение представляет собой минимальное и максимальное значения вертикальной шкалы напряжения. Это значение указано в вольтах на деление.
  • Временная база — Временная база обычно указывает диапазон чувствительности на горизонтальной оси времени. Это значение указывается в секундах на каждый div.
  • Входное сопротивление — Когда частота сигнала становится очень высокой, даже небольшой импеданс (сопротивление, емкость или индуктивность), добавленный к цепи, может повлиять на сигнал. Каждый осциллограф добавляет к цепи, которую он считывает, определенное сопротивление, называемое входным сопротивлением. Входные импедансы обычно представлены как большое сопротивление (> 1 МОм), соединенное параллельно (||) с малой емкостью (в диапазоне пФ). Влияние входного импеданса более очевидно при измерении очень высокочастотных сигналов, и используемый пробник может помочь его компенсировать.

На примере GA1102CAL приведены характеристики, которые можно ожидать от прицела среднего класса:

/ дел 50 — 2 с
Характеристика Значение
Полоса пропускания 100 МГц
Частота дискретизации 1 Гвыб. / С (1E9 выборок в секунду)
Время нарастания 9019 9019 9019 9019
Максимальное входное напряжение 400 В
Разрешение 8 бит
Чувствительность по вертикали 2 мВ / дел — 5 В / дел
Развертка времени
Входное сопротивление 1 МОм ± 3% || 16 пФ ± 3 пФ

Понимая эти характеристики, вы сможете выбрать осциллограф, который наилучшим образом соответствует вашим потребностям.Но вам все равно нужно знать, как им пользоваться … на следующей странице!


Анатомия O-Scope

Хотя не существует абсолютно одинаковых осциллографов, все они должны иметь некоторые общие черты, которые заставляют их функционировать одинаково. На этой странице мы обсудим несколько наиболее распространенных систем осциллографов: дисплей, горизонтальную, вертикальную, триггерный и входные.

Дисплей

Осциллограф бесполезен, если он не может отображать информацию, которую вы пытаетесь проверить, что делает дисплей одним из наиболее важных разделов осциллографа.

Каждый дисплей осциллографа должен быть пересечен горизонтальными и вертикальными линиями, называемыми делениями . Масштаб этих делений изменен с помощью горизонтальной и вертикальной систем. Вертикальная система измеряется в «вольтах на деление», а горизонтальная — в «секундах на деление». Как правило, прицелы имеют 8-10 делений по вертикали (напряжение) и 10-14 делений по горизонтали (секунд).

Старые осциллографы (особенно аналоговые) обычно имеют простой монохромный дисплей, хотя интенсивность волны может варьироваться.Более современные осциллографы оснащены многоцветными ЖК-экранами, которые очень помогают отображать более одной формы сигнала за раз.

Многие дисплеи осциллографов расположены рядом с набором из пяти кнопок — сбоку или под дисплеем. Эти кнопки могут использоваться для навигации по меню и управления настройками осциллографа.

Вертикальная система

Вертикальная секция осциллографа управляет шкалой напряжения на дисплее. В этом разделе традиционно есть две ручки, которые позволяют индивидуально управлять вертикальным положением и вольт / дел.

Более критичная ручка вольт на деление позволяет вам установить вертикальный масштаб на экране. Вращение ручки по часовой стрелке уменьшает масштаб, а против часовой стрелки — увеличивает. Меньший масштаб — меньшее количество вольт на деление экрана — означает, что вы в большей степени «увеличиваете масштаб» формы сигнала.

Дисплей GA1102, например, имеет 8 делений по вертикали, а ручка вольт / дел может выбрать шкалу от 2 мВ / дел до 5 В / дел. Таким образом, при полном увеличении до 2 мВ / дел на дисплее может отображаться осциллограмма 16 мВ сверху вниз.Полностью уменьшенный, осциллограф может отображать сигнал в диапазоне более 40 В. (Зонд, как мы обсудим ниже, может еще больше увеличить этот диапазон.)

Положение Ручка управляет вертикальным смещением формы сигнала на экране. Поверните ручку по часовой стрелке, и волна будет двигаться вниз, против часовой стрелки — вверх по дисплею. Вы можете использовать ручку положения, чтобы сместить часть сигнала за пределы экрана.

Используя одновременно ручки положения и вольт / деления, вы можете увеличить только крошечную часть сигнала, которая вам важнее всего.Если у вас есть прямоугольная волна 5 В, но вы заботитесь только о том, насколько сильно она звенит по краям, вы можете увеличить нарастающий фронт, используя обе ручки.

Горизонтальная система

Горизонтальная часть осциллографа контролирует шкалу времени на экране. Как и в вертикальной системе, горизонтальный элемент управления дает вам две ручки: положение и секунды / дел.

Ручка секунд на деление (с / дел) вращается для увеличения или уменьшения горизонтального масштаба.Если вы повернете ручку s / div по часовой стрелке, количество секунд, которое представляет каждое деление, уменьшится — вы «увеличите масштаб» временной шкалы. Поверните против часовой стрелки, чтобы увеличить шкалу времени и отобразить на экране большее количество времени.

Если снова использовать GA1102 в качестве примера, дисплей имеет 14 горизонтальных делений и может отображать от 2 нс до 50 с на деление. Таким образом, при полном увеличении по горизонтальной шкале осциллограф может отображать 28 нс формы волны, а при увеличении масштаба он может отображать сигнал, когда он изменяется в течение 700 секунд.

Ручка позиции может перемещать вашу форму волны вправо или влево от дисплея, регулируя горизонтальное смещение .

Используя горизонтальную систему, вы можете настроить , сколько периодов сигнала вы хотите видеть. Вы можете уменьшить масштаб и показать несколько пиков и впадин сигнала:

Или вы можете увеличить масштаб и использовать ручку положения, чтобы показать только крошечную часть волны:

Система запуска

Секция триггера предназначена для стабилизации и фокусировки осциллографа.Триггер сообщает осциллографу, какие части сигнала «запускать» и начинать измерение. Если ваша форма волны периодическая , триггером можно управлять, чтобы дисплей оставался статичным, и устойчивым. Плохо сработавшая волна будет производить такие широкие волны, как это:

, вызывающие судороги.

Секция триггера осциллографа обычно состоит из ручки уровня и набора кнопок для выбора источника и типа триггера. Ручка уровня может быть повернута для установки триггера на определенную точку напряжения.

Ряд кнопок и экранных меню составляют остальную часть триггерной системы. Их основное назначение — выбор источника и режима запуска. Существует множество типов триггеров , которые управляют тем, как активируется триггер:

  • Спусковой механизм edge — это самая простая форма спускового крючка. Он заставит осциллограф начать измерение, когда напряжение сигнала перейдет на определенный уровень. Триггер по фронту может быть настроен на захват нарастающего или спадающего фронта (или обоих).
  • Триггер импульс сообщает осциллографу, что нужно ввести заданный «импульс» напряжения. Вы можете указать длительность и направление импульса. Например, это может быть крошечный скачок 0 В -> 5 В -> 0 В, или это может быть секундный провал с 5 В на 0 В, обратно на 5 В.
  • Триггер по наклону может быть настроен для срабатывания осциллографа по положительному или отрицательному наклону в течение определенного периода времени.
  • Существуют более сложные триггеры для фокусировки на стандартизованных формах сигналов, передающих видеоданные, например NTSC или PAL .Эти волны используют уникальный шаблон синхронизации в начале каждого кадра.

Обычно вы также можете выбрать режим запуска , который, по сути, сообщает осциллографу, насколько сильно вы относитесь к триггеру. В режиме автоматического запуска осциллограф может попытаться нарисовать сигнал, даже если он не запускается. Нормальный режим будет рисовать вашу волну, только если видит указанный триггер. И single mode ищет указанный вами триггер, когда он его видит, он рисует вашу волну, а затем останавливается.

Зонды

Осциллограф хорош только в том случае, если вы действительно можете подключить его к сигналу, а для этого вам нужны пробники. Пробники — это устройства с одним входом, которые направляют сигнал от вашей схемы к осциллографу. У них есть острый наконечник , который исследует точку на вашей цепи. Наконечник также может быть оснащен крючками, пинцетом или зажимами, чтобы упростить фиксацию на цепи. Каждый пробник также включает в себя зажим заземления , который следует надежно прикрепить к общей точке заземления на тестируемой цепи.

В то время как пробники могут показаться простыми устройствами, которые просто фиксируются на вашей схеме и передают сигнал в осциллограф, на самом деле есть много вещей, которые нужно учитывать при проектировании и выборе пробника.

В оптимальном случае зонд должен быть невидимым — он не должен влиять на ваш тестируемый сигнал. К сожалению, все длинные провода обладают собственной индуктивностью, емкостью и сопротивлением, поэтому, несмотря ни на что, они будут влиять на показания осциллографа (особенно на высоких частотах).

Существует множество типов пробников, наиболее распространенным из которых является пассивный пробник , входящий в состав большинства прицелов.Большинство «стандартных» пассивных зондов — это аттенуированных . Ослабляющие пробники имеют большое сопротивление, намеренно встроенное и шунтируемое небольшим конденсатором, что помогает минимизировать влияние длинного кабеля на нагрузку вашей цепи. Этот ослабленный пробник, подключенный последовательно к входному сопротивлению осциллографа , будет создавать делитель напряжения между вашим сигналом и входом осциллографа.

Большинство пробников имеют резистор 9 МОм для ослабления, который в сочетании со стандартным входным сопротивлением 1 МОм на осциллографе создает делитель напряжения 1/10.Эти зонды обычно называются 10X аттенуированными зондами . Многие пробники включают переключатель для выбора между 10X и 1X (без затухания).

Аттенуированные пробники отлично подходят для повышения точности на высоких частотах, но они также уменьшат амплитуду вашего сигнала. Если вы пытаетесь измерить сигнал очень низкого напряжения, вам, возможно, придется использовать пробник 1X. Вам также может потребоваться выбрать настройку на вашем осциллографе, чтобы сообщить ему, что вы используете ослабленный зонд, хотя многие осциллографы могут это обнаружить автоматически.

Помимо пассивного аттенуированного пробника, существует множество других пробников. Активные пробники — это пробники с питанием (для них требуется отдельный источник питания), которые могут усилить ваш сигнал или даже предварительно обработать его, прежде чем он попадет в ваш осциллограф. Хотя большинство пробников предназначены для измерения напряжения, существуют пробники, предназначенные для измерения переменного или постоянного тока. Токовые пробники уникальны, потому что они часто зажимают провод, фактически не контактируя с цепью.


Использование осциллографа

Бесконечное разнообразие сигналов означает, что вы никогда не сможете использовать один и тот же осциллограф дважды. Но есть несколько шагов, на выполнение которых вы можете рассчитывать практически каждый раз, когда проверяете схему. На этой странице мы покажем пример сигнала и шаги, необходимые для его измерения.

Выбор и настройка датчика

Во-первых, вам нужно выбрать зонд. Для большинства сигналов простой пассивный пробник , входящий в комплект поставки осциллографа, будет работать идеально.

Затем, прежде чем подключать его к осциллографу, установите ослабление на пробнике. 10X — наиболее распространенный коэффициент затухания — обычно является наиболее всесторонним выбором. Однако, если вы пытаетесь измерить сигнал очень низкого напряжения, вам может потребоваться использовать 1X.

Подсоедините зонд и включите осциллограф

Подключите пробник к первому каналу осциллографа и включите его. Наберитесь здесь терпения, некоторые осциллографы загружаются так же долго, как и старый компьютер.

При загрузке осциллографа вы должны увидеть деления, масштаб и зашумленную ровную линию формы волны.

На экране также должны отображаться ранее установленные значения для времени и вольт на деление. Игнорируя пока эти шкалы, внесите эти настройки, чтобы поместить ваш прицел в стандартную настройку :

  • Включите канал 1 и выключите канал 2.
  • Установите канал 1 на Связь по постоянному току .
  • Установите источник запуска на канал 1 — без внешнего источника или запуска по альтернативному каналу.
  • Установите тип запуска на нарастающий фронт и режим запуска на автоматический (в отличие от одиночного).
  • Убедитесь, что коэффициент ослабления пробника осциллографа на вашем прицеле соответствует настройке на вашем пробнике (например, 1X, 10X).

Для получения помощи по настройке этих параметров обратитесь к руководству пользователя осциллографа (например, к руководству GA1102CAL).

Проверка датчика

Давайте подключим этот канал к значимому сигналу. Большинство осциллографов будут иметь встроенный частотный генератор , который излучает надежную волну заданной частоты — на GA1102CAL в правом нижнем углу передней панели имеется прямоугольный выходной сигнал частотой 1 кГц.Выход генератора частоты имеет два отдельных проводника — один для сигнала и один для заземления. Подключите заземляющий зажим пробника к земле, а наконечник пробника к выходу сигнала.

Как только вы подключите обе части зонда, вы должны увидеть, как сигнал начинает танцевать по вашему экрану. Попробуйте поиграть с помощью системных регуляторов горизонтального и вертикального , чтобы перемещать сигнал по экрану. Поворот регуляторов шкалы по часовой стрелке «увеличивает» осциллограмму, а против часовой стрелки — уменьшает.Вы также можете использовать ручку положения для дальнейшего определения вашего сигнала.

Если ваша волна все еще нестабильна, попробуйте повернуть ручку положения триггера на . Убедитесь, что триггер не выше самого высокого пика сигнала . По умолчанию тип триггера должен быть установлен по фронту, что обычно является хорошим выбором для таких прямоугольных волн.

Попробуйте повозиться с этими ручками, чтобы отобразить на экране один период вашей волны.

Или попробуйте уменьшить масштаб временной шкалы, чтобы отобразить десятки квадратов.

Компенсация затухающего пробника

Если ваш датчик настроен на 10X, и у вас нет идеально прямоугольной формы волны, как показано выше, вам может потребоваться компенсировать ваш датчик . Большинство пробников имеют утопленную головку винта, которую можно повернуть, чтобы отрегулировать шунтирующую емкость пробника.

Попробуйте использовать небольшую отвертку, чтобы повернуть этот триммер, и посмотрите, что происходит с осциллограммой.

Отрегулируйте подстроечный колпачок на рукоятке зонда так, чтобы получилась прямоугольная волна с прямым краем и .Компенсация необходима только в том случае, если ваш зонд ослаблен (например, 10X), и в этом случае это критично (особенно если вы не знаете, кто использовал ваш осциллограф последним!).

Наконечники для пробников, запуска и масштабирования

После того, как вы скомпенсировали зонд, пришло время измерить реальный сигнал! Иди найди источник сигнала (генератор частоты ?, Террор-Мин?) И возвращайся.

Первый ключ к зондированию сигнала — найти прочную и надежную точку заземления . Прикрепите зажим заземления к известному заземлению, иногда вам, возможно, придется использовать небольшой провод для промежуточного звена между зажимом заземления и точкой заземления вашей цепи.Затем подключите наконечник пробника к тестируемому сигналу. Наконечники пробников существуют в различных форм-факторах — подпружиненный зажим, острие, крючки и т. Д. — постарайтесь найти тот, который не требует от вас постоянного удерживания его на месте.

⚡ Внимание! Будьте осторожны при установке заземляющего зажима при проверке неизолированной цепи (например, без батарейного питания или при использовании изолированного источника питания). При проверке цепи, заземленной на сетевую землю, обязательно подключите заземляющий зажим к стороне цепи , подключенной к сетевой земле .Это почти всегда отрицательная сторона цепи / земля, но иногда может быть и другая точка. Если точка, к которой подключен заземляющий зажим, имеет разность потенциалов, вы создадите прямое короткое замыкание и можете повредить вашу схему, осциллограф и, возможно, вас самих! Для дополнительной безопасности при проверке цепей, подключенных к сети, подключайте его к источнику питания через изолирующий трансформатор.

Как только ваш сигнал появится на экране, вы можете начать с настройки горизонтального и вертикального масштабов, по крайней мере, так, чтобы приблизиться к вашему сигналу.Если вы исследуете прямоугольную волну 5 В и 1 кГц, вам, вероятно, понадобится значение вольта на деление где-то около 0,5-1 В и установите секунды / деление примерно на 100 мкс (14 делений покажут примерно полтора периода).

Если часть вашей волны поднимается или опускается на экране, вы можете отрегулировать вертикальное положение , чтобы переместить его вверх или вниз. Если ваш сигнал является чисто постоянным током, вы можете настроить уровень 0 В в нижней части дисплея.

После приблизительной настройки весов для сигнала может потребоваться запуск. Запуск по фронту — когда осциллограф пытается начать сканирование, когда видит повышение (или падение) напряжения выше заданного значения, — это самый простой в использовании тип. Используя триггер по фронту, попробуйте установить уровень триггера на точку на вашей форме сигнала, которая видит только нарастающий фронт один раз за период .

Теперь просто масштабируйте , позиционируйте, запускайте и повторяйте , пока не получите именно то, что вам нужно.

Дважды отмерь, один раз отрежь

С определенным диапазоном, запуском и масштабированием сигнала пришло время измерить переходные процессы, периоды и другие свойства формы сигнала.У некоторых осциллографов больше инструментов измерения, чем у других, но все они, по крайней мере, будут иметь деления, по которым вы сможете по крайней мере оценить амплитуду и частоту.

Многие осциллографы поддерживают различные инструменты автоматического измерения, они могут даже постоянно отображать самую важную информацию, например частоту. Чтобы получить максимальную отдачу от своей области действия, вы захотите изучить все функции измерения , которые он поддерживает. Большинство осциллографов автоматически рассчитают частоту, амплитуду, рабочий цикл, среднее напряжение и множество других волновых характеристик.

Используя инструменты измерения осциллографа, найдите V PP , V Max , частоту, период и рабочий цикл.

Третий измерительный инструмент, который предоставляют многие прицелы, — это курсоров . Курсоры — это подвижные маркеры на экране, которые можно размещать либо на оси времени, либо на оси напряжения. Курсоры обычно бывают парами, поэтому вы можете измерить разницу между ними.

Измерение звона прямоугольной волны курсорами.

После того, как вы измерили искомую величину, вы можете приступить к корректировке вашей схемы и еще раз измерить! Некоторые осциллографы также поддерживают с сохранением , с печатью или с сохранением осциллограммы, поэтому вы можете вспомнить ее и вспомнить те старые добрые времена, когда вы определяли этот сигнал.

Чтобы узнать больше о возможностях вашего прицела, обратитесь к его руководству пользователя!


Что такое автомобильный осциллограф?

1) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

2) Для получения информации о результатах программы и другой информации посетите сайт www.uti.edu/disclosures.

3) Приблизительно 8000 из 8400 выпускников UTI в 2019 году были готовы к трудоустройству. На момент составления отчета около 6700 человек были трудоустроены в течение одного года после даты выпуска, в общей сложности 84%.В эту ставку не включены выпускники, недоступные для работы по причине продолжения образования, военной службы, здоровья, заключения, смерти или статуса иностранного студента. В ставку включены выпускники, прошедшие специализированные программы повышения квалификации, а также работающие на должностях. которые были получены до или во время обучения по ИМП, где основные должностные обязанности после окончания учебы соответствуют образовательным и учебным целям программы. UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

5) Программы UTI готовят выпускников к карьере в различных отраслях промышленности с использованием предоставленного обучения, в первую очередь, для специалистов по автомобилям, дизельным двигателям, ремонту после столкновений, мотоциклетным и морским техникам. Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от в качестве технического специалиста, например: специалист по запчастям, специалист по обслуживанию, изготовитель, лакокрасочный отдел и владелец / оператор магазина. UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

6) Достижения выпускников ИТИ могут различаться.Индивидуальные обстоятельства и заработная плата зависят от личных качеств и экономических факторов. Опыт работы, отраслевые сертификаты, местонахождение работодателя и его программы компенсации влияют на заработную плату. ИМП образовательное учреждение и не может гарантировать работу или заработную плату.

7) Для завершения некоторых программ может потребоваться более одного года.

10) Финансовая помощь и стипендии доступны тем, кто соответствует требованиям. Награды различаются в зависимости от конкретных условий, критериев и состояния.

11) См. Подробные сведения о программе для получения информации о требованиях и условиях, которые могут применяться.

12) На основе данных, собранных из Бюро статистики труда США, прогнозов занятости (2016-2026), www.bls.gov, просмотренных 24 октября 2017 года. Вакансии по классификации должностей: Автомеханики и механики — 75 900; Специалисты по механике автобусов и грузовиков и по дизельным двигателям — 28 300 человек; Ремонтники кузовов и связанных с ними автомобилей, 17 200. Вакансии включают вакансии в связи с ростом и чистые замены.

14) Программы поощрения и соответствие критериям для сотрудников остаются на усмотрение работодателя и доступны в определенных местах. Могут применяться особые условия. Поговорите с потенциальными работодателями, чтобы узнать больше о программах, доступных в вашем районе.

15) Оплачиваемые производителем программы повышения квалификации проводятся UTI от имени производителей, которые определяют критерии и условия приемки. Эти программы не являются частью аккредитации UTI. Программы доступны в некоторых регионах.

16) Не все программы аккредитованы ASE Education Foundation.

20) Льготы VA могут быть доступны не на всех территориях университетского городка.

21) GI Bill® является зарегистрированным товарным знаком Министерства по делам ветеранов США (VA). Более подробная информация о льготах на образование, предлагаемых VA, доступна на официальном веб-сайте правительства США.

22) Грант «Приветствие за служение» доступен всем ветеранам, имеющим право на участие, на всех кампусах. Программа «Желтая лента» одобрена в наших кампусах в Эйвондейле, Далласе / Форт-Уэрте, Лонг-Бич, Орландо, Ранчо Кукамонга и Сакраменто.

24) Технический институт NASCAR готовит выпускников к работе в качестве технических специалистов по обслуживанию автомобилей начального уровня. Выпускники, которые сдают факультативные программы NASCAR, также могут иметь возможности трудоустройства в отраслях, связанных с гонками. Из тех выпускников 2019 года, которые взяли факультативы, примерно 20% нашли возможности, связанные с гонками. Общий уровень занятости в NASCAR Tech в 2019 году составил 84%.

25) Расчетная годовая средняя заработная плата для специалистов по обслуживанию автомобилей и механиков в Службе занятости и заработной платы Бюро статистики труда США, май 2019 г.Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве автомобильных техников. Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от технических, например, сервисный писатель, смог. инспектор и менеджер по запасным частям. Информация о заработной плате для штата Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве техников автомобильного сервиса и механиков в штате Массачусетс (49-3023) составляет от 29 050 до 45 980 долларов (данные по Массачусетсу, данные за май 2018 г., просмотр за 10 сентября 2020 г.).Информация о зарплате в Северной Каролине: по оценке Министерства труда США почасовая оплата в среднем 50% для квалифицированных автомобильных техников в Северной Каролине, опубликованная в мае 2019 года, составляет 19,52 доллара. Бюро статистики труда не публикует данные начального уровня. данные о зарплате. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 13,84 и 10,60 долларов соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г. и Механика, просмотр 14 сентября 2020 года.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

26) Расчетная годовая средняя заработная плата сварщиков, резчиков, паяльщиков и паяльщиков в Бюро трудовой статистики США по занятости и заработной плате, май 2019 г. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников-сварщиков. Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от технических специалистов, например, сертифицированный инспектор и контроль качества.Информация о заработной плате в штате Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих сварщиками, резчиками, паяльщиками и брейзерами в штате Массачусетс (51-4121), составляет от 33 490 до 48 630 долларов. (Массачусетс: трудовые ресурсы и развитие рабочей силы, данные за май 2018 г., просмотр за 10 сентября 2020 г.). Зарплата в Северной Каролине информация: Министерство труда США оценивает почасовую заработную плату в среднем 50% для квалифицированных сварщиков в Северной Каролине, опубликованную в мае 2019 года, и составляет 19 долларов.77. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако 25-е и 10-й процентиль почасовой оплаты труда в Северной Каролине составляют 16,59 и 14,03 доллара соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г. 14, 2020.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

27) Не включает время, необходимое для прохождения 18-недельной квалификационной программы предварительных требований плюс дополнительные 12 или 24 недели обучения, зависящего от производителя, в зависимости от производителя.

28) Расчетная годовая средняя заработная плата специалистов по ремонту кузовов автомобилей и связанных с ними ремонтов в Бюро трудовой статистики США по вопросам занятости и заработной платы, май 2019 г. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников по ремонту после столкновений. Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от технических, например оценщик, оценщик. и инспектор. Информация о заработной плате для Содружества Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве ремонтников автомобилей и связанных с ними (49-3021), в Содружестве Массачусетс составляет от 31 360 до 34 590 долларов. (Массачусетс: трудовые ресурсы и развитие рабочей силы, данные за май 2018 г., просмотр за 10 сентября 2020 г.).Зарплата в Северной Каролине информация: Департамент труда США оценивает почасовую заработную плату в размере 50% для квалифицированных специалистов по борьбе с авариями в Северной Каролине, опубликованную в мае 2019 года, и составляет 21,76 доллара США. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако, 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 16,31 и 12,63 доллара соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2018 г. 14 сентября 2020.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

29) Расчетная годовая средняя заработная плата механиков автобусов и грузовиков и специалистов по дизельным двигателям в разделе «Занятость и заработная плата» Бюро статистики труда США, май 2019 г. Программы UTI готовят выпускников к карьере в различных отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников по дизельным двигателям . Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от дизельных. техник по грузовикам, например техник по обслуживанию, техник по локомотиву и техник по морскому дизелю.Информация о заработной плате для штата Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве механиков автобусов и грузовиков. и специалистов по дизельным двигателям (49-3031) в штате Массачусетс составляет от 29 730 до 47 690 долларов США (Массачусетс, штат Массачусетс, данные за май 2018 г., просмотрено 10 сентября 2020 г.). Информация о зарплате в Северной Каролине: по оценке Министерства труда США почасовая оплата в размере 50% для квалифицированных дизельных техников в Северной Каролине, опубликованная в мае 2019 года, составляет 22 доллара.04. Бюро статистики труда. не публикует данные о заработной плате начального уровня. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 18,05 и 15,42 доллара соответственно. (Бюро статистики труда, Министерство труда, занятости и заработной платы США, май 2018. Механики автобусов и грузовиков и специалисты по дизельным двигателям, просмотр 14 сентября 2020 г.) UTI является образовательным учреждением и не может гарантировать трудоустройство или заработную плату.

30) Расчетная средняя годовая зарплата механиков мотоциклистов в США.С. Занятость и заработная плата Бюро статистики труда, май 2019 г. Программы MMI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников мотоциклов. Некоторые выпускники MMI получают работу в рамках своей области обучения на должностях, отличных от технических, например, сервисный писатель, оборудование. обслуживание и запчасти. Информация о заработной плате для Содружества Массачусетса: Средняя годовая заработная плата начального уровня для лиц, работающих в качестве механиков мотоциклов (49-3052) в Содружестве Массачусетса, составляет 28700 долларов США (данные по Массачусетскому труду и развитию рабочей силы, данные за май 2018 г., просмотренные 10 сентября 2020 г.) .Информация о зарплате в Северной Каролине: Министерство труда США оценивает почасовую заработную плату в размере 50% в среднем для Стоимость квалифицированных специалистов по мотоциклам в Северной Каролине, опубликованная в мае 2019 года, составляет 16,92 доллара. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 13,18 и 10,69 долларов. соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г., Motorcycle Mechanics, просмотр 14 сентября 2020 г.)) MMI является образовательным учреждением и не может гарантировать работу или заработную плату.

31) Расчетная годовая средняя заработная плата механиков моторных лодок и техников по обслуживанию в Службе занятости и заработной платы Бюро статистики труда США, май 2019 г. Программы MMI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве морских техников. Некоторые выпускники MMI получают работу в рамках своей области обучения на должностях, отличных от технических специалистов, например, в сфере обслуживания оборудования, инспектор и помощник по запчастям.Информация о заработной плате для Содружества Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве механиков моторных лодок и техников по обслуживанию (49-3051) в Содружестве Массачусетса. составляет от 31 280 до 43 390 долларов (данные по Массачусетсу, данные за май 2018 г., просмотр за 10 сентября 2020 г.). Информация о зарплате в Северной Каролине: по оценке Министерства труда США почасовая оплата в среднем 50% для квалифицированного морского техника в Северной Каролине, опубликованная в мае 2019 года, составляет 18 долларов.56. Бюро статистики труда не публикует данные начального уровня. данные о зарплате. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 14,92 и 10,82 доллара соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г. Специалисты по обслуживанию, просмотр 2 сентября 2020 г.) MMI является образовательным учреждением и не может гарантировать работу или заработную плату.

34) Расчетная годовая средняя заработная плата операторов компьютерных инструментов с числовым программным управлением в США.С. Занятость и заработная плата Бюро статистики труда, май 2019 г. Программы UTI готовят выпускников к карьере в различных отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве технических специалистов по механической обработке с ЧПУ. Некоторые выпускники UTI получают работу в рамках своей области обучения на должностях, отличных от технических, например, оператор ЧПУ, подмастерье. слесарь-механик и инспектор обработанных деталей. Информация о заработной плате для штата Массачусетс: средняя годовая заработная плата начального уровня для лиц, работающих в качестве операторов станков с компьютерным управлением, металла и пластика (51-4011) в Содружестве штата Массачусетс составляет 36 740 долларов (данные за май 2018 г., данные за май 2018 г., данные за 10 сентября, штат Массачусетс, 2020).Информация о зарплате в Северной Каролине: по оценке Министерства труда США почасовая оплата в среднем 50% для квалифицированных станков с ЧПУ в Северной Каролине, опубликованная в мае 2019 года, составляет 18,52 доллара. Бюро статистики труда не публикует данные начального уровня. данные о зарплате. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 15,39 и 13,30 долларов соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г. Операторы инструмента, просмотр 14 сентября 2020 г.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

37) Курсы Power & Performance не предлагаются в Техническом институте NASCAR. UTI является образовательным учреждением и не может гарантировать работу или заработную плату. Информацию о результатах программы и другую информацию можно найти на сайте www.uti.edu/disclosures.

38) Бюро статистики труда США прогнозирует, что к 2029 году общая занятость в каждой из следующих профессий составит: техников и механиков автомобильного сервиса — 728 800; Сварщики, резаки, паяльщики и паяльщики — 452 500 человек; Автобусы и грузовики и специалисты по дизельным двигателям — 290 800 человек; Ремонтники кузовов автомобилей и сопутствующие товары — 159 900; и операторы инструментов с ЧПУ, 141 700.См. Таблицу 1.2 Занятость в разбивке по профессиям, 2019 г. и прогноз на 2029 г. Бюро статистики труда США, www.bls.gov, дата просмотра — 3 июня 2021 г.

39) Повышение квалификации доступно для выпускников только в том случае, если курс еще доступен и есть места. Студенты несут ответственность за любые другие расходы, такие как оплата лабораторных работ, связанных с курсом.

41) Для специалистов по обслуживанию автомобилей и механиков Бюро статистики труда США прогнозирует в среднем 61 700 вакансий в год в период с 2019 по 2029 год.Вакансии включают вакансии, связанные с ростом и чистым замещением. См. Таблицу 1.10 Разделения и вакансии по профессиям, прогноз на 2019-29 годы, Бюро статистики труда США, www.bls.gov, дата просмотра — 3 июня 2021 г.

42) Для сварщиков, резчиков, паяльщиков и паяльщиков, Бюро труда США Статистика прогнозирует в среднем 43 400 вакансий в год в период с 2019 по 2029 год. Вакансии включают вакансии, связанные с ростом и чистым замещением. См. Таблицу 1.10 Профессиональные разделения и вакансии, прогнозируемые на 2019-29 гг., U.S. Bureau of Labor Statistics, www.bls.gov, дата просмотра — 3 июня 2021 г.

43) Для специалистов по механике автобусов и грузовиков и специалистов по дизельным двигателям Бюро статистики труда США прогнозирует в среднем 24 500 вакансий в год в период с 2019 по 2029. Вакансии включают вакансии в связи с ростом и чистым замещением. См. Таблицу 1.10 Разделения и вакансии по специальностям, прогнозируемые на 2019-29 годы, Бюро статистики труда США, www.bls.gov, дата просмотра 3 июня 2021 года.По прогнозам Бюро статистики труда, в период с 2019 по 2029 год в среднем будет открываться 13 600 рабочих мест в год. В число вакансий входят вакансии, связанные с ростом и чистым замещением. См. Таблицу 1.10 Разделение и вакансии по профессиям, прогноз на 2019-29 годы, Бюро статистики труда США, www.bls.gov, дата просмотра — 3 июня 2021 года.

45) Для операторов компьютерных инструментов с числовым программным управлением Бюро статистики труда США прогнозирует в среднем 11 800 вакансий в период с 2019 по 2029 год. Вакансии включают вакансии, связанные с ростом и чистым замещением.См. Таблицу 1.10 Профильные увольнения и вакансии, прогноз на 2019-29 годы, Бюро статистики труда США, www.bls.gov, дата просмотра 3 июня 2021 года.

46) Студенты должны иметь средний балл не ниже 3,5 и посещаемость 95%.

47) Бюро статистики труда США прогнозирует, что к 2029 году общая занятость специалистов по обслуживанию автомобилей и механиков составит 728 800 человек. См. Таблицу 1.2 Занятость в разбивке по профессиям, 2019 г. и прогноз на 2029 г. Бюро статистики труда США, www.bls.gov, дата просмотра — 3 июня 2021 г.

48) Бюро статистики труда США прогнозирует, что к 2029 году общая занятость механиков автобусов и грузовиков и специалистов по дизельным двигателям составит 290 800 человек. См. Таблицу 1.2 Занятость в разбивке по профессиям, 2019 г. и прогноз на 2029 г. Бюро статистики труда США, www.bls.gov, просмотрено 3 июня 2021 г.

49) На основе данных, собранных из Бюро статистики труда США, прогнозы занятости (2019-2029), www.bls.gov, просмотрено в сентябре 8, 2020. Планируемое общее количество ремонтов кузовов и связанных с ними автомобилей к 2029 году составит 159 900 человек.

50) Бюро статистики труда США прогнозирует, что общая занятость сварщиков, резчиков, паяльщиков и паяльщиков к 2029 году составит 452 500 человек. См. Таблицу 1.2 Занятость в разбивке по профессиям, 2019 г. и прогноз на 2029 г. Бюро статистики труда США, www.bls.gov, просмотрено 3 июня 2021 г.

51) На основе данных, собранных из Бюро статистики труда США, прогнозы занятости (2019-2029), www.bls.gov, просмотрено в сентябре 8, 2020. Планируемое общее количество операторов инструмента с ЧПУ к 2029 году составит 141 700 человек.

Универсальный технический институт штата Иллинойс, Inc. одобрен Отделом частного бизнеса и профессиональных школ Совета по высшему образованию штата Иллинойс.

Основы пробников осциллографов — Часть первая

Инженеры знают, что такое пробники осциллографов. Это в основном позволяет пользователю измерять напряжение на любом выводе или проводе и отображать форму волны. Обычно он включает в себя острие иглы, которое может попасть в труднодоступное место, не замыкаясь на другой штифт, провод или заземленную поверхность.И он может быть оснащен различными аксессуарами для особых ситуаций, такими как полезный наконечник крючка, подпружиненное приспособление, которое зажимается на интересующем проводе или клемме и остается на месте.

Базовый зонд. Сбоку видны переключатель выбора коэффициента ослабления X1 / X10 и порт регулировки подстройки емкости.

Наконечник зонда выступает из конца изолированного корпуса зонда, который служит ручкой, а также содержит компоненты и схемы, специфичные для данного типа зонда.Из другого конца корпуса пробника выходит кабель BNC, который подключается к входу аналогового канала и передает сигнал на осциллограф. Также из корпуса зонда выходит заземляющий провод, снабженный зажимом типа «крокодил».

Наиболее распространенным пробником для осциллографов является пассивный пробник 10: 1, который идеально подходит для большинства приложений. Обозначение 10: 1 означает, что пробник ослабляет сигнал в 10 раз. Пробник сигнала 100 В вызывает появление 10 В на входе осциллографа.В большинстве приборов осциллограф определяет ослабление пробника и отображает фактическое напряжение на выходе DUI. Однако не все осциллографы выполняют этот расчет, и это легко проверить, измерив известное напряжение и нажав кнопку Измерение на передней панели осциллографа. (Пробник 1:10 усиливает напряжение DUI, и его следует использовать с осторожностью, чтобы избежать перегрузки осциллографа.) Пассивный пробник не содержит активных компонентов и не требует внешнего питания. Активный пробник намного дороже, имеет гораздо более низкое напряжение и легко повреждается даже при обращении из-за статического разряда.Используется только в специальных приложениях.

Некоторые пассивные пробники можно переключать. На корпусе зонда имеется ползунковый переключатель, который позволяет пользователю выбирать ослабление 10: 1 или 1: 1. Этот пробник имеет ограниченную полосу пропускания, и возможна перегрузка осциллографа, если переключатель оставить в неправильном положении, поэтому, как правило, переключаемый пробник не рекомендуется.

Производители осциллографов

обычно поставляют столько же пассивных пробников 10: 1, сколько аналоговых каналов в приборе, обычно два или четыре.Возможно, наиболее важной причиной является то, что каждый пробник скомпенсирован для определенного канала и после этого должен использоваться исключительно с этим каналом. Производитель поставляет цветные кольца, соответствующие цветам выделенных аналоговых каналов, поэтому для каждого канала можно выбрать подходящий скомпенсированный пробник. Все это необходимо, потому что из-за внутренней разводки и других факторов определенные каналы могут иметь немного разные реактивные сопротивления LC. Качество зонда должно быть таким, чтобы не искажать исследуемый сигнал.Это становится все более важным в приборах с широким диапазоном частот и при измерении высокочастотных сигналов.

Компенсационные датчики — это простой процесс. Подробности в руководстве пользователя. Основная идея заключается в том, что клеммы на передней панели выдают прямоугольный сигнал. Используя зажим типа «крокодил», подсоедините провод заземления к клемме с пометкой «Заземление» и, используя крючок, подключите наконечник пробника к другой клемме, чтобы прямоугольная волна отображалась в канале, на который должен быть скомпенсирован пробник.В корпусе зонда находится винт с прорезью, который можно отрегулировать для получения идеальной прямоугольной волны с плоской вершиной и квадратными углами. Повторите эти действия для каждой комбинации зонд-канал, по ходу маркируя зонды. (Следует отметить, что в Интернете есть инструкции для самодельных пробников, которые не включают компенсационную сеть.)

Например, процедура компенсации пассивного пробника напряжения Tektronix TPP0250, 0500 или 1000 проста, поскольку выполняется автоматически. Пассивный пробник 10: 1 с регулировкой на корпусе пробника включает подстроечный конденсатор, который регулирует индуктивное / емкостное сопротивление.Процедура компенсации пассивного пробника напряжения Tektronix TPP0250, 0500 или 1000 проста, поскольку выполняется автоматически. В широко используемом пробнике Tektronix TPP1000 компенсация происходит в осциллографе, где сохраняются все настройки. При использовании с осциллографом серии MDO3000 компенсация генерирует значения для конкретной комбинации пробника и канала. Переместите датчик на другой канал, и вам нужно будет выполнить процедуру компенсации для новой комбинации.

Следует отметить, что импеданс пробника зависит от частоты измеряемого сигнала, даже для компенсированных пробников.На низких частотах сопротивление типичного пассивного пробника составляет 10 МОм. На частоте 1 МГц сопротивление падает примерно до 17,4 кОм. На 100 МГц оно ниже 200 Ом. Также обратите внимание, что любой вывод, добавленный к наконечнику пробника или заземляющему проводу, увеличивает индуктивность, а индуктивность провода может добавить выбросы и звон к сигналу, отображаемому на дисплее осциллографа.

Длина провода пробника сама по себе добавляет индуктивную нагрузку на входные заземляющие провода. Индуктивность заземляющего и входного провода в сочетании с входной емкостью пробника образует последовательную LC-цепь, полное сопротивление которой существенно падает на ее резонансной частоте.Этот эффект, известный как повреждение заземляющего провода, вызывает звон, часто наблюдаемый после переднего фронта импульсов. Единственный реальный вариант уменьшения этого звона — сделать провода входа и заземления как можно короче, тем самым сохраняя как можно более низкую индуктивность.

Кабель пробника должен быть достаточно длинным, особенно для настольных осциллографов и осциллографов, установленных в стойке или на тележке, чтобы пользователь мог перемещать наконечник пробника в различные интересующие места. Как правило, длина кабеля датчика меньше метра, поэтому его длина не сильно влияет на пропускную способность.Точно так же провод заземления должен быть как можно короче и ровным. На высоких частотах даже небольшой изгиб эквивалентен частичному витку индуктивной катушки, а увеличенное индуктивное реактивное сопротивление соответствует большему, чем предполагалось, затуханию.

Дифференциальный пробник и различные приспособления для его подключения.

Измерения дифференциальных сигналов включают зондирование двух сигнальных линий, обе из которых относятся к потенциалу земли, но находятся над ним. Это не похоже на зондирование положительной и отрицательной клемм, например, 9-вольтового сухого элемента.Эти клеммы плавают отдельно от заземления системы переменного тока, к которой прикреплены нетоковедущие токопроводящие части осциллографа, но не связаны с ней.

Примеры того, где необходимо дифференциальное измерение, включают заземленные трехфазные системы питания, импульсные источники питания и частотно-регулируемые моторные приводы. Дифференциальные измерения не могут выполняться на заземленном настольном осциллографе простым прикосновением наконечника пробника к одной линии, а заземляющим проводом — к другой линии.Это может привести к протеканию сильного тока короткого замыкания в исследуемом оборудовании от заземляющего опорного провода и пути прохождения сигнала внутри осциллографа. Причина в том, что прибор подключен через провод заземления оборудования обратно к заземлению электрической системы в электрической сети.

Есть четыре возможных решения. У одного есть свои опасности и нарушение Национального электротехнического кодекса. Другое может привести к неточным измерениям. Третий — безопасный и точный, но дорогой.

К сожалению, часто встречающееся решение — отпилить заземляющий штырь в вилке шнура питания. Это отключает заземление осциллографа, поэтому не происходит замыкания на землю, когда провод заземления касается линии, на которую имеется ссылка, но плавающей над потенциалом земли. Это решение создает еще одну опасность: поскольку осциллограф больше не заземлен, внутренняя неисправность может привести к возбуждению нетоковедущих металлических частей, таких как аналоговые и РЧ входные разъемы. Такая же ситуация возникает при питании осциллографа через развязывающий трансформатор.

Каждая сигнальная линия может быть получена на отдельном канале осциллографа, и с помощью функции Waveform Math эти два канала можно алгебраически суммировать. Эта процедура работает при правильном выполнении и не представляет опасности. Но точность может быть снижена из-за несовпадения двух сигнальных линий.

Дифференциальные пробники могут существенно снизить коэффициент подавления синфазного сигнала и устранить опасность замыкания на землю. Однако они могут снизить пропускную способность и являются дорогостоящими.

Портативный осциллограф с батарейным питанием имеет входы каналов, которые изолированы от земли и, в большинстве моделей, друг от друга. Это исключает опасность замыкания на землю, но портативная модель не обладает всеми функциями, аналитическими возможностями и большим экраном настольной модели. Большинство пользователей считают его лучшим решением для обслуживания трехфазных систем и частотно-регулируемых приводов, если не превышаются пределы напряжения.

Как осциллограф может измерить ток?

Большинство осциллографов напрямую измеряют только напряжение, а не ток, однако есть несколько способов измерить ток с помощью осциллографа:

1.Измерьте падение напряжения на шунтирующем резисторе — некоторые конструкции источников питания могут иметь шунтирующие резисторы, встроенные в конструкцию для обратной связи. Один из способов — измерить падение дифференциального напряжения на таком резисторе. Обычно это резисторы небольшого номинала, часто менее 1 Ом.

2. Измерение тока с помощью токового пробника. — При использовании в сочетании с возможностями измерения напряжения осциллографа, токовые пробники позволяют выполнять широкий спектр важных измерений мощности, таких как мгновенная мощность, средняя мощность и фаза.

Чтобы ваши текущие измерения были максимально точными, необходимо выбрать и правильно применить наиболее подходящую технику. У каждого из двух вышеперечисленных методов есть свои преимущества и недостатки, которые мы рассмотрим ниже:

Измерение тока как падения напряжения на шунтирующем резисторе

Если в блоке питания встроен резистор считывания тока («шунтирующий» резистор), это наиболее удобный подход. Измерение падения напряжения на измерительном резисторе с помощью активного дифференциального пробника даст хорошие результаты, если синфазный сигнал находится в пределах указанного рабочего диапазона пробника, а падение напряжения достаточно велико.

Однако использование дифференциального пробника для сигналов низкого уровня требует некоторого внимания к снижению шума в системе измерения.

  • Используйте наименьшее доступное затухание пробника и ограничьте полосу пропускания пробника или осциллографа
    , чтобы уменьшить шум измерительной системы.
  • Также имейте в виду, что емкость и сопротивление датчика
    будут подключены параллельно измерительному резистору, и хотя они предназначены для минимизации воздействия на
    тестируемое устройство, вы должны знать, что они существуют.


Установка резистора считывания последовательно с нагрузкой требует тщательного проектирования. Когда значение сопротивления
увеличивается, падение напряжения на ампер увеличивается в соответствии с законом Ома
, таким образом улучшая качество измерения тока. Однако рассеиваемая мощность в резисторе увеличивается пропорционально квадрату тока, и необходимо учитывать дополнительное падение напряжения. Кроме того, резисторы добавляют цепи индуктивное сопротивление.И не забывайте, что входная емкость дифференциального пробника появляется параллельно измерительному резистору, образуя RC-фильтр.

Если вы все же добавляете в схему резистор считывания, постарайтесь добавить его как можно ближе к земле, чтобы минимизировать синфазные сигналы на резисторе, которые измерительная система должна отклонять. И, в отличие от высокопроизводительных токовых пробников, характеристика подавления синфазного сигнала при измерениях дифференциального напряжения имеет тенденцию к падению по частоте, что снижает точность измерений высокочастотного тока с помощью измерительных резисторов.

Измерение тока с помощью токоизмерительного щупа

Ток, протекающий через проводник, вызывает формирование поля электромагнитного потока вокруг проводника
. Токовые пробники предназначены для определения силы этого поля и преобразования ее в соответствующее напряжение
для измерения с помощью осциллографа.

Это позволяет просматривать и анализировать формы сигналов тока с помощью осциллографа. При использовании в комбинации
с возможностями измерения напряжения осциллографом, токовые пробники
также позволяют выполнять широкий спектр измерений мощности.В зависимости от математических возможностей осциллографа формы сигнала
эти измерения могут включать в себя мгновенную мощность
, истинную мощность, полную мощность и фазу.

Существует два основных типа пробников тока для осциллографов:

  • Датчики переменного тока
  • Датчики постоянного / переменного тока


Оба типа используют принцип действия трансформатора для измерения переменного тока (AC) в проводнике
. Для работы трансформатора через проводник должен протекать переменный ток.

Этот переменный ток заставляет магнитное поле нарастать и коллапсировать в соответствии с амплитудой и направлением тока. Когда чувствительная катушка помещается в это магнитное поле, изменяющееся магнитное поле индуцирует пропорциональное напряжение на катушке за счет простого действия трансформатора. Этот связанный с током сигнал напряжения затем преобразуется и может отображаться на осциллографе в виде масштабированного по току сигнала.

Простейшие датчики переменного тока представляют собой пассивные устройства, которые представляют собой просто катушку, которая намотана на магнитный сердечник, например, из ферритового материала, в соответствии с точными спецификациями
.Некоторые из них представляют собой твердотельные тороиды
и требуют, чтобы пользователь проложил проводник через сердечник. В токовых пробниках с разъемным сердечником используется точно спроектированная механическая система, которая позволяет открывать сердечник и зажимать его вокруг проводника без разрыва тестируемой цепи. Пробники тока с разъемным сердечником обладают высокой чувствительностью и работают без питания, но являются механически жесткими и обычно имеют небольшую апертуру, что может ограничивать их универсальность.

Пробники переменного тока

, основанные на технологии катушки Роговского, являются альтернативой пробникам с твердотельным сердечником и пробникам с разъемным сердечником
.Катушка Роговского использует воздушный сердечник и является механически гибкой,
позволяет открывать катушку и наматывать ее на провод или вывод компонента. И поскольку сердечник не является магнитным материалом, катушки Роговского не насыщаются магнитным полем при высоких уровнях тока, даже в тысячи ампер. Однако они, как правило, имеют более низкую чувствительность, чем пробники с разъемным сердечником, и для них требуются активные формирователи сигнала для интеграции сигнала с катушки и, следовательно, требуется источник питания.

Для многих приложений преобразования энергии пробник переменного / постоянного тока с разъемным сердечником является наиболее универсальным, точным и простым в использовании решением.В датчиках переменного / постоянного тока используется трансформатор для измерения переменного тока и устройство на эффекте Холла для измерения постоянного тока. Поскольку они включают в себя активную электронику для поддержки датчика Холла, для работы зондов переменного / постоянного тока требуется источник питания. Этот источник питания может быть отдельным источником питания или может быть интегрирован в некоторые осциллографы.

Видеообзор того, как измерить ток осциллографом:

Ознакомьтесь с продуктами Tektronix на RS:

применений осциллографа в электронике — Compocket

Электронные устройства — одна из самых важных частей нашей жизни в настоящее время.Мы хотим использовать наши устройства без проблем, но это не всегда возможно. Электронные устройства работают с энергетическими волнами, и их важно тестировать, контролировать и при необходимости ремонтировать. Итак, люди, которые работают с электроникой, не могут избавиться от осциллографов из своей жизни. Благодаря этой технологии существует множество различных электронных устройств, рабочих методов и схем в глубинной части электронного мира. К счастью, технологии улучшаются благодаря другим потребностям, таким как осциллографы другого типа или использование технических средств.

Могут быть разные причины поломки электронных устройств, поэтому важно знать, когда мы можем использовать осциллограф для его ремонта. Перед тем, как перейти к случаям использования осциллографа в электронике, полезно проверить свои осциллографы, чтобы получить точные измерения. Важно внимательно относиться к своему решению использовать его. Полоса пропускания, частота дискретизации, целостность сигнала, каналы, совместимость пробников, необходимые приложения для анализа ваших измерений и поиск подходящего типа осциллографа являются важными критериями.В конце концов, применение осциллографа в электронике в начинается с схемы измерения тока, и с точки зрения стиля измерения, зависящего от времени, он измеряет иначе, чем вольтметр. Тем не менее, осциллографы в основном измеряют электронное напряжение в силе тока, но в зависимости от времени. Это помогает людям, работающим с электроникой, обнаружить проблему, не теряя времени. Вы можете измерять сигналы своих устройств на экране — даже если вы используете USB-порт или портативный осциллограф, вы можете использовать приложение для просмотра — и вы можете проверить их скорость.Мы знаем, что осциллографы помогают нам видеть электрические сигналы, используя ось Y для напряжения и ось X для времени на экране. Используя этот дисплей, пользователь может анализировать частоту, временные интервалы и искажения. Если вы работаете с электроникой, важно проверить, работают ли ваши устройства. Когда мы говорим об использовании осциллографа в электронике, мы можем мыслить узко, но есть много мест для его использования. Как вы думаете, осциллограф можно увидеть в медицине или автосервисе? Наш ответ — да.Впрыск топлива и контроль перед запуском автомобилей — две основные области использования осциллографа при ремонте автомобилей. Более того, вы можете увидеть художественные проекты, используя осциллографы в качестве различных областей применения. Критическим моментом является то, что зная правильное место и осциллограф, можно использовать его в электронике. Использование осциллографа в электронике — контрольный пункт в вашей работе. Как правильно работает ваш ток и электронное напряжение, какая скорость напряжения и что вы можете сделать, когда есть проблема с вашим током.Вы можете ответить на эти вопросы, используя осциллограф в своих электронных устройствах.

Давайте вместе рассмотрим использование осциллографа в электронике .

Зачем нужен осциллограф для ремонта электроники?



Осциллограф так же важен, как и пульсометр для людей, так же важен и для ремонта электроники . Срок службы наших устройств может быть напряжением или током. Мы не хотим, чтобы наши сердца бились слишком быстро или слишком медленно, мы хотим, чтобы эти напряжения выпускались с правильной скоростью или частотой.Вполне логично использовать осциллограф для электроники , так как мы не хотим никаких сбоев в наших электрических сигналах. Получение такой информации о ваших электронных устройствах позволяет убедиться, что они работают должным образом. А если нет, то осциллографы помогут диагностировать и устранить проблему. Если вы инженер-электрик, инженер-испытатель или студент, вы можете использовать осциллограф для электроники или работать с осциллографом для производства, ремонта, исследований или разработок.

Вам также может понравиться: Что такое осциллограф? Типы осциллографов

Как проверить электронику с помощью осциллографа?

Электронный осциллограф позволяет дважды проверить, соответствует ли сигнал вашего устройства ожидаемому как по размеру, так и по частоте. Поскольку он обеспечивает визуальное представление сигнала, вы можете увидеть возможные отклонения или искажения. Однако есть некоторые вещи, которые следует учесть перед началом теста.Это следующие.

  • Пропускная способность: Это частотный диапазон, который осциллограф может точно измерить. Полоса пропускания осциллографа обычно составляет от 50 МГц до 100 ГГц.
  • Частота дискретизации : Количество выборок, которые осциллограф может получить в секунду. По мере увеличения количества выборок в секунду форма сигнала отображается более четко и точно.
  • Целостность сигнала: Способность осциллографа точно отображать форму сигнала.Вы же не хотите тратить недели, пытаясь объявить свое устройство неисправным и найти первопричину, хотя на самом деле это не проблема. Следовательно, целостность сигнала является важной характеристикой.
  • Каналы: Это вход электронного осциллографа . Они могут быть аналоговыми или цифровыми. Обычно на каждый осциллограф приходится от 2 до 4 аналоговых каналов.
  • Совместимость датчиков : Пробник — это инструмент, используемый для подключения электронного осциллографа к тестируемому устройству.Существует большое количество пассивных и активных пробников, каждый из которых предназначен для особых случаев использования. Очень важно найти осциллограф, совместимый с типом пробника, который вам нужен для конкретных испытаний.
  • Приложения: Программное обеспечение для анализа сигналов, декодирования протоколов и тестирования совместимости может значительно сократить время, необходимое для выявления и выявления ошибок в ваших проектах. Программное обеспечение для анализа может помочь вам найти и оценить вибрацию, создать глазковые диаграммы и даже определить и измерить перекрестные помехи.

После выполнения всех этих настроек устанавливается соединение между электронным осциллографом и устройством. Осциллограф, который также подключен к устройству отображения, отображает сигналы электронного устройства. Таким образом измеряются сигналы. Если в сигналах обнаруживается неисправность, начинаются ремонтные работы.

По этой причине осциллограф является очень важным устройством при обслуживании и ремонте электронных устройств.Например; При ремонте электроники , например, цифровых часов, осциллограф используется в таких операциях, как мониторинг сигнала на концах кристалла, наблюдение сигнала на выходах процессора и понимание сигнала при интеграции драйвера.

Осциллограф для электроники с лучшим соотношением цены и качества


Когда дело доходит до использования осциллографа в электронике , требуется физическая близость.Есть несколько различных типов осциллографов. Все эти типы могут использоваться в электронных схемах. Варианты осциллографа следующие.

Аналоговый осциллограф
:

Аналоговый осциллограф, принцип работы которого тот же, что и у ламповых телевизоров, основан на принципе, согласно которому электронный луч, возникающий в электронно-лучевой трубке, формируется из изображения, которое подается на люминофорный экран входным сигналом, подаваемым по вертикали и горизонтали. катушки дефлектора.

Цифровой осциллограф
:

Цифровой осциллограф, который предпочитают чаще, чем аналоговые модели, обладает способностью передавать входящие сигналы с более быстрым и точным результатом благодаря своим передовым микропроцессорам.

Осциллограф USB
:
Осциллографы

USB, которые более доступны по цене, чем другие типы осциллографов, не имеют экрана, поэтому компьютер определенно необходим.

Портативный осциллограф
:

Он предпочтителен из-за размера ручного, то есть портативного осциллографа, из-за его небольших размеров и портативности. Портативные осциллографы, которые можно использовать как с аккумулятором, так и с зарядкой, являются высокоточными устройствами. Его часто используют в полевых исследованиях.

Хотя он различается в зависимости от электронного устройства и условий окружающей среды, его можно использовать со всеми типами осциллографов с электроникой

Вам также может понравиться: https://compocket.com/blogs/news/how-to-use-an-oscilloscope .

Как использовать осциллограф для диагностики остановившегося транспортного средства

Picoscope дает технику возможность отслеживать (в реальном времени) фактические сигналы в реальном времени и сравнивать их с обработанными данными от сканирующего прибора.

Стив Смит, специалист по автомобильным приложениям в Pico Technology, предлагает обзор того, как осциллограф помогает диагностировать остановившийся автомобиль. Он также объясняет, почему осциллограф является важным инструментом в этой процедуре.

В: Как осциллографы будут использоваться для диагностики остановившегося автомобиля?

A: С самого начала остановку двигателя (как и все диагностические процедуры) необходимо оценивать путем собеседования с вашим клиентом, поскольку у него есть все ответы и, что более важно, история / последовательность событий

Ни в коем случае нельзя упускать из виду базовый осмотр перед любой диагностикой, поскольку слишком легко атаковать автомобили с помощью множества испытательного оборудования, хотя на самом деле наша проблема может быть загрязненным топливом!

Подтверждение озабоченности клиентов имеет первостепенное значение, и в идеале с помощью сканирующего прибора, прикрепленного для сбора ценных данных при возникновении неисправности.Это не всегда возможно, поскольку неисправности часто бывают прерывистыми и зависят от условий вождения, и, опять же, интервью с клиентом поможет

. Диагностические коды неисправностей

всегда являются первым портом вызова вместе с любыми последовательными данными от выбранного вами сканирующего прибора. Дорожные испытания автомобиля с подключенным сканирующим прибором при попытке смоделировать состояние также помогут определить целевые области для дальнейшей диагностики и тестирования, и именно здесь осциллограф становится неоценимым.

Вооруженный всей приведенной выше информацией, технический специалист должен будет следовать блок-схеме кода неисправности, если присутствует соответствующий код неисправности, или, вооруженный своими знаниями системы, начнет тестировать и измерять компоненты системы управления двигателем с помощью осциллографа, который может нести ответственность за симптомы клиентов.

В качестве типичного примера возьмем газовый двигатель, который глохнет при остановке на перекрестках, но коды неисправности отсутствуют. Требуется описание системы управления холостым ходом двигателя и составлен список возможных компонентов, которые могут вызвать заедание. Из этого списка техник может решить проверить датчик кислорода, расходомер и датчик положения дроссельной заслонки. Порядок тестов зависит от простоты доступа к этим компонентам, но с помощью осциллографа Pico 4 все эти входы можно измерять и контролировать в реальном времени на одном экране.

Использование пикоскопа дает техническому специалисту возможность отслеживать (в реальном времени) реальные сигналы в реальном времени и сравнивать их с обработанными данными со сканирующего прибора.

В: Почему использовать осциллограф, а не просто сканирующий прибор?

A: После подключения к компонентам технический специалист может определить причины и следствия различных датчиков системы управления холостым ходом. Тест на покачивание — это такой простой, но эффективный метод при просмотре сигналов, которые могут быть прерваны из-за сбоев в проводке, проблем с подключением и теплового повреждения.Только осциллограф может отреагировать достаточно быстро, чтобы отобразить эти «сбои», когда сканирующий прибор пропустит это жизненно важное «выпадение» целостности сигнала, что приведет техника к потенциальной погоне за гусиным гусям. Осциллограф также можно использовать во время дорожных испытаний при возникновении большинства неисправностей, что дает техническому специалисту такую ​​же высокую скорость захвата в условиях эксплуатации, указанных заказчиком. Осциллограф может записывать указанные выше сигналы, и при возникновении неисправности техник может приостановить и воспроизвести захваченные данные, увеличить, измерить и оценить сигналы, чтобы завершить диагностику того, почему автомобиль мог остановиться.

В: Чего я могу ожидать от техника, использующего осциллограф?

A : Судя по опыту, пользователи осциллографов — это преданные своему делу профессионалы, которые вложили как время, так и деньги (часто свои собственные), чтобы улучшить свои диагностические возможности в постоянно усложняющихся современных транспортных средствах.Вы можете ожидать, что ваш автомобиль будет отремонтирован в реалистичные сроки, подкрепленные доказательством неисправности компонентов и сопроводительной литературой до и после ремонта, которая вселяет уверенность в любом ремонте.

Q: Где я могу увидеть пикоскоп в действии?

A: На нашем веб-сайте www.picoauto.com содержится обширная информация и источник знаний, если вы собираетесь приобрести не только пикоскоп, но и многочисленные аксессуары, которые дополняют наши прицелы и расширяют ваши возможности тестирования и измерения.Также доступны примеры из реальной жизни и учебные пособия вместе со ссылками на Pico TV, где вы найдете бесчисленные видео-уроки по методам измерения с использованием нашего прицела. Picoscope — это осциллограф, которым по всему миру пользуются профессионалы различных профессий, которые знают, что могут доверять как продукту, так и поддержке клиентов, которая поставляется со всеми нашими продуктами.

Как измерить ток с помощью осциллографа

Проблема с осциллографами

Осциллограф позволяет вам посмотреть, как напряжение между двумя точками изменяется во времени.Построив график зависимости этого напряжения от времени, вы получите графическое представление вашего сигнала. Если вы хотите узнать больше о том, как осциллографы выполняют эту функцию, мы рекомендуем сначала ознакомиться с этой статьей.

Первым измерительным инструментом инженера-электрика часто является мультиметр, который может измерять несколько параметров, например напряжение, ток и сопротивление. Мультиметр обычно показывает среднее значение с течением времени и, как следствие, не может отображать быстро меняющиеся импульсы или повторяющиеся сигналы.Вот тут-то и пригодится осциллограф.

С другой стороны, многие мультиметры способны измерять ток, чего не может сделать осциллограф. Итак, как нам измерить ток в системе, которая быстро меняется? Прежде всего, зачем нам это делать?

Допустим, вы собираете следующий смартфон и хотите выяснить, на сколько хватит заряда аккумулятора. Смартфоны могут включать и выключать функции только при необходимости, например, передачу на вышку сотовой связи через определенные промежутки времени.Если бы вы измерили ток, протекающий от батареи к остальной части телефона, вы бы увидели, что ток все время быстро меняется. Вы не сможете получить последовательное чтение!

Рисунок 1: Измерение потребления тока смартфоном

Здесь может помочь осциллограф. Если бы вы могли измерить потребление тока по мере его изменения со временем, вы могли бы получить график, как на рисунке 1. В результате вы могли бы начать вычислять, на сколько хватит заряда вашей батареи.

Измерение потребляемого тока в реальном времени (в отличие от среднего) может помочь вам определить характеристики энергопотребления вашего устройства или отладить потенциальные проблемы. Например, ваш процессор может потреблять большой ток при запуске, и вам понадобится осциллограф, чтобы увидеть этот скачок.

Самый простой и распространенный метод измерения полного тока, протекающего в нагрузке, — это использование шунтирующего резистора. Это достигается путем размещения резистора низкого номинала на линии питания (или обратной линии).

Рисунок 2: Схема шунтирующего резистора

В этом случае вашей нагрузкой будет ваша тестируемая цепь (например, ваш смартфон). Блок питания может быть чем-то вроде батареи или сетевого адаптера.

Если вы измеряете напряжение на резисторе, вы можете использовать закон Ома для расчета тока, протекающего в вашу нагрузку:

Мы просто изменим формулу для определения тока:

I = VRI = \ frac {V} {R } I = RV

Если мы знаем сопротивление и измеряем падение напряжения на резисторе, мы можем вычислить ток, протекающий через резистор, который совпадает с током, протекающим в остальной цепи в этот момент.

Например, предположим, что у нас есть шунтирующий резистор 0,1 Ом, и мы измеряем падение 0,03 В на нем с помощью нашего мультиметра:

I = 0,03 В 0,1 Ом = 0,3 AI = \ frac {0,03 В} {0,1 \ Omega} = 0,3 AI = 0,1 Ом 0,03 В = 0,3 А

Мы бы определили, что в этот конкретный момент 0,3 А протекало от нашего источника питания к нашей нагрузке.

Шунтирующие резисторы (Rsh) часто имеют низкое сопротивление, чтобы не вызывать падение напряжения в цепи. Помните, что по мере увеличения тока, потребляемого вашей нагрузкой, также увеличивается падение напряжения на шунтирующем резисторе.Это может привести к падению напряжения, достаточному для отключения всей вашей системы!

Общие значения Rsh находятся в диапазоне от 0,01 до 0,1 Ом. Использование более высоких значений Rsh обеспечивает большую точность ваших измерений, но за счет увеличения падения напряжения на шине питания вашей нагрузки.

Еще одна вещь, о которой вы должны помнить, — это рассеиваемая мощность вашего шунтирующего резистора. Для большинства маломощных систем будет достаточно резистора на 1/4 Вт. Когда вы начнете потреблять больше тока, резистор начнет рассеивать больше энергии в виде тепла, что может повредить резистор (что приведет к отказу или, что еще хуже, к возгоранию).

Мощность постоянного тока рассчитывается как:

Это можно использовать в качестве наихудшего расчета ожидаемой мощности рассеяния Rsh. Из нашего предыдущего примера мы видим, что:

P = 0,03 В × 0,3 A = 0,009 WP = 0,03 В \ умножить на 0,3 A = 0,009 WP = 0,03 В × 0,3 A = 0,009 Вт

Даже крошечный 1/10 Вт или 1 В этом случае резистор мощностью / 8 Вт может работать как шунтирующий резистор. Однако предположим, что наша схема внезапно включает двигатель постоянного тока, и падение напряжения на Rsh увеличивается до 0,5 В. Мы бы рассчитали ток как:

I = 0.5V0.1Ω = 5AI = \ frac {0.5 V} {0.1 \ Omega} = 5 AI = 0.1Ω0.5V = 5A

Теперь у нас есть ток 5 A в нашей цепи! Это довольно большой рост по сравнению с предыдущим. Теперь мы рассчитываем ожидаемое рассеивание мощности через наш резистор:

P = 0,5 В × 5 А = 2,5 Вт = 0,5 В \ умножить на 5 А = 2,5 Вт = 0,5 В × 5 А = 2,5 Вт

Теперь мы ожидаем, что шунтирующий резистор рассеивает 2,5 Вт мощности. Это было бы слишком много для большинства простых резисторов на 1/4 Вт. На этом этапе вам следует подумать об использовании резистора мощности 3+ Вт или переключении на более низкое значение Rsh.

Урок заключается в следующем: выберите номинал шунтирующего резистора на основе ожидаемого тока, потребляемого вашей схемой. Выполнение нескольких быстрых вычислений не требует больших затрат, чтобы впоследствии избежать головной боли от повреждений вашей схемы!

Теперь, когда мы увидели, как выбрать значение Rsh и измерить ток, протекающий через него, давайте посмотрим, как мы можем настроить наш осциллограф для измерения тока. На первый взгляд, наша исходная схема (рис. 2) может показаться, что она подойдет.Использование резистора на положительной шине известно как шунтирующий резистор на стороне высокого напряжения . Однако есть небольшая проблема: зажим заземления на большинстве настольных осциллографов напрямую подключен к заземлению!

В этом видео представлен отличный обзор того, как зажим заземления осциллографа может привести к короткому замыканию источника питания в вашей цепи:

Если мы работаем с заземленной цепью и настольным осциллографом (который также правильно заземлен), то подключение зажим заземления по обе стороны от Rsh приведет к короткому замыканию.Не хорошо.

Один из вариантов — переместить резистор в обратный путь (известный как шунтирующий резистор низкого уровня ) и подключить зажим заземления осциллографа к заземлению цепи.

Рисунок 3: Измерение напряжения на шунтирующем резисторе с помощью осциллографа

При такой настройке вам не придется беспокоиться о коротком замыкании источника питания. Однако возникает новая проблема: контур заземления. Ток может циркулировать по контуру заземления (от земли через нашу тестируемую цепь, через зажим заземления осциллографа, обратно на землю через осциллограф).

Рисунок 4: Потенциальный контур заземления от измерительной цепи с осциллографом

Контуры заземления могут вызывать нежелательные помехи или шум в ваших измерениях или в вашей цепи. Эта статья отлично объясняет контуры заземления. Обратите внимание, что это реальная проблема только в том случае, если и осциллограф, и тестируемая цепь подключены к заземлению, как показано на рисунке 4.

Если ваш осциллограф или тестируемое устройство питается от батареи или изолирован от заземления, вы это делаете. не нужно беспокоиться об этой проблеме.Однако для большей безопасности лучший способ измерить падение напряжения на шунтирующем резисторе — это использовать установку с двумя датчиками, сконфигурированную как дифференциальную пару.

Для выполнения этого измерения вам потребуется 2 канала осциллографа. У большинства осциллографов зажимы заземления соединены вместе (вы можете подтвердить это с помощью мультиметра, если не уверены). В результате нам не нужно ни к чему подключать заземляющие зажимы.

Подключите наконечники пробников к любой стороне шунтирующего резистора.В этом примере мы предполагаем, что канал 1 имеет более высокий потенциал, чем канал 2. Хотя на рисунке 5 показан шунтирующий резистор на нижней стороне, обратите внимание, что вы также можете сделать это с помощью резистора высокой стороны.

Рисунок 5: Настройка дифференциального пробника

На вашем осциллографе выберите функцию Math (при условии, что ваш осциллограф имеет такую ​​функцию). Оттуда вы сможете построить график вывода Ch 1 — Ch 2 . Вычитая напряжение канала 2 из напряжения канала 1, мы можем вычислить падение напряжения на резисторе, не беспокоясь о коротком замыкании источника питания или создании контура заземления!

Помните, что для каждой точки этого сигнала вам нужно будет разделить напряжение на значение шунтирующего резистора, чтобы получить ток, протекающий в вашу систему.Некоторые осциллографы позволяют разделить измеренное значение на константу, чтобы избавить вас от необходимости выполнять этот шаг. Проверьте функции Math в вашем осциллографе!

Другие варианты измерения тока

Если ваш осциллограф питается от батареи или тестируемое устройство изолировано от заземления (например, оно также питается от батареи или вы используете двухконтактный настенный адаптер), тогда вы не будете этого делать. нужно беспокоиться о замыкании источника питания на землю. Не стесняйтесь прикреплять этот заземляющий зажим к любой стороне вашего шунтирующего резистора!

Вы также можете приобрести для своего осциллографа специализированный дифференциальный пробник , который выполняет ту же настройку дифференциала, которую мы обсуждали выше.Однако для дифференциального пробника требуется только 1 канал вместо 2. Кроме того, дифференциальные пробники могут быть довольно дорогими.

Другой вариант — токовый пробник осциллографа. Большинство токовых пробников зажимают оголенный провод и измеряют магнитное поле, создаваемое током, протекающим через провод. Для этого требуется оголенный провод в вашей цепи, а датчики зажимного типа обычно имеют точность только до уровня миллиампер. Шунтирующий резистор обычно необходим для измерения микроампер и наноампер.

Четвертый вариант — использовать специализированную схему или деталь для измерения напряжения на шунтирующем резисторе, например INA169.INA169, по сути, создает дифференциальный пробник вокруг шунтирующего резистора и выдает выходное напряжение, которое можно измерить с помощью осциллографа. Однако обратите внимание, что INA169 может измерять только положительные напряжения (шунтирующий резистор на стороне высокого напряжения). Убедитесь, что вы полностью прочитали техническое описание, чтобы понять ограничения детали!

Существует множество вариантов измерения тока, протекающего по вашей цепи.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *