Двухпозиционное реле принцип работы: Промежуточное реле: назначение, принцип действия

Содержание

Промежуточные реле | Заметки электрика

Здравствуйте, уважаемые посетители и гости сайта «Заметки электрика».

Сегодня я расскажу Вам, что из себя представляет промежуточное реле.  Многие слышали о нем и обширно применяют, но даже не задумывались о его принципе действия и конструкции.

 

Назначение промежуточных реле и требования к ним

Промежуточные реле служат как вспомогательные устройства и применяются, когда необходимо:

1. Замкнуть или разомкнуть одновременно несколько независимых цепей, т.е. размножение контактов (например: одним контактом произвести отключение выключателя, а другим выдать в схему сигнализации аварийный сигнал)

2. Управление более мощным реле, которое коммутирует цепи с большими токами (например: нам нужно подать напряжение на включающий соленоид привода выключателя, где ток включения достигает до 63 ампер, но мы этого сделать с помощью одного промежуточного реле сделать не сможем, поэтому вначале подаем напряжение на катушку промежуточного реле, а то – своими контактами включает более мощный контактор, который и коммутирует уже более большие токи)

3. Создать искусственное замедление действия релейной защиты.

Способы включения промежуточных реле

Существует 2 способа включения:

1. Шунтовое  — обмотка реле  включается на полное напряжение сети, ее называют обмоткой напряжения.

2. Сериесное – обмотка реле включается последовательно с отключающей катушкой привода выключателя, ее называют токовой обмоткой.

Промежуточные реле могут по особенностям  конструкции выполняться с одной обмоткой (РП-23, РП-252), двумя (РП-11) и реже с тремя.

Реле должны надежно срабатывать при нормальном напряжении источника оперативного питания, а также при аварийном понижении напряжения до 20-40%.

 

Классификация промежуточных реле


1. С электромагнитами постоянного тока

2. С электромагнитами переменного тока

В природе существует множество типов промежуточных реле. Более подробно о каждом типе Вы можете познакомиться в следующих статьях. Подписывайтесь на новости сайта, чтобы не пропустить выход новых статей.

P.S. Если Вам понравилась статья, то не забывайте добавить ее в сервисы социальных закладок.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Принцип работы реле тока. Реле переменного тока – принципы работы и разновидности


Принцип действия реле тока: устройство и назначение

Токовое электромеханическое реле

Что такое реле тока? Такой вопрос часто возникает у студентов и электриков самоучек. Ответ на него достаточно прост, но в учебниках и многих статьях в интернете он содержит огромное количество формул и отсылок к разнообразным законам. В нашей статье мы постараемся объяснить, что это такое, и как оно работает буквально на пальцах.

Устройство реле тока

Для начала давайте разберем принцип реле тока и его устройство. На данный момент существуют электромагнитные, индукционные и электронные реле.

Мы будем разбирать устройство наиболее распространенных электромагнитных реле. Тем более, что они дают возможность наиболее наглядно понять их принцип работы.

Устройство электромагнитного реле тока

  • Начнем с основных элементов любого реле тока. Оно в обязательном порядке имеет магнитопровод. Причем, этот магнитопровод имеет участок с воздушным зазором. Таких зазоров может быть 1, 2 или более — в зависимости от конструкции магнитопровода. На нашем фото таких зазора два.
  • На неподвижной части магнитопровода имеется катушка. А подвижная часть магнитопровода закреплена пружиной, которая противодействует соединению двух частей магнитопровода.

Принцип действия электромагнитного токового реле

  • При появлении на катушке напряжения, в магнитопроводе наводится ЭДС. Благодаря этому, подвижная и неподвижная части магнитопровода становятся как два магнита, которые хотят соединиться. Не дает им это сделать пружина.
  • По мере увеличения тока в катушке, ЭДС будет нарастать.
    Соответственно, будет нарастать притяжение подвижного и неподвижного участка магнитопровода. При достижении определенного значения силы тока, ЭДС будет настолько велико, что преодолеет противодействие пружины.
  • Воздушный зазор между двумя участками магнитопровода начнет сокращаться. Но как говорит инструкция и логика, чем меньше воздушный зазор, тем больше становится сила притяжения, и тем с большей скоростью магнитопроводы соединяются. В результате, процесс коммутации занимает сотые доли секунды.

Существуют токовые реле разных типов исполнения

  • К подвижной части магнитопровода жестко прикреплены подвижные контакты. Они замыкаются с неподвижными контактами и сигнализируют, что сила тока на катушке реле достигла установленного значения.

Регулировка тока возврата токового реле

  • Для возврата в исходное положение, сила тока в реле должна уменьшиться как на видео. Насколько оно должно уменьшится, зависит от так называемого коэффициента возврата реле.

Оно зависит от конструкции, а также может настраиваться индивидуального для каждого реле за счет натяжения или ослабления пружины. Это вполне можно сделать своими руками.

Назначение и способы подключения токового реле

Реле тока и напряжения, являются основными элементами практически всех основных защит. Поэтому, давайте более детально разберемся с их сферой применения и схемой подключения.

Назначение токового реле

И в первую очередь, давайте разберемся, а зачем собственно говоря нужно это токовое реле? Для ответа на этот вопрос нам следует немного погрузиться в теорию. Но мы постараемся сделать это максимально поверхностно и доступно.

  • Любая электроустановка имеет два основных параметра своей работы — это ток и напряжение. Контролируя эти два параметра, можно оценить работоспособность оборудования и вероятные неисправности.
  • Реле тока, как несложно догадаться, контролирует ток. И если его уменьшение говорит лишь о снижении нагрузки, то его увеличение в большинстве случаев говорит о серьезных неисправностях. Дабы не рассматривать вопрос более детально, давайте возьмем в качестве примера электродвигатель.

Релейная схема защит электродвигателя

  • Электродвигатель имеет номинальный ток, например, 50А. Незначительное увеличение тока, допустим до 55А, сигнализирует о перегрузе. В этом случае, двигатель не должен отключаться немедленно, ведь перегруз может носить временный характер, и согласно ПУЭ, большинство электродвигателей допускается периодически перегружать.
  • Но длительный режим работы с повышенным номинальным током может сигнализировать о неисправности механической части или других проблемах. Поэтому, после нагрузки, через определенный промежуток времени, двигатель должен быть отключен.

Схема защиты от перегруза

  • Схема реле тока и реле времени позволяет обеспечить такую защиту. При увеличении тока выше номинального значения в 50А, срабатывает токовое реле. Своими контактами оно запускает в работу реле времени, которое отсчитывает допустимое время работы двигателя в перегаженном состоянии. Если за этот период времени токовое реле не отпало, то реле времени срабатывает и отключает электродвигатель.

Обратите внимание! Защита от перегруза должна быть отстроена от времени пуска двигателя. Как известно, при пуске пусковой ток может доходить до десятикратного номинального (обычно пяти- или шестикратное). Поэтому, для исключения ложного срабатывания защиты от перегруза, время срабатывания реле времени должно быть больше времени разворота двигателя.

Токовая отсечка

  • Теперь возьмем другую ситуацию. На нашем двигателе происходит короткое замыкание. Его необходимо отключить в максимально сжатые сроки. Короткое замыкание характеризуется резким возрастанием тока. В зависимости от вида короткого замыкания, эти токи могут превышать значения 10-кратного номинального значения.
  • Исходя из этого, нам нужно поставить реле тока, схема которого будет реагировать на такой ток, и сразу же отключать его. Такую защиту называют токовой отсечкой. Когда защита мгновенно отключает электрооборудование при достижении определенного значения тока.

Токовые реле с выдержкой времени

  • Но бывают короткие замыкания, которые имеют не такие большие токи. В этом случае, реле тока и схема его подключения несколько изменяется. Ее принцип действия похож на защиту от перегруза, только чем больше ток, тем быстрее она отключит наш электродвигатель. Достигается это за счет объединения в одном устройстве и реле времени и тока. Такая защита называется максимальной токовой.

Токовые защиты, встроенные в выключатель

  • Существуют так же защиты от однофазных замыканий на землю, защиты от токов обратной последовательности, дифференциальные защиты, дистанционные защиты и множество других релейных схем, которые используют реле тока.

Но это уже более специфические защиты, которые требуют более глубоко понимания процессов. Поэтому в нашей статье мы не будем их рассматривать.

Схемы подключения токовых реле

Разобрав устройство и назначение реле тока, можно перейти к вопросу их подключения. Существует два основных варианта – непосредственно или через трансформатор тока.

Давайте рассмотрим каждый из этих вариантов:

  • Непосредственно могут подключаться реле к электроустановкам напряжением до 1000В. Это связано с тем, что при большем напряжении размеры реле пришлось бы значительно увеличивать для обеспечения соответствующей изоляции и протекания больших токов. А из-за этого увеличилась бы и цена реле.

Непосредственное подключение токового реле

  • Потребители до 1000В обычно не самые ответственные, поэтому защита реализуется на одной или двух фазах. Но возможен вариант реализации защит и на всех трех фазах. Для этого просто последовательно с нагрузкой включается катушка токового реле на одной или нескольких фазах.

Токовое реле

  • Многие токовые реле содержат две катушки. Для них может применяться последовательное или параллельное соединение обмоток реле тока. Это необходимо для изменения пределов срабатывания реле.
  • В качестве примера, возьмем реле РТ 40. При параллельном подключении катушек, ток срабатывания варьирует в пределах 0,1 – 100А. При последовательном подключении обмоток, предел срабатывания можно регулировать в пределах 0,2 – 200А.

Обратите внимание! Если вам необходим предел срабатывания в 0,1 – 100А, то в принципе вы можете вовсе не подключать вторую обмотку.

Трансформатор тока 6 – 10кВ

Трансформатор тока 110кВ и выше

  • Значительно чаще, электрические схемы соединения реле тока предполагают использование трансформаторов тока. Эти устройства позволяют преобразовать любой ток до значений в 1 или 5 А.

Схема подключения реле тока через трансформатор тока

  • Такие потребители обычно относятся к ответственным, поэтому токовые защиты реализуются по каждой фазе. Принцип подключения прост. Катушка реле просто подключаются к выводам трансформатора тока.

Внимание! Но тут следует помнить, что трансформаторы тока и вся вторичная коммутация работают в режиме близком к короткому замыканию. Поэтому разкорачивание таких цепей чревато повреждением трансформатора тока, а также серьезными последствиями для человека. Поэтому прежде чем выполнять какие-либо переключения в токовых цепях их следует закоротить перемычкой. Или же производить переключения на электрооборудовании, выведенном в ремонт.

Вывод

Реле тока и электрическая схема его подключения имеет множество нюансов. Если вдаваться в каждый, то получится полноценный учебник. Наша же цель была дать вам общие представления о данном реле максимально доступным языком. Поэтому некоторые вопросы в нашей статье раскрыты не полностью или же упрощенно. Более детально по каждому аспекту следует разбираться, исходя из существующих условий.

elektrik-a.su

Реле тока. Виды и устройство. Работа и как выбрать.

Применение

Реле тока — в электрических промышленных сетях часто возникают чрезмерные нагрузки и короткие замыкания. Все компоненты цепи, начиная от обычного проводника, и заканчивая потребителями нагрузки со сложной конструкцией, рассчитаны на допустимый максимальный нагрузочный ток. Превышение этой величины приводит к пробою изоляции, либо нарушению целостности проводов из-за расплавления жил, а также межвитковому замыканию обмотки двигателя, перегрузке трансформатора. Все эти факторы являются аварийными режимами эксплуатации, ведущими к неисправностям и выходу из строя сети питания.

Для обеспечения надежной защиты агрегатов, трансформаторов, приводов электромоторов применяется релейная защита, включающая в себя один из основных элементов в виде реле тока, которое предотвращает эксплуатацию электрооборудования в аварийном режиме.

Виды

Реле тока классифицируются по различным признакам, основные из которых рассмотрим подробнее.

Первичные чаще всего встроены в конструкцию выключателя, и являются его частью. Они применяются в основном в электрических сетях напряжением до 1000 В.

Вторичные включаются в цепь посредством трансформатора тока, который подключается к питающей шине или кабелю. Трансформатор снижает ток до значения, которое подходит для функционирования реле. В качестве примера можно рассмотреть трансформатор тока, имеющий кратность 100 : 5. Он способен контролировать значение тока до 100 ампер, применяя для этого реле с допускаемой величиной наибольшего тока всего в 5 ампер.

Вторичные реле тока в свою очередь разделяются на виды:
  • Индукционные реле.
  • Электромагнитного действия.
  • Дифференциальные модели.
  • Реле на интегральных микросхемах.
Устройство и работа

Рассмотрим подробнее конструктивные особенности основных видов реле и их принцип действия.

Индукционные

Такой вид реле работает на основе взаимодействия между током, индуцированным в некотором проводнике, и переменным магнитным потоком. Вследствие этого они используются на переменном токе в качестве защитного реле косвенного действия.

Имеющиеся виды индукционных реле делятся на 3 группы:
  • С рамкой.
  • С диском.
  • Со стаканом.

В моделях с рамкой (рисунок «а») поток Ф2 создает ток в замкнутой обмотке, выполненной в виде рамки в магнитном поле второго потока Ф1, который сдвинут по фазе. Такие реле обладают повышенной чувствительностью и максимальной реакцией в отличие от других реле. В качестве недостатка можно отметить слабый момент вращения.

Образцы с диском имеют широкую популярность. Схема такого реле изображена на рисунке «б». Такие реле обладают большим моментом вращения диска, имеют простое устройство.

Образцы реле со стаканом (рисунок «в») оснащены подвижным стаканом, который может вращаться в магнитном поле потоков магнитной системы, состоящей из четырех полюсов. Потоки расположены под прямым углом между собой в пространстве.

В стакане 5 находится стальной цилиндр 1, который предназначен для снижения магнитного сопротивления. Эта конструкция более сложная, в отличие от реле с диском. Это дает возможность получения короткого времени реакции на срабатывание (0,02 с), что является значительным преимуществом, и обеспечивает широкую популярность в использовании реле тока со стаканом.

4-полюсная магнитная система дает возможность получать без значительных доработок разные по назначению реле, и унифицировать их изготовление.

Электромагнитные

Нейтральные реле реагируют одинаково на постоянный ток, проходящий в обмотке, в любом направлении. По типу движения якоря реле делятся на два вида: с угловым перемещением якоря, и с втягивающим якорем.

  1. Сердечник.
  2. Ярмо.
  3. Якорь.
  4. Штифт.
  5. Контакты.

Если нет сигнала управления, то якорь удерживается на наибольшем расстоянии от сердечника с помощью воздействия пружины. При поступлении сигнала на обмотку образуется магнитная сила, прижимающая якорь к сердечнику. Тем самым одни контакты замыкаются, а другие размыкаются.

Поляризованные реле включают в себя аналогичные элементы, однако отличаются наличием двух обмоток, двух сердечников, постоянным магнитом и контактной тягой. Поляризованные реле срабатывают в зависимости от того, какой полярности пришел сигнал управления.

Сердечник изготавливается из листовой электротехнической стали. Это позволяет повысить скорость срабатывания устройства. При отсутствии тока на катушках, реле находится в исходном состоянии. При этом в реле уже есть магнитный поток, который образован постоянным магнитом. Силовые линии замыкаются на два контура.

Первый контур включает в себя магнит, левый сердечник, ярмо, якорь и другой магнит. А второй контур проходит по магниту и ярму к правому сердечнику и якорю. Далее он снова приходит в первоначальное положение.

Между левым сердечником и якорем нет воздушной прослойки. В этом случае правый сердечник и якорь разделены большим воздушным зазором. Воздух имеет большое сопротивление, поэтому величина магнитного потока в правом контуре будет намного меньше левого. Якорь притянется к левому сердечнику под действием более мощного магнитного потока.

Так функционирует поляризованное реле. Его работа происходит на основе магнитных свойств. Это дает возможность менять направление тока на обмотке, при разных полярностях.

Реле переменного тока имеет отличие от модели постоянного тока в том, что работает от переменного тока непосредственно от сети. При равных размерах конструкции, величина силы у реле переменного тока в два раза ниже, чем у реле, работающего на постоянном токе.

Достоинства
  • Низкая стоимость электромагнитных реле в отличие от полупроводниковых образцов.
  • Незначительное падение напряжения на контактах, низкое выделение теплоты, не требует охлаждения.
  • Качественная электрическая изоляция цепи управления катушки и группы контактов.
  • Невосприимчивость к импульсным нагрузкам и помехам, возникающим при ударах молнии, и при переключениях высоковольтных цепей.
  • Возможность подключения нагрузки до 4 киловатт при объемном размере реле ниже 10 куб. см.
Недостатки
  • Возникающие проблемы при подключении индуктивных потребителей и нагрузок постоянного тока высокого напряжения.
  • Возникновение радиопомех при работе силовых контактов.
  • Ограниченный механический и электрический ресурс.
  • Низкая скорость функционирования.
Дифференциальные

Такие реле действуют по принципу сравнивания значения тока до потребителя и после него. Таким потребителем обычно бывает силовой трансформатор. В обычном режиме эксплуатации ток до трансформатора и после него практически одинаков. Однако при появлении короткого замыкания на трансформаторе такой баланс нарушается. В этом случае реле замыкает контакты и подает команду на обесточивание неисправного участка цепи.

Дифференциальные реле широко используются в бытовых условиях, а также на производстве. Такие реле в виде защитных устройств предотвращают утечки тока в приборах и проводах. Защищаемыми приборами обычно бывают:

  • Оргтехника.
  • Бойлеры.
  • Светильники.
  • Бытовые устройства.

Тем самым осуществляется защита человека от удара электрическим током при касании корпуса устройства.

Реле на микросхемах (интегральные электронные)

Такие типы изготавливают на основе полупроводниковых элементов. Основным их преимуществом является постоянная стабильная работа при повышенной вибрации.

Применение и подключение

В нормальном эксплуатационном режиме любое реле тока должно обладать достаточной чувствительностью к превышению номинального значения тока в цепи входа. При повышении тока больше допустимых значений, осуществляется переключение контактов выхода, которые обесточивают силовые устройства от сети питания.

Если ток дальше продолжает снижаться и подходит к номинальной величине, то при этом цепь снова замыкается под действием сигнала на выходе, и подается ток.

Реле для защиты применяют в жилых домах, а также на производственных объектах. Многие современные квартиры оснащены мощными бытовыми электрическими устройствами. Если включить сразу все такие устройства, то это вызовет значительные нагрузки в электрической сети питания. Для предотвращения аналогичных случаев все устройства разделяют:

  • Приоритетные.
  • Второстепенные.

Приоритетными устройствами считаются те, отключение которых от сети создаст аварийную критическую обстановку. Такие внезапные отключения приводят к неисправностям и выходу из строя.

Второстепенными устройствами считаются те, которые можно отключить без всякого ущерба, не создавая аварийной ситуации или каких-либо неисправностей. Поэтому реле подключаются так, чтобы не допустить всевозможные перегрузки в сети питания.

Для примера рассмотрим реле максимального тока РМТ-101. Это устройство дает возможность настроить определенное время отключения нагрузки при перегрузке сети, а потом снова подает питание.

Такой образец реле способен контролировать и измерять нагрузку по току. Также при необходимости реле может применяться вместо цифрового амперметра. При измерении тока нет необходимости разрывать цепь. В приборе установлен специальный датчик, расположенный в корпусе.

Защитное реле РМТ-101 можно присоединять к трансформаторам тока выносного типа. На передней панели реле находятся цифровые и светодиодные индикаторы, которые показывают величину тока в цепи. Реле оснащено двумя переключателями, которыми можно настраивать необходимый интервал измерений, режим индикации, точность показаний, наибольший и текущий ток.

Другой важной функцией реле является его использование вместо реле ограничения потребления тока. Также можно выбрать необходимую нагрузку. Реле может функционировать в двух режимах: наименьшего и наибольшего тока. Чтобы переключиться между режимами, необходимо воспользоваться специальным переключателем.

Реле тока РМТ-101 приобрело широкую популярность на производстве. Оно создает защиту мощных электродвигателей переменного и постоянного тока, а также другого оборудования от возникающих перегрузок.

Также широко используемым устройством в различных областях является реле РЭО-401.

 
Устройство этого реле защиты состоит из двух главных узлов:
  • Электромагнитная система.
  • Блок контакт.

Электромагнитная система включает в себя скобу сердечника с трубкой. На трубке размещена катушка, имеющая в качестве защиты изоляционный каркас. В трубке находится якорь, который может легко перемещаться вдоль трубки. Значение тока срабатывания зависит от расположения якоря.

Значение тока срабатывания регулируется с помощью изменения расположения скобы, которая после регулировки может фиксироваться специальным винтом. Когда реле сработает, то блок-контакты останутся разомкнутыми, пока не снизится ток до нормальной величины. Далее якорь переместится в нижнюю позицию, а контакты от воздействия пружины замкнутся. Проводники подключаются к реле на передней части корпуса.

Советы по выбору реле
Чтобы сделать правильный выбор реле наибольшего тока необходимо руководствоваться:
  • Поставленной задачей.
  • Значением тока.
  • Напряжением питания.
  • Условиями эксплуатации.
  • Наличием механизма задержки срабатывания.
  • Наибольшим допустимым током.
  • Характеристиками и параметрами регулировки.

После приобретения реле, его необходимо настроить. Это делается легко, при помощи встроенных уставок, плавно изменяя их. Все аналогичные реле имеют компактные размеры. Это дает возможность без особых проблем установить их в шкафы релейной защиты или распределительные щиты.

Такие модели имеют надежную и простую конструкцию, унифицированы между собой, что позволяет производить их легкую замену. Для контроля параметров применяются встроенные светодиодные дисплеи.

Похожие темы:

 

electrosam.ru

Реле тока принцип работы — Всё о электрике в доме

Реле тока — разновидности и устройство

Реле тока – это устройство, которое часто используется для сигнализации о превышении тока в определенной контролируемой цепи. Также его используют для отключения электрической цепи при возникновении коротких замыканий или перегрузок. Реле тока минимального применяют гораздо реже. Такие устройства предназначены для разрывания электрической цепи при достижении определенного минимального значения тока.

Есть много различных видов такого электрического приспособления, как реле тока. Они отличаются конструктивным исполнением и принципами действия. Если говорить о так называемом классическом приборе, то он представляет собой подвижный якорь на пружинах, который управляет контактами, и катушку с сердечником (обычно железным). Когда ток проходит по катушке, создается определенной величины магнитное поле. Про действием этого магнитного поля намагничивается сердечник катушки и начинает притягивать якорь. Таким образом, будут срабатывать контакты.

Катушка такого прибора содержит немного витков, однако провод имеет большой диаметр (в отличие от, например, того же реле напряжения). Диаметр провода напрямую зависит от тока, точнее, от величины значения расчетного тока. За счет этого достигается некоторое падение напряжения. Это очень важно, ведь катушка подключается последовательно в контролируемую цепь.

Некоторые реле постоянного тока имеют регулируемый ток срабатывания. Чаще всего это достигается благодаря изменению натяжения пружины якоря. Реле тока переменного, которое используется, чтобы контролировать большие токи, может включатся через трансформаторы.

Самой важной характеристикой такого защитного устройства является время срабатывания. Приборы такого типа, которые можно использовать для защиты от коротких замыканий, имеют время срабатывания не более чем несколько десятков миллисекунд.

Твердотельное реле постоянного тока осуществляет задержку при отключении цепи. Это исключает возможность ложного срабатывания в случае кратковременного повышения тока. У такого устройства обычно есть регулирование времени срабатывания.

Одним из наиболее распространенных видов защитных устройств является тепловое реле тока. Оно представляет собой биметаллическую пластинку, снабженную нагревательным элементом, сделанным из материала с высоким значением удельного сопротивления (например, из нихрома). Пластина состоит из материалов с разным коэффициентом теплового расширения, которая изгибается при нагревании и воздействует на механизм реле. Время срабатывания такого устройства зависит от тока — чем он больше, тем быстрее разогреется пластина, и тем меньше время срабатывания.

Электронное реле тока используют для фактически мгновенного отключения при перегрузке. Схема электронного реле может обработать сигналы в соответствии с заданными заранее параметрами и характеристиками. Можно установить допустимый максимальный ток и время задержки при отключении. Такие реле тока могут быть и переменные, и постоянные. Эти приборы часто входят во встроенном виде во многие устройства.

Непростительные ошибки в фильмах, которых вы, вероятно, никогда не замечали Наверное, найдется очень мало людей, которые бы не любили смотреть фильмы. Однако даже в лучшем кино встречаются ошибки, которые могут заметить зрител.

Наперекор всем стереотипам: девушка с редким генетическим расстройством покоряет мир моды Эту девушку зовут Мелани Гайдос, и она ворвалась в мир моды стремительно, эпатируя, воодушевляя и разрушая глупые стереотипы.

Эти 10 мелочей мужчина всегда замечает в женщине Думаете, ваш мужчина ничего не смыслит в женской психологии? Это не так. От взгляда любящего вас партнера не укроется ни единая мелочь. И вот 10 вещей.

Что форма носа может сказать о вашей личности? Многие эксперты считают, что, посмотрев на нос, можно многое сказать о личности человека. Поэтому при первой встрече обратите внимание на нос незнаком.

10 загадочных фотографий, которые шокируют Задолго до появления Интернета и мастеров «Фотошопа» подавляющее большинство сделанных фото были подлинными. Иногда на снимки попадали поистине неверо.

Каково быть девственницей в 30 лет? Каково, интересно, женщинам, которые не занимались сексом практически до достижения среднего возраста.

Назначение и принцип работы реле тока

Назначение и принцип работы реле контроля напряжения

Во многих странах СНГ имеется проблема с качеством электроэнергии, то есть электричество идет скачками, иногда бывают обрывы. Конечно, это все может негативно сказываться на бытовых приборах-потребителях.

Бывает, случается отгорание нулевых проводников или слипание двух фаз в связи с низким качеством обслуживания (или отсутствием обслуживания вообще) старых электросетей, что может привести к весьма высоким скачкам напряжения с 220В до 380В. А такие скачки уже, скорее всего, приведут к моментальной порче всех бытовых электроприборов, которые не рассчитаны на такие скачки и не имеют специальной защиты.

Принцип работы реле контроля напряжения — состоит в том, чтобы молниеносно среагировать на повышения напряжения выше заданного на входе внутренней сети и отключить его, предотвратив порчу приборов-потребителей. Размыкание фазы происходит путем возникновения электромагнитной индукции в электромагните при прохождении через него тока.

Рядом возле электромагнита находится якорь, к которому прикреплен контакт подающей напряжения линии фазы, а второй контакт, который с ним соприкасается и является неподвижным, передает напряжение во внутреннюю проводку.

При возникновении высокого электромагнитного поля, электромагнит притягивает к себе якорь, таким образом, размыкая контакты и прекращая подачу напряжения во внутреннюю проводку. Кроме того, реле содержит электронику, которая настраивается вручную на грань напряжения, при котором осуществляется размыкание контактов.

Как видно выше, принципиальная схема реле контроля напряжения вмещает в себе несколько составляющих, как исполнительное реле, пускатель и блок управления, который имеет два регулятора: регулятор минимального и максимального порога напряжения, при котором происходит размыкание цепи.

Назначение и принцип работы реле тока

Современное жилье вмещает в себе множество бытовых электроприборов: холодильники, телевизоры, компьютеры, электрочайники, микроволновые и электрические печи.

Конечно, многие из этих приборов являются весьма емкими в плане потребления электропитания (электрического тока) и бывает, по стечению обстоятельств их включают одновременно, что приводит к перегрузке сети. То есть, входная линия электропитания рассчитана на меньшую пропускную мощность, чем того требуют все эти приборы вместе взятые.

Из-за этого сейчас стали разделять приборы на приоритетные (которые крайне нежелательно выключать при перегрузке) и второстепенные. Этот новый принцип приоритетности электроприборов реализуется с применением реле тока, именуемым также как реле ограничения мощности.

Принцип работы реле тока (реле мощности принцип действия) состоит в том, что второстепенные приборы, которые «вешают» на отдельную линию внутренней проводки, оно отключает от питания, разгружая тем самым сеть для эксплуатации самых необходимых приоритетных приборов.

Конструкция этого прибора также вмещает в себе электромагнитный механизм, вмещающий в себе якорь с контактом входной линии напряжения, соприкасающимся подающим напряжение в цепь. Размыкание цепи вследствие работы электромагнита (оттягивающим якорь с контактом от второго контакта) осуществляется на основании данных из встроенного потенциометра.

Потенциометр меряет разницу силы токов на входе и выходе цепи, и по указанным ему вручную порогам, дает сигнал отключения механизму, размыкающему не приоритетную линию питания.

Выше приведена принципиальная схема реле тока (схема реле ограничения мощности), представленная как модификация, не имеющая подключения для трансформатора тока, это отдельная статья, да и редко применяется в бытовых электросетях.

Там же на реле тока схема подключения имеется, представлены две линии: приоритетная и второстепенная. Отключается второстепенная линия при превышении порога заданного тока, а ее включение вновь происходит при уменьшении тока приоритетной линии.

Для чего нужно реле максимального тока?

Токовое реле используется для защиты электромашин и электрических установок от аварийных режимов и внештатных ситуаций. Чаще всего данными аппаратами оснащают электродвигатели, силовые трансформаторы и прочее промышленной оборудование. В данной статье мы рассмотрим устройство, принцип действия и назначение реле максимального тока, чтобы вы знали, что это за аппарат и для чего он нужен.

Назначение и принцип работы

Данное устройство призвано следить за величиной тока на определенном участке сети. В случае превышения установленного значения РМТ переключается, подавая сигнал на исполнительный механизм, который обесточит участок схемы или включит табло сигнализации.

Каждый элемент: релейная защита, пускатели, контроллеры, двигатели, трансформаторы в электрической сети, имеет свой предельный допустимый ток. Использование максимального реле тока вместо автоматических выключателей или предохранителей, имеет свое преимущество за счет селективности. В данном случае это возможность отключить определенный участок цепи, не затронув другие.

Конструкция токового реле представлена следующими элементами:

О том, как работает реле максимального тока и как его настроить, вы можете узнать из видео:

Классификация

В свою очередь устройства разделяются на несколько типов измерения: первичное и вторичное. Первый тип подключается к аппарату непосредственно своими выводами. Такое подключение распространено в сетях до 1000 Вольт.

Второй тип РМТ (на фото ниже) подключается через трансформатор тока, измеряя вторичный ток, который прямо пропорционален первичному и на порядок меньше, чем в измеряемой цепи. Применяют данный тип подключения в высоковольтных сетях.

В свою очередь, реле вторичного тока подразделяются на индукционные и электромагнитные, дифференциальные, электронные. Принцип работы дифференциального типа исполнения заключается в сравнении силы тока до потребителя и после него. В нормальных условиях эта величина должна быть одинаковой. Если же параметры отличаются (например, при коротком замыкании), РМТ замыкает контакты, благодаря чему происходит отключение поврежденной линии от сети.

Примером дифференциального реле является устройство защитного отключения, которое широко применяется как в быту, так и на производстве.

Примечание

Выбор максимально токового реле обусловлен техническим заданием, требуемыми параметрами, порогом максимальной нагрузки управляемого механизма. Современные реле тока имеют небольшие размеры и могут быть непосредственно установлены в шкаф управления. РМТ имеют огромный диапазон настроек и установок, изменяемый алгоритм работы, а также возможность выводить действующее значение на цифровое табло.

Напоследок рекомендуем просмотреть еще одно полезное видео по теме:

Вот мы и рассмотрели, что такое реле максимально тока, какое у него назначение, устройство и принцип действия. Надеемся, предоставленная информация была для вас полезной и интересной!

Рекомендуем также прочитать:

Источники: http://fb.ru/article/62002/rele-toka—raznovidnosti-i-ustroystvo, http://megapredmet.ru/1-31553.html, http://samelectrik.ru/dlya-chego-nuzhno-rele-maksimalnogo-toka.html

electricremont.ru

Реле Переменного Тока: Особенности Работы, Разновидности

Реле переменного тока твердотельное

Схемотехника различных электрических и электро-механических устройств предполагает наличие элемента, который должен в определенный момент времени включать и отключать подачу электрического тока. Если говорить техническим языком, то релейный элемент – это устройство с несколькими состояниями равновесия, каждое из которых может быть сменено на другое при определенных внешних воздействиях или направленном управлении.

Реле переменного тока – прибор для коммутации в автоматическом режиме для электрических цепей по управляющему сигналу. Помимо этого эти устройства могут дополнительно выступать в роли усилителей, элементами управления  к электродвигателям и исполнительным устройствам.

Основные рабочие характеристики

Промышленное реле на 24В

Итак, реле переменного тока является промежуточным элементом, который приводит в действие управляемую электрическую цепь.

Для этого устройства характерны следующие параметры:

  • Мощность срабатывания (Р ср – измеряется в Ваттах) – ток минимальной мощности, который должен подаваться на реле для его нормальной активации. Номинально этот параметр подбирается согласно общим конструктивным и электрическим параметрам реле.
  • Мощность управления (Р упр – измеряется в Ваттах) – максимальная мощность тока, которую способно передать реле в коммутируемой сети. Данное значение определяется параметрами рабочих контактов реле.

Совет! Не сложно догадаться, что при выборе реле для сети ориентируются на названные параметры, которые для определенных конструкций являются постоянными.

  • Время срабатывания (Т ср – измеряется в секундах) – разница во времени от момента поступления сигнала на управляющий контакт до смыкания или размыкания контактов.
  • Допустимая разрывная мощность (Р р – измеряется в Ваттах) – этот параметр можно встретить в сильноточных реле. Он обозначает мощность при определенном токе, которая при разрыве не позволит создать устойчивую электрическую дугу.
Как работает реле

Диаграмма работы реле во времени

Для управляющей цепи и самого реле характерна некоторая инертность, из-за чего входной ток на реле растет и убывает не мгновенно, а изменяется в некоторых пределах в течение времени, что прекрасно видно на показанной выше схеме, из которой так же понятно, что рабочий цикл состоит из трех этапов:

  • Срабатывание;
  • Работа;
  • Возврат.

Давайте в качестве примера, для понимания основных принципов возьмем электромагнитное реле постоянного тока.

Назад в будущее: реле из 1983 года

  • Внутри такого реле имеется катушка индуктивности, благодаря которой и происходит постепенное изменение параметров тока. Сама же работа реле для каждого этапа складывается из определенных временных отрезков.
  • Срабатывание – имеет два таких интервала: время трогания (tтр) и время на движение якоря(tдв). То есть Т ср = tтр+tдв – все просто.
  • Работа – также два участка, которые обозначены на временной линии отрезками АВ и ВС. На первом этапе ток продолжает еще какое-то время расти, пока не будет достигнуто установленное значение, что позволяет обеспечить надежное притяжение между якорем и сердечником, препятствующим вибрации якоря. На втором участке никаких изменений величины тока не происходит.
  • Возврат – аналогично, 2 участка. На первом происходит отпускание реле, а на втором – возврат в исходное состояние. На протяжении всего периода сила тока падает.

Трехфазное реле переменного тока

Прочие характеристики

Помимо перечисленного, у реле разных типов в ходу следующие параметры:

  • Коэффициент возврата (Kb) – отношение отпускающего тока к срабатывающему. Обычно данное значение варьируется от 0,4 до 0,8. Рассчитывается по формуле: Iот/Iср < 1.
  • Коэффициент запаса (К зап) – это отношение тока установившегося (I уст), то есть максимального  к току срабатывания. Это значение  показывает, насколько надежен выбранный прибор.
  • Последний параметр называется коэффициентом управления (К упр) и представлен отношением мощности управления к мощности срабатывания. То есть если реле используется как усилитель, то мы видим коэффициент этого усиления.

Разновидности электрических реле

Реле контроля изоляции переменного тока следит за уровнем сопротивления изоляции

Все реле можно разделить по нескольким признакам, и делят их:

  • По назначению – тут можно встретить варианты предназначенные для защиты, управления или сигнализации.
  • По принципу действия. Тут список будет куда шире: электромагнитные нейтральные; электромеханические; поляризованные электромагнитные; магнитоэлектрические; индукционные, электротермические; электродинамические; бесконтактные магнитные; фотоэлектронные и электронные, а также другие.

Реле времени переменного тока

  • Делят также эти устройства по замеряемым величинам. Замеряться может электрический ток – его мощность, частота, сопротивление, напряжение, сила, коэффициент мощности. Слежение может происходить и за механическими параметрами: объем, сила, давление, скорость, уровень и прочее. Физическими величинами – температура. Временем.
  • Естественно, разные устройства рассчитаны на отличающуюся мощность управления. Тут представлено три типа: малой мощности – приборы до 1 Вт; средней – от 1 до 10 Вт; высокой мощности – все, что выше 10 Вт.
  • Важным параметром, характеризующим разные модели является время срабатывания прибора. Тут представлено 4 категории: самые быстрые безынерционные модели, чье время на срабатывание составляет меньше 0,001 секунды; далее идут быстродействующие – от 0,001 до 0,05 секунды; замедленные – от 0,15 до 1 секунды; реле времени, которым требуется больше 1 секунды.

Наибольшее распространение получили электромеханические реле, в которых при подаче управляющего тока происходит перемещение подвижной части, называемой якорем, в результате чего происходит замыкание управляемой цепи.

Электромагнитные реле

Электромагнитное реле

Данный тип реле делится на два вида – постоянного и переменного тока. Давайте сначала немного побеседуем про первый тип, который бывает нейтральным или поляризованным.

  • Суть первого варианта заключается в том, что устройство одинаково реагирует на протекающий ток на его обмотке в разных направлениях, а это значит, что усилие на якоре никак не зависит от направления тока.
  • Эти устройства разделяются еще на два типа, в зависимости от движения, которое совершает якорь. Существуют механизмы с угловым движением и втяжным.

Данное втягивающее реле можно встретить на стартере автомобиля ВАЗ 2110

  • Принцип работы устройства предельно прост. При отсутствии управляющего тока якорь отстоит от сердечника на максимальном расстоянии и удерживается в таком положении за счет пружины возврата. В это время на реле будут сомкнуты размыкающие контакты и разомкнуты замыкающие.
  • В момент, когда подается ток в обмотку, он проходит через сердечник, якорь, ярмо и воздушный зазор, при этом создается магнитное усилие, которое притягивает якорь к сердечнику, преодолевая сопротивление пружины.
  • Якорь взаимодействует с колодкой, из-за чего замыкающие контакты смыкаются, а размыкающие, соответственно, разъединяются.

Принцип работы реле

Конструкция реле и тип применяемых контактов будут отличаться в зависимости от токов, на работу с которыми оно рассчитано. В случае маломощных устройств (связи, сигнализации, телемеханики) применяются контакты малой мощности, изготавливаемые из нейзильбера с контактными площадками (наклепанными) из вольфрама или серебра или фосфоритной бронзы.

Наклепки на контактах также могут быть изготовлены из золота, платины, палладия и прочих сплавов, их форма плоская или плоская цилиндрическая.

Контактное реле для автомобиля

В случае средних токов от 0,5 до 5 Ампер ставят контакты из тугоплавких металлов и их сплавов, например, платина-иридий, вольфрам, золото-палладий и прочие.

Беспроводное реле на 16 Ампер

Когда предполагается работа с большими токами, контакты делают медными или из механических смесей, изготавливаемых методом спекания порошков (металлокерамика).

Механическая и тяговая характеристики устройств

За время срабатывания реле меняется длина на воздушном зазоре, а значит, меняется и электромагнитное воздействие на якорь. Данная зависимость называется тяговой характеристикой и выражается формулой: Fэ = f(d).

Тяговая характеристика на диаграмме

Если не брать в расчет сопротивление элементов магнитопровода, изготовленных из стали, то тяговая характеристика должна, по идее, иметь форму гиперболы, однако магнитное сопротивление на воздушном зазоре Rмd при его уменьшении также снижается и сравнивается с сопротивлением магнитопровода Rмст. Исходя из этого, магнитное усилие не может быть больше, чем некая максимальная величина Fэ max. Не противоречит логике, что при самом большом значении воздушного зазора Fэ будет минимальным.

Когда отключается питание обмотки реле, на магнитопроводе остается намагничивание, из-за которого якорь может залипнуть. Чтобы избавиться от этого эффекта применят штифт из немагнитного материала.

Механическая характеристика реле

  • Фактически, работа реле заключается в соединении и разъединении контактов, которых может быть 2 и намного больше. Во время перемещения якоря происходит рост силы упругости возвратной и контактных пружин. Эти силы будут иметь разное значение в зависимости от положения якоря и величины воздушного зазора. Данная зависимость носит название механической характеристики реле.
  • Во время запуска реле, якорь первым преодолевает сопротивление возвратной пружины – на графике выше это усилие отмечено участком ab.
  • На следующем участке bc отмечено усилие на ход до первой контактной пружины. Участок cd – преодоление совместного сопротивления двух пружин.
  • Логично предположить, что тяговая характеристика у нормально работающего реле должна быть выше механической.

Интересно знать! В мощных устройствах процесс разъединения протекает намного сложнее первичного коммутирования, так как возникшая электродвижущая сила стремиться удержать значение текущего в управляемой цепи тока. В итоге в момент разъединения может образовываться искрение, а то и вовсе дуговой разряд, очень вредный для контактов реле.

Для того чтобы нейтрализовать описанный эффект используется либо увеличение активного сопротивления, либо специальные конструкции приборов.

Реле поляризованного типа

На фото — электромагнитное поляризованное реле

Работа таких устройств от описанных до этого отличается тем, что направление в котором действует электромагнитная сила меняется в зависимости от полярности тока, подаваемого на обмотку. Данный принцип реализуется посредством постоянного магнита. Подобных реле на рынке представлено великое множество, но все они делятся на мостовые и дифференциальные.

Также их можно разделить на три типа по настройке контактов:

  • Двухпозиционные модели;
  • Двухпозиционные с преобладанием вправо или влево;
  • Трехпозиционные, имеющие зону нечувствительности.

Принцип действия двухпозиционного поляризованного реле

По представленной схеме можно понять, как работают такие реле:

  • С разных сторон на сердечнике намотаны две катушки, обозначенные как 1.
  • При подключении они создают устойчивое магнитное поле (Fэ) в ярме (2).
  • Постоянный магнит (3) также имеет магнитное поле Ф0(п).
  • В момент, когда якорь находится в центральном (нейтральном) положении ток на катушки не подается, и магнитный поток от постоянного магнита разбивается на 2 одинаковые части (Ф01 и Ф02), а значит, тяговая сила будет отсутствовать.
  • Как только на обмотку подается питание, образующееся магнитное поле на ярме начнет выдавать результирующее поле, прибавляясь или отнимаясь от Ф01 и Ф02, в зависимости от полярности питания.
  • Как только одно поле начинает преобладать над другим, возрастает тяговая сила, а значит, якорь начинает движение влево или вправо.

К неоспоримым достоинствам таких реле можно отнести высокую чувствительность, быстрое срабатывание, высокий коэффициент управления. К недостаткам относятся, разве что, большие габариты, сложная конструкция и цена.

Реле электромагнитные переменного тока

Оптореле переменного тока

Реле электромагнитные переменного тока, как несложно догадаться, отличается от постоянных моделей тем, что могут работать от электрических сетей с частотой тока от 50 до 400 Гц. Обозначение переменного тока на реле рисуется в виде волнистой черты. Тот же символ можно встретить и в схемотехнике – он помещается в кружочек (см. рисунок ниже).

Схематическое изображение реле переменного тока

Работает такое реле по следующей схеме:

  • Переменный ток подается на обмотку, после чего якорь также притягивается к сердечнику.
  • Почему контакт не размыкается при смене направления движения тока?
  • Потому что тяговое усилие будет пропорционально квадрату силы намагничивания, а значит, и квадрату тока, текущего по обмотке.
  • Получаем, что направление тягового усилия не зависит от направления тока.

Как меняется тяговое усилие при перемене направления тока

  • Если представить себе два реле (постоянного и переменного тока) одинаковых размеров и с одинаковыми значениями самой высокой индукции, то тяговая сила у последнего будет в два раза меньше, так как оно вынуждено постоянно пульсировать с удвоенной частотой, опускаясь до нуля каждый раз, когда ток меняет свое направление, то есть 2 раза за такт.
  • Из-за этого якорю реле приходится постоянно вибрировать, что вызывает быстрый износ детали. Чтобы избавиться от этого эффекта устанавливаются дифференциальные сердечники и фазосдвигающие детали, которые не дают магнитному потоку переходить через нуль.
  • Сердечник может быть расщепленным с короткозамкнутой обмоткой, то есть конец элемента имеет пропил, делящий его на две части. На одну из таких частей и устанавливается короткозамкнутая обмотка из одного или пары витков.
  • Во время работы реле переменное магнитное поле делится на две части (Ф1 и Ф2), одна из которых (Ф2) создает в к.з. витке ЭДС, после чего образуется еще одно магнитное поле (Фкз), воздействующее на поле ЭДС создающее (Ф2), в результате чего оно начнет отставать от первого потока (Ф1). Данный сдвиг будет в пределах 60-80 градусов, а значит результирующее поле (Fэ), создающее тяговую силу, никогда не упадет до нуля, и тем более не сменит своего направления.

Изменение тяговой силы

Чтобы реле переменного тока работало надежно, без вибраций его параметры рассчитываются так, чтобы усилие Fэ min было максимально большим.

Из полученной информации можно сделать вывод о том, что такие реле имеют куда худшие параметры по сравнению с постоянными по тяговому усилию и чувствительности. Добавьте сюда усложненную конструкцию, и как следствие более высокую цену.

Однако и достоинство у таких реле хоть и одно, но неоспоримое – возможность применения в общественных сетях.

Итак, подведем итоги. Мы разобрали назначение реле, их принципы работы, основные виды и узнали, чем отличается реле управляемое переменным током от постоянного. Информации было много, но только на первый взгляд, поэтому рекомендуем углубиться в тему, просмотрев предложенное видео.

elektrik-a.su

Реле максимального тока: устройство, принцип действия, назначение

Токовое реле используется для защиты электромашин и электрических установок от аварийных режимов и внештатных ситуаций. Чаще всего данными аппаратами оснащают электродвигатели, силовые трансформаторы и прочее промышленной оборудование. В данной статье мы рассмотрим устройство, принцип действия и назначение реле максимального тока, чтобы вы знали, что это за аппарат и для чего он нужен.

Назначение и принцип работы

Данное устройство призвано следить за величиной тока на определенном участке сети. В случае превышения установленного значения РМТ переключается, подавая сигнал на исполнительный механизм, который обесточит участок схемы или включит табло сигнализации.

Каждый элемент: релейная защита, пускатели, контроллеры, двигатели, трансформаторы в электрической сети, имеет свой предельный допустимый ток. Использование максимального реле тока вместо автоматических выключателей или предохранителей, имеет свое преимущество за счет селективности. В данном случае это возможность отключить определенный участок цепи, не затронув другие.

Конструкция токового реле представлена следующими элементами:

О том, как работает реле максимального тока и как его настроить, вы можете узнать из видео:

Классификация

В свою очередь устройства разделяются на несколько типов измерения: первичное и вторичное. Первый тип подключается к аппарату непосредственно своими выводами. Такое подключение распространено в сетях до 1000 Вольт.

Второй тип РМТ (на фото ниже) подключается через трансформатор тока, измеряя вторичный ток, который прямо пропорционален первичному и на порядок меньше, чем в измеряемой цепи. Применяют данный тип подключения в высоковольтных сетях.

В свою очередь, реле вторичного тока подразделяются на индукционные и электромагнитные, дифференциальные, электронные. Принцип работы дифференциального типа исполнения заключается в сравнении силы тока до потребителя и после него. В нормальных условиях эта величина должна быть одинаковой. Если же параметры отличаются (например, при коротком замыкании), РМТ замыкает контакты, благодаря чему происходит отключение поврежденной линии от сети.

Примером дифференциального реле является устройство защитного отключения, которое широко применяется как в быту, так и на производстве.

Примечание

Выбор максимально токового реле обусловлен техническим заданием, требуемыми параметрами, порогом максимальной нагрузки управляемого механизма. Современные реле тока имеют небольшие размеры и могут быть непосредственно установлены в шкаф управления. РМТ имеют огромный диапазон настроек и установок, изменяемый алгоритм работы, а также возможность выводить действующее значение на цифровое табло.

Напоследок рекомендуем просмотреть еще одно полезное видео по теме:

Вот мы и рассмотрели, что такое реле максимально тока, какое у него назначение, устройство и принцип действия. Надеемся, предоставленная информация была для вас полезной и интересной!

Рекомендуем также прочитать:

samelectrik.ru

Назначение и принцип работы реле тока



Обратная связь

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение

Как определить диапазон голоса — ваш вокал

Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими

Целительная привычка

Как самому избавиться от обидчивости

Противоречивые взгляды на качества, присущие мужчинам

Тренинг уверенности в себе

Вкуснейший «Салат из свеклы с чесноком»

Натюрморт и его изобразительные возможности

Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.

Как научиться брать на себя ответственность

Зачем нужны границы в отношениях с детьми?

Световозвращающие элементы на детской одежде

Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия

Как слышать голос Бога

Классификация ожирения по ИМТ (ВОЗ)

Глава 3. Завет мужчины с женщиной

Оси и плоскости тела человека — Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.

Отёска стен и прирубка косяков — Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.

Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) — В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Назначение и принцип работы реле контроля напряжения

Во многих странах СНГ имеется проблема с качеством электроэнергии, то есть электричество идет скачками, иногда бывают обрывы. Конечно, это все может негативно сказываться на бытовых приборах-потребителях.

 

Бывает, случается отгорание нулевых проводников или слипание двух фаз в связи с низким качеством обслуживания (или отсутствием обслуживания вообще) старых электросетей, что может привести к весьма высоким скачкам напряжения с 220В до 380В. А такие скачки уже, скорее всего, приведут к моментальной порче всех бытовых электроприборов, которые не рассчитаны на такие скачки и не имеют специальной защиты.

 

Принцип работы реле контроля напряжения — состоит в том, чтобы молниеносно среагировать на повышения напряжения выше заданного на входе внутренней сети и отключить его, предотвратив порчу приборов-потребителей. Размыкание фазы происходит путем возникновения электромагнитной индукции в электромагните при прохождении через него тока.

 

Рядом возле электромагнита находится якорь, к которому прикреплен контакт подающей напряжения линии фазы, а второй контакт, который с ним соприкасается и является неподвижным, передает напряжение во внутреннюю проводку.

 

При возникновении высокого электромагнитного поля, электромагнит притягивает к себе якорь, таким образом, размыкая контакты и прекращая подачу напряжения во внутреннюю проводку. Кроме того, реле содержит электронику, которая настраивается вручную на грань напряжения, при котором осуществляется размыкание контактов.

 

 

Как видно выше, принципиальная схема реле контроля напряжения вмещает в себе несколько составляющих, как исполнительное реле, пускатель и блок управления, который имеет два регулятора: регулятор минимального и максимального порога напряжения, при котором происходит размыкание цепи.

 

Назначение и принцип работы реле тока

Современное жилье вмещает в себе множество бытовых электроприборов: холодильники, телевизоры, компьютеры, электрочайники, микроволновые и электрические печи.

 

Конечно, многие из этих приборов являются весьма емкими в плане потребления электропитания (электрического тока) и бывает, по стечению обстоятельств их включают одновременно, что приводит к перегрузке сети. То есть, входная линия электропитания рассчитана на меньшую пропускную мощность, чем того требуют все эти приборы вместе взятые.

 

Из-за этого сейчас стали разделять приборы на приоритетные (которые крайне нежелательно выключать при перегрузке) и второстепенные. Этот новый принцип приоритетности электроприборов реализуется с применением реле тока, именуемым также как реле ограничения мощности.

 

Принцип работы реле тока (реле мощности принцип действия) состоит в том, что второстепенные приборы, которые «вешают» на отдельную линию внутренней проводки, оно отключает от питания, разгружая тем самым сеть для эксплуатации самых необходимых приоритетных приборов.

 

Конструкция этого прибора также вмещает в себе электромагнитный механизм, вмещающий в себе якорь с контактом входной линии напряжения, соприкасающимся подающим напряжение в цепь. Размыкание цепи вследствие работы электромагнита (оттягивающим якорь с контактом от второго контакта) осуществляется на основании данных из встроенного потенциометра.

 

Потенциометр меряет разницу силы токов на входе и выходе цепи, и по указанным ему вручную порогам, дает сигнал отключения механизму, размыкающему не приоритетную линию питания.

 

 

Выше приведена принципиальная схема реле тока (схема реле ограничения мощности), представленная как модификация, не имеющая подключения для трансформатора тока, это отдельная статья, да и редко применяется в бытовых электросетях.

 

Там же на реле тока схема подключения имеется, представлены две линии: приоритетная и второстепенная. Отключается второстепенная линия при превышении порога заданного тока, а ее включение вновь происходит при уменьшении тока приоритетной линии.

 

megapredmet.ru

Как работает электромагнитное реле — Практическая электроника

Как работает электромагнитное реле? Этот вопрос чаще всего задают себе автолюбители, так как старенькие автомобили имеют целый блок реле, который смотрится, как какой-то таинственный город с черными домиками)

 

Немного теории

Думаю, все уже в курсе , что поле — это не только гектары земли с пшеницей, картошкой, коноплей 🙂

В нашей жизни существуют еще и другие виды полей, но  они невидимы человеческим глазом. Это может быть гравитационное, электрическое или даже магнитное поле. Давайте рассмотрим, что же из себя представляет магнитное поле?

Магнитное поле образуется вокруг кусочка магнита. Не зависимо от размеров этого кусочка, этот магнит всегда будет иметь два полюса: Северный (N — North) и Южный (S — South). Стрелки магнитного поля начинаются с Севера и заканчиваются на Юге, но они  нигде не разрываются. Даже в самом магните (доказано наукой).  Как вы знаете, Земля — это тот же самый кусочек магнита очень большого размера. Она также имеет эти два полюса, покрытые льдинами.

Но самый смак заключается в том, что проводок, по которому течет электрический ток,  вокруг себя образует то же самое магнитное поле как и простой магнит.  Буквой I отмечают направление тока, а В — это линии магнитного поля. Они представляют собой замкнутые круги.

       

Даже не знаю,  кто первый придумал навернуть провод пружиной и пропустить через него электрический ток, но это того стоило.

В результате этого получили нечто иное, как соленоид. Если на концы такого соленоида подать электрический ток, то он будет обладать магнитными свойствами! Правильнее было бы его назвать электромагнит. Смотрите, сколько силовых  линий образуется в соленоиде, при подаче на его концы электрического тока!

 

 

А если обмотать какую-нибудь железку этими витками и подать напряжение, то эта железяка станет электромагнитом и будет притягивать к себе металлические предметы.

К чему я все это веду? Да дело как раз в том, что этот принцип используется в очень важном электротехническом устройстве: в электромагнитном реле.  Реле (relayer — англ. сменять, заменять)  — это такое радиотехническое изделие, которое использует принцип работы электромагнитного поля.

Практические опыты

Возьмем простое электромагнитное  реле

Давайте же посмотрим, что на нем написано:

 

TDM ELECTRIC — видимо производитель. РЭК 78/3 — название реле. Дальше идет самое интересное. Мы видим какие то полоски и цифры.  Контакты с 1 по 9  — это и есть  комутационные контакты реле, 10 и 11 — это катушка реле.

Теперь обо всем по порядку.  Реле состоит из коммутационных контактов. Что значит словосочетание «коммутационные контакты»? Это контакты, которые осуществляют переключение. Катушка — это медный провод, намотанный на цилиндрическую железку. В результате, соленоид превращается в электромагнит, если на его концы подать напряжение.

Еще чуть ниже мы видим такие надписи, как 5А/230 В~ и 5А 24 В=. Это максимальные параметры, которые могут коммутировать контакты реле. Эти параметры желательно не превышать и брать с большим запасом. Иначе при превышении допустимых параметров контакты реле  могут обгореть, либо полностью выгореть, что в свою очередь приведет к полному выходу из строя электромагнитного реле.

 

Внимание! Наступает ответственный момент! Сейчас я буду рассказывать про принцип работы. Напрягите все ваши 6 чувств 🙂

Когда напряжение на катушку мы НЕ подаем, то контакт 1 соединяется с 7, 2 с 8, 3 с 9

Иными словами, если достать мультиметр, то можно прозвонить контакты 1 и 7, 2 и 8, 3 и 9. Мультиметр должен показать 0 Ом.

Если же мы подаем напряжение на катушку, то группа контактов перебрасывается. В результате соединяется 4 с 7, 5 с 8, 6 с 9. 

Какое же напряжение подавать на катушку? На катушке уже есть ответ. Написано 12 VDC. DC — это постоянный ток, АС — переменный. Значит, на катушку  подаем 12 Вольт постоянного тока.

С другой стороны мы видим те самые контакты. Слева-направо и сверху-вниз идет нумерация контактов:

 

Но как же так оно работает? Все оказывается очень просто. Давайте внимательно рассмотрим фото ниже:

При подаче на катушку напряжения, ярмо притягивается к электромагниту. На ярме находится коммутационный контакт и он движется вслед за ярмом. В результате этого, «пипочка» на коммутационном контакте  перебрасывается на нижний контакт и происходит переключение.

При пропадании напряжения на катушке, пружинка оттягивает ярмо назад и реле принимает свой первозданный вид.

 

Проверка электромагнитного реле

Давайте же проверим все что мы здесь написали с помощью мультиметра  и блока питания. Прозваниваем контакт 1 и 7 и смотрим, что у нас они звонятся, значит эти контакты соединены. Видно даже визуально.

 

Подаем напряжение на катушку  12 Вольт  с блока питания и смотрим, что у нас получилось.

В результате у нас ярмо «приклеилось» к электромагниту (катушке)  и потянула за собой комутационный контакт. Цепь 1 и 7 у нас оборвалась, но зато восстановилась цепь контактов 7 и 4. Таким образом проверяются контакты реле.

Если они подгоревшие и с налетом, то следует протереть их карандашным ластиком. Если прилично поджарились, а другого реле под рукой нет, то здесь поможет только шкурка-микронка. Но этот случай уже критический, так как наждачная бумага сдирает тонкий слой из благородного металла, которым покрыты «пипочки».

Целостность катушки реле проверяется с помощью мультиметра в режиме омметра. Для этого проверяем сопротивление катушки. Оно  зависит от самого реле. У всех  оно разное. Если сопротивления нет или оно очень маленькое  — порядка пару Ом, то значит в катушке либо обрыв, либо короткое замыкание.

 

На схемах электромагнитные реле обозначаются вот так:

Также контакты обозначают уже просто цифрами. В данном случае:

11 — это общий контакт

11-12 — это нормально замкнутые контакты

11-14 — нормально разомкнутые контакты

 

Прямоугольником обозначается сама катушка реле, а выводы катушки обозначаются буквами A1 и A2.

При подаче напряжения на катушку в данном реле у нас контакт перекинется, то есть картина будет выглядеть следующим образом:

Без подачи напряжения:

После подачи напряжения:

Глубокомысленные выводы

Плюсы реле:

  • управляемое напряжение и управляющее напряжение никак не связаны между собой. Выражаясь домашним языком — напряжение на катушке никак не связано с напряжением на контактах реле. Они гальванически развязаны, что делает реле безопасным устройством для человека  и самой аппаратуры в электро- и радиопромышленности.
  • коммутируемые токи могут достигать сотни Ампер. Такие реле уже носят название контакторы и пускатели и выглядят примерно вот так:

Они осуществляют коммутацию больших напряжений и токов, и применяются в основном в силовой электронике. Например, для запуска асинхронного двигателя и различных электроприводов.

  • большой срок службы при правильной эксплуатации. До сих пор на некоторых зарубежных станках ЧПУ стоят реле 70-ых годов, чьи коммутационные контакты выглядят почти как новые.
  • неприхотливость в работе и надежность. Реле до сих пор используются в средствах автоматического управления (САУ), так как они неприхотливы и готовы работать безотказно, хотя уже давненько разработаны твердотельные реле (ТТР), которые опережают простые электромагнитные реле по многим параметрам. Единственный минус ТТР — это их дороговизна.

Минусы реле:

  • время задержки срабатывания, в течение которого коммутационный контакт «летит» с одного контакта до другого. В очень быстродействующей аппаратуре реле не применяются.  Производители обеспечивают электротехническую промышленность различными видами реле и других устройств на их принципе.
  • щелкающий звук при переключении. Кого-то он может раздражать, особенно если реле будет очень часто срабатывать.
  • габариты даже самого маленького электромагнитного реле достаточно много занимают место на печатной плате.

Существуют также токовые реле, которое срабатывает в зависимости от того, какая сила тока течет в цепи. Есть также реле мощности, реле времени и многие другие виды реле.

Не знаете, где можно купить нужное вам электромагнитное реле?  Вот каталог, где вы найдете подходящее по параметрам реле для своих нужд 😉

www.ruselectronic.com

Промежуточные реле: назначение, где применяются и как их выбирают

Как известно, габариты и мощность выключателя, коммутирующего мощную нагрузку, должны этой нагрузке соответствовать.

Нельзя включить такие серьезные потребители тока в автомобиле, как, скажем, вентилятор радиатора или обогрев стекла крошечной кнопочкой – её контакты просто сгорят от одного-двух нажатий.

Соответственно, кнопка должна быть крупной, мощной, тугой, с четкой фиксацией положений on/off. К ней должны подходить длинные толстые провода, рассчитанные на полный ток нагрузки.

Но в современном автомобиле с его изящным дизайном интерьера места таким кнопкам нет, да и толстые провода с дорогостоящей медью стараются применять экономно.

Поэтому в качестве дистанционного силового коммутатора чаще всего применяется реле – оно устанавливается рядом с нагрузкой или в релейном боксе, а управляем мы им с помощью крошечной маломощной кнопочки с подведенными к ней тоненькими проводками, дизайн которой легко вписать в салон современной машины.

Внутри простейшего типичного реле располагается электромагнит, на который подается слабый управляющий сигнал, а уже подвижное коромысло, которое притягивает к себе сработавший электромагнит, в свою очередь замыкает два силовых контакта, которые и включают мощную электрическую цепь.

В автомобилях чаще всего используются два типа реле: с парой замыкающих контактов и с тройкой переключающих.

В последнем при срабатывании реле один контакт замыкается на общий, а второй в это время отключается от него.

Существуют, конечно же, и более сложные реле, с несколькими группами контактов в одном корпусе – замыкающими, размыкающими, переключающими. Но встречаются они существенно реже.

Обратите внимание, что на нижеприведенной картинке у реле с переключающей контактной тройкой рабочие контакты пронумерованы. Пара контактов 1 и 2 называется «нормально замкнутые». Пара 2 и 3 – «нормально разомкнутые». Состоянием «нормально» считается состояние, когда на обмотку реле НЕ подано напряжение.

Наиболее распространенные универсальные автомобильные реле и их контактные выводы со стандартным расположением ножек для установки в блок предохранителей или в выносную колодку выглядят так:

Герметичное реле из комплекта нештатного ксенона выглядит иначе. Залитый компаундом корпус позволяет ему надежно работать при установке вблизи фар, где водяной и грязевой туман проникают под капот через решетку радиатора. Цоколевка выводов – нестандартная, поэтому реле комплектуется собственным разъемом.

Для коммутации больших токов, в десятки и сотни ампер, используют реле иной конструкции, нежели описанные выше. Технически суть неизменна – обмотка примагничивает к себе подвижный сердечник, который замыкает контакты, но контакты имеют значительную площадь, крепление проводов – под болт от М6 и толще, обмотка – повышенной мощности.

Конструктивно эти реле сходны со втягивающим реле стартера. Применяются они на грузовых машинах в качестве выключателей массы и пусковых реле того же стартера, на разной спецтехнике для включения особо мощных потребителей.

Нештатно их используют для аварийной коммутации джиперских лебедок, создания систем пневмоподвески, в качестве главного реле системы самодельных электромобилей и т.п.

К слову, само слово «реле» переводится с французского как «перепряжка лошадей», и появился сей термин в эпоху развития первых телеграфных линий связи.

Малая мощность гальванических батарей того времени не позволяла передавать точки и тире на дальние расстояния – все электричество «гасло» на длинных проводах, и доходившие до корреспондента остатки тока были неспособны шевельнуть головку печатающего аппарата.

В результате линии связи стали делать «с пересадочными станциями» – на промежуточном пункте ослабевшим током активировали не печатающий аппарат, а слабенькое реле, которое уже, в свою очередь, открывало путь току из свежей батареи – и далее, и далее…

Что нужно знать о работе реле?

Напряжение, которое обозначено на корпусе реле, – это усредненное оптимальное напряжение. На автомобильных реле пропечатано «12V», но срабатывают они и при напряжении 10 вольт, сработают и при 7-8 вольтах.

Аналогично и 14,5-14,8 вольт, до которых поднимается напряжение в бортсети при запущенном двигателе, им не вредит. Так что 12 вольт – это условный номинал.

Хотя реле от 24-вольтовой грузовой машины в 12-вольтовой сети не заработает – тут уж разница слишком велика…

Второй главный параметр реле после рабочего напряжения обмотки – максимальный ток, который может пропустить через себя контактная группа без перегрева и пригорания. Указывается он обычно на корпусе – в амперах. В принципе, контакты всех автомобильных реле достаточно мощные, «слабаков» тут не водится.

Даже самое миниатюрное коммутирует 15-20 ампер, реле стандартных размеров – 20-40 ампер. Если ток указывается двойной (например, 30/40 А), то это означает кратковременный и долговременный режимы.

Собственно, запас по току никогда не мешает – но это касается в основном какого-то нештатного электрооборудования автомобиля, подключаемого самостоятельно.

Выводы автомобильных реле маркируются в соответствии с международным электротехническим стандартом для автопрома. Два вывода обмотки пронумерованы цифрами «85» и «86». Выводы контактной «двойки» или «тройки» (замыкающие или переключающие) обозначаются как «30», «87» и «87а».

Впрочем, гарантии маркировка, увы, не дает. Российские производители порой маркируют нормально замкнутый контакт как «88», а иностранные – как «87а». Неожиданные вариации стандартной нумерации встречаются и у безымянных «брендов», и у компаний уровня Bosch.

А иногда контакты и вовсе маркируются цифрами от 1 до 5. Так что если тип контактов не подписан на корпусе, что нередко случается, лучше всего проверить распиновку неизвестного реле при помощи тестера и источника питания 12 вольт – подробнее об этом ниже.

Контактные выводы реле, к которым подключается электропроводка, могут быть «ножевого» типа (для установки реле в разъем колодки), а также под винтовую клемму (обычно у особо мощных реле или реле устаревших типов). Контакты бывают «белыми» или «желтыми».

Желтые и красные – латунь и медь, матовые белые – луженая медь или латунь, блестящие белые – сталь, покрытая никелем. Луженые латунь и медь не окисляются, но голая латунь и медь – лучше, хотя и склонны темнеть, ухудшая контакт. Никелированная сталь также не окисляется, но сопротивление её высоковато.

Неплохо, когда силовые выводы – медные, а выводы обмотки – никелированные стальные.

Чтобы реле сработало, на его обмотку подается питающее напряжение. Полярность его – безразлична для реле. Плюс на «85» и минус на «86», или наоборот – без разницы. Один контакт обмотки реле, как правило, постоянно подсоединен к плюсу или минусу, а на второй приходит управляющее напряжение с кнопки или какого-либо электронного модуля.

В прежние годы чаще использовалось постоянное подключение реле к минусу и плюсовой управляющий сигнал, сейчас более распространен обратный вариант. Хотя это не догма – бывает по-всякому, в том числе и в рамках одного автомобиля. Единственный вариант исключения из правил – реле, в котором параллельно обмотке подключен диод – тут уже полярность важна.

Реле с диодом параллельно катушке

Если напряжение на обмотку реле подает не кнопка, а электронный модуль (штатный или нештатный – например, охранное оборудование), то при отключении обмотка дает индуктивный всплеск напряжения, который способен повредить управляющую электронику. Чтобы погасить всплеск, параллельно обмотке реле включается защитный диод.

Как правило, внутри электронных узлов эти диоды уже есть, но иногда (в особенности в случае различного допоборудования) требуется реле со встроенным внутри диодом (в этом случае его символ маркирован на корпусе), а изредка применяется выносная колодка с диодом, припаянным со стороны проводов. И если вы устанавливаете какое-то нештатное электрооборудование, нуждающееся, согласно инструкции, в таком реле, требуется строго соблюдать полярность при подключении обмотки.

Обмотка реле потребляет мощность около 2-2,5 ватт, из-за чего его корпус во время работы может достаточно сильно греться – это не криминально. Но нагрев допускается у обмотки, а не у контактов.

Перегрев же контактов для реле губителен: они обугливаются, разрушаются и деформируются.

Такое случается чаще всего в неудачных экземплярах реле российского и китайского производства, у которых плоскости контактов порой не параллельны друг другу, контактная поверхность из-за перекоса недостаточна, и при работе идет точечный токовый разогрев.

Реле не выходит из строя мгновенно, но рано или поздно перестает включать нагрузку, или наоборот – контакты привариваются друг к другу, и реле перестает размыкаться. К сожалению, выявить и предупредить такую проблему не совсем реально.

Проверка реле

При ремонте неисправное реле обычно временно подменяют исправным, а затем заменяют на аналогичное, и дело с концом. Однако мало ли какие задачи могут возникнуть, к примеру, при установке дополнительного оборудования.

А значит, полезно будет знать элементарный алгоритм проверки реле с целью диагностики или уточнения цоколевки – вдруг попалось нестандартное? Для этого нам понадобятся источник питания с напряжением 12 вольт (блок питания или два провода от аккумулятора) и тестер, включенный в режиме измерения сопротивления.

Предположим, что у нас реле с 4 выводами – то есть, с парой нормально разомкнутых контактов, работающих на замыкание (реле с переключающей контактной «тройкой», проверяется аналогичным образом). Сперва касаемся щупами тестера поочередно всех пар контактов. В нашем случае это 6 комбинаций (изображение условное, чисто для понимания).

На одной из комбинаций выводов омметр должен показать сопротивление около 80 ом – это обмотка, запомним или пометим её контакты (у автомобильных 12-вольтовых реле наиболее распространенных типоразмеров это сопротивление бывает в диапазоне от 70 до 120 ом). Подадим на обмотку напряжение 12 вольт от блока питания или АКБ – реле должно отчетливо щелкнуть.

Соответственно, два других вывода должны показывать бесконечное сопротивление – это наши нормально разомкнутые рабочие контакты. Подключаем к ним тестер в режиме прозвонки, а на обмотку одновременно подаем 12 вольт. Реле щелкнуло, тестер запищал – все в порядке, реле работает.

Если же вдруг на рабочих выводах прибор показывает замыкание даже без подачи напряжения на обмотку, значит, нам попалось редкое реле с НОРМАЛЬНО ЗАМКНУТЫМИ контактами (размыкающимися при подаче напряжения на обмотку), либо, что более вероятно, контакты от перегрузки оплавились и сварились, замкнувшись накоротко. В последнем случае реле отправляется в утиль.

Что такое промежуточное реле и для чего оно нужно?

В этой статье читатели сайта сам электрик могут узнать, какое назначение, принцип действия и устройство промежуточного реле. Очень часто данный аппарат используется в схемах, однако далеко не каждый имеет представление о том, как он работает и для чего применяется. Итак, рассмотрим более подробно каждый вопрос.

Назначение

В системах автоматики и управления широко применяются промежуточные реле (см. фото ниже). Эти аппараты коммутируют управляющие сигналы, управляют мощными устройствами, разделяют управляющие цепи от силовых и выполняют не мене важную роль, чем силовые реле.

Свое название промежуточное реле получили из-за положения в схемах автоматики и управления. Они находятся между источником задания и исполнительным устройством, таким как контактор, поэтому становится понятно, почему так назвали реле.

Получить дополнительную информацию о назначении и разновидностях изделий вы можете, просмотрев данное видео:

Устройство

Данные аппараты бывают всевозможных типов и размеров. От миниатюрных реле на два контакта, до нескольких десятков в реле-повторителе. Во всех их конструктивный принцип одинаков.

 Устройство промежуточного реле представлено электромагнитной катушкой управления, магнитопроводом, пружинным механизмом и группой контактов.

Подробно узнать о конструкции аппарата вы можете, просмотрев картинку ниже:

Промышленность выпускает широкий спектр устройств на разнообразное управляющее напряжение от 5 вольт и до 220. Они могут быть рассчитаны на переменное «АС» напряжение и постоянное «DC».

Внешне они ни чем, практически, не отличаются. Разница только в конструкции магнитопровода. Для переменного тока он набран из группы пластин, а постоянного тока цельный. Это сделано для уменьшения потерь на нагрев в магнитопроводе при прохождении переменного тока.

Что касается технических характеристик устройств, для каждого типа они разные. К примеру, для серии RE они будут иметь вид:

Для промышленных целей, изготавливаются колодки для промежуточных реле с установкой на DIN рейку. Реле и колодки для них также выпускаются с широким спектром видов разъемов. Это сделано для удобства эксплуатации в пределах одного устройства, когда присутствуют модели разного напряжения, и по невнимательности не произошла замена одного типа на другой.

Принцип работы

Не менее важно знать, как работает промежуточное реле. Принцип действия следующий: при подаче напряжения на управляющую катушку, магнитный поток, появившийся в сердечнике, втягивает механизм контактов. Последние в свою очередь меняют положение, и переключаются, при этом размыкая или замыкая контакты.

Более подробно узнать о принципе работы вы можете, просмотрев данное видео:

Область применения

Промежуточные реле применяются в схемах управления для коммутации силовых цепей от источника с малым током. Также они нужны для сборки схемы удержания контактов, повторения сигнала и вывода на индикаторы, дублирование на выносные пульты управления, и т. д.

Очень часто данные аппараты используют в противоаварийных системах, промышленном оборудовании, устройстве релейной защиты и на электроэнергетических объектах.

Для примера возьмем схему управления асинхронным двигателем, с контролем наличия фазы. Данная схема собрана на промежуточных реле типа 1РН, 2РН, 3РН, 1РП, 2РП, а также с повторением на световые индикаторы о состоянии фаз. Кстати, сразу же обратите внимание на условное обозначение данного элемента на схеме.

Вот и все, что хотелось рассказать вам об устройстве, принципе действия и назначении промежуточного реле. Как вы видите, в схемах управления данный аппарат выполняет важную функцию, поэтому часто применяется на производстве.

Будет полезно прочитать:

Промежуточное реле

Промежуточное реле электромагнитное достаточно часто используется в электрических сетях. Оно замыкает, размыкает цепь, может производить управление довольно мощными устройствами. Принцип действия реле заключается в том, что оно может изменять высокие нагрузки в цепях. Используются такие реле, как П-21, РЭК и другие подобные.

Принцип действия

Рассмотрим принцип действия на промежуточном реле (далее РП) – 341.

Промежуточные реле (рис. 1), как правило, выполняются на электромагнитном принципе и предназначены для увеличения числа контактов основного реле, когда при его срабатывании требуется замкнуть и разомкнуть несколько цепей. Кроме того, промежуточные реле имеют значительно более мощные контакты по сравнению с контактами основного реле.

Поэтому, если необходимо замыкание или размыкание цепей такой мощности, на которую контакты основного реле не рассчитаны, то они сначала замыкают цепь катушки промежуточного реле, которое своими контактами замыкает соответствующие цепи основного реле. При прохождении тока по катушке 1, превышающего ток нормального режима, срабатывает якорь 3 магнитной системы 2.

С помощью рычага 6 замыкаются контакты 4 и 5.

рис. 1

Сфера применения

Электромагнитное реле напряжения имеет достаточно широкую сферу использования. Его применяют для контроля множества производственных систем. Например, станков. Кроме того, реле может одновременно производить несколько действий в разных электрических цепях (в одной включить систему, а в другой — завершить ее работу).

Реле промежуточного типа используется для:

  • замыкания и размыкания отдельных друг от друга электрических цепей;
  • замедления защиты при высоких нагрузках в системе;
  • контроля системы при высоком напряжении.

На рынке продукции представлено множество производителей. Конструкция реле может разниться в зависимости от марки товара. Описание самого простого варианта (классического) далее:

  1. Электромагнитная катушка с сердечником, к которой подключается постоянный либо переменный ток (зависит от конкретной сети).
  2. Подвижные и неподвижные контакты, которые устанавливаются на корпусе над колодкой. Происходит замыкание контактов, когда в катушке возникает напряжение. Управление контактами полностью производит катушка. Принцип питания напрямую зависит от положения контактов.

Главное предназначение промежуточного реле — это расцепление и размножение контактов. Например, при подключении к устройству трехфазного электродвигателя произойдут такие изменения: запуск, сработает пускатель, а также последняя пара контактов замкнется, в результате чего запустится двигатель. Кроме того, реле производит выключение двигателя при разрыве реверса.

Классификация

Реле может быть оснащено сразу несколькими группами контактов. Все зависит от целей и предназначения устройства. Существует классификация реле. Для покупателей и специалистов типы устройства обозначены буквенными символами для большего понимания. Например, купить промежуточное реле можно с символьным обозначением ПЭ46-1. Каждая буква и цифра несут смысловую нагрузку.

  • П — промежуточное;
  • Э — электромагнитного типа;
  • 46 — серия;
  • 1 — импульсное.

Кроме того, можно получить и продукцию с дальнейшей маркировкой. Это может означать: количество замыкающих контактов, климатическая разновидность. Часто производители не указывают эти данные, но они обязательно заносятся в паспорт устройства, а также сертификат качества к ней.

Технические характеристики

У каждого промежуточного реле есть свои характеристики. Покупателям стоит подбирать продукцию в соответствии со своими целями. Например, промежуточное реле ПЭ-46 обладает такими характеристиками:

  1. Тип — электромагнитное двухпозиционное.
  2. Нижний ток срабатывания (напряжение 24/110 А) — 0,02/0,01.
  3. Количество циклов включения и выключения — 150 тысяч.
  4. Степень защиты — IP40.
  5. Климатические условия использования — от -40 до +50.

В то время как для реле РК-4Р срабатывание составляет до 16, напряжение — от 12 В, а температурный режим работы — от -40 до +40. Важно подобрать продукцию, которая будет подходить конкретным целям и решению определенных задач. Все характеристики обязательно необходимо учитывать при покупке.

РПГ — это особенный вид продукции. Эти промежуточные реле называют герконовыми. Применяются в промышленных условиях. Чаще всего используются при напряжении сети от 16 до 42 Вольт. Способны производить контроль микропроцессорного производства. Существует различные виды герконов, количество контактов составляет от 1 до 10. Бывают однообмоточными и двухобмоточными.

МКУ является нейтральным двухпозиционным устройством для электрических сетей и контроля процессов. Эти реле использовались одними из первых для коммутации проводов на автоматизированных роботах. В корпусе устройства используется дополнительная магнитная полоса.

Сердечник по-особенному изогнут так, что он делится на две части. В сердечник устанавливается катушка с пластмассовым корпусом. Сама деталь разделяется на группы контактов. С правой стороны устанавливается магнитный виток, замкнутый накоротко, а с левой — плоский якорь и ограничитель (из стали).

В устройстве достаточно сильная магнитная система. Конструкция работает в таких условиях:

  1. Напряжение катушки — от 12 до 220 Ватт постоянного тока.
  2. Номинальный ток — 5 А.
  3. От двух контактов.

Приобрести реле можно в любом специализированном магазине электротехники. Цена зависит от такого, какой тип устройства покупателю необходим. При выборе важно помнить об учете всех характеристик реле.

Ознакомиться с нашей продукцией и купить можно на стр. http://www.ect.ru/catalog.phtml?menu=5/36

Состояние склада на 27.10.2015 в формате Microsoft Excel скачать можно по этой ссылке

Токовая отсечка

То́ковая отсе́чка — вид релейной защиты, действие которой связано с повышением значения силы тока на защищаемом участке электрической сети.

Применение

Электрический ток, протекающий в электрической сети, вызывает нагрев её элементов. При проектировании все элементы электрической цепи выбирают так, чтобы они могли сколь угодно долго выдерживать действие тока в нормальном режиме.

Однако, в случае короткого замыкания значение силы тока в сети значительно возрастает, что может привести к разрушениям элементов, возгораниям и другим серьёзным последствиям. Кроме того, с возрастанием силы тока увеличиваются электродинамические силы, воздействующие на элементы цепи, что так же может привести к их разрушениям.

Изготовлять элементы электрических цепей такими, чтобы они могли долго выдерживать токи короткого замыкания, нецелесообразно с экономической точки зрения. Скорость, с которой возрастает значение электрического тока в повреждённой цепи, такова, что человек не может успеть среагировать должным образом и вмешаться.

В связи с этим, практически повсеместно для защиты электрических сетей используется автоматическая защита от коротких замыканий. Одной из основных является токовая отсечка.

Принцип действия

Предохранитель с плавкой вставкой

Устройства данной защиты контролируют величину силы тока на защищаемом участке. В случае увеличения силы тока выше определённого значения защита срабатывает на отключение этого участка.

Значение величины силы тока, при котором срабатывает защита, называется уставка.

Уставку обычно выбирают таким образом, чтобы цепь обесточилась быстрее, чем в ней произойдут какие-либо разрушения.
Реализуют токовую отсечку разными способами. Чаще всего для отключения применяют электромагнитные реле тока, в которых под воздействием электромагнитной силы замыкаются контакты, выдавая сигнал на отключение выключателя защищаемого элемента.

По тому же принципу действуют различные автоматические выключатели.[источник не указан 1636 дней] Температура, повышающаяся за счет электрического тока, является воздействующей величиной для других защитных электрических аппаратов — предохранителей.

При достижении определённого значения температуры плавкая вставка в предохранителе разрушается, обрывая электрическую цепь.

Особенности

Достоверность этого раздела статьи поставлена под сомнение.Необходимо проверить точность фактов, изложенных в этом разделе.На странице обсуждения могут быть пояснения. (2015-11-21)

Величина электрического тока, протекающего через цепь во время короткого замыкания, зависит от того, в каком месте это замыкание произошло. Чем это место ближе к источнику тока, тем больше величина силы тока.

Это свойство позволяет обеспечивать данной защитой требование селективности.[стиль] Для того, чтобы защита срабатывала непосредственно на том участке, на котором она установлена, её уставку принимают большей, чем значение силы тока короткого замыкания вне защищаемого участка.

В этом случае защита не сработает, если короткое замыкание произойдёт вне защищаемого участка. Благодаря этому, токовую отсечку называют защитой с абсолютной селективностью.

В отдельных случаях токовая отсечка может быть выполнена неселективной. В этом случае она защищает не отдельный участок линии, а всю линию целиком. Выполнение такой защиты оправдано тем, что сразу после её действия начинает работать устройство автоматического повторного включения (АПВ). Если АПВ оказывается неуспешным, то срабатывает дифференциальная защита шин.

Разновидности токовых отсечек

Токовые отсечки подразделяются по величине выдержки времени срабатывания:

  • мгновенные токовые отсечки,
  • отсечки с выдержкой времени,
  • отсечки без выдержки времени,

Время действия мгновенной токовой отсечки определяется собственным временем срабатывания пускового элемента (токовое реле), промежуточных элементов (промежуточных реле, подающих сигнал отключения непосредственно на расцепитель выключателя). Обычно время срабатывания мгновенной отсечки составляет 0,04—0,06 с.

Отсечки с выдержкой времени имеют время срабатывания 0,25-0,6 с, для чего специально вводится элемент выдержки времени. Автоматические выключатели с наличием функции отсечки с выдержкой времени называются селективными автоматическими выключателями.

Применение мгновенной токовой отсечки в сочетании с отсечкой с выдержкой по времени позволяет выполнять защиту линий с минимальным временем и селективно (здесь селективность выполняется аналогично принципу максимально-токовой защиты: по времени).

Если же выдержка времени токовой защиты составляет более 0,6 с, то такие защиты относят уже к максимально-токовым защитам (МТЗ).

Литература

  • Релейная защита энергетических систем / Чернобровов Н. В., Семенов В. А. — М. : Энергоатомиздат, 1998. — ISBN 5-283-010031-7 (ошибоч.).
  • Релейная защита распределительных сетей / Я. С. Гельфанд. — Издание второе, переработанное и дополненное. — Москва : Энергоатомиздат, 1987.
  • Релейная защита и автоматика систем электроснабжения / Андреев В. А. — М. : Высшая школа, 2007. — ISBN 978-5-06-004826-1.
  • Справочник по наладке электроустановок / под ред. Дорофеюка А. С., Хечумяна А. П. — М. : Энергия, 1975

Клапаны электромагнитные двухпозиционные муфтовые DN 15-50, с ручным взводом механического типа и датчиком положения.

Область применения:
Данные клапаны предназначены для использования в системах управления потоками различных газовых сред, в том числе углеводородных газов, газовых фаз сжиженных газов, сжатого воздуха и других неагрессивных газов в качестве запорного органа.


Принцип работы клапанов без дополнительной блокировки:
Для открытия клапана необходимо подать напряжение питания на электромагнитную катушку и поднять шток ручного взвода вверх до упора.
Закрытие клапана происходит при обесточивании электромагнитной катушки. Если катушка обесточена, клапан возможно открыть, но он не фиксируется в открытом положении.


Принцип работы клапанов с дополнительной блокировкой:
Для открытия клапана необходимо подать напряжение питания на электромагнитную катушку и поднять шток ручного взвода вверх до упора.
Закрытие клапана происходит при обесточивании электромагнитной катушки. Если катушка обесточена, клапан открыть невозможно (шток ручного взвода заблокирован).

 

Материал корпуса: алюминиевые сплавы АК12ОЧ, АК12ПЧ
Климатическое исполнение: У3.1 (-30…+60 ОС)

Напряжение питания:
— 220 В, 50 Гц;
— 24 В пост, тока;
— 12 В пост. тока.

Потребляемая мощность: 18 Вт
Степень защиты:  IP65
Полный ресурс, не менее: 50 000 включений
Время закрытия: не более 1 с

Тип датчика: индуктивный (выходной ключ датчика открывается при закрытом положении клапана), степень защиты — IP68

Напряжение питания датчика положения: 10…30 В постоянного тока

Монтажное положение:
любое, за исключением, когда электромагнитная катушка располагается ниже продольной оси клапана

Реле постоянного тока

В системах регулирования движения поездов применяются реле, с помощью которых производят различные переключения электрических цепей для осуществления схемных зависимостей между состоянием пути, положением стрелок и показанием сигнала, необходимых для обеспечения безопасности движения поездов.

Реле представляет собой элемент, в котором при плавном изменении входной величины (тока, напряжения) происходит скачкообразное изменение выходной величины (перемещение якоря у контактных реле, изменение внутреннего электрического или

магнитного сопротивления у бесконтактных реле). Большое распространение получили электрические контактные реле, в частности, электромагнитные, у которых скачкообразное изменение тока во входной цепи достигается физическим ее разрывом. Такие реле просты и надежны в работе и обеспечивают независимое переключение большого числа выходных цепей. Реле имеет два устойчивых состояния: рабочее (под током), при котором реле

возбуждено и якорь его притянут, т.е. замкнуты верхние (фронтовые) контакты; нерабочее (без тока), при котором реле обесточено и якорь отпущен, т.е. замкнуты нижние (тыловые) контакты.

По принципу действия реле СЦБ подразделяются на электромагнитные, у которых при протекании электрического тока по обмотке возникает магнитное поле, которое действует на подвижныйякорь, притягивая его к сердечнику и переключая связанные с якорем контакты, и индукционные, которые работают под действиемпеременного магнитного поля, создаваемого одним элементом реле,с током, индуцированным в подвижном секторе магнитным полемдругого элемента.

В зависимости от рода питающего тока реле могут быть постоянного, переменного и постоянно-переменного тока.

Рис.1.2 Устройство реле

Электромагнитное реле постоянного тока (рис. 1.2, а) состоит из катушки 3, надетой на сердечник 4, ярма 5, подвижного якоря 2 и связанных с ним контактов 1. Катушка, или обмотка реле служит для создания магнитного потока, а сердечник — для его усиления.

Ярмо предназначено для получения непрерывного магнитопровода, подвижной частью которого является якорь. При отсутствии тока в катушке реле якорь отпущен, замкнут нижний (тыловой) контакт О—Т. При пропускании тока в катушке создается магнитный

поток, сердечник намагничивается и притягивает к себе якорь, в результате чего размыкается контакт О—Т и замыкается верхний (фронтовой) контакт О—Ф. У такого реле якорь притягивается при прохождении тока по катушке в любом направлении, поэтому это

реле называют нейтральным.

Реле, у которого якорь переключается в зависимости от направления прохождения тока в катушке, называется поляризованным. Поляризованное реле (рис. 1.2, б) состоит из сердечника 1, на который надеты катушки 2 и 6, соединенные последовательно, из постоянного магнита 3, поляризованного якоря 5 и связанных с ним кон- тактов 4. Постоянный магнит обеспечивает переключение якоря при изменении направления тока в обмотке реле и удерживает якорь в заданном положении при отсутствии тока в обмотке.

К конструкции реле предъявляют высокие требования надежности, долговечности и четкости работы, так как от правильной работы реле зависят безопасность движения поездов и бесперебойное действие систем регулирования движения. По надежности действия реле бывают первого (I) и низшего классов надежности. Класс надежности определяется сочетанием следующих основных факторов: наличием гарантии возврата якоря под

действием собственного веса при выключении тока в обмотке реле, степенью несвариваемости фронтовых контактов, состоянием контактной системы — открытая или закрытая.

К реле I класса надежности относятся такие, у которых возврат

якоря при выключении тока в обмотке обеспечивается с максимальной гарантией под действием веса якоря, а для контактных поверхностей применяются несвариваемые материалы, контактная же система закрытая. Такие реле применяются во всех ответственных

схемах, обеспечивающих безопасность движения, без дополнительного схемного контроля отпускания якоря реле.

К реле низших классов надежности относятся такие, у которых отпускание якоря гарантируется в меньшей степени и происходит под действием веса якоря и реакции контактных пружин, и у которых возможно сваривание контактов. Эти реле используют в схемах, непосредственно не связанных с обеспечением безопасности движения поездов (в схемах контроля и индикации). Если такие реле применяют в ответственных цепях, то обязателен схемный контроль притяжения и отпускания якоря реле. По числу рабочих позиций реле делятся на двух— и трехпозиционные. По числу контактных групп реле бывают одноконтактные (с одной контактной группой) и многоконтактные (с двух-, четы-рех-, шести- и восьмиконтактными группами), а также одно-, двух— и многообмоточные. По времени срабатывания реле подразделя-ют на: быстродействующие — с временем срабатывания на притяжение и отпускание якоря до 0,03 с; нормальнодействующие — с

временем срабатывания до 0,2 с; медленнодействующие — с временем срабатывания до 1,5 с; временные — с временем срабатывания свыше 1,5 с. По мощности, необходимой для срабатывания реле (притяжение якоря реле), реле подразделяют на маломощные, у которых мощность срабатывания 1…3 Вт; средней мощности 3…10 Вт; мощные

более 10 Вт.

В эксплуатируемых системах регулирования движения используются в основном ш т е п с е л ь н ы е р е л е , которые отличаютсяот реле с контактно-болтовым соединением конструкцией и способом включения в схемы.

Реле СЦБ имеют определенное условное обозначение (маркировку), состоящее из букв и цифр, занимающих определенное место в обозначении. Первая буква или сочетание двух первых букв в обозначении указывает на физический принцип действия реле: Н — нейтральное, П — поляризованное, К — комбинированное, СК — самоудерживающее комбинированное, И — импульсное, ДС — двухэлементное секторное (индукционное реле переменного тока). Буква М, стоящая на втором месте в условном обозначении штепсельных реле, указывает на малогабаритное исполнение реле. У реле, предназначенных для использования в автоблокировке, на первом месте стоят две буквы АН: первая буква А указывает на то, что реле автоблокировочное малогабаритное, а вторая буква — на принцип

действия реле. У пусковых реле в условном обозначении имеется буква П, а у реле с выпрямителем — буква В. Штепсельное соединение реле с другими приборами обозначается буквой Ш.

В обозначении медленнодействующих реле присутствует допол-нительная буква: М — обозначает реле с замедлением на отпускание якоря с помощью медной гильзы, Т — реле с замедлением на срабатывание с помощью термоэлемента. После указанных букв ставится цифра, характеризующая число контактных групп (НМШ1, АНШ2, НМПШ3 и т.д.). Второе число, отделенное _______дефисом, обозначает сопротивление обмотки реле постоянному току в омах (НМШМ2—640, НМПШ2—400 и т.д.).

У некоторых типов реле эта система обозначений не выдерживается. Так, в обозначении аварийных и огневых реле (АСШ, ОМШ) первая буква характеризует назначение реле. Наряду с электрическими контактными реле все большее применение получают полупроводниковые приборы релейного действия (бесконтактные реле) и микроэлектронные приборы, использующие интегральные микросхемы и микропроцессорную технику.

Реле постоянного тока по принципу действия являются электромагнитными, а по конструкции подразделяются на следующие типы:

Нейтральные реле НМШ, НШ, АНШ. Это двухпозиционные реле

с одним якорем, который притягивается к полюсам катушек при прохождении через них постоянного тока в любом направлении, т.е. реле нейтральны к полярности постоянного тока. Все эти реле относятся к 1 классу надежности и могут быть нормально- и медленнодействующими. По принципу действия относятся к электромагнитным.

Нейтральное малогабаритное штепсельное реле типа НМШ (рис. 1.3, а) состоит из сердечника 4 с надетыми на него катушками 5и 6, Г-образного ярма 2 и якоря 7 с противовесом 3

Рис. 1.3. Нейтральное реле НМШ

Бронзовый упор 8 на якоре исключает его залипание, так как он препятствует касанию якоря в притянутом положении к полюсу сердечника 4. Якорь двумя тягами 9 управляет контактной системой. Фронтовые контакты Ф-1 изготавливают из угля с серебряным наполнением, а общие О 11 и тыловые Т 10 — из серебра. Такое сочетание материалов исключает сваривание фронтовых контактов с общими при пропускании по ним тока значительной величины. Условное обозначение реле и его контактов, а также нумерация

контактов показаны на рис. 1.3, б.

Реле РЭЛ (рис. 1.4) имеет две независимые обмотки 2, каждая из которых состоит из двух катушек, расположенных на разных сердечниках. Магнитная система реле разветвленная, содержит якорь 5, ярмо 1 и два сердечника 11, на каждом из которых расположено по две катушки. Якорь закреплен на ярме при помощи скобы 6 и может свободно поворачиваться при работе реле. На якоре прикреплена бронзовая пластина 4, которая обеспечивает зазор между якорем и обоими сердечниками. Для утяжеления якоря имеются два груза 3, которые закреплены на якоре изгибом планки 7. Контактная система содержит восемь независимых контактов. Каждый переключающий контакт состоит из фронтового 8, подвижного 9 и тылового 10 контактов. Контактная система выполнена в виде отдельного узла, закрепленного на ярме. Контакты размещены в один ряд. Реле закрыто прозрачным колпаком и запломбировано.

 

Рис. 1.4. Реле типа РЭЛ

 

Контактная система содержит восемь независимых контактов. Каждый переключающий контакт состоит из фронтового 8, подвижного 9 и тылового 10 контактов. Контактная система выполнена в виде отдельного узла, закрепленного на ярме. Контакты размещены в один ряд. Реле закрыто прозрачным колпаком и запломбировано.

Поляризованное реле ИМШ. Оно двухпозиционное, имеет в магнитной системе постоянный магнит, под действием которого якорь переключается из одного положения в другое в зависимости от направления тока в обмотке реле. Реле ИМШ быстродействующее и

не относится к реле 1 класса надежности. Оно предназначено для импульсной работы, их магнитная система может выполняться с нейтральной регулировкой якоря и с регулировкой на преобладание, т.е. с возвращением его в исходное положение при выключении тока.

Поляризованные импульсные реле нашли широкое применение в устройствах СЦБ в качестве путевых реле в перегонных рельсовых цепях, так как они обладают высокой чувствительностью и большой скоростью срабатывания от импульсов тока. Импульсные

реле в цепях постоянного тока благодаря регулировке положения якоря в магнитной системе могут работать от токов одного направления или токов разных направлений, т.е. обладают избирательностью к направлению постоянного тока. В устройствах СЦБ наибольшее распространение получили импульсные малогабаритные штепсельные реле типа ИМШ.

Комбинированные реле КМШ, КШ. Они трехпозиционные с нейтрально поляризованной системой, имеющей один нейтральный и один поляризованный якорь. Нейтральный якорь этих реле устроен и работает так же, как и у нейтральных реле, т.е. его переключение не зависит от полярности постоянного тока в обмотке реле.

Переключение поляризованного якоря из одного положения в другое у таких реле происходит в зависимости от направления тока в обмотке реле. При возбуждении комбинированных реле первым срабатывает поляризованный якорь, а затем притягивается нейтральный якорь, а при смене полярности тока в обмотке реле происходит кратковременное отпускание якоря. Комбинированные реле по времени срабатывания относятся к нормально действующим.

Кодовые реле КДРШ — двухпозиционные с одним нейтральным якорем, работающим независимо от направления тока в обмотке реле. Эти реле относятся к низшему классу надежности действия, а по времени срабатывания могут быть нормально- и медленнодействующими.

Кодовые реле КДР, КДРШ представляют собой электромагнитные реле постоянного тока облегченной конструкции. В кодовых реле используются три разновидности магнитной системы: неразветвленная с Г-образным ярмом, разветвленная с П-образным ярмом и усиленная разветвленная в медленнодействующих реле.

 

 


Узнать еще:

Проверка и настройка поляризованных реле | Справочник по наладке вторичных цепей | РЗиА

Страница 11 из 58

Поляризованные реле
Поляризованные реле типов РП-4, РП-5 и РП-7 являются выходными элементами различных релейных устройств. Особенностью поляризованных реле является то, что на подвижный якорь реле в исходных условиях действуют силы постоянного магнита, при прохождении же тока в обмотке реле силы электромагнита в зависимости от направления тока складываются с силами постоянного магнита или вычитаются из них.


Рис. 2.14. Виды настройки контактных систем поляризованных реле
Обычно реле выполняются двухобомоточными или многообмоточными, так что одна (одни) обмотка используется как рабочая, другая (другие) — как тормозная или одна — для срабатывания, а другая — для возврата.
Реле в зависимости от назначения могут иметь три вида регулировок: нейтральную или двухпозиционную (рис. 2.14, а), с преобладанием (рис. 2.14,6) и трехпозидионную (рис. 2.14, в).

Пунктиром на рис. 2.14, а показано нейтральное положение якоря, когда отсутствует ток в обмотках, а силы постоянного магнита, действующие влево и вправо, уравновешены. Если нарушить равновесие, то якорь притянется в ту или иную сторону (реле типа РП-4).
Если неподвижный контакт не дает якорю дойти до нейтральной линии, то якорь при отсутствии тока в обмотке будет отклоняться в сторону другого контакта (регулировка с преобладанием, реле типа РП-7).
Реле типа РП-5 имеют трехпозиционную настройку, которая отличается от нейтральной тем, что после отключения тока в обмотках пружины возвращают якорь реле в нейтральное положение.
Если реле типов РП-4, РП-5 и РП-7 служат для включения и отключения нагрузок в сетях 220 В постоянного тока, то следует увеличить раствор разомкнутых контактов до величины не менее 0,45— 0,5 мм.
Реле типов РП-8 и рП-11—двухпозиционные и применяются в схемах управления и сигнализации в качестве вспомогательных, но могут выполнять и самостоятельные функции. Технические данные реле приведены в табл. 2.10. Их обмотки не рассчитаны на длительное нахождение под напряжением, и поэтому в цепи обмоток имеются контакты, которые после срабатывания реле отключают свою обмотку.
Таблица 2.10. Технические данные реле РП-8, РП-11


Номинальное напряжение, В

Обмотки

Сопротивление,
Ом

Число витков

Напряжение срабатывания, В

24

92

2000

>17

 

92

2000

>17

48

310

3600

>34

 

310

3600

>34

110

1500

7300

>77

 

1500

7300

>77

220

5600

12 500

>155

 

5600

12 500

>155

Примечания: 1. Начало обмоток обозначено знаком
Время срабатывания. — не более 60 мс
Раствор между контактами — не менее 1,8 мм.
При проверке и сборке схемы следует учитывать, что при несоблюдении полярности подаваемого на реле тока последнее не переключится и обмотка может перегреться. Зазоры контактов в цепи обмоток регулируются в пределах 1—1,3 мм подгибанием контактных пластин. У реле типов РП-8 и РП-11 проверяются и регулируются контактные зазоры (у рабочих контактов 1,8 мм, у контактов в цепях обмоток 1—1,3 мм). Зазор между толкателем и подвижными контактными пластинами замкнутых рабочих контактов 0,5—0,8 мм. Этот зазор у контактов в цепи обмоток может быть больше.
Проверка и настройка поляризованных реле. У реле РП-4, РП-5 и РП-7 проверяют ток и напряжение срабатывания и подсчитывают мощность срабатывания: Рср=/срUср или мощность срабатывания по току и сопротивлению: Pcp=l\pRo6-
Напряжение срабатывания проверяют по обычной схеме, соблюдая полярность и подавая напряжение толчком, ступенями увеличивая напряжение до срабатывания реле.
В схемах релейной защиты часто применяют реле типа РП-7 с одной рабочей и одной тормозной обмотками. В этом случае проверяют ток (напряжение) срабатывания рабочей обмотки при номинальном (заданном) токе (напряжении) в тормозной обмотке.
Проверки производят на постоянном токе, а если реле работают на выпрямленном напряжении, то проверку следует производить от аналогичного выпрямителя или лучше от выпрямителя устройства, в котором реле установлено.
Сопротивление изоляции токоведущих цепей проверяют мегаом- метром с напряжением не более 500 В. Изоляция реле должна выдержать испытание переменным напряжением 500 В относительно корпуса, 150 В между обмотками и 350 В между контактами (при заводской регулировке зазора). Если контакты отрегулированы для работы в цепях напряжением 220 В, то контакты испытывают переменным напряжением 1000 В.
Нейтральные реле РП-4 (РПБ-4) можно отрегулировать для работы с преобладанием. Для этого нужно перевести вручную якорь реле при отсутствии тока в обмотках реле влево, т. е. до замыкания подвижного контакта с неподвижным, обозначенным Л. Ослабить фиксирующий зажим микрометрического винта левого неподвижного контакта и завинтить этот винт до тех пор, пока якорь не перебросится в противоположную сторону и не замкнется цепь правого контакта (Я—П). Обозначения Л—Я—П наносят на колодке выводов реле. В этом положении вновь зафиксировать винт левого контакта, ослабить микрометрический винт правого контакта и, вращая его влево, отрегулировать необходимый раствор между подвижным и неподвижным контактами.
Если требуется из реле РП-7 (РБП-7) получить реле нейтральное, то поступают в обратном порядке: сначала отводят левый контакт Л, чтобы якорь фиксировался в левом и правом положениях, и регулируют необходимые растворы. Затем проверяют равенство токов срабатывания левого и правого контактов, подавая напряжения разной полярности в одну и ту же обмотку реле. Необходимо так отрегулировать положения неподвижных контактов, чтобы при заданном растворе (0,45—0,5 мм) ток срабатывания реле влево и вправо был одинаковым.

Двухпозиционное регулирование — Большая Энциклопедия Нефти и Газа, статья, страница 1

Двухпозиционное регулирование

Cтраница 1


Двухпозиционное регулирование и его модификации часто применяются в силу дешевизны, простоты и удобства в эксплуатации. Но часто относительно медленная реакция, колебательность процесса регулирования или большие отклонения регулируемой величины приводят к низкому качеству регулирования. В других случаях, особенно когда процесс характеризуется высокими скоростями и существенными временными задержками в отдельных звеньях системы, Двухпозиционное регулирование не может обеспечить поддержание регулируемого параметра в заданных пределах.  [2]

Двухпозиционное регулирование может быть применено для емкостных объектов без свойств самовыравнивания. Качество регулирования во многом зависит от инерционности чувствительного элемента датчика.  [3]

Двухпозиционное регулирование осуществляется по принципу пуска и остановки каких-либо систем.  [5]

Двухпозиционное регулирование осуществляется в комплекте с блоками регулирующих реле БР-02. Рассмотрим принцип работы при двухпозиционном регулировании.  [7]

Двухпозиционное регулирование может не удовлетворять требованиям предприятия по поддержанию нужной концентрации раствора. В этом случае следует проверить возможность установки простейшего П — регулятора.  [8]

Двухпозиционное регулирование осуществляется в комплекте с блоками регулирующих реле БР-02. Рассмотрим принцип работы при двухпозиционном регулировании.  [10]

Двухпозиционное регулирование представляет собою автоматическое поддерживание значения регулируемого параметра в установленных пределах путем изменения в регулируемой системе притока или стока, которые могут принимать одно из двух установленных значений. Применительно к компрессорным установкам это достигается ступенчатым изменением производительности компрессора от номинального значения до нуля или от одного ( большего) до другого ( меньшего) из двух установленных предельных значений. Обычно регулирование давления осуществляется в аппаратуре на участке между компрессором и потребителем или генератором газа, где кроме трубопроводов имеется также емкостная аппаратура ( буферные емкости, ресиверы, холодильники и др.), сглаживающая колебания давления при подаче и отборе газа компрессором.  [11]

Двухпозиционное регулирование при работе печей с инжекционными горелками ставит еще одну трудную задачу.  [12]

Двухпозиционное регулирование находит ограниченное применение. Более совершенными являются регуляторы с пропорциональной ( статической) характеристикой, которые обеспечивают более устойчивое регулирование параметров.  [13]

Двухпозиционное регулирование обычно осуществляется способом пуск — остановка. Под действием автоматических устройств холодильная машина периодически включается и выключается.  [14]

Двухпозиционное регулирование обычно осуществляется способом пуск — остановка. Под действием автоматических устройств холодильная машина периодически включается и выключается. При повышении температуры объекта до вкл подается сигнал на включение электродвигателя компрессора, а при понижении до ВЫк — сигнал на его выключение.  [15]

Страницы:      1    2    3    4

Что такое релейный переключатель | Работа, работа и тестирование реле

Что такое реле?

Реле можно определить как переключатель. Переключатели обычно используются для замыкания или размыкания цепи вручную. Реле также является переключателем, который соединяет или отключает две цепи. Но вместо ручного управления применяется реле с электрическим сигналом, которое, в свою очередь, подключает или отключает другую цепь.

Реле бывают разных типов, например, электромеханические, твердотельные.Часто используются электромеханические реле. Давайте посмотрим на внутренние части этого реле, прежде чем узнаем, что оно работает. Хотя присутствовало много разных типов реле, их работа одинакова.

Каждое электромеханическое реле состоит из

  1. Электромагнит
  2. Контакт с механическим перемещением
  3. Точки переключения и
  4. Пружина

Электромагнит состоит из намотки медной катушки на металлический сердечник. Два конца катушки подключены к двум контактам реле, как показано.Эти два используются в качестве контактов питания постоянного тока.

Обычно присутствуют еще два контакта, называемые точками переключения для подключения высокоамперной нагрузки. Другой контакт, называемый общим контактом, используется для подключения точек переключения.

Эти контакты называются нормально разомкнутыми (NO), нормально замкнутыми (NC) и общими (COM) контактами.

Реле

может работать как от переменного, так и от постоянного тока.

В случае реле переменного тока для каждого текущего нулевого положения катушка реле размагничивается, и, следовательно, существует вероятность продолжения разрыва цепи.

Итак, реле переменного тока сконструированы со специальным механизмом, обеспечивающим постоянный магнетизм, чтобы избежать вышеуказанной проблемы. Такие механизмы включают в себя устройство электронной схемы или механизм с заштрихованной катушкой.

рабочая

  • Реле работает по принципу электромагнитной индукции.
  • Когда на электромагнит подается ток, он индуцирует вокруг себя магнитное поле.
  • Изображение выше показывает работу реле. Переключатель используется для подачи постоянного тока на нагрузку.
  • В реле Медная катушка и железный сердечник действуют как электромагнит.
  • Когда на катушку подается постоянный ток, она начинает притягивать контакт, как показано. Это называется включением реле.
  • Когда расходный материал удаляется, он возвращается в исходное положение. Это называется отключением реле.

Существуют также такие реле, контакты которых изначально замыкаются и размыкаются при наличии питания, т.е. точно противоположно показанному выше реле.

Твердотельные реле

будут иметь чувствительный элемент для измерения входного напряжения и переключения выхода с помощью оптронной связи.

Типы контактов реле

Как мы видели, реле — это переключатель. Терминология «Столбы и броски» также применима к эстафете. В зависимости от количества контактов и количества цепей переключающие реле можно классифицировать.

Прежде чем мы узнаем об этой классификации контактов, мы должны знать полюса и ходы релейного переключателя.

Столбы и броски

Реле могут переключать одну или несколько цепей. Каждый переключатель в реле называется полюсом. Количество цепей, подключаемых реле, указано в виде бросков.

В зависимости от полюсов и ходов реле классифицируются на

.
  • Однополюсный, одинарный
  • Однополюсный, двойной ход
  • Двухполюсный одинарный
  • Двухполюсный двойной бросок
Однополюсный одинарный

Однополюсное однопозиционное реле может управлять одной цепью и может быть подключено к одному выходу.Он используется для приложений, требующих только состояния ВКЛ или ВЫКЛ.

Однополюсный, двойной бросок

Однополюсное двухходовое реле соединяет одну входную цепь с одним из двух выходов. Это реле также называется переключающим реле.

Хотя SPDT имеет два выходных положения, он может состоять более чем из двух выходов в зависимости от конфигурации и требований приложения.

Двухполюсный одинарный

Двухполюсное однополюсное реле имеет два полюса и одноходовое реле, и его можно использовать для одновременного подключения двух выводов одной цепи.Например, это реле используется для одновременного подключения к нагрузке клемм фазы и нейтрали.

Двухполюсный двойной бросок

Реле DPDT (двухполюсное, двойное переключение) имеет два полюса и по два контакта на каждый полюс. При управлении направлением двигателя они используются для смены фазы или полярности.

Переключение между контактами всех этих реле происходит, когда катушка находится под напряжением, как показано на рисунке ниже.

Реле

можно разделить на разные типы в зависимости от их функций, конструкции, применения и т. Д.Узнайте о различных типах реле. Классификация реле.

Применение реле

Реле

используются для защиты электрической системы и сведения к минимуму повреждения оборудования, подключенного к системе, из-за повышенных токов / напряжений. Реле используется с целью защиты подключенного к нему оборудования.

Они используются для управления цепью высокого напряжения с сигналом низкого напряжения в прикладных усилителях звука и некоторых типах модемов.

Они используются для управления сильноточной цепью с помощью слаботочного сигнала в таких приложениях, как соленоид стартера в автомобиле. Они могут обнаруживать и изолировать неисправности, возникшие в системе передачи и распределения электроэнергии. Типичные области применения реле:

  • Системы управления освещением
  • Телекоммуникации
  • Контроллеры промышленных процессов
  • Управление движением
  • Управление моторными приводами
  • Системы защиты электроэнергетической системы
  • Компьютерные интерфейсы
  • Автомобильная промышленность
  • Бытовая техника

Что такое реле? Как работает реле и различные типы реле

Реле можно найти повсюду, от небольшого контроллера светофоров до сложных распределительных устройств высокого напряжения.В общем, реле такие же, как и любой другой переключатель, который может либо включать, либо разрывать соединение, то есть может либо соединять две точки, либо отключать их, поэтому реле обычно используются для включения или выключения электронной нагрузки. Но это очень обобщенное утверждение, существует множество типов реле , и каждое реле ведет себя по-разному, в зависимости от его применения, одним из наиболее часто используемых реле является электромеханическое реле , и поэтому мы сосредоточимся на нем больше. эта статья.Несмотря на различия в конструкции, основной принцип работы реле одинаков, поэтому давайте подробнее обсудим основные принципы работы реле и более подробно рассмотрим его конструкцию

Что такое реле?

Реле — это электромеханическое устройство, которое можно использовать для включения или отключения электрического соединения. Он состоит из гибкой движущейся механической части, которой можно управлять электронно с помощью электромагнита, в основном, реле похоже на механический переключатель, но вы можете управлять им с помощью электронного сигнала, а не вручную включать или выключать.Опять же, принцип работы реле подходит только для электромеханического реле.

Существует множество типов реле , и каждое реле имеет свое собственное применение, стандарт, и обычно используемое реле состоит из электромагнитов, которые обычно используются в качестве переключателя. Словарь говорит, что реле означает акт передачи чего-либо от одного объекта к другому , то же значение может быть применено к этому устройству, потому что сигнал, полученный с одной стороны устройства, управляет операцией переключения на другой стороне.Таким образом, реле — это переключатель, который управляет цепями (размыканием и замыканием) электромеханически. Основная операция этого устройства заключается в включении или выключении контакта с помощью сигнала без участия человека. Он в основном используется для управления цепью высокой мощности с использованием сигнала низкой мощности. Как правило, сигнал постоянного тока используется для управления цепью, которая управляется высоким напряжением, например, управление бытовой техникой переменного тока с помощью сигналов постоянного тока от микроконтроллеров.

Строительство реле и его эксплуатация:

На следующем рисунке показано, как реле выглядит внутри и как оно может быть сконструировано,

На кожухе размещен сердечник с намотанными на него медными обмотками (образующими катушку).Подвижный якорь состоит из пружинной опоры или конструкции, подобной стойке, соединенной с одним концом, и металлического контакта, соединенного с другой стороной, все эти устройства размещены над сердечником так, что, когда катушка находится под напряжением, она притягивает якорь. Подвижный якорь обычно рассматривается как общий вывод, который должен быть подключен к внешней схеме. Реле также имеет два контакта, а именно: , , нормально закрытый и нормально открытый (NC и NO), , , нормально закрытый контакт, подключен к якорю или общему контакту, тогда как нормально открытый контакт остается свободным (когда катушка не находится под напряжением. ).Когда катушка находится под напряжением, якорь перемещается и подключается к нормально разомкнутому контакту до тех пор, пока не появится ток через катушку. Когда он обесточен, он возвращается в исходное положение.

Общая схема реле показана на рисунке ниже

Что внутри реле — Разборка

Электромеханическое реле в основном сконструировано с использованием нескольких механических частей, таких как электромагнит, подвижный якорь, контакты, ярмо и пружина / рама / стойка, эти части показаны на внутренних изображениях реле ниже.Все они логически организованы и образуют реле.

Здесь мы объяснили внутренние механические части реле :

Электромагнит: Электромагнит играет важную роль в работе реле . Это металл, не обладающий магнитными свойствами, но его можно превратить в магнит с помощью электрического сигнала. Мы знаем, что когда ток проходит по проводнику, он приобретает свойства магнита.Таким образом, когда металл намотан медной проволокой и приводится в действие достаточным источником питания, этот металл может действовать как магнит и притягивать металлы в пределах своего диапазона.

Подвижный якорь: Подвижный якорь — это простая металлическая деталь, которая балансируется на шарнире или стойке. Это помогает установить или разорвать соединение с подключенными к нему контактами.

Контакты: Это проводники, которые существуют внутри устройства и подключены к клеммам.

Ярмо: Это небольшая металлическая деталь, закрепленная на сердечнике, чтобы притягивать и удерживать якорь, когда катушка находится под напряжением.

Пружина (опция): Некоторым реле не нужна пружина, но если она используется, она подключается к одному концу якоря, чтобы обеспечить его легкое и свободное движение. Вместо пружины можно использовать металлическую подставку.

Принцип работы реле

Теперь давайте разберемся, как реле работает в нормально замкнутом состоянии и нормально разомкнутом состоянии.

Реле в НОРМАЛЬНО ЗАКРЫТОМ состоянии:

Когда на сердечник не подается напряжение, он не может генерировать магнитное поле и не действует как магнит. Следовательно, он не может притягивать подвижную арматуру. Таким образом, само исходное положение — это якорь, подключенный в нормально закрытом положении (NC).

Реле в НОРМАЛЬНО ОТКРЫТОМ состоянии:

Когда на сердечник подается достаточное напряжение, он начинает создавать вокруг него магнитное поле и действует как магнит.Поскольку подвижный якорь находится в пределах своего диапазона, он притягивается к магнитному полю, создаваемому сердечником, поэтому положение якоря изменяется. Теперь он подключен к нормально разомкнутому контакту реле, и внешняя цепь, подключенная к нему, работает по-другому.

Примечание: Функциональность внешней цепи зависит от подключения к контактам реле.

Итак, наконец, мы можем сказать, что когда катушка находится под напряжением, якорь притягивается, и можно увидеть действие переключения, если катушка обесточена, она теряет свои магнитные свойства, и якорь возвращается в исходное положение.

Вы можете проверить работу реле в реальном времени в анимации ниже:

Различные типы реле:

Помимо электромагнитного реле существует множество других типов реле , которые работают по другим принципам. Его классификация выглядит следующим образом:

Типы реле по принципу действия

Когда два разных материала соединяются вместе, они образуют биметаллическую полосу.Когда эта полоса находится под напряжением, она имеет тенденцию изгибаться, это свойство используется таким образом, что природа изгиба обеспечивает соединение с контактами.

С помощью нескольких механических частей и на основе свойств электромагнита соединение выполняется с контактами.

Вместо механических частей, таких как электротермические и электромеханические реле, используются полупроводниковые устройства. Таким образом, скорость переключения устройства можно сделать проще и быстрее. Основными преимуществами этого реле являются его больший срок службы и более быстрое переключение по сравнению с другими реле.

Это комбинация электромеханических и твердотельных реле.

Типы реле в зависимости от полярности:

Они похожи на электромеханические реле, но в них есть как постоянный магнит, так и электромагнит, движение якоря зависит от полярности входного сигнала, подаваемого на катушку. Используется в приложениях телеграфии.

Катушка в этих реле не имеет полярности, и ее работа остается неизменной даже при изменении полярности входного сигнала.

комбинаций ударов и бросков:

Выключатели

также можно классифицировать по количеству комбинаций полюсов и переключателей. Полюс можно рассматривать как входную клемму и подвижную часть, подключенную к ней, тогда как поворот можно рассматривать как выходную клемму. Его классификация выглядит следующим образом:

Однополюсное, одноходовое реле (SPST):

Он состоит только из одного шеста и одного броска.Обычно путь либо закрыт, либо открыт (остается нетронутым для любого терминала). Нажимная кнопка — лучший пример этого типа. Когда мы нажимаем кнопку, контакт находится в закрытом положении, а при отпускании контакт находится в открытом положении, что можно понять из изображения ниже.

Однополюсное двухходовое реле (SPDT):

Этот тип переключателей состоит только из одного полюса, но имеет два положения. Таким образом, контакт всегда устанавливается на любой из выводов.В качестве примера можно рассмотреть ползунковый переключатель. Ползунок всегда подключен к любому из контактов, т.е. замкнутый путь всегда существует, если оба контакта подключены к цепи.

Двухполюсное, одноходовое реле (DPST):

Имеет две шесты и бросок. Его контакты либо разомкнуты, либо замкнуты, что делается одновременно. Тумблер работает на этом свойстве. Когда переключатель переводится из одного положения в другое, оба контакта перемещаются одновременно.

Двухполюсное, двухпозиционное реле (DPDT):

Этот тип переключателей имеет два полюса, но отдельный полюс имеет два положения. Таким образом, это называется двойным ходом, и действие переключения выполняется одинаково и одновременно для обоих полюсов. Переключатель на стандартном триммере имеет DPDT, потому что, когда мы заряжаем триммер и когда переключатель на триммере находится в состоянии ВКЛ, он автоматически прекращает зарядку, что означает, что переключатели в цепи зарядки внутренне разомкнуты.

Применения реле:

Возможности реле безграничны, его основная функция заключается в управлении цепью высокого напряжения (цепь 230 В переменного тока) с помощью источника питания низкого напряжения (напряжение постоянного тока).

  • Реле используются не только в больших электрических цепях, но также используются в компьютерных цепях для выполнения в них арифметических и математических операций.
  • Используется для управления переключателями электродвигателя.Чтобы включить электродвигатель, нам потребуется питание 230 В переменного тока, но в некоторых случаях / приложениях может возникнуть ситуация, когда двигатель будет включен с напряжением питания постоянного тока. В этих случаях можно использовать реле.
  • Автоматические стабилизаторы — одно из применений, в которых используются реле. Когда напряжение питания отличается от номинального, набор реле определяет колебания напряжения и управляет цепью нагрузки с помощью автоматических выключателей.
  • Используется для выбора цепи, если в системе существует более одной цепи.
  • Используется в телевизорах. Внутренняя схема старого телевизора с кинескопом работает с напряжением постоянного тока, но кинескопу требуется очень высокое напряжение переменного тока, чтобы включить кинескоп от источника постоянного тока, мы можем использовать реле.
  • Используется в контроллерах светофоров, регуляторах температуры.

Каков принцип работы реле? — AnswersToAll

Каков принцип работы реле?

Реле работает по принципу электромагнитной индукции.Когда на электромагнит подается некоторый ток, он индуцирует вокруг себя магнитное поле. На изображении выше показана работа реле. Переключатель используется для подачи постоянного тока на нагрузку.

Что делает реле с фиксацией?

Реле с фиксацией — это двухпозиционный переключатель с электрическим приводом. Он поддерживает любое положение контакта неограниченно долго без подачи питания на катушку. Блокировочное реле сохраняет свое положение после отпускания исполнительного переключателя, поэтому оно выполняет базовую функцию памяти.

Каковы функции реле?

Реле

— это электрические переключатели, которые используют электромагнетизм для преобразования небольших электрических импульсов в большие токи. Эти преобразования происходят, когда электрические входы активируют электромагниты для формирования или разрыва существующих цепей.

Что такое электромагнитное реле?

Определение: Электромагнитные реле — это те реле, которые работают по принципу электромагнитного притяжения. Это тип магнитного переключателя, который использует магнит для создания магнитного поля.

Что такое реле и его символ?

Однополюсный выключатель часто обозначается буквами SP, а двухполюсный — DP. Реле могут иметь один, два или более полюса. Бросок: количество бросков на электрическом переключателе — это количество доступных положений. Для электромеханического реле обычно есть только один или два хода.

Что такое реле и его типы?

Реле представляют собой переключатели с электрическим управлением. Они используются для управления цепью отдельным сигналом малой мощности или для управления несколькими цепями одним сигналом.Три основных типа реле: электромеханические, твердотельные и герконовые. Это реле защиты от перегрузки реагирует на перегрев.

Будет ли смысл реле?

Если вы что-то передаете, вы передаете это другому человеку. Реле происходит от французского relayer, что означает «менять собак на охоте». У него все еще есть ощущение того, что что-то движется. Вы можете провести эстафету — каждый член команды на полпути несет эстафету, а затем передает ее дальше.

Что такое реле простыми словами?

Реле — это переключатели, которые размыкают и замыкают цепи электромеханическим или электронным способом.Реле управляют одной электрической цепью, размыкая и замыкая контакты в другой цепи. Кроме того, реле также широко используются для включения пусковых катушек, нагревательных элементов, контрольных ламп и звуковой сигнализации.

В чем разница между реле и автоматическим выключателем?

Реле является переключающим и чувствительным устройством, а автоматический выключатель — изолирующим или отключающим устройством. Реле работают при низком входном напряжении. Реле используется для управления или выбора одной из многих цепей, а автоматический выключатель — по одному на каждую цепь.Реле действует как электрический усилитель дискретного сигнала.

Сколько ампер, прежде чем понадобится реле?

30А

Будет ли клаксон работать без реле?

Вы можете запустить этот рог без реле, но будьте готовы слушать его бесконтрольный вой, пока не загорится проводка или не разрядится батарея. Если вы пытаетесь использовать оригинальное реле звукового сигнала, это не сработает.

Нужна ли Hella Horns реле?

Для этой установки реле не требуется.Отключите заземляющий провод аккумуляторной батареи при подключении рожков. Установите рожки на устойчивую монтажную площадку внутри моторного отсека. Отсоедините два провода от существующего звукового сигнала.

Реле усиливает звуковой сигнал?

Чтобы обеспечить максимальную мощность и, таким образом, снизить уровень шума, вы можете подключить реле для питания рупора. Реле использует небольшое количество энергии (исходная схема переключателя) для включения и выключения большего количества энергии (новый более тяжелый провод) к звуковому сигналу.

Как работают реле постоянного тока?

Реле постоянного тока

использует одну катушку с проволокой, намотанную вокруг железного сердечника, для создания электромагнита.Когда катушка постоянного тока находится под напряжением, магнетизм, генерируемый в сердечнике, устойчив, потому что постоянный ток просто продолжает работать. Устойчивый магнетизм удерживает рычаг в притянутом состоянии, пока течет постоянный ток.

Почему в реле используется постоянный ток?

Автоматические выключатели, которые используются для включения и выключения большого количества электроэнергии, на самом деле сами по себе являются электромеханическими реле. Электропитание постоянного тока используется потому, что оно позволяет батарейному блоку подавать питание включения / отключения на цепи управления выключателем в случае полного сбоя питания (переменного тока).

Могу ли я использовать реле переменного тока для постоянного тока?

3 ответа. Реле — это не просто проводник, это выключатель. Поэтому не используйте реле переменного тока для переключения нагрузок постоянного тока. Использование реле постоянного тока для переключения нагрузок переменного тока гораздо менее проблематично, но обычно вы можете найти более дешевое реле переменного тока, которое не включает механический механизм прерывателя дуги.

Как реле работает как переключатель?

Реле — это переключатель с электрическим управлением. Они обычно используют электромагнит (катушку) для управления своим внутренним механическим механизмом переключения (контактами).Когда контакт реле разомкнут, это включает питание цепи при активации катушки.

Все 5-контактные реле одинаковы?

Проблема в том, что не все реле одинаковы. Многие реле, если они установлены для неправильного применения, могут и будут вызывать короткое замыкание (внутренняя цепь реле) и, скорее всего, вызвать проблемы с функциональностью или даже повредить компьютерные системы автомобиля.

Можете ли вы перепрыгнуть через реле свечей накаливания?

Премиум-член. Да, можете, но это не ваша проблема.Если свеча накаливания не горит, значит, перегорел предохранитель № 30, связанный с коротким замыканием нагревателя топлива.

【Реле управления】 Что такое реле управления?

Что такое реле управления?

Управляющее реле, также известное как реле, представляет собой переключатель, электромагнитный переключатель. Реле управления позволяет электрическому току проходить через проводящую катушку, которая размыкает или замыкает переключатель. Он также защищает цепь от тока. С управляющим реле пользователям не нужно вручную поворачивать переключатель, чтобы изолировать или изменить состояние электрической цепи.

В настоящее время управляющие реле играют решающую роль в современных электронных устройствах. Это электронные компоненты, которые приводят в действие такие электронные компоненты, как двигатель, электростанции, систему питания, транзисторы и многое другое.

Различные типы управляющих реле

Существуют различные типы управляющих реле в зависимости от принципа действия и конструктивных особенностей.

Твердотельные реле — В нем используются твердотельные компоненты для выполнения операций переключения без перемещения каких-либо частей.

Контактор — большое реле, используемое для переключения большого количества электроэнергии через его контакты.

Электромагнитное реле — Состоит из электрических, механических и магнитных компонентов и имеет рабочие катушки и механические контакты. Следовательно, когда катушка активируется системой питания, механический контакт либо разомкнут, либо замкнут. Система питания имеет 2 типа переменного и постоянного тока.

Реле тепловой защиты от перегрузки — работает по принципу теплового воздействия электрической энергии.Когда через цепь протекает чрезмерный ток, цепь размыкается из-за того, что биметаллическая полоса испытывает повышение температуры.

Как работает реле управления? (Принципиальная схема)

Пример схемы управляющего реле

Схема управляющего реле

Реле управления

позволяет цепи низкого тока управлять цепью высокого тока. Используя приведенную выше схему, когда электрический ток проходит через катушку, он генерирует электромагнитное поле, которое притягивает переключатель вниз.Таким образом замыкается переключатель, замыкающий цепь и позволяющий протекать электрическому току. Когда через катушку не течет ток, переключатель возвращается в исходное положение, что приводит к разрыву цепи.

Типы контактов реле

Каждое управляющее реле имеет тип контакта, такой как SPST-NO, но что это означает?

Полюса представляют собой количество цепей, управляемых переключателем.

Броски обозначают количество положений, которые может принимать переключатель.

Символ SPST

Символ SPST

, однополюсный, односторонний, SPST , имеет две клеммы, которые можно подключать и отключать. У такого реле, включая две катушки, всего четыре клеммы.

Single Pole Double Throw, SPDT , имеет общий вывод, который соединяет один из двух других. Включая две катушки, это реле имеет всего пять клемм. Независимо от того, активна катушка или нет, либо «A», либо «B» всегда находится в состоянии покоя, в то время как другая должна быть катушкой для питания.

Double Pole Single Throw, DPST равен двум SPST, активированным одной катушкой. Включая две катушки, это реле имеет всего 6 клемм.

Omron MY4IN

Double Pole Double Throw, DPDT эквивалентен двум SPDT, активируемым одной катушкой. Включая две катушки, это реле имеет в общей сложности 8 клемм.

Разница между нормально разомкнутыми (NO) и нормально замкнутыми (NC) контактами

НО контакты пропускают ток, когда реле находится под напряжением.Это означает, что при наличии напряжения контакт замыкается и пропускает ток.

НЗ-контакты пропускают ток, когда реле не находится под напряжением. В отличие от NO, размыкающийся контакт размыкается и прерывает прохождение тока.

* Переключение (CO) аналогично реле двойного выброса (DT).

Различия между управляющим реле и контакторами

Оба этих электрических устройства выполняют одну и ту же задачу по переключению цепи, и даже контакторы — это термин для больших реле.Означает ли это, что можно использовать либо управляющее реле, либо контакторы? Нет, а вот почему?

Нагрузочный конденсатор

— управляющие реле классифицируются как несущие нагрузки до 10 ампер или меньше. Принимая во внимание, что контакторы будут работать с нагрузками более 10 ампер.

Контакты

— контакторы в основном предназначены для работы с нормально разомкнутыми контактами, в то время как управляющее реле может работать как с нормально разомкнутыми, так и с нормально замкнутыми контактами.

Вспомогательные контакты

— контакторы часто оснащаются вспомогательными контактами, которые используются для выполнения дополнительных функций, а реле управления — нет.

Устройства безопасности

— Поскольку контакторы работают с высокими нагрузками, они обычно оснащаются такими устройствами безопасности, как подпружиненные контакты, дугогасящие устройства и устройства защиты от перегрузок.

Приложения

— Контакторы обычно изготавливаются и используются в трехфазных приложениях, но реле чаще используется в однофазных приложениях.

Как мне узнать, что мне нужно: реле управления или контактор?

Чтобы подвести итог, какое электрическое устройство выбрать:

Реле управления Контактор
10 А и ниже 9A и выше
Максимальное напряжение 250 В Максимальное напряжение 1000 В
1 фаза 1 или 3 фазы

Цены на реле управления

С ценами на управляющее реле и контакторы можно ознакомиться на нашем веб-сайте ElectGo.В ElectGo мы предлагаем широкий спектр промышленных продуктов, включая управляющие реле и контакторы таких брендов, как Schneider и Omron.

принципы работы и варианты применения

Что такое реле?
Реле обычно представляет собой электромеханическое устройство, которое приводится в действие электрическим током. Ток, протекающий в одной цепи, вызывает размыкание или замыкание другой цепи. Реле похожи на переключатели дистанционного управления и используются во многих приложениях из-за их относительной простоты. долгий срок службы и подтвержденная высокая надежность.Реле используются в самых разных областях промышленности, например, в телефонных коммутаторах, цифровых компьютерах и системах автоматизации. Высоко сложные реле используются для защиты электроэнергетических систем от неисправностей и перебоев в подаче электроэнергии, а также для регулирования и управления производством и распределением энергии. В домашних условиях реле используются в холодильниках, стиральных и посудомоечных машинах, системах управления отоплением и кондиционированием воздуха. Хотя реле обычно связаны с электрическими схемами, существует много других типов, таких как пневматические и гидравлические.Вход может быть электрическим, а выход напрямую механическим, или наоборот.

Как работают реле?
Все реле содержат чувствительный элемент, электрическую катушку, питаемую переменным или постоянным током. Когда приложенный ток или напряжение превышает пороговое значение, катушка активирует якорь, который работает либо на замыкание разомкнутых контактов, либо на размыкание замкнутых контактов. Когда на катушку подается питание, она создает магнитную силу, которая приводит в действие механизм переключения.Магнитная сила, по сути, передает действие от одной цепи к другой. Первый контур называется схема управления; второй называется схемой нагрузки.
Реле выполняет три основные функции: управление включением / выключением, управление предельными значениями и логическая работа.
Управление включением / выключением: Пример: Управление кондиционером, используемое для ограничения и управления нагрузкой высокой мощности
, такой как компрессор
Ограничение управления: Пример: Управление скоростью двигателя, используется для отключения двигателя, если он работает медленнее или
быстрее, чем желаемая скорость
Логическая операция: Пример: испытательное оборудование, используемое для подключения прибора к ряду
контрольных точек на тестируемом устройстве
Типы реле
Существует две основных классификации реле: электромеханические и твердотельные.Электромеханические реле имеют движущиеся части, тогда как твердотельные реле не имеют движущихся частей. Преимущества электромеханических реле включают более низкую стоимость, отсутствие необходимости в теплоотводе, наличие нескольких полюсов и возможность переключения переменного или постоянного тока с одинаковой легкостью.

A.) Электромеханические реле
Реле общего назначения: Реле общего назначения рассчитывается по величине тока, которую могут выдерживать его переключающие контакты. Большинство версий универсального реле имеют от одного до восьми полюсов и могут быть одно- или двухходовыми.Они используются в компьютерах, копировальных аппаратах и ​​другом бытовом электронном оборудовании и приборах. Силовое реле: силовое реле способно выдерживать большие силовые нагрузки 10-50 ампер и более. Обычно они бывают однополюсными или двухполюсными. Контактор: особый тип реле высокой мощности, оно используется в основном для управления высокими напряжениями и токами в промышленных электрических приложениях. Из-за требований к высокой мощности контакторы всегда имеют контакты с двойным замыканием. Реле с выдержкой времени: контакты могут не открываться или закрываться до тех пор, пока на катушку не будет подано питание.Это называется задержкой при срабатывании. Задержка срабатывания означает, что контакты будут оставаться в активированном положении до некоторого интервала после отключения питания от катушки. Третья задержка называется временной задержкой. Контакты возвращаются в свое альтернативное положение через определенный интервал времени после подачи питания на катушку. Время этих действий может быть фиксированным параметром реле, или регулироваться ручкой на самом реле, или регулироваться дистанционно через внешнюю цепь.

Б.) Твердотельные реле
Эти активные полупроводниковые устройства используют свет вместо магнетизма для приведения в действие переключателя. Свет исходит от светодиода или светодиода. Когда управляющая мощность подается на выход устройства
, световое реле общего назначения включается и светит через открытое пространство. На стороне нагрузки этого пространства часть устройства определяет наличие света и запускает твердотельный переключатель, который либо размыкает, либо замыкает цепь под контролем. Часто твердотельные реле используются там, где Контур под управлением
должен быть защищен от внесения электрических помех.Преимущества твердотельных реле включают низкий уровень электромагнитных / радиопомех, длительный срок службы, отсутствие движущихся частей, отсутствие дребезга контактов и быстрый отклик. Недостатком твердотельного реле является то, что оно может выполнять только однополюсное переключение.
Контактная информация
Контакты являются наиболее важной составной частью реле. На их характеристики существенно влияют такие факторы, как материал контактов, приложенные к ним значения напряжения и тока (особенно формы сигналов напряжения и тока при включении и выключении контактов), тип нагрузки, рабочая частота и дребезг. .Если какой-либо из этих факторов не соответствует заданному значению, возникают такие проблемы, как деградация металла между контактами, контактная сварка, может произойти износ или быстрое увеличение контактного сопротивления. Количество электрического тока, протекающего через контакты, напрямую влияет на характеристики контактов. Например, когда реле используется для управления индуктивной нагрузкой, такой как двигатель лампы. Контакты будут изнашиваться быстрее, и разложение металла между сопряженными контактами будет происходить чаще, по мере увеличения пускового тока контактов.
Для продления срока службы реле рекомендуется использовать схему защиты контактов. Эта защита подавит шум и предотвратит образование нагара на контактной поверхности при размыкании реле. Примеры этих синергетических компонентов, которые обеспечивают защиту контактной цепи, включают резистивные конденсаторы, диоды, стабилитроны и варисторы.
Расположение контактов / полюса
Расположение контактов на реле зависит от форм-фактора и количества полюсов. Описание каждого форм-фактора приведено ниже.
Форма A — это нормально разомкнутый (NO) или замыкающий контакт. Он открыт, когда катушка обесточена, и закрывается, когда катушка находится под напряжением. Контакты формы A полезны в приложениях, которые должны переключать один источник питания высокого тока из удаленного места. Примером этого является автомобильный звуковой сигнал, который не может иметь сильный ток, подаваемый непосредственно на рулевое колесо. Реле формы A может использоваться для переключения высокого тока на звуковой сигнал. Форма B — это нормально замкнутый (NC) или размыкающий контакт.Он закрыт в обесточенном состоянии и открывается при подаче напряжения на катушку.
Форма B Контакты полезны в приложениях, где требуется, чтобы цепь оставалась замкнутой, и когда реле активируется, цепь отключается. Примером этого является двигатель машины, который должен работать постоянно, но когда двигатель должен быть остановлен, оператор может сделать это, активировав реле формы B и разорвав цепь.
Форма C представляет собой комбинацию форм A и B, использующих один и тот же подвижный контакт в схеме переключения.Контакт формы C полезен в приложениях, где требуется, чтобы одна цепь оставалась разомкнутой; при срабатывании реле первая цепь отключается, а другая цепь включается. Примером этого является часть оборудования, которая работает постоянно: когда реле активируется, оно останавливает эту часть оборудования и размыкает секунду. цепь к другому элементу оборудования.
Контакт «замыкающий перед размыканием»: контактное устройство, в котором часть коммутационной секции используется совместно как контактами формы A, так и контактами формы B.Когда реле срабатывает или размыкает, контакт, замыкающий цепь, срабатывает до размыкания цепи. Таким образом, оба контакта замыкаются на мгновение одновременно. Обратный контакт замыкающего контакта перед размыканием является контакт размыкания до размыкания. Полюсы — это количество отдельных коммутаций. цепи внутри реле. Самые распространенные версии — это однополюсные, двухполюсные и четырехполюсные.
Типы нагрузки
Параметры нагрузки включают максимально допустимое напряжение и максимально допустимую силу тока, которую может выдержать реле, как в вольтах, так и в амперах.Важны как размер груза, так и его тип. Существует четыре типа нагрузок: 1.) резистивная, 2.) индуктивная, 3.) переменный или постоянный ток, и 4.) высокий или низкий бросок тока.
1.) Резистивная нагрузка — это нагрузка, которая в первую очередь обеспечивает сопротивление прохождению тока. Примеры резистивных нагрузок включают электрические нагреватели, плиты и духовки, тостеры и утюги.
2.) Индуктивные нагрузки включают дрели, электрические миксеры, вентиляторы, швейные машины и пылесосы. Реле, которые будут подвергаться высоким пусковым индуктивным нагрузкам, такие как двигатель переменного тока, часто будут рассчитаны в лошадиных силах, а не в вольтах и ​​амперах.Этот рейтинг отражает мощность, которую могут выдержать контакты реле в момент включения (или переключения) устройства.
3.) AC или DC Это влияет на цепь контактов реле (из-за ЭДС) и временную последовательность и может привести к проблемам с производительностью в коммутационной способности реле для различных типов нагрузки (т. Е. Резистивной, индуктивной и т. Д.) .
4.) Высокий или низкий бросок тока — некоторые типы нагрузок потребляют значительно большее количество тока (силы тока) при первом включении, чем они это делают, когда цепь позже стабилизируется (нагрузки также могут пульсировать, когда цепь продолжает работать, таким образом увеличивая и уменьшая ток) .Примером высокой пусковой нагрузки является лампочка, которая при первом включении может потреблять в 10 или более раз превышающий нормальный рабочий ток (некоторые производители называют это ламповой нагрузкой). В дополнение к указанным выше параметрам нагрузки вы Теперь нужно определить, какие параметры связаны с цепью управления или цепью катушки, как ее иногда называют. К ним могут относиться: Чувствительность: катушки, которые приводят в действие реле при очень низком напряжении или низком токе, называются чувствительными. Чувствительность — это относительный термин, который отличает катушки малой мощности от катушек большой мощности.
Polarized: Катушки некоторых реле, требующих постоянного напряжения, поляризованы. Это означает, что есть специальные клеммы для положительного и отрицательного напряжения для питания катушки. Информация о катушке Характеристики катушек следует понимать как часть выбранного реле. Некоторые важные характеристики включают:
Сопротивление катушки: (применимо только к реле постоянного тока) сопротивление прохождению электрического тока. Это сопротивление измеряется при температуре, зависящей от производителя. Сопротивление катушки
переключающего реле переменного тока может быть указано для справки, если указана индуктивность катушки.
Максимальное напряжение: максимальное значение допустимого перенапряжения при рабочем питании катушки реле.
Номинальное напряжение катушки: опорное напряжение, приложенное к катушке, когда реле используется в нормальных условиях эксплуатации
.
Потребляемая мощность: мощность, потребляемая катушкой при подаче на нее номинального напряжения.
, односторонний стабильный: контакты переключателя в реле остаются в нормальном или стабильном положении до тех пор, пока на катушку не подается питание. Когда на катушку подается питание, контакты перемещаются в новое положение
, но остаются в этом положении, пока на катушку подается питание.Однообмоточный, фиксирующий тип: этот тип имеет одну катушку, которая служит как катушкой установки, так и катушкой сброса, в зависимости от направления тока. Когда ток течет через катушку в прямом направлении, она служит установленной катушкой; когда ток течет в обратном направлении, он действует как катушка сброса. Двухобмоточное реле с защелкой: это реле с защелкой имеет две катушки: установка и сброс. Он может сохранять ВКЛ или ВЫКЛ. состояния, даже когда подается пульсирующее напряжение или когда напряжение снимается.Реле с защелкой
часто имеют один набор клемм, предназначенных для положительного напряжения, а другой — для отрицательного напряжения, используемого для питания катушки. Такая поляризованная катушка позволяет выполнять одно действие, когда напряжение катушки положительное, и противоположное действие, когда напряжение катушки меняется на противоположное. Разница между односторонним стабильным реле и реле с фиксацией аналогична разнице между переключателем мгновенного действия и переключателем поддерживаемого действия.
Импульсное реле: Специальная версия реле с фиксацией.Импульс тока на катушку приводит к изменению положения контакта
. Контакт остается в этом положении до тех пор, пока катушка не получит еще один импульс тока, который вернет контакты в исходное положение. Для импульсного реле полярность не важна; следовательно, он может приводиться в действие переменным или постоянным током.
Шаговое реле: каждый раз, когда на катушку реле подано напряжение, переключатель приводится в действие с новым набором контактов. Это похоже на поворотный переключатель.
Внутренняя работа механических реле
Стандарт: односторонний стабилизатор с любым из следующих трех различных методов замыкания контактов:
1.Тип изгиба: Якорь приводит в действие контактную пружину напрямую, и контакт
приводится в действие неподвижным контактом, замыкая цепь
2. Тип отрыва: подвижная деталь приводится в действие якорем, и контакт
замыкается
3. Тип плунжера: действие рычага, вызванное подачей питания на якорь, вызывает действие с длинным ходом
Геркон
: односторонний стабильный контакт, который включает в себя низкое контактное давление и простую точку контакта. .Постоянный магнит используется для притяжения или отталкивания якоря, управляющего контактом. Для катушки реле требуется определенная полярность (+ или -). Опция фиксации делает поляризованное реле двойной обмоткой, что означает, что оно остается в текущем состоянии после обесточивания катушки.
Релейные блоки
Пластиковый корпус: Большинство реле заключено в пластиковый корпус. Это негерметичный корпус, и только пальцы и провода не мешают работе релейного механизма.
Полугерметичный: Специальная конструкция предотвращает проникновение флюса в базовый корпус реле.Этот тип реле не подлежит очистке погружением.
Уплотнение для легких условий эксплуатации: также сделанное из пластика, это уплотнение используется для реле, которые будут устанавливаться на печатные платы. Легкое уплотнение позволяет очищать печатную плату погружением. Этот тип уплотнения не следует рассматривать как постоянное уплотнение или защиту от всех загрязнений. Очень маленькие молекулы могут проходить через пластиковый корпус через некоторое время. Герметичное уплотнение: этот тип уплотнения защищает почти от всех видов загрязнений.Это всегда металл реле в корпусе. Он используется там, где требуется высокая надежность в суровых условиях и стоит дороже, чем другие пакеты.
Unsealed: Реле этого типа предназначены для ручной пайки. Не принимаются меры против попадания флюса и чистящего растворителя внутрь реле. Этот тип реле не подлежит очистке погружением.

Монтаж реле
Существует несколько типичных способов установки и подключения реле.
Гнездо Лопаточные выступы реле могут быть вставлены в ответный язычок или в ответное гнездо.На клеммах реле находится одна сторона заделки. Сторона сопряжения может быть подключена к ответной планке
или смонтирована в разъеме, предназначенном для этого блока реле.
Монтаж на печатной плате Имеются пайки волной пайки, которые выступают изнутри реле наружу и разнесены (расстояние и высота) в соответствии с конструкцией, определенной производителем. Контакты реле вставляются через отверстия в печатной плате (PCB), предназначенные для соответствия разводке контактов реле, и припаяны волной для прикрепления реле к печатной плате.

Монтаж на шасси Монтажные проушины, выступы или отверстия являются частью механического блока реле. В этих местах обычно используются гайки, болты или винты, чтобы закрепить реле на каком-либо шасси. Это шасси может функционировать только как место для установки или может также использоваться для управления температурой (в приложениях с более высокой мощностью). Реле также может быть прикреплено к печатной плате для обеспечения устойчивости.

Как указать реле
1.Каковы требования к переключению: какое напряжение? Какая сила тока переключается?
2. Напряжение катушки: переменный или постоянный источник питания? Какое напряжение доступно для питания катушки?
3. Каково расположение контактов:
— Контакты формы A
— Контакты формы B
— Контакты формы C
4. Сколько полюсов требуется? (количество переключаемых цепей)
5. Тип монтажа:
— Монтаж на поверхности
— Печатная плата
— Съемная розетка
— Съемная клеммная колодка
— Верхнее крепление
— Верхнее крепление — Печатная плата

Реле, работающее со схемой и примером »PIJA Education

Давайте теперь разберемся с принципом работы и работой реле с некоторыми схемами.В этом руководстве мы подключили два светодиода к двум положениям переключения реле: NO и NC, см. Конфигурацию контактов .

РЕЛЕ РАБОЧЕЕ

Один светодиод (желтый светодиод) подключен к клемме NC, а другой светодиод (красный светодиод) подключен к клемме NO.

Когда катушка не находится под напряжением, клемма COM подключается к клемме NC. Это нормальное состояние реле.

Итак, что происходит здесь (см. Диаграмму), поскольку переключатель (SW1) разомкнут, нет электрического сигнала , подаваемого на реле, поэтому реле остается в своем нормальном положении.Источник + 5 В подключен (источник, который требуется для управления нагрузкой (светодиод)) на клемме COM, которая мне нужна для управления светодиодом, и COM закорочен на клемму NC, что делает путь завершенным, и желтый светодиод светится.

Клеммы катушки управляют переключением. Когда на катушку подается напряжение, она становится электромагнитом (номинал реле зависит от катушки, и для правильной работы через катушку требуется большой входной сигнал) . Его сердечник притягивает якорь переключателя (рычаг) и приводит в действие переключатель (переключая его в точку контакта NO).

Когда катушка находится под напряжением, клемма COM будет подключена к клемме NO, как показано на изображении.

Теперь, когда мы, , нажимаем переключатель и замыкаем цепь накоротко , электрический сигнал притягивает рычаг COM к катушке, и теперь COM будет закорочен с клеммой NO, и питание от COM будет напрямую получено красный светодиод , который светится красным светодиодом и желтый светодиод , погаснет .

Несколько примеров релейных цепей:
ПРИМЕР 1

Если мне не нужен желтый светодиод в цепи, я могу просто удалить его из схемы, тогда, если катушка реле не находится под напряжением, в цепи ничего не произойдет, значит, светодиод не горит, а если катушка реле находится под напряжением, то красный светодиод будет включен.

ПРИМЕР 2

И если я уберу красный светодиод из схемы, то при подаче напряжения на катушку реле желтый светодиод погаснет.

Нормально разомкнутый терминал (NO), нормально замкнутый терминал (NC) и общий терминал (COM) составляют контакты переключателя. Как они будут связаны, зависит от приложения.

онлайн-курсов PDH. PDH для профессиональных инженеров. ПДХ Инжиниринг.

«Мне нравится широта ваших курсов по HVAC; не только экологичность или экономия энергии

курсов.»

Russell Bailey, P.E.

Нью-Йорк

«Это укрепило мои текущие знания и научило меня еще нескольким новым вещам

, чтобы познакомить меня с новыми источниками

информации. «

Стивен Дедак, П.Е.

Нью-Джерси

«Материал был очень информативным и организованным.Я многому научился и их было

очень быстро отвечает на вопросы.

Это было на высшем уровне. Будет использовать

снова. Спасибо. «

Blair Hayward, P.E.

Альберта, Канада

«Простой в использовании веб-сайт. Хорошо организованный. Я действительно буду снова пользоваться вашими услугами.

проеду по вашей роте

имя другим на работе.»

Roy Pfleiderer, P.E.

Нью-Йорк

«Справочные материалы были превосходными, и курс был очень информативным, особенно с учетом того, что я думал, что я уже знаком.

с деталями Канзас

Авария City Hyatt «

Майкл Морган, P.E.

Техас

«Мне очень нравится ваша бизнес-модель.Мне нравится просматривать текст перед покупкой. Нашел класс

информативно и полезно

на моей работе »

Вильям Сенкевич, П.Е.

Флорида

«У вас большой выбор курсов, а статьи очень информативны. You

— лучшее, что я нашел ».

Рассел Смит, П.E.

Пенсильвания

«Я считаю, что такой подход позволяет работающему инженеру легко зарабатывать PDH, давая время на изучение

материал «

Jesus Sierra, P.E.

Калифорния

«Спасибо, что позволили мне просмотреть неправильные ответы. На самом деле

человек узнает больше

от сбоев.»

John Scondras, P.E.

Пенсильвания

«Курс составлен хорошо, и использование тематических исследований является эффективным.

способ обучения »

Джек Лундберг, P.E.

Висконсин

«Я очень впечатлен тем, как вы представляете курсы, т.е. позволяете

студент, оставивший отзыв на курс

материалов до оплаты и

получает викторину.»

Арвин Свангер, П.Е.

Вирджиния

«Спасибо за то, что вы предложили все эти замечательные курсы. Я определенно выучил и

получил огромное удовольствие «

Мехди Рахими, П.Е.

Нью-Йорк

«Я очень доволен предлагаемыми курсами, качеством материалов и простотой поиска.

на связи

курсов.»

Уильям Валериоти, P.E.

Техас

«Этот материал в значительной степени оправдал мои ожидания. По курсу было легко следовать. Фотографии в основном обеспечивали хорошее наглядное представление о

обсуждаемые темы »

Майкл Райан, П.Е.

Пенсильвания

«Именно то, что я искал. Потребовался 1 балл по этике, и я нашел его здесь.»

Джеральд Нотт, П.Е.

Нью-Джерси

«Это был мой первый онлайн-опыт получения необходимых мне кредитов PDH. Это было

информативно, выгодно и экономично.

Я очень рекомендую

всем инженерам »

Джеймс Шурелл, П.Е.

Огайо

«Я понимаю, что вопросы относятся к« реальному миру »и имеют отношение к моей практике, и

не на основании какой-то неясной секции

законов, которые не применяются

до «нормальная» практика.»

Марк Каноник, П.Е.

Нью-Йорк

«Отличный опыт! Я многому научился, чтобы перенести его на свой медицинский прибор.

организация «

Иван Харлан, П.Е.

Теннесси

«Материалы курса имели хорошее содержание, не слишком математическое, с хорошим акцентом на практическое применение технологий».

Юджин Бойл, П.E.

Калифорния

«Это был очень приятный опыт. Тема была интересной и хорошо изложенной,

а онлайн-формат был очень

доступный и простой для

использовать. Большое спасибо «.

Патрисия Адамс, P.E.

Канзас

«Отличный способ добиться соответствия требованиям PE Continuing Education в рамках ограничений по времени лицензиата.»

Joseph Frissora, P.E.

Нью-Джерси

«Должен признаться, я действительно многому научился. Помогает иметь распечатанный тест во время

обзор текстового материала. Я

также оценил просмотр

фактических случаев «

Жаклин Брукс, П.Е.

Флорида

«Документ» Общие ошибки ADA при проектировании оборудования «очень полезен.Модель

тест действительно потребовал исследований в

документ но ответы были

в наличии »

Гарольд Катлер, П.Е.

Массачусетс

«Я эффективно использовал свое время. Спасибо за то, что у вас есть широкий выбор.

в транспортной инженерии, которая мне нужна

для выполнения требований

Сертификат ВОМ.»

Джозеф Гилрой, П.Е.

Иллинойс

«Очень удобный и доступный способ заработать CEU для моих требований PG в Делавэре».

Ричард Роудс, P.E.

Мэриленд

«Я многому научился с защитным заземлением. Пока все курсы, которые я прошел, были отличными.

Надеюсь увидеть больше 40%

курсов со скидкой.»

Кристина Николас, П.Е.

Нью-Йорк

«Только что сдал экзамен по радиологическим стандартам и с нетерпением жду возможности сдать дополнительный

курсов. Процесс прост, и

намного эффективнее, чем

в пути «

Деннис Мейер, P.E.

Айдахо

«Услуги, предоставляемые CEDengineering, очень полезны для профессионалов

Инженеры получат блоки PDH

в любое время.Очень удобно »

Пол Абелла, P.E.

Аризона

«Пока все отлично! Поскольку я постоянно работаю матерью двоих детей, у меня мало

время искать, где на

получить мои кредиты от. «

Кристен Фаррелл, П.Е.

Висконсин

«Это было очень познавательно и познавательно.Легко для понимания с иллюстрациями

и графики; определенно делает это

проще поглотить все

теорий. «

Виктор Окампо, P.Eng.

Альберта, Канада

«Хороший обзор принципов работы с полупроводниками. Мне понравилось пройти курс по

.

мой собственный темп во время моего утро

метро

на работу.»

Клиффорд Гринблатт, П.Е.

Мэриленд

«Просто найти интересные курсы, скачать документы и взять

викторина. Я бы очень рекомендовал

вам на любой PE, требующий

CE единиц. «

Марк Хардкасл, П.Е.

Миссури

«Очень хороший выбор тем из многих областей техники.»

Randall Dreiling, P.E.

Миссури

«Я заново узнал то, что забыл. Я также рад оказать финансовую помощь

по ваш промо-адрес электронной почты который

сниженная цена

на 40%. «

Конрадо Казем, П.E.

Теннесси

«Отличный курс по разумной цене. Воспользуюсь вашими услугами в будущем».

Charles Fleischer, P.E.

Нью-Йорк

«Это был хороший тест и фактически подтвердил, что я прочитал профессиональную этику

кодов и Нью-Мексико

регламентов. «

Брун Гильберт, П.E.

Калифорния

«Мне очень понравились занятия. Они стоили потраченного времени и усилий».

Дэвид Рейнольдс, P.E.

Канзас

«Очень доволен качеством тестовых документов. Буду использовать CEDengineerng

.

при необходимости дополнительных

Сертификация

. «

Томас Каппеллин, П.E.

Иллинойс

«У меня истек срок действия курса, но вы все же выполнили свое обязательство и дали

мне то, за что я заплатил — много

оценено! «

Джефф Ханслик, P.E.

Оклахома

«CEDengineering предоставляет удобные, экономичные и актуальные курсы.

для инженера »

Майк Зайдл, П.E.

Небраска

«Курс был по разумной цене, а материалы были краткими и

в хорошем состоянии »

Glen Schwartz, P.E.

Нью-Джерси

«Вопросы подходили для уроков, а материал урока —

.

хороший справочный материал

для деревянного дизайна. «

Брайан Адамс, П.E.

Миннесота

«Отлично, я смог получить полезные рекомендации по простому телефонному звонку.»

Роберт Велнер, П.Е.

Нью-Йорк

«У меня был большой опыт работы в прибрежном строительстве — проектирование

Строительство курс и

очень рекомендую

Денис Солано, P.E.

Флорида

«Очень понятный, хорошо организованный веб-сайт. Материалы курса этики Нью-Джерси были очень хорошими

хорошо подготовлен. «

Юджин Брэкбилл, П.Е.

Коннектикут

«Очень хороший опыт. Мне нравится возможность загрузить учебные материалы на номер

.

обзор везде и

всякий раз, когда.»

Тим Чиддикс, П.Е.

Колорадо

«Отлично! Поддерживаю широкий выбор тем на выбор».

Уильям Бараттино, P.E.

Вирджиния

«Процесс прямой, без всякой ерунды. Хороший опыт».

Тайрон Бааш, П.E.

Иллинойс

«Вопросы на экзамене были зондирующими и продемонстрировали понимание

материала. Полная

и комплексное. »

Майкл Тобин, P.E.

Аризона

«Это мой второй курс, и мне понравилось то, что мне предложили этот курс

поможет по телефону

работ.»

Рики Хефлин, П.Е.

Оклахома

«Очень быстро и легко ориентироваться. Я определенно буду использовать этот сайт снова».

Анджела Уотсон, П.Е.

Монтана

«Легко выполнить. Никакой путаницы при прохождении теста или записи сертификата».

Кеннет Пейдж, П.E.

Мэриленд

«Это был отличный источник информации о солнечном нагреве воды. Информативный

и отличный освежитель ».

Луан Мане, П.Е.

Conneticut

«Мне нравится, как зарегистрироваться и читать материалы в автономном режиме, а затем

вернуться, чтобы пройти викторину «

Алекс Млсна, П.E.

Индиана

«Я оценил объем информации, предоставленной для класса. Я знаю

это вся информация, которую я могу

использование в реальных жизненных ситуациях »

Натали Дерингер, P.E.

Южная Дакота

«Обзорные материалы и образец теста были достаточно подробными, чтобы позволить мне

успешно завершено

конечно.»

Ира Бродская, П.Е.

Нью-Джерси

«Веб-сайтом легко пользоваться, вы можете скачать материал для изучения, а потом вернуться

и пройдите викторину. Очень

удобный а на моем

собственный график. «

Майкл Гладд, P.E.

Грузия

«Спасибо за хорошие курсы на протяжении многих лет.»

Деннис Фундзак, П.Е.

Огайо

«Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать PDH

Сертификат

. Спасибо за изготовление

процесс простой. »

Fred Schaejbe, P.E.

Висконсин

«Опыт положительный.Быстро нашел курс, который соответствовал моим потребностям, и прошел

часовой PDH в

один час. «

Стив Торкильдсон, P.E.

Южная Каролина

«Мне понравилось загружать документы для проверки содержания

и пригодность, до

имея для оплаты

материал

Ричард Вимеленберг, П.Е.

Мэриленд

«Это хорошее напоминание об ЭЭ для инженеров, не занимающихся электричеством».

Дуглас Стаффорд, П.Е.

Техас

«Всегда есть возможности для улучшения, но я ничего не могу придумать в вашем

.

процесс, требующий

улучшение.»

Thomas Stalcup, P.E.

Арканзас

«Мне очень нравится удобство участия в викторине онлайн и получение сразу

Свидетельство

. «

Марлен Делани, П.Е.

Иллинойс

«Учебные модули CEDengineering — это очень удобный способ доступа к информации по номеру

.

много разные технические зоны за пределами

по своей специализации без

надо ехать.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *