Элементную базу эвм второго поколения составляли – Второе поколение ЭВМ

элементная база. История поколений ЭВМ :: SYL.ru

Электронно-вычислительные виды машин в нашей стране делятся на несколько поколений. Определяющими признаками при отнесении устройств к определенному поколению служат их элементы и разновидности таких важных характеристик, как быстродействие, емкость памяти, способы управления и переработки информации. Деление ЭВМ является условным – есть немалое количество моделей, которые, по одним признакам, относятся к одному, по другим – к другому виду поколения. В результате эти виды ЭВМ могут относиться к различным этапам развития техники электронно-вычислительного типа.

поколения эвм

Первое поколение ЭВМ

Развитие ЭВМ разделяется на несколько периодов. Поколение устройств каждого периода имеет отличия друг от друга элементными базами и обеспечением математического типа.

1 поколение ЭВМ (1945–1954) – электронно-вычислительные машины на лампах электронного типа (подобные были в телевизорах первых моделей). Это время можно назвать эпохой становления такой техники.

Большая часть машин первого вида поколения называлась экспериментальными типами устройств, которые создавались с целью проверки одних или других положений теорий. Размер и вес компьютерных агрегатов, которые часто нуждались в отдельных зданиях, давно превратились в легенду. Введение чисел в первые машины производилось при помощи перфокарт, а программные управления последовательностями выполнимости функций осуществлялись, к примеру, в ENIAC, как в машинах счетно-аналитического типа, при помощи штекеров и видов наборного поля. Несмотря на то что подобный метод программирования требовал множества времени для того, чтобы подготовить машину – для соединений на наборных полях (коммутационной доске) блоков он давал все возможности для реализации счетных «способностей» ENIAC’а, и с большой выгодой имел отличия от метода программной перфоленты, который характерен для устройств релейного типа.

история развития эвм поколения эвм

Как работали эти агрегаты

Сотрудники, которые были приписанными к данной машине, постоянно находились возле нее и осуществляли наблюдение за работоспособностью электронных ламп. Но, как только перегорала хотя бы одна лампа, ENIAC сразу же поднимался, и наставали хлопоты: все в спешке осуществляли поиск сгоревшей лампы. Главной причиной (может быть, и не точной) очень частой замены ламп была следующая: тепло и свечение ламп привлекали мотыльков, они залетали внутрь машины и способствовали возникновению короткого замыкания. Таким образом, 1 поколение ЭВМ было крайне уязвимым относительно внешних условий.

Если вышесказанное является правдой, то термин «жучки» («баги»), под которым подразумеваются ошибки в программном и аппаратном оборудовании компьютерной техники, набирает уже новое значение. Когда все лампы находились в рабочем состоянии, инженерный персонал мог сделать настройку ENIAC на какую-либо задачу, изменив вручную подключения 6 000 проводов. Все провода нужно было снова переключать, если требовалась задача другого типа.

2 поколение эвм

Самые первые серийные машины

Первой серийно выпускавшейся ЭВМ первого поколения стал компьютер UNIVAC (Универсальный автоматический компьютер). Разработчиками данного компьютера были: Джон Мочли (John Mauchly) и Дж. Преспер Эккерт (J. Prosper Eckert). Это был первый тип электронного цифрового компьютера общего назначения. UNIVAC, работы по разработкам которого начались в 1946 году и завершились в 1951, обладал временем сложений 120 мкс, умножений – 1800 мкс и делений – 3600 мкс.

Данные машины занимали много площади, использовали множество электроэнергии и состояли из огромной численности ламп электронного типа. К примеру, машина «Стрела» имела 6400 таких ламп и 60 тысяч штук диодов полупроводникового типа. Быстродействия этого поколения ЭВМ не превышали 2–3 тысяч операций в секунду, объемы оперативной памяти были не больше 2 Кб. Только машина «М-2» (1958) имела оперативную память 4 Кб, а быстродействие ее было 20 тысяч операций в секунду.

 третье поколение эвм

ЭВМ второго поколения – существенные отличия

В 1948 году физиками-теоретиками Джоном Бардиным и Уильямом Шокли, вместе с ведущим экспериментатором фирмы «Белл телефон лабораториз» Уолтером Браттейном, был создан первый действующий транзистор. Это был прибор точечно-контактного типа, в котором три металлических «усика» имели контакт с бруском из поликристаллического материала. Таким образом, поколения ЭВМ начали совершенствоваться уже в то далекое время.

Первые виды компьютеров, которые работали на основе транзисторов, отмечают свое появление в конце 1950 годов, а к середине 1960 годов были создано внешние типы устройств с более компактными функциями.

Особенности архитектуры

Одной из удивительных способностей транзистора является то, что он один может осуществлять работу за 40 ламп электронного типа, и даже в этом случае иметь большую скорость работы, выделять минимальное количество теплоты, и практически не употреблять электрические ресурсы и энергию. Вместе с процессами замены ламп электрического типа на транзисторы усовершенствовались способы сохранения информации. Произошло увеличение объема памяти, а магнитная лента, которая впервые была применена в ЭВМ первого поколения UNIVAC, начала использоваться как для введения, так и для выведения информации.

4 поколение эвм

В середине 1960 годов применялось сохранение информации на дисках. Огромные виды достижений в архитектуре компьютеров позволяли получить быстрые действия в миллион операций в секунду! Например, к транзисторным компьютерам 2 поколения ЭВМ можно отнести «Стретч» (Англия), «Атлас» (США). В тот период Советский Союз также выпускал не уступающие вышеуказанным устройствам (к примеру, «БЭСМ-6»).

Создание ЭВМ, которые построены с помощью транзисторов, стало причиной уменьшения их габаритов, масс, затрат энергии и цены на них, а также увеличило надежность и производительность. Это поспособствовало расширению круга пользователей и номенклатуры решаемых задач. Учитывая улучшенные характеристики, которыми обладало 2 поколение ЭВМ, разработчики начали создавать алгоритмические виды языков для инженерно-технического (к примеру, АЛГОЛ, ФОРТРАН) и экономического (к примеру, КОБОЛ) вида расчетов.

Значение ОС

Но даже на этих этапах главной из задач технологий программирования было обеспечение экономии ресурсов – машинного времени и количества памяти. Для решения этой задачи начали создавать прототипы современных операционных систем (комплексы программ служебного типа, которые обеспечивают хорошие распределения ресурсов ЭВМ при исполнениях задач пользователя).

Виды первых операционных систем (ОС) способствовали автоматизации работы операторов ЭВМ, которая связана с выполнением заданий пользователя: ввод в устройство текстов программ, вызовы необходимых трансляторов, вызовы требуемых для программы библиотечных подпрограмм, вызовы компоновщика для размещения данных подпрограмм и программы основного типа в памяти ЭВМ, введение данных исходного типа и т. п.

Теперь, помимо программы и данных, в ЭВМ второго поколения нужно было вводить еще и инструкцию, где находилось перечисление этапов обработки и список сведений о программе и ее авторах. После этого в устройства начали вводить одновременно некоторое количество заданий для пользователей (пакеты с заданиями), в этих видах операционных систем нужно было распределить типы ресурсов ЭВМ между данными типами заданий – возник мультипрограммный режим для обработок данных (к примеру, пока происходит вывод результатов задачи одного типа, делаются расчеты для другого, и в память можно ввести данные для третьего типа задачи). Таким образом, 2 поколение ЭВМ вошло в историю появлением упорядоченных ОС.

эвм второго поколения

Третье поколение машин

За счет созданий технологии производств интегральных микросхем (ИС) получилось добиться увеличений быстрого действия и уровней надежности полупроводниковых схем, а также уменьшения их размеров, потребляемых уровней мощности и стоимости. Интегральные виды микросхем состоят из десятков элементов электронного типа, которые собраны в прямоугольных пластинах кремния, и обладают длиной стороны не больше 1 см. Подобный тип пластины (кристаллов) размещают в пластмассовом корпусе небольших габаритов, размеры в котором можно определить только с помощью числа «ножек» (выводов от входа и выхода электронных схем, созданных на кристаллах).

Благодаря указанным обстоятельствам, история развития ЭВМ (поколения ЭВМ) сделала большой прорыв. Это дало возможность не только для повышения качества работы и снижения стоимости универсальных устройств, но и создать машины малогабаритного, простого, дешевого и надежного типа – мини-ЭВМ. Такие агрегаты сначала были предназначены для замены контроллеров аппаратно-реализованнных назначений в контурах управления какими-либо объектами, в автоматизированных системах управления процессами технологического типа, системах сборов и обработки данных экспериментального типа, различных управляющих комплексах на объектах подвижного типа и т. п.

Главным моментом в то время считались унификации машин с конструктивно-технологическими параметрами. Третье поколение ЭВМ начинает выпуски своих серий или семейств, совместимых типов моделей. Дальнейшие скачки развития математических и программных обеспечений способствуют созданиям программ пакетного типа для решаемости типовых задач, проблемно ориентированного программного языка (для решаемости задач отдельных категорий). Так впервые создаются программные комплексы – виды операционных систем (разработанные IBM), на которых и работает третье поколение ЭВМ.

 эвм первого поколения

Машины четвертого поколения

Успешное развитие электронных устройств привело к созданиям больших интегральных схем (БИС), где один кристалл имел пару десятков тысяч элементов электрического типа. Это способствовало тому, что появились новые поколения ЭВМ, элементная база которых имела большой объем памяти и малые циклы для выполнения команд: использование байтов памяти в одной машинной операции начало резко понижаться. Но, так как затраты на программирование практически не имели сокращений, то на первый план ставились задачи экономии ресурсов человеческого, а не машинного типа.

Создавались операционные системы новых видов, которые позволяли программистам делать отладки своих программ прямо за дисплеями ЭВМ (в диалоговом режиме), и это способствовало облегчению работы пользователей и ускорению разработок нового программного обеспечения. Этот момент полностью противоречил концепциям первичных этапов информационных технологий, которые использовали ЭВМ первого поколения: «процессором выполняется только тот объем работы обработок данных, который люди принципиально не могут выполнить, – массовый счет». Стали прослеживаться тенденции иного типа: «Все, что выполнимо машинами, они должны выполнять; людьми выполняется только та часть работ, которую невозможно автоматизировать».

В 1971 году была изготовлена большая интегральная схема, где полностью размещался процессор электронно-вычислительной машины простых архитектур. Стали реальными возможности для размещений в одной большой интегральной схеме (на одном кристалле) практически всех устройств электронного типа, которые не являются сложными в архитектуре ЭВМ, то есть возможности серийных выпусков простых устройств по доступным ценам (не учитывая стоимости устройств внешнего типа). Так было создано 4 поколение ЭВМ.

Появилось много дешевых (карманных клавишных ЭВМ) и управляющих устройств, которые обустроены на одной-единственной либо нескольких больших интегральных схемах, содержащих процессоры, объемы памяти и систему связей с датчиками исполнительного типа в объектах управления.

Программы, которые управляли подачами топлив в двигатели автомобилей, движениями электронных игрушек или заданными режимами стирок белья, устанавливались в память ЭВМ или при изготовлениях подобных видов контроллеров, или непосредственно на предприятиях, которые занимаются выпуском автомобилей, игрушек, стиральных машин и т. д.

На протяжении 1970 годов началось изготовление и универсальных вычислительных систем, которые состояли из процессора, объемов памяти, схем сопряжений с устройством ввода-вывода, размещенных в единой большой интегральной схеме (однокристальные ЭВМ) или в некоторых больших интегральных схемах, установленных на одной плате печатного типа (одноплатные агрегаты). В результате, когда 4 поколение ЭВМ получило распространение, происходило повторение ситуации, возникшей в 1960 годах, когда первые мини-ЭВМ забирали часть работ в больших универсальных электронно-вычислительных машинах.

Характерные свойства ЭВМ четвертого поколения

  1. Мультипроцессорный режим.
  2. Обработки параллельно-последовательного типа.
  3. Высокоуровневые типы языков.
  4. Появление первых сетей ЭВМ.

Технические характеристики этих устройств

  1. Средние задержки сигналов 0,7 нс./в.
  2. Основной вид памяти – полупроводниковый. Время выработок данных из памяти такого типа – 100–150 нс. Емкости – 1012–1013 символов.
  3. Применение аппаратной реализации оперативных систем.
  4. Модульные построения начали применяться и для средств программного типа.

Впервые персональный компьютер был создан в апреле 1976 года Стивом Джобсом, сотрудником фирмы Atari, и Стивеном Возняком, сотрудником фирмы Hewlett-Packard. На основе интегральных 8-битных контроллеров схемы электронной игры, они создали простейший, запрограммированный на языке BASIC, компьютер игрового типа «Apple», который имел огромные успехи. В начале 1977 года была зарегистрирована компания Apple Comp., и с того времени началось производство первых в мире персональных компьютеров Apple. История поколения ЭВМ отмечает это событие как наиболее важное.

В настоящее время фирма Apple занимается выпусками персональных компьютеров Macintosh, которые за большинством параметров превосходят виды компьютеров IBM PC.

ПК в России

В нашей стране в основном используют виды компьютеров IBM PC. Этот момент объясняется такими причинами:

  1. До начала 90-х США не разрешали поставлять в Советский Союз информационные технологии передового типа, к каким и относились мощные компьютеры Macintosh.
  2. Устройства Макинтош были намного дороже, чем IBM PC (в настоящее время они имеют примерно одинаковую стоимость).
  3. Для IBM PC разработано множественное число программ прикладного типа и это облегчает их использование в самых различных сферах.

Пятый вид поколения ЭВМ

В поздние 1980 годы история развития ЭВМ (поколения ЭВМ) отмечает новый этап – появляются машины пятого вида поколения. Возникновение этих устройств связывают с переходами к микропроцессорам. С точки зрения структурных построений характерны максимальные децентрализации управлений, говоря о программных и математических обеспечениях – переходы на работу в программной сфере и оболочке.

Производительность пятого поколения ЭВМ – 108–109 операций за секунду. Для этого типа агрегатов характерна многопроцессорная структура, которая созданная на микропроцессорах упрощенных типов, которых применяется множественное количество (решающее поле или среда). Разрабатываются электронно-вычислительные типы машин, которые ориентированы на высокоуровневые типы языков.

В данный период существуют и применяются две противоположные функции: персонификации и коллективизации ресурсов (коллективные доступы к сети).

Из-за вида операционной системы, которая обеспечивает простоту общения с электронно-вычислительными машинами пятого поколения, огромной базы программ прикладного типа из различных сфер человеческой деятельности, а также низких цен ЭВМ становится незаменимой принадлежностью инженеров, исследователей, экономистов, врачей, агрономов, преподавателей, редакторов, секретарей и даже детей.

Развитие в наши дни

Про шестое и более новые поколения развития ЭВМ можно пока только мечтать. Сюда можно отнести нейрокомпьютеры (виды компьютеров, которые созданы на основе сетей нейронного типа). Они пока не могут существовать самостоятельно, но активным образом моделируются на компьютерах современного типа.

www.syl.ru

2. Поколения эвм

После безуспешных работ Георгия Атанасова по созданию электронной машины в 1942 г. выходит книга известного ученого Норберта Винера «Основы кибернетики или теории управления всеми организмами». Основываясь на материале этой книги и на знаниях системной техники, Джон фон Нейман, Чарльз Айстин и другие американские ученые, знакомые с работами Атанасова, приступили к разработке ЭВМ (на базе электронных ламп).

Первая ЭВМ была создана в 1946 году в США в Пенсильванском университете под руководством Дж. Маучли и Дж. Эккерта. Называлась эта машина ENIAC — electronic integrator and calculator (ЭНИАК — аббревиатура от полного названия «электронный интегратор и вычислитель»). Применялась она лишь для расчетов ядерных реакций в военных целях.

От момента создания данной машины и идет эра ЭВМ. И, хотя производительность ее работы составляла мизерную по современным представлениям величину — 5 000 операций в секунду, она была новым принципиальным шагом в развитии вычислительной техники той поры и революционно превосходила все другие виды вычислителей.

Первая в Европе ЭВМ была создана в СССР в 1951 году под руководством академика С.А. Лебедева в АН УССР в Киеве. Называлась она Малая Электронная Счетная Машина — МЭСМ.

Позже в 1952 г. в одном из немецких научных учреждений была обнаружена засекреченная вычислительная машина подобного направления, созданная Карлом Шуреком еще в 1944 г. Но право на изобретение уже было за американцами.

Дальнейшая история развития ЭВМ подобной архитектуры представлена в виде, так называемых поколений. Подробнее о понятии и особенностях архитектурного построения таких машин («фон-неймановской» архитектуры) поговорим ниже

Поколение ЭВМ — совокупность существенных особенностей и характеристик, используемых при построении конструкторско-технологической и логической базы машины. Основа разделения ЭВМ на поколения, прежде всего, выражается в элементной базе.

Элементная база совокупность технических устройств, из которых собрана вся машина. Она определяет все характеристики ЭВМ.

Чтобы вести изложение отличий ЭВМ по поколениям развития, приведем эти характеристики и рассмотрим, как их следует понимать.

Характеристики ЭВМ

Быстродействие — способность ЭВМ выполнять некоторое количество арифметических и логических операций в единицу времени (как правило, в секунду). Данную характеристику не следует путать с тактовой частотой работы процессора. Дело в том, что выполнение конкретной операции складывается из определенной совокупности элементарных действий, каждое из которых осуществляется за один такт.

Эта характеристика измеряется в MIPS (миллионах команд, выполняемых в секунду) и MFLOPS (миллионах операций над числами с плавающей запятой, выполняемых в секунду).

Объем внутренней и внешней памяти — количество информации, которое может быть доступно для быстрой обработки на ЭВМ или может быть сохранено на продолжительный период. Эти объемы считаются, как было отмечено выше, в байтах, килобайтах и других единицах измерения информации.

Точность вычислений — способность процессора (сопроцессора) ЭВМ выполнять арифметические операции с определенной точностью после запятой (допустим, порядка 300 знаков после запятой).

Габаритные размеры — величина внешних размеров как отдельных модулей или составных частей машины, так и всего комплекса в целом.

Энергопотребление — электрическая мощность, потребляемая от источника питания, как отдельными модулями, так и всей ЭВМ.

Стоимость — цена отдельных модулей, всего комплекса ЭВМ, расходных материалов.

Дизайн — внешний вид, форма, окраска, удобство эксплуатации и др.

Возможность выполнения определенных задач. Эта характеристика определяет тактические или, можно сказать, обобщающие возможности ЭВМ. Они реализуются на базе технических характеристик, рассмотренных выше

Основные характеристики производительности ЭВМ подчиняются эмпирическому закону, сформулированному сотрудником корпорации Intel — Г. Муром. В соответствии с ним тактовая частота процессоров (как основной фактор быстродействия) удваивается каждые полгода.

1-е поколение ЭВМ (с 1946 г. до середины 50-х годов ХХ в.).

Элементная база ЭВМ этого поколения — электронные лампы.

К первому поколению ЭВМ, кроме отмеченных выше, относятся созданные советскими учеными и инженерами ламповые вычислительные машины БЭСМ-2, Стрела, М-2, М-3, Минск-1, Урал-1, Урал-2, М-20. Они были, в основном, ориентированны на решение научно-технических задач.

Что же представляли собой машины первого поколения? Характеристики ЭНИАКа: вес — 30 тонн, занимаемая площадь — 150 м.кв., 40 панелей управления, 18 000 электронных ламп, 1 500 реле, производительность — 5 000 операций в секунду.

Одна из первых вычислительных машин — ТРИДАГ — занимала площадь целого здания.

Эксплуатация ЭВМ первого поколения дала ряд заметных результатов и тем самым определяла необходимость дальнейших научных исследований и практических внедрений в области развития этого нового для человечества класса техники.

Такие исследования и внедрения проводились во многих странах и через некоторое время темпы развития новой отрасли вышли в число одних из ведущих в мире. Так, для сравнения, можно прогнозировать создание нового самолета в авиационной промышленности (где темпы развития также высоки), но в условном пересчете на темпы роста индустрии электронно-вычислительной техники и микроэлектроники. В качестве сравнительных характеристик возьмем скорость, энергопотребление, стоимость. Самолет, который бы мог быть создан при таких условиях, должен быть способным облететь земной шар всего за несколько часов, истратив при этом около 20 кг топлива, а стоил бы всего 500 долларов.

На данном образном примере мы показали, что действительно, начиная с первого поколения, человечество вкладывало огромные ресурсы в становление и развитие электронно-вычислительной техники. Основу такого движения вперед составляли работы по изменению элементной базы ЭВМ и последовательного улучшения всех ее технических характеристик.

Одной из значительных вех на этом пути было изобретение в 1948 году нового электронного прибора — транзистора.

В 1955 г. начинается выпуск транзисторных бортовых ЭВМ для военной авиации. Так было начато 2-е поколение компьютеров.

2-е поколение ЭВМ (с середины 50-х годов до середины 60-х годов ХХ в.).

Элементная база — транзисторы.

Применение транзисторов в этом поколении позволило существенно повысить надежность, снизить энергопотребление, уменьшить размеры ЭВМ.

В целом изменение элементной базы позволило создать ЭВМ, обладающие большими логическими возможностями и более высокой производительностью. Наряду с машинами для научных расчетов, появились ЭВМ для решения планово-экономических задач (задач обработки данных) и управления производственными процессами.

В нашей стране были созданы полупроводниковые ЭВМ различного назначения: малые ЭВМ серии Наири и МИР, средние ЭВМ для научных расчетов и обработки данных со скоростью работы 5-30 тыс. операций в секунду — Минск-2, Минск-22, Минск-32, Урал-14, Раздан-2, Раздан-3, БЭСМ-4, М-220 и управляющие вычислительные машины Днепр, ВНИИЭМ-3 и др.

В рамках второго поколения академики С.А. Лебедев и В.А. Мельников создали сверхбыстродействующую ЭВМ БЭСМ-6 с производительностью 1 000 000 операций в секунду. Именно данной машине принадлежит мировой рекорд преодоления такой производительности.

Таким образом, уже в рамках второго поколения видно существенное расширение сферы использования вычислительной техники по сравнению с первоначальным узкоспециализированным военным применением. Эта тенденция прослеживается и дальше.

Кроме того, во всем мире продолжали развиваться тенденции к повышению надежности, быстродействия, снижению стоимости аппаратуры и улучшению других характеристик.

Качественное развитие указанных тенденций могло быть лишь при изменении элементной базы ЭВМ.

В 1958 г. разработана и создана интегральная схема — новый вид электронных приборов. В ней на одном кусочке полупроводника собрана целая электронная схема.

Важен проект фирмы IBM во второй половине 60-х годов ХХ в. по созданию новых классов ЭВМ на базе интегральных схем (ИС). Фактически был создан совершенно новый промышленный комплекс, по сравнению с которым вся предшествующая вычислительная техника могла бы показаться робким экспериментом. Но это и потребовало серьезных затрат в сумме около 5 млрд. долл. — 500 млн. на исследования и более 4 млрд. на развитие производства. Даже на знаменитый Манхэттенский проект, завершившийся взрывами первых атомных бомб, ушло средств в 2,5 раза меньше.

3-е поколение ЭВМ (с середины 60-х до середины 70-х гг. ХХ в.).

Элементная база — интегральные схемы малой степени интеграции, где на миниатюрном кремниевом кристалле, размером примерно 1 см на 1 см, размещалось до 100 активных элементов. Отсюда и название — чип — от английского слова «кусочек», «обломок».

Первая ЭВМ на интегральных схемах была изготовлена уже в 1961 году. Она содержала 587 схем малой интеграции. А в следующем 1962 г. была выпущена первая серийная ЭВМ 3-го поколения. В полной мере развитие этого поколения относится к выше отмеченному проекту — разработке машин IBM-360.

Наша страна совместно со странами — членами СЭВ — в начале 70-х годов разработали и организовали серийное производство Единой Системы ЭВМ (ЕС ЭВМ) и Системы Малых ЭВМ (СМ ЭВМ) — машин третьего поколения на интегральных схемах.

В 1971 г. был создан первый микропроцессорный комплект 4004 — семейство из пяти дополняющих друг друга кристаллов. Главный чип имел размеры 3,8 на 2,8 мм и содержал 2 250 транзисторов. Первый микропроцессор был 4-разрядным, изготовлен на p-канальных МОП транзисторах и имел быстродействие порядка 50 000 операций в секунду. Уже к концу 70-хх гг. быстродействие микропроцессоров превысило миллион операций в секунду, степень интеграции — 200 000 транзисторов, разрядность достигла 32, что стало достаточным для решения подавляющего большинства задач даже в перспективе. Таким образом, основа для создания ЭВМ 4-го поколения была заложена.

4-е поколение ЭВМ (с середины 70-х годов ХХ в. по настоящее время).

Элементная база — интегральные схемы БИС — большой (от 100 до 1 000 активных элементов на один чип) и СБИС — сверхбольшой (свыше 1 000 активных элементов на один чип) степени интеграции. В первую очередь на этих элементах строят память ЭВМ.

В ЭВМ четвертого поколения достигается дальнейшее упрощение контактов человека с ЭВМ. Использование БИС и СБИС позволяет аппаратными средствами реализовывать некоторые функции программ операционных систем (аппаратная реализация трансляторов с алгоритмических языков высокого уровня и др.), что способствует увеличению производительности.

Характерным для крупных ЭВМ четвертого поколения является наличие нескольких процессоров, ориентированных на выполнение определенных операций, процедур или на решение некоторых классов задач. Создаются многопроцессорные вычислительные системы с быстродействием в несколько десятков или сотен миллионов операций в секунду. Кроме того, разрабатываются и многопроцессорные управляющие комплексы повышенной надежности с автоматическим изменением структуры (автоматической реконфигурацией).

Революцией в развитии вычислительной техники явилось создание и выпуск персональных компьютеров. Появлению их способствовали такие условия. Фирмы-разработчики ЭВМ поглощали не более 15% вала микропроцессоров, поставляемых фирмами-технологами. И тогда последние развернули широкую кампанию, стремясь пробудить самодеятельность населения. Попытка удалась настолько, что мир захлестнула новая волна радиолюбительства (точнее компьютеролюбительства). Работая в любых доступных условиях, люди конструировали персональные машины, предназначенные для индивидуального пользователя.

Двоим любителям сопутствовала невероятная удача. Персональная машина «Apple» (яблочко), созданная в 1976 г. Стивеном Джобсом и Стивом Возняком, 20-летними техниками фирмы электрических игрушек, оказалась очень удачной. Уже в 1977 г. ее тираж превысил миллион; к 1984 г. объем продажи фирмы «Apple» достиг 1 млрд. долларов — уровня, до которого нынешний сверхгигант вычислительной техники IBM шел 50 лет! Впрочем, с начала 80-х гг. и IBM и другие мощные фирмы вступили в борьбу за рынок персональных машин. И они достигли больших результатов: условное время сборки одной ЭВМ на линиях сократилось до нескольких секунд, увеличивались емкость памяти, пространственное и цветовое разрешение дисплеев.

В нашей стране в рамках 4-го поколения выпущены разнообразные машины: продолжение серий ЕС ЭВМ и СМ ЭВМ, причем с рядом персональных ЭВМ, например, ЕС 1840,1841,1842, Искра 1030.

За рубежом — это компьютеры на базе процессора Intel 286, 386, 486, а затем ряда моделей Pentium.

В рамках 4-го поколения развились также хорошо известные всему миру средства вычислительной техники — микрокалькуляторы.

5-е поколение ЭВМ

В значительной степени формированию пятого поколения способствовали публикации сведений о проекте ЭВМ пятого поколения, разрабатываемом ведущими японскими фирмами и научными организациями, поставившими перед собой цель захвата в 90-х годах ХХ в. мирового лидерства в области вычислительной техники на основе обладания высочайшими технологиями в производстве микропроцессоров. Поэтому этот проект часто называли «японским вызовом».

Согласно проекту ЭВМ и вычислительные системы пятого поколения помимо более высокой производительности и надежности при более низкой стоимости должны обладать следующими качественно новыми свойствами. Это: 1) возможность взаимодействия с ЭВМ при помощи естественного языка, человеческой речи и графических изображений; 2) способность системы обучаться, производить ассоциативную обработку информации, делать логические рассуждения, вести «разумную» беседу с человеком в форме вопросов и ответов; 3) способность системы «понимать» содержимое базы данных, которая при этом превращается в «базу знаний» и использовать эти «знания» при решении задач.

Предполагалось, что в ЭВМ пятого поколения быстродействие машин и емкость основной (оперативной) памяти составят соответственно 2 млн. операций в секунду и 0,5 — 5 Мбайт для персональных компьютеров и 1-100 млрд. операций в секунду и 8-160 Мбайт для сверхпроизводительных ЭВМ. Ожидалось, что в машинах пятого поколения будут использоваться СБИС, содержащие до 1-10 млн. транзисторов на одном чипе.

Однако современная оценка состояния этих прогнозов является неоднозначной. Ряд поставленных целей из-за конструктивных особенностей машин «фон-неймановской» архитектуры не были достигнуты. В то же время основные характеристики (например, быстродействие, объем оперативной памяти и др.) были перекрыты и, нередко, очень значительно. Так, объемы оперативной памяти в 128, 256, 512, 1024 Мбайт и выше в современных персональных ЭВМ стали уже практической необходимостью. Общая проблема данного поколения, как оказалось, скрыта не в достижении некоторых технических характеристик ЭВМ, а в необходимости замены основной идеи работы — программного принципа и связанной с ним «фон-неймановской» архитектуры. О некоторых попытках создания ЭВМ новых архитектур расскажем дальше.

В заключении отметим: несмотря на то, что пятое поколение ЭВМ так и осталось еще не полностью реализованным, ведутся научные и практические исследования по разработке и созданию следующих поколений. Идеи этих поколений состоят не только в принципиальной замене архитектурного построения, но и в применении иногда фантастических вариантов физической реализации ЭВМ, как, например, предлагается при создании биокомпьютеров, т.е. управление живыми организмами с помощью средств и методов компьютерной техники.

studfile.net

Поколения ЭВМ — часть 2

Второе поколение ЭВМ

ЭВМ 2-го поколения были разработаны в 1950—60 гг. В качестве основного элемента были использованы уже не электронные лампы, а полупроводниковые диоды и транзисторы, а в качестве устройств памяти стали применяться магнитные сердечники и магнитные барабаны — далекие предки современных жестких дисков. Второе отличие этих машин — это то, что появилась возможность программирования на алгоритмических языках. Были разработаны первые языки высокого уровня — Фортран, Алгол, Кобол. Эти два важных усовершенствования позволили значительно упростить и ускорить написание программ для компьютеров. Программирование, оставаясь наукой, приобретает черты ремесла. Все это позволило резко уменьшить габариты и стоимость компьютеров, которые тогда впервые стали строиться на продажу.
Машины этого поколения: «РАЗДАН-2», «IВМ-7090», «Минск-22,-32», «Урал- 14,-16», «БЭСМ-3,-4,-6», «М-220, -222» и др.
Применение полупроводников в электронных схемах ЭВМ привели к увеличению достоверности, производительности до 30 тыс. операций в секунду, и опера­тивной памяти до 32 Кб. Уменьшились габаритные размеры машин и потребление электроэнергии. Но главные достижения этой эпохи принадлежат к области программ. На втором поколении компьютеров впервые появилось то, что сегодня называется операционной системой. Соответственно расширялась и сфера применения компьютеров. Теперь уже не только ученые могли рассчитывать на доступ к вычислительной технике; компьютеры нашли применение в планировании и управлении, а некоторые крупные фирмы даже компьютеризовали свою бухгалтерию, предвосхищая моду на двадцать лет.

Основные технические характеристики ЭВМ «Урал-16»:
Структура команд двухадресная.
Система счисления двоичная,
Способ представления чисел: с плавающей запятой.
Разрядность: 36 двоичных разрядов (мантисса числа — 29 разрядов, знак мантиссы — 1 разряд, порядок — 5 разрядов, знак порядка — 1 разряд).
Быстродействие 5000 операций/с.
Количество команд (основных) 17. Каждая операция имеет 8 модификаций.
Характеристики запоминающих устройств.
Емкость ОЗУ на ферритах 2 К слов; время обращения к ОЗУ 24 мкс,
Емкость внешнего НМЛ 120000 чисел; скорость считывания с НМЛ 2000 чисел/с.
Устройства ввода — вывода обеспечивают ввод информации в машину с фотосчитывающего устройства на кинолепте со скоростью 35 чисел/с и вывод результатов вычислений на печатающее устройство со скоростью 20 чисел/с.
Питание машины от сети переменного тока напряжением 380/220 В, частотой 50 Гц.
Потребляемая мощность около 3 кВт.
Занимаемая площадь 20 кв. м.

Третье поколение ЭВМ

Разработка в 60-х годах интегральных схем — целых устройств и узлов из десятков и сотен транзисторов, выполненных на одном кристалле полупроводника (то, что сейчас называют микросхемами) привело к созданию ЭВМ 3-го поколения. В это же время появляется полупроводниковая память, которая и по сей день используется в персональных компьютерах в качестве оперативной. Применение интегральных схем намного увеличило возможности ЭВМ. Теперь центральный процессор получил возможность параллельно работать и управлять многочисленными периферийными устройствами. ЭВМ могли одновременно обрабатывать несколько программ (принцип мультипрограммирования). В результате реализации принципа мультипрограммирования появилась возможность работы в режиме разделения времени в диалоговом режиме. Удаленные от ЭВМ пользователи получили возможность, независи­мо друг от друга, оперативно взаимодействовать с машиной.
В эти годы производство компьютеров приобретает промышленный размах. Пробившаяся в лидеры фирма IBM первой реализовала семейство ЭВМ — серию полностью совместимых друг с другом компьютеров от самых маленьких, размером с небольшой шкаф (меньше тогда еще не делали), до самых мощных и дорогих моделей. Наиболее распространенным в те годы было семейство System/360 фирмы IBM.
Начиная с ЭВМ 3-го поколения, традиционным стала разработка серийных ЭВМ. Хотя машины одной серии сильно отличались друг от друга по возможностям и производительности, они были информационно, программно и аппаратно совместимы. Например, странами СЭВ были выпущены ЭВМ единой серии («ЕС ЭВМ») «ЕС-1022», «ЕС-1030», «ЕС-1033», «ЕС-1046», «ЕС-1061», «ЕС-1066» и др. Производительность этих машин достигала от 500 тыс. до 2 млн. операций в секунду, объём оперативной памяти достигал от 8 Мб до 192 Мб.
К ЭВМ этого поколения также относится «IВМ-370», «Электроника — 100/25», «Электроника — 79», «СМ-3», «СМ-4» и др.
Для серий ЭВМ было сильно расширено программное обеспечение (операционные системы, языки программирования высокого уровня, прикладные программы и т.д.).
Невысокое качество электронных комплектующих было слабым местом советских ЭВМ третьего поколения. Отсюда постоянное отставание от западных разработок по быстродействию, весу и габаритам, но, как настаивают разработчики СМ, не по функциональным возможностям. Для того, чтобы компенсировать это отставание, в разрабатывались спецпроцессоры, позволяющие строить высокопроизводительные системы для частных задач. Оснащенная спецпроцессором Фурье-преобразований СМ-4, например, использовалась для радиолокационного картографирования Венеры.
Еще в начале 60-х появляются первые миникомпьютеры — небольшие маломощные компьютеры, доступные по цене небольшим фирмам или лабораториям. Миникомпьютеры представляли собой первый шаг на пути к персональным компьютерам, пробные образцы которых были выпущены только в середине 70-х годов. Известное семейство миникомпьютеров PDP фирмы Digital Equipment послужило прототипом для советской серии машин СМ.
Между тем количество элементов и соединений между ними, умещающихся в одной микросхеме, постоянно росло, и в 70-е годы интегральные схемы содержали уже тысячи транзисторов. Это позволило объединить в единственной маленькой детальке большинство компонентов компьютера — что и сделала в 1971 г. фирма Intel, выпустив первый микропроцессор, который предназначался для только-только появившихся настольных калькуляторов. Этому изобретению суждено было произвести в следующем десятилетии настоящую революцию — ведь микропроцессор является сердцем и душой современного персонального компьютера.
Но и это еще не все — поистине, рубеж 60-х и 70-х годов был судьбоносным временем. В 1969 г. зародилась первая глобальная компьютерная сеть — зародыш того, что мы сейчас называем Интернетом. И в том же 1969 году одновременно появились операционная система Unix и язык программирования С («Си»), оказавшие огромное влияние на программный мир и до сих пор сохраняющие свое передовое положение.

Четвертое поколение ЭВМ

К сожалению, начиная с середины 1970-х годов стройная картина смены поколений нарушается. Все меньше становится принципиальных новаций в компьютерной науке. Прогресс идет в основном по пути развития того, что уже изобретено и придумано, — прежде всего за счет повышения мощности и миниатюризации элементной базы и самих компьютеров.
Обычно считается, что период с 1975 г. принадлежит компьютерам четвертого поколения. Их элементной базой стали большие интегральные схемы (БИС. В одном кристалле интегрированно до 100 тысяч элементов). Быстродействие этих машин составляло десятки млн. операций в секунду, а оперативная память достигла сотен Мб. Появились микропроцессоры (1971 г. фирма Intel), микро-ЭВМ и персональные ЭВМ. Стало возможным коммунальное использование мощности разных машин (соединение машин в единый вычислительный узел и работа с разделением времени).
Однако, есть и другое мнение — многие полагают, что достижения периода 1975-1985 г.г. не настолько велики, чтобы считать его равноправным поколением. Сторонники такой точки зрения называют это десятилетие принадлежащим «третьему-с половиной» поколению компьютеров. И только с 1985г., когда появились супербольшие интегральные схемы (СБИС. В кристалле такой схемы может размещаться до 10 млн. элементов.), следует отсчитывать годы жизни собственно четвертого поколения, здравствующего и по сей день.
Развитие ЭВМ 4-го поколения пошло по 2 направлениям:
1-ое направление — создание суперЭВМ — комплексов многопроцессорных машин. Быстродействие таких машин достигает нескольких миллиардов операций в секунду. Они способны обрабатывать огромные массивы информации. Сюда входят комплексы ILLIAS-4, CRAY, CYBER, «Эльбрус-1», «Эльбрус-2» и др. Многопроцессорные вычислительные комплексы (МВК) «Эльбрус-2» активно использовались в Советском Союзе в областях, требующих большого объема вычислений, прежде всего, в оборонной отрасли. Вычислительные комплексы «Эльбрус-2» эксплуатировались в Центре управления космическими полетами, в ядерных исследовательских центрах. Наконец, именно комплексы «Эльбрус-2» с 1991 года использовались в системе противоракетной обороны и на других военных объектах.
2-ое направление — дальнейшее развитие на базе БИС и СБИС микро-ЭВМ и персональных ЭВМ (ПЭВМ). Первыми представителями этих машин являются Apple, IBM — PC ( XT , AT , PS /2), «Искра», «Электроника», «Мазовия», «Агат», «ЕС-1840», «ЕС-1841» и др.
Начиная с этого поколения ЭВМ стали называть компьютерами.
Благодаря появлению и развитию персональных компьютеров (ПК), вычислительная техника становится по-настоящему массовой и общедоступной. Складывается парадоксальная ситуация: несмотря на то, что персональные и миникомпьютеры по-прежнему во всех отношениях отстают от больших машин, львиная доля новшеств — графический пользовательский интерфейс, новые периферийные устройства, глобальные сети — обязаны своим появлением и развитием именно этой «несерьезной» техники. Большие компьютеры и суперкомпьютеры, конечно же, не вымерли и продолжают развиваться. Но теперь они уже не доминируют на компьютерной арене, как было раньше.

mirznanii.com

§1 Первое поколение эвм (1945-1954 гг.)

Лекция 2. История развития ЭВМ.

История компьютера тесным образом связана с попытками облегчить и автоматизировать большие объемы вычислений, около 500 г. н.э. появились счёты (абак) — устройство, состоящее из набора костяшек, нанизанных на стержни.

Все основные идеи, которые лежат в основе работы компьютеров, были изложены еще в 1833 году английским математиком Чарльзом Бэббиджем. Он разработал проект машины для выполнения научных и технических расчетов, где предугадал основные устройства современного компьютера, а также его задачи. Управление такой машиной должно было осуществляться программным путем. Для ввода и вывода данных Бэббидж предлагал использовать перфокарты — листы из плотной бумаги с информацией, наносимой с помощью отверстий. Идеи Бэббиджа стали реально воплощаться в жизнь в конце 19 века.

Дальнейшие развития науки и техники позволили в 1940-х годах построить первые вычислительные машины. Создателем первого действующего компьютера Z1 с программным управлением считают немецкого инженера Конрада Цузе.

В феврале 1944 года на одном из предприятий Ай-Би-Эм (IBM) была создана машина «Mark 1». Это был монстр весом около 35 тонн. В «Mark 1» использовались механические элементы для представления чисел и электромеханические — для управления работой машины.

Развитие ЭВМ делится на несколько периодов. Поколения ЭВМ каждого периода отличаются друг от друга элементной базой и математическим обеспечением.

Основоположниками компьютерной науки по праву считаются Клод Шеннон — создатель теории информации, Алан Тьюринг — математик, разработавший теорию программ и алгоритмов, и Джон фон Нейман — американский ученый, который в 1945 г сформулировал общие принципы, положенные в основу построения подавляющего большинства компьютеров.

Элементной базой компьютеров первого поколения были электронные лампы (вроде тех, что были в старых телевизорах). Это доисторические времена, эпоха становления вычислительной техники.

Ввод чисел в первые машины производился с помощью перфокарт, а программное управление последовательностью выполнения операций осуществлялось, например в ENIAC, как в счетно-аналитических машинах, с помощью штеккеров и наборных полей.

Первой серийно выпускавшейся ЭВМ 1-го поколения стал компьютер UNIVAC (Универсальный автоматический компьютер). Разработчики: Джон Мочли (John Mauchly) и Дж. Преспер Эккерт (J. Prosper Eckert).

Программное обеспечение компьютеров 1-го поколения состояло в основном из стандартных подпрограмм.

Машины этого поколения: « ENIAC », «МЭСМ», «БЭСМ», «IBM -701», «Стрела», «М-2», «М-3», «Урал» (занимаемая площадь 50 кв. м.), «Урал-2», «Минск-1», «Минск-12», «М-20» и др.

Эти машины занимали большую площадь, использовали много электроэнергии и состояли из очень большого числа электронных ламп. Например, машина «Стрела» состояла из 6400 электронных ламп и 60 тыс. штук полупроводниковых диодов. Их быстродействие не превышало 2—3 тыс. операций в секунду, оперативная память не превышала 2 Кб. Только у машины «М-2» (1958) оперативная память была 4 Кб, а быстродействие 20 тыс. операций в секунду.

§2 Второе поколение эвм (1955-1964)

В качестве основного элемента были использованы уже не электронные лампы, а полупроводниковые диоды и транзисторы, а в качестве устройств памяти стали применяться магнитные сердечники и магнитные барабаны — далекие предки современных жестких дисков. Второе отличие этих машин — это то, что появилась возможность программирования на алгоритмических языках. Были разработаны первые языки высокого уровня — Фортран, Алгол, Кобол.

Машины этого поколения: «РАЗДАН-2», «IВМ-7090», «Минск-22,-32», «Урал- 14,-16» (занимаемая площадь 20 кв. м.), «БЭСМ-3,-4,-6», «М-220, -222» и др.

Применение полупроводников в электронных схемах ЭВМ привели к увеличению достоверности, производительности до 30 тыс. операций в секунду, и опера­тивной памяти до 32 Кб. Уменьшились габаритные размеры машин и потребление электроэнергии. Но главные достижения этой эпохи принадлежат к области программ. На втором поколении компьютеров впервые появилось то, что сегодня называется операционной системой.

Соответственно расширялась и сфера применения компьютеров.

§3 Третье поколение эвм (1965-1974)

Машины третьего поколения — это семейства машин с единой архитектурой, т.е. программно совместимых. В качестве элементной базы в них используются интегральные схемы — целых устройств и узлов из десятков и сотен транзисторов, выполненных на одном кристалле полупроводника, которые также называются микросхемами.

Машины третьего поколения имеют развитые операционные системы. Они обладают возможностями мультипрограммирования, т.е. одновременного выполнения нескольких программ.

Примеры машин третьего поколения — семейства IBM—360, IBM—370, ЕС ЭВМ (Единая система ЭВМ), СМ ЭВМ (Семейство малых ЭВМ) и др.

Быстродействие машин внутри семейства изменяется от нескольких десятков тысяч до миллионов операций в секунду. Ёмкость оперативной памяти достигает нескольких сотен тысяч слов.

В 1969 г. зародилась первая глобальная компьютерная сеть — зародыш того, что мы сейчас называем Интернетом. И в том же 1969 году одновременно появились операционная система Unix и язык программирования С («Си»), оказавшие огромное влияние на программный мир и до сих пор сохраняющие свое передовое положение.

В 1971 г. фирма Intel, выпустила первый микропроцессор, который предназначался для только-только появившихся настольных калькуляторов.

В конце 1973 г. Intel разработала однокристальный 8-разрядный МП 8080, рассчитанный для многоцелевых применений.

Стив Возняк (будущий «отец» компьютеров Apple) собрал свой первый компьютер в 1972 году из деталей, забракованных местным производителем полупроводников в городе Беркли, штат Калифорния. Стив назвал свое изобретение Cream Soda Computer, поскольку пил именно этот напиток во время сборки аппарата.

studfile.net

3 Поколения эвм

Электронно-вычислительную технику принято делить на поколения

Смены поколений чаще всего были связаны со сменой элементной базы ЭВМ, с прогрессом электронной техники.

Это всегда приводило к росту вычислительной мощности ЭВМ, то есть быстродействия и объема памяти.

Но это не единственное следствие смены поколений. При таких переходах, происходили существенные изменения в архитектуре ЭВМ, расширялся круг задач, решаемых на ЭВМ, менялся способ взаимодействия между пользователем и компьютером.

3.1 Первое поколение эвм

Первое поколение ЭВМ — ламповые машины 50-х годов. Скорость счета самых быстрых машин первого поколения доходила до 20 тысяч операций в секунду (ЭВМ М-20).

Для ввода программ и данных использовались перфоленты и перфокарты.

Поскольку внутренняя память этих машин была невелика (могла вместить в себя несколько тысяч чисел и команд программы), то они, главным образом, использовались для инженерных и научных расчетов, не связанных с переработкой больших объемов данных.

Это были довольно громоздкие сооружения, содержавшие в себе тысячи ламп, занимавшие иногда сотни квадратных метров, потреблявшие электроэнергию в сотни киловатт

Программы для таких машин составлялись на языках машинных команд. Это довольно трудоемкая работа.

Поэтому программирование в те времена было доступно немногим.

В 1949 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор. Транзисторы быстро внедрялись в радиотехнику.

3.2 Второе поколение эвм

В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения.

Переход на полупроводниковые элементы улучшил качество ЭВМ по всем параметрам: они стали компактнее, надежнее, менее энергоемкими

Быстродействие большинства машин достигло десятков и сотен тысяч операций в секунду.

Объем внутренней памяти возрос в сотни раз по сравнению с ЭВМ первого поколения.

Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах.

Благодаря этому появилась возможность создавать на ЭВМ информационно-справочные, поисковые системы.

Такие системы связаны с необходимостью длительно хранить на магнитных носителях большие объемы информации.

Во времена второго поколения активно стали развиваться языки программирования высокого уровня. Первыми из них были ФОРТРАН, АЛГОЛ, КОБОЛ.

Составление программы перестало зависеть от модели машины, сделалось проще, понятнее, доступнее.

 Программирование как элемент грамотности стало широко распространяться, главным образом среди людей с высшим образованием.

3.3 Третье поколение эвм

Третье поколение ЭВМ создавалось на новой элементной базе — интегральных схемах. С помощью очень сложной технологии специалисты научились монтировать на маленькой пластине из полупроводникового материала, площадью менее 1 см, достаточно сложные электронные схемы.

Их назвали интегральными схемами (ИС)

Первые ИС содержали в себе десятки, затем — сотни элементов (транзисторов, сопротивлений и др.).

Когда степень интеграции (количество элементов) приблизилась к тысяче, их стали называть большими интегральными схемами — БИС; затем появились сверхбольшие интегральные схемы — СБИС.

ЭВМ третьего поколения начали производиться во второй половине 60-х годов, когда американская фирма IBM приступила к выпуску системы машин IBM-360. Это были машины на ИС.

Немного позднее стали выпускаться машины серии IBM-370, построенные на БИС.

В Советском Союзе в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая Система ЭВМ) по образцу IBM-360/370.

Переход к третьему поколению связан с существенными изменениями архитектуры ЭВМ.

Появилась возможность выполнять одновременно несколько программ на одной машине. Такой режим работы называется мультипрограммным (многопрограммным) режимом.

Скорость работы наиболее мощных моделей ЭВМ достигла нескольких миллионов операций в секунду.

На машинах третьего поколения появился новый тип внешних запоминающих устройств —магнитные диски.

Как и на магнитных лентах, на дисках можно хранить неограниченное количество информации.

НМЛ.

Широко используются новые типы устройств ввода-вывода: дисплеи, графопостроители.

В этот период существенно расширились области применения ЭВМ. Стали создаваться базы данных, первые системы искусственного интеллекта, системы автоматизированного проектирования (САПР) и управления (АСУ).

studfile.net

Элементной базой ЭВМ четвертого поколения являются — Мегаобучалка

Какой ученый создал машину, выполняющую только операцию сложения (известна как суммирующая машина)?

1.Блез Паскаль

13. Когда появились первые ЭВМ?

1.1946 г.

Элементной базой ЭВМ первого поколения являются

1.электронные лампы

Элементной базой ЭВМ второго поколения являются

1.полупроводниковые приборы: транзисторы, диоды и пр.

Элементной базой ЭВМ третьего поколения являются

1.интегральные схемы

Элементной базой ЭВМ четвертого поколения являются

1.большие интегральные схемы

18. Минимальная единица измерения информации:

1.Бит

19. Байт – это …

1.Последовательность из восьми бит

20. 1 килобайт равен:

1.1024 байт

21. 1 мегабайт равен:

1.1024 Кбайт

22. 1 гигабайт равен:

1.1024Мбайт (210 Мбайт)

23. Укажите правильный порядок по возрастанию:

1.1 бит, 1 байт, 1 Кбайт, 1 Мбайт, 1 Гбайт

24. Как называется полное множество символов, используемых при кодировании?

1.Кодировочная таблица

25. Объем информации, необходимый для двоичного кодирования 256 символов:

1.1 байт

26. Максимально возможное десятичное число, которое можно закодировать кодом размером в 1 байт:

1.255

27. Какое количество символов в системе кодирования ASCII?

1.256

28. Какое количество символов в системе кодирования Unicode?

1.65536

29. Базовый комплект персонального компьютера:

1.Системный блок, монитор, клавиатура

30. Функционально-законченный модуль, построенный на базе одной или нескольких БИС, состоящей из устройства управления, арифметико-логического устройства и внутренних регистров, называется

1.микропроцессор

31. Производительность работы компьютера зависит от:

1.Тактовой частоты микропроцессора

32. Единицей измерения тактовой частоты, в значительной степени, определяющей быстродействие компьютера, является…

1.МГц

33. Какое устройство служит для передачи данных, адресов и управляющих сигналов, связывает между собой все устройства ПК?

1.системная магистраль данных

34. Какое устройство служит для управления работой внешних устройств, для обеспечения их прямой связи с ОП, минуя микропроцессор?



1.контроллер (адаптер)

35. Контроллеры – это:

1.Электронная схема для управления работой устройств ПК

36. К основной памяти относятся

1.ОЗУ, ПЗУ, кэш-память

37. Для чего предназначено ОЗУ?

1.Для оперативного хранения программ и данных, сохраняемых только на период работы ПК

38. Для чего предназначено ПЗУ?

1.Для хранения постоянной информации, служащей для тестирования основных устройств и блоков ПК и начальной загрузки ОС

39. Для чего предназначена кэш-память?

1.Для временного хранения промежуточных результатов и наиболее часто используемых участков ОП

40. К устройствам внешней памяти относятся

1.накопители на жестких, гибких, лазерных дисках, USB

41. Внешняя память служит для

1.Долговременного хранения информации независимо от того, работает ЭВМ или нет

42. К устройствам ввода информации относятся:
1.Клавиатура, мышь, сканер, джойстик

43. Сканер – это …

1.Устройство для оптического ввода информации в компьютер

44. К устройствам вывода информации относятся:
1.Монитор, принтер, плоттер

45. Разрешение экрана монитора – это

1.Количество точек на экране по вертикали и горизонтали

46. Основными характеристиками принтера являются

1.тип, разрешение, скорость печати, максимальный формат листа

47. Какое из перечисленных устройств располагается в системном блоке персонального компьютера?

1.Материнская плата

48. К мультимедийным устройствам относятся:

1.Звуковая карта, Видеокарта, Динамики

49.Что такое модем?

1.Устройство приема/передачи информации через телефонную линию связи

50. Единица измерения скорости передачи информации через модем:

1.бит/с

51. Какой раздел математики изучает высказывания, рассматриваемые со стороны их логических значений (истинности или ложности) и логических операций над ними

1.алгебра логики

52. Какая логическая связка рассматривается как операция над логическим высказыванием: «Высказывание истинно, когда А ложно, и ложно, когда А истинно»

1.отрицание

53. Какая логическая связка рассматривается как операция над логическим высказыванием:

«Высказывание A B истинно тогда и только тогда, когда оба высказывания А и В истинны»

1.конъюнкция

54. Какая логическая связка рассматривается как операция над логическим высказыванием:

«Высказывание A B ложно тогда и только тогда, когда оба высказывания А и В ложны»

1.дизъюнкция

55. Какая логическая связка рассматривается как операция над логическим высказыванием:

«Высказывание А В ложно тогда и только тогда, когда А истинно, а В ложно»

1.импликация

56. Какая логическая связка рассматривается как операция над логическим высказыванием:

«Высказывание А В истинно тогда и только тогда, когда значения А и В совпадают»

1.эквиваленция

megaobuchalka.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *