Формула мощности трансформатора – Как узнать мощность трансформатора?

Содержание

Как узнать мощность трансформатора?

Определение мощности силового трансформатора

Для изготовления трансформаторных блоков питания необходим силовой однофазный трансформатор, который понижает переменное напряжение электросети 220 вольт до необходимых 12-30 вольт, которое затем выпрямляется диодным мостом и фильтруется электролитическим конденсатором.

Эти преобразования электрического тока необходимы, поскольку любая электронная аппаратура собрана на транзисторах и микросхемах, которым обычно требуется напряжение не более 5-12 вольт.

Чтобы самостоятельно собрать блок питания, начинающему радиолюбителю требуется найти или приобрести подходящий трансформатор для будущего блока питания. В исключительных случаях можно изготовить силовой трансформатор самостоятельно. Такие рекомендации можно встретить на страницах старых книг по радиоэлектронике.

Но в настоящее время проще найти или купить готовый трансформатор и использовать его для изготовления своего блока питания.

Полный расчёт и самостоятельное изготовление трансформатора для начинающего радиолюбителя довольно сложная задача. Но есть иной путь. Можно использовать бывший в употреблении, но исправный трансформатор. Для питания большинства самодельных конструкций хватит и маломощного блока питания, мощностью 7-15 Ватт.

Если трансформатор приобретается в магазине, то особых проблем с подбором нужного трансформатора, как правило, не возникает. У нового изделия обозначены все его главные параметры, такие как мощность, входное напряжение, выходное напряжение, а также количество вторичных обмоток, если их больше одной.

Но если в ваши руки попал трансформатор, который уже поработал в каком-либо приборе и вы хотите его вторично использовать для конструирования своего блока питания? Как определить мощность трансформатора хотя бы приблизительно? Мощность трансформатора весьма важный параметр, поскольку от него напрямую будет зависеть надёжность собранного вами блока питания или другого устройства. Как известно, потребляемая электронным прибором мощность зависит от потребляемого им тока и напряжения, которое требуется для его нормальной работы. Ориентировочно эту мощность можно определить, умножив потребляемый прибором ток (Iн на напряжение питания прибора (Uн). Думаю, многие знакомы с этой формулой ещё по школе.

P=Uн * Iн

,где Uн – напряжение в вольтах; Iн – ток в амперах; P – мощность в ваттах.

Рассмотрим определение мощности трансформатора на реальном примере. Тренироваться будем на трансформаторе ТП114-163М. Это трансформатор броневого типа, который собран из штампованных Ш-образных и прямых пластин. Стоит отметить, что трансформаторы такого типа не самые лучшие с точки зрения коэффициента полезного действия (КПД). Но радует то, что такие трансформаторы широко распространены, часто применяются в электронике и их легко найти на прилавках радиомагазинов или же в старой и неисправной радиоаппаратуре. К тому же стоят они дешевле тороидальных (или, по-другому, кольцевых) трансформаторов, которые обладают большим КПД и используются в достаточно мощной радиоаппаратуре.

Итак, перед нами трансформатор ТП114-163М. Попробуем ориентировочно определить его мощность. За основу расчётов примем рекомендации из популярной книги В.Г. Борисова «Юный радиолюбитель».

Для определения мощности трансформатора необходимо рассчитать сечение его магнитопровода. Применительно к трансформатору ТП114-163М, магнитопровод – это набор штампованных Ш-образных и прямых пластин выполненных из электротехнической стали. Так вот, для определения сечения необходимо умножить толщину набора пластин (см. фото) на ширину центрального лепестка Ш-образной пластины.

При вычислениях нужно соблюдать размерность. Толщину набора и ширину центрального лепестка лучше мерить в сантиметрах. Вычисления также нужно производить в сантиметрах. Итак, толщина набора изучаемого трансформатора составила около 2 сантиметров.

Далее замеряем линейкой ширину центрального лепестка. Это уже задача посложнее. Дело в том, что трансформатор ТП114-163М имеет плотный набор и пластмассовый каркас. Поэтому центральный лепесток Ш-образной пластины практически не видно, он закрыт пластиной, и определить его ширину довольно трудно.

Ширину центрального лепестка можно замерить у боковой, самой первой Ш-образной пластины в зазоре между пластмассовым каркасом. Первая пластина не дополняется прямой пластиной и поэтому виден край центрального лепестка Ш-образной пластины. Ширина его составила около 1,7 сантиметра. Хотя приводимый расчёт и является ориентировочным, но всё же желательно как можно точнее проводить измерения.

Перемножаем толщину набора магнитопровода (2 см.) и ширину центрального лепестка пластины (1,7 см.). Получаем сечение магнитопровода – 3,4 см2. Далее нам понадобиться следующая формула.

,где S – площадь сечения магнитопровода; Pтр – мощность трансформатора; 1,3 – усреднённый коэффициент.

После нехитрых преобразований получаем упрощённую формулу для расчёта мощности трансформатора по сечению его магнитопровода. Вот она.

Подставим в формулу значение сечения S = 3,4 см2, которое мы получили ранее.

В результате расчётов получаем ориентировочное значение мощности трансформатора ~ 7 Ватт. Такого трансформатора вполне достаточно, чтобы собрать блок питания для монофонического усилителя звуковой частоты на 3-5 ватт, например, на базе микросхемы усилителя TDA2003.

Вот ещё один из трансформаторов. Маркирован как PDPC24-35. Это один из представителей трансформаторов – «малюток». Трансформатор очень миниатюрный и, естественно, маломощный. Ширина центрального лепестка Ш-образной пластины составляет всего 6 миллиметров (0,6 см.).

Толщина набора пластин всего магнитопровода – 2 сантиметра. По формуле мощность данного мини-трансформатора получается равной около 1 Вт.

Данный трансформатор имеет две вторичные обмотки, максимально допустимый ток которых достаточно мал, и составляет десятки миллиампер. Такой трансформатор можно использовать только лишь для питания схем с малым потреблением тока.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

go-radio.ru

Почему мощность трансформатора измеряют в ква, а не в квт ?

Многим из нас известна основная единица мощности – Ватт (Вт) или чаще используется его производная киловатт (кВт) и вы привыкли, что эта характеристика у электрооборудования указывается именно в них.

Но если взять трансформатор или приборы, в которых он является основным компонентом, например, стабилизаторы напряжения, вы увидите, что мощность там указана в кВА — киловольт-амперах.

Давайте разберемся, что такое кВА, почему именно в этих единицах измерения указывается мощность трансформатора и как она связана с обычными киловаттами.

Я не буду выкладывать здесь определения из учебников и сыпать физическими терминами, объясню коротко, простыми словами, чтобы было понятно любому.

В первую очередь, вы должны знать, что у некоторых электроприборов, работающих от переменного тока, не вся потребляемая мощность тратится на совершение полезной работы — нагрева, освещения, звучания, вращения и т.д.

Всего существует четыре основных типа нагрузок, которые могут подключаться в частности к трансформатору:

Резистивная

 

Ярким примером резистивной нагрузки является ТЭН, который нагревается при протекании через него электрического тока.

ТЭН — это обычное сопротивление, ему не важно в какую сторону протекает по нему ток, правило одно, чем сила тока больше, тем больше тепла вырабатывается – соответственно вся мощность тратится на это.

Мощность, которая тратится на резистивной нагрузке называется – активной, как раз она то и измеряется в кВт – киловаттах.

Индуктивная

Знакомым всем примером индуктивной нагрузки является электродвигатель, в нём не весь проходящий электрический ток тратится на вращения. Часть расходуется на создание электромагнитного поля в обмотке или теряется в медном проводнике, эта составляющая мощности называется реактивной.

Реактивная мощность не тратится на совершение работы напрямую, но она необходима для функционирования оборудования.

Кстати, индуктивные электрические плиты, которые так хотят заполучить многие домохозяйки, также используют реактивную мощность, в отличии от обычных электроплит, в которых нагреваются ТЭНы, те чисто резистивные. 

Ёмкостная

 

Еще один пример реактивной составляющей мощности содержит ёмкостная нагрузка, это, например, конденсатор. Принцип работы конденсатора – накапливание и передача энергии, соответственно часть мощности тратится именно на это и напрямую не расходуется на работу оборудования.

Практическаи вся окружающая вас электроника и бытовая техника содержит конденсаторы.

Смешанная

 

Здесь всё просто, смешенная нагрузка сочетает в себе все представленные выше, активную и реактивные составляющие, большинство бытовых приборов именно такие.

Полная мощность электрооборудования, состоит как из активной мощности, так и из реактивной, и измеряется в кВА — киловольт-амперах. Именно она чаще всего указана в характеристиках трансформатора.

Производители трансформаторов не могут знать, какого типа нагрузка к ним будет подключена и где они будут задействованы, поэтому и указывают полную мощность, для смешенной нагрузки.

Так, если нагрузка трансформатора — это ТЭН, то полная мощность будет равна активной, соответственно значение в кВт = кВА, если же нагрузка будет смешенная, включающая реактивную составляющую, то мощность нагрузки должна учитываться полная.

Будьте внимательны, нередко, на электрооборудовании, например, на электроинструменте, мощность прописана в киловаттах, но кроме того указан коэффициент мощности k. В этом случае, вы должны знать простую формулу:

S(полная мощность)=P(активная мощность)/k(коэффициент мощности)

Так, например, если мощность перфоратора P = 2,5кВт, а его коэффициент мощности k = 0,9, то полная мощность перфоратора будет равна S=2,5кВт/0,9=2,8 кВА, именно на столько он будет нагружать сеть.

Теперь, я думаю, вам понятно, почему мощность трансформатора измеряют в кВА, а не в кВт — это позволяет учитывать все виды нагрузок, которые могут подключаться к его вторичной обмотке.

Поэтому, обязательно учитывайте полную мощность указываемую в кВА или коэффициент мощности обордования, перед подключением к трансформатору.

Если же у вас еще остались какие-то вопросы – обязательно оставляйте их в комментариях к статье, кроме того, если есть что добавить, нашли неточности или есть, что возразить – также пишите!

rozetkaonline.ru

РАСЧЕТ СИЛОВОГО ТРАНСФОРМАТОРА | Техника и Программы

Классический теоретический расчет трансформатора достаточно сложен Для его выполнения необходимо знать такие характеристики, как магнитная проницаемость используемых для сердечника пластин трансформаторной стали, длина магнитных силовых линий в сердечнике, средняя длина витка обмотки и другие параметры Профессиональному разработчику НИИ все эти параметры известны, так как он обладает сертификатами применяемых в трансформаторе материалов Радиолюбитель же вынужден использовать для трансформатора совершенно случайно попавший к нему сердечник, характеристики которого ему неизвестны

По указанной причине для расчета трансформатора предлагается эмпирический метод, многократно проверенный радиолюбителями и основанный на практическом опыте Расчет элементарно прост и требует лишь знания простейших основ арифметикиПринцип действия трансформатора

Рис 61 Трансформатор: а – общий вид б – условное обозначение

Трансформатор был изобретен П Н Яблочковым в 1876 году Устройство трансформатора показано на рис 61а, а его схематическое обозначение – на рис 616

Трансформатор состоит из стального сердечника и обмоток, намотанных изолированным обмоточным проводом

Сердечник собирается из тонких пластин специальной электротехнической стали для снижения потерь энергии

Обмотка, предназначенная для подключения к сети переменного тока, называется первичной Нагрузка подключается к вторичной обмотке, которых в трансформаторе может быть несколько Номера обмоток обычно проставляются римскими цифрами Часто обмоткам присваивают номера их выводов

Работа трансформатора основана на магнитном свойстве электрического тока При подключении концов первичной обмотки к электросети по этой обмотке протекает переменный ток, который создает вокруг ее витков и в сердечнике трансформатора переменное магнитное поле Пронизывая витки вторичной обмотки, переменное магнитное поле индуцирует в них ЭДС Соотношение количества витков первичной и вторичной обмоток определяет получаемое напряжение на выходе трансформатора Если количество витков вторичной обмотки больше, чем первичной, выходное напряжение трансформатора будет больше напряжения сети Такая обмотка называется повышающей Если же вторичная обмотка содержит меньше витков, чем первичная, выходное напряжение окажется меньше сетевого (понижающая обмотка)

Трансформатор – это пассивный преобразователь энергии Его коэффициент полезного действия (КПД) всегда меньше единицы Это означает, что мощность, потребляемая нагрузкой, которая подключена к вторичной обмотке трансформатора, меньше, чем мощность, потребляемая нагруженным трансформатором от сети Известно, что мощность равна произведению силы тока на напряжение, следовательно, в повышающих обмотках сила тока меньше, а в понижающих – больше силы тока, потребляемого трансформатором от сети

Параметры и характеристики трансформатора

Два разных трансформатора при одинаковом напряжении сети могут быть рассчитаны на получение одинаковых напряжений вторичных обмоток Но если нагрузка первого трансформатора потребляет большой ток, а второго – маленький, значит, первый трансформатор характеризуется по сравнению со вторым большей мощностью Чем больше сила тока в обмотках трансформатора, тем больше и магнитный поток в его сердечнике, поэтому сердечник должен быть толще Кроме того, чем больше сила тока в обмотке, тем более толстым проводом она должна быть намотана, а это требует увеличения окна сердечника Поэтому габариты трансформатора зависят от его мощности И наоборот, сердечник определенного размера пригоден для изготовления трансформатора только до определенной мощности, которая называется габаритной мощностью трансформатора

Количество витков вторичной обмотки трансформатора определяет напряжение на ее выводах Но это напряжение зависит также и от количества витков первичной обмотки При определенном значении напряжения питания первичной обмотки напряжение вторичной зависит от отношения количества витков вторичной обмотки к количеству витков первичной Это отношение и называется коэффициентом трансформации

Если напряжение на вторичной обмотке зависит от коэффициента трансформации, можно ли выбирать количество витков одной из обмоток, например первичной, произвольно Оказывается, нельзя Дело в том, что чем меньше габариты сердечника, тем больше должно быть количество витков каждой обмотки Поэтому размеру сердечника трансформатора соответствует вполне определенное количество витков его обмоток, приходящееся на один вольт напряжения, меньше которого брать нельзя Эта характеристика называется количеством витков на один вольт

Как и всякий преобразователь энергии, трансформатор обладает коэффициентом полезного действия – отношением мощности, потребляемой нагрузкой трансформатора, к мощности, которую нагруженный трансформатор потребляет от сети

КПД маломощных трансформаторов, которые обычно применяются для питания бытовой электронной аппаратуры, колеблется в пределах от 0,8 до 0,95 Более высокие значения имеют трансформаторы большей мощности

Электрический расчет трансформатора

Прежде чем начать электрический расчет силового трансформатора, необходимо сформулировать требования, которым он должен удовлетворять Они и будут являться исходными данными для расчета Технические требования к трансформатору определяются также путем расчета, в результате которого определяются те напряжения и токи, которые должны быть обеспечены вторичными обмотками Поэтому перед расчетом трансформатора производится расчет выпрямителя для определения напряжений каждой из вторичных обмоток и потребляемых от этих обмоток токов Если же напряжения и токи каждой из обмоток трансформатора уже известны, то они и являются техническими требованиями к трансформатору

Для определения габаритной мощности трансформатора необходимо определить мощности, потребляемые от каждой вторичной обмотки, и сложить их, учитывая также КПД трансформатора Мощность, потребляемую от любой обмотки, определяют умножением напряжения между выводами этой обмотки на силу потребляемого от нее тока:

где Р – мощность, потребляемая от обмотки, Вт

U – эффективное значение напряжения, снимаемого с этой обмотки, В

I – эффективное значение силы тока, протекающего в этой же обмотке, А

Суммарная мощность, потребляемая, например, тремя вторичными обмотками, вычисляется по формуле:

Для определения габаритной мощности трансформатора полученное значение суммарной мощности Ps нужно разделить на КПД трансформатора:

где Рг – габаритная мощность трансформатора

η – КПД трансформатора

Заранее рассчитать КПД трансформатора нельзя, так как для этого нужно знать величину потерь энергии в обмотках и в сердечнике, которые зависят от параметров самих обмоток (диаметры проводов и их длина) и параметров сердечника (длина магнитной силовой линии и марка стали) И те и другие параметры становятся известны только после расчета трансформатора Поэтому с достаточной для практического расчета точностью КПД трансформатора можно определить из табл 61

Таблица 61 Определение КПД трансформатора

Суммарная мощность, Вт

10-20

20-40

40-100

100-300

кпд

трансформатора

0,8

0,85

0,88

0,92

Допустим, что нужно рассчитать трансформатор, имеющий три вторичные обмотки со следующими исходными данными:

U, = 6,3 В I, = 1,5 А

U, = 12 В I, = 0,3 А

U3 = 120 ΒΊ3 = 59 мА

Находим суммарную мощность, потребляемую от вторичных обмоток:

Ps = Ιφφ + U,I, + U3I3 = 6,3 x 1,5 + 12 x 0,3 + 120 x 0,059 = 20,13 Вт

Обращаем внимание на то, что при расчете сила тока третьей обмотки, которая в исходных данных указана в миллиамперах, обязательно должна переводиться в амперы: 59 мА = 0,059 А

Из табл 61 находим КПД трансформатора η = 0,85 и определяем его габаритную мощность:

Наиболее распространены две формы сердечника: О-образная (рис, 62а) и Ш-образная (рис, 626) На сердечнике О-образной формы обычно располагаются две катушки, а на сердечнике Ш-образной формы – одна (рис, 63) Зная габаритную мощность трансформатора, находят сечение рабочего керна его сердечника, на котором находится катушка:

Сечением рабочего керна сердечника, как показано на рис, 62, является произведение ширины рабочего керна а и толщины пакета с Размеры а и с выражены в сантиметрах, а сечение – в квадратных сантиметрах

Рис 62 Формы сердечника трансформатора

Рис 63 Расположение катушек на сердечнике

После этого выбирают тип пластин трансформаторной стали и определяют толщину пакета сердечника Сначала находят приблизительную ширину рабочего керна сердечника по формуле:

Затем по полученному значению а производят выбор типа пластин трансформаторной стали из числа имеющихся в наличии и находят фактическую ширину рабочего керна а, после чего определяют толщину пакета сердечника с:

Количество витков, приходящихся на 1 вольт напряжения, определяется сечением рабочего керна сердечника трансформатора по формуле:

где η – количество витков на 1 В

к – коэффициент, определяемый свойствами сердечника

S – сечение рабочего керна сердечника, см2

Из приведенной формулы видно, что чем меньше коэффициент к, тем меньше витков будут иметь все обмотки трансформатора Однако произвольно выбирать коэффициент к нельзя Его значение обычно лежит в пределах от 35 до 60 В первую очередь оно зависит от свойств пластин трансформаторной стали, из которых собран сердечник Для сердечников С-образной формы, витых из тонкой ленты, можно брать к = 35 Если используется сердечник О-образной формы, собранный из П- или Г-образных пластин без отверстий по углам, берут к = 40 Такое же значение к и для пластин типа УШ, у которых ширина боковых кернов больше половины ширины среднего керна Если используются пластины типа Ш без отверстий по углам, у которых ширина среднего керна ровно вдвое больше ширины средних кернов, целесообразно взять к = 45, а если Ш-образные пластины имеют отверстия, то к = 50 Наконец, коэффициент к берется равным 60 при использовании Ш-образных пластин толщиной 0,5 мм с отверстиями, в то время как меньшие значения к соответствуют толщине пластин 0,35 мм Следует заметить, что выбор к в значительной мере условен и им можно в некоторых пределах варьировать, если учесть, что уменьшение к облегчает намотку, но ужесточает режим трансформатора При применении пластин из высококачественной трансформаторной стали этот коэффициент можно немного уменьшать, а при низком качестве стали приходится его увеличивать

Зная необходимое напряжение каждой обмотки и количество витков на 1 В, легко определить количество витков обмотки, перемножив эти величины:

Такое соотношение справедливо только для первичной обмотки, а при определении количества витков вторичных обмоток нужно дополнительно вводить приближенную поправку для учета падения напряжения на самой обмотке от протекающего по ее проводу тока нагрузки:

Коэффициент ш зависит от силы тока, протекающего по данной обмотке (см табл 62)

Если сила тока меньше 0,2 А, можно принимать ш = Е

Толщина провода, которым наматывается обмотка трансформатора, определяется силой тока, протекающего по этой обмотке Чем больше ток, тем толще должен быть провод, подобно тому как для

Сила тока вторичной обмотки, А

0,2-0,5

0,5-1,0

1,0-2,00

2,0-4,0

m

1,02

1,03

1,04

1,06

увеличения потока воды требуется использовать более толстую трубу Дело в том, что от толщины провода зависит сопротивление обмотки Чем тоньше провод, тем больше сопротивление обмотки, следовательно, увеличивается выделяемая на ней мощность и она сильнее нагревается Для каждого типа обмоточного провода существует предел допустимого нагрева, который зависит от свойств эмалевой изоляции Поэтому диаметр провода может быть определен по формуле:

d = pVf,

где d – диаметр провода по меди, мм

I – сила тока в обмотке, А

р – коэффициент (табл 63), который учитывает допустимый нагрев той или иной марки провода

Таблица 63 Выбор диаметра провода

М арка провода

ПЭЛ

ПЭВ-1

ПЭВ-2

ПЭТ

Р

0,8

0,72

0,69

0,65

Выбрав коэффициент р, можно определить диаметр провода каждой обмотки Найденное значение диаметра округляют до большего стандартного

Сила тока в первичной обмотке определяется с учетом габаритной мощности трансформатора и напряжения сети:

Пример электрического расчета

Произведем расчет трансформатора по тем исходным данным, которые были приведены ранее

Находим сечение сердечника трансформатора:

Находим приближенное значение ширины рабочего керна:

Выбираем пластины трансформатора типа Ш-19, для которых а = 1,9 см, и находим толщину пакета:

Фактически полученное сечение рабочего керна сердечника:

Определяем коэффициент к Допустим, что используются пластины трансформаторной стали типа Ш-19 без отверстий по углам Тогда к = 45

Находим количество витков на 1 В:

Определяем количество витков первичной обмотки при питании от сети напряжением 127 В:

а также при питании от сети напряжением 220 В:

Определяем количество витков дополнительной секции первичной обмотки, которую необходимо подключить к обмотке, рассчитанной на 127 В, для питания напряжением 220 В:

Находим из табл 62 коэффициент ш для каждой из вторичных обмоток:

при ф = 1,5 А пр = 1,04

при 12 = 0,3 А ш2 = 1,02

при 13 = 0,059 А ш3 = 1,00

Определяем количество витков каждой из вторичных обмоток с округлением до ближайшего целого числа:

Находим силу тока в первичной обмотке при питании от сети напряжением 127 В:

то же при напряжении сети 220 В:

Находим диаметр провода первичной обмотки для секции, рассчитанной на напряжение 127 В при использовании провода марки ПЭВ-1 (коэффициент р = 0,72 берем из табл 63):

то же для секции на 220 В:

Находим диаметры проводов вторичных обмоток

Для этого составляем схему трансформатора (рис, 64) и таблицу намоточных данных (табл 64), где диаметры проводов по меди выбраны из ближайших больших стандартных значений, а диаметры проводов в изо ляции взяты на 10% больше, чем диаметры проводов по меди

Таблица 64 Намоточные данные трансформатора

Нем ера вы водов

Количество витков, W

Диаметр провода по меди, d, мм

Диаметр провода по изоляции, мм

1-2

970

СО

О

t

СО

О

2-3

710

0,25

0,275

4-5

50

0,9

0,99

6-7

94

0,41

0,45

8-9

917

0,18

0,2

Конструктивный расчет трансформатора

Окно сердечника, предназначенное для размещения катушки с обмотками, имеет размеры, соответствующие толщине катушки b и ее ширине h (рис, 62) Однако не вся площадь окна может быть занята обмотками, необходимо оставить место и для каркаса катушки Кроме того, обмотки нельзя наматывать вплотную к щечкам каркаса, так как это иногда приводит к «проваливанию» витков верхних слоев намотки в пространство, занятое нижними слоями, в результате чего может возникнуть пробой между витками, появятся короткозамкнутые витки и во время работы трансформатора его обмотки сгорят Поэтому в зависимости от конструкции каркаса и толщины материала, из которого он будет изготовлен, а также с учетом расстояния между щечкой каркаса и началом намотки каждого слоя выбираются эффективные размеры окна Ьэ и h

Обмотки трансформатора наматываются рядовой намоткой виток к витку с прокладками между слоями для обеспечения электрической изоляции одного слоя по отношению к соседнему, иначе возникнет пробой между витками обмоток Ведь между началом одного слоя и концом следующего, которые оказываются расположенными один под другим, действует значительное напряжение, соответствующее количеству витков двух слоев намотки и многократно превышающее допустимое напряжение для эмалевой изоляции Поэтому между слоями используются прокладки в виде одного слоя кабельной бумаги толщиной d, а между обмотками – три слоя такой же бумаги Иногда, если прочность электрической изоляции какой-либо обмотки нужно специально увеличить, между этой обмоткой и другими прокладывают дополнительно один или несколько слоев лакоткани

При определении толщины обмотки сначала нужно подсчитать количество витков W , которое можно намотать в одном слое Для этого эффективную ширину окна следует разделить на диаметр провода по изоляции:

Полученный результат округляют до ближайшего меньшего целого числа Затем находят количество слоев η , которое займет обмотка, разделив общее количество ее витков W на количество витков Wc одного слоя:

Полученное значение п,округляют до ближайшего большего целого числа, после чего определяют толщину обмотки t:

где (η – 1) – количество бумажных прокладок между слоями

Для определения толщины катушки нужно сложить значения толщины каждой обмотки и к результату прибавить толщину прокладок между обмотками:

где t, t, t и тд – толщина каждой обмотки d – толщина бумаги для прокладок η – количество обмоток

Полученная толщина катушки Т должна быть меньше, чем эффективный размер окна b Теоретически этого достаточно для вывода: катушка сможет разместиться в окне сердечника Однако на практике существуют некоторые факторы, которые трудно учесть в процессе инженерного расчета Одним из таких факторов является невозможность, а иногда просто неумение намотчика укладывать при намотке витки вплотную один к другому В результате уменьшается количество витков в слое относительно расчетного, а следовательно, увеличивается количество слоев, что ведет к увеличению фактической толщины катушки Кроме того, форма витка обычно не получается прямоугольной, а напоминает эллипс, что также приводит к увеличению толщины катушки Поэтому следует установить некоторый запас по толщине катушки Так, при ручной намотке и низкой квалификации намотчика полученное значение Т должно быть по крайней мере в 2 раза меньше, чем Ьэ Когда намотка производится на станке и квалификация намотчика достаточно высока, Т может быть в 1,2 раза меньше b Если такие соотношения не получаются, необходимо произвести перерасчет трансформатора, увеличив размер окна путем выбора другого типоразмера пластин или увеличив сечение рабочего керна за счет увеличения толщины пакета Это снизит количество витков на 1 В, уменьшится количество витков всех обмоток, и толщина катушки Т станет меньше

Пример конструктивного расчета

Произведем конструктивный расчет трансформатора, который должен следовать за электрическим расчетом, проведенным ранее

Для пластин трансформаторной стали типа Ш-19 размеры окна: b = 17 мм h = 46 мм

Допустим, что каркас катушки выполнен из гетинакса толщиной 0,5 мм Тогда эффективная ширина окна должна быть уменьшена на толщину каркаса, то есть Ьэ = 16,5 мм Эффективная ширина намотки может быть найдена, если из высоты окна h вычесть толщину двух щечек каркаса и двойное расстояние между щечками и крайними витками обмоток, которое можно принять равным 2 мм Тогда Ьэ = 41 мм

Выберем для прокладок между слоями и между обмотками бумагу толщиной d = ОД мм Найдем количество витков в слое для секции первичной обмотки, предназначенной для напряжении сети 127 В:

Находим количество слоев этой обмотки:  и ее толщину:

Количество витков в слое для дополнительной секции, рассчитанной на 220 В:

Количество слоев:

Толщина обмотки:

То же для вторичной обмотки № 1:

Для вторичной обмотки № 2:

Для вторичной обмотки № 3:

Находим толщину катушки трансформатора:

Определим запас размещения катушки в окне сердечника:

Полученный результат позволяет сделать вывод о том, что намотка может быть выполнена вручную при средней квалификации намотчика

Источник: Виноградов Ю А и др, Практическая радиоэлектроника-М: ДМК Пресс – 288 с: ил (В помощь радиолюбителю)

nauchebe.net

Как рассчитать трансформатор, количество витков намотки на вольт. Габаритная мощность трансформатора. Диаметр провода обмотки.

В раздел: Советы → Расcчитать силовой трансформатор

Как рассчитать силовой трансформатор и намотать самому.
Можно подобрать готовый трансформатор из числа унифицированных типа ТН, ТА, ТНА, ТПП и других. А если Вам необходимо намотать или перемотать трансформатор под нужное напряжение, что тогда делать?
Тогда необходимо подобрать подходящий по мощности силовой трансформатор от старого телевизора, к примеру, трансформатор ТС-180 и ему подобные.
Надо четко понимать, что чем больше количества витков в первичной обмотке тем больше её сопротивление и поэтому меньше нагрев и второе, чем толще провод, тем больше можно получить силу тока, но это зависит от размеров сердечника — сможете ли разместить обмотку.
Что делаем далее, если неизвестно количество витков на вольт? Для этого необходим ЛАТР, мультиметр (тестер) и прибор измеряющий переменный ток — амперметр. Наматываем по вашему усмотрению обмотку поверх имеющейся, диаметр провода любой, для удобства можем намотать и просто монтажным проводом в изоляции.

Формула для расчета витков трансформатора

50/S

Сопутствующие формулы: P=U2*I2    Sсерд(см2)= √ P(ва)    N=50/S    I1(a)=P/220    W1=220*N    W2=U*N    D1=0,02*√i1(ma)    D2=0,02*√i2(ma)   K=Sокна/(W1*s1+W2*s2)

   50/S — это эмпирическая формула, где S — площадь сердечника трансформатора в см2 (ширину х толщину), считается, что она справедлива до мощности порядка 1кВт.
   Измерив площадь сердечника, прикидываем сколько надо витков намотать на 10 вольт, если это не очень трудно, не разбирая трансформатора наматываем контрольную обмотку через свободное пространство (щель). Подключаем лабораторный автотрансформатор к первичной обмотке и подаёте на неё напряжение, последовательно включаем контрольный амперметр, постепенно повышаем напряжение ЛАТР-ом, до начала появления тока холостого хода.
   Если вы планируете намотать трансформатор с достаточно «жёсткой» характеристикой, к примеру, это может быть усилитель мощности передатчика в режиме SSB, телеграфном, где происходят довольно резкие броски тока нагрузки при высоком напряжении ( 2500 -3000 в), например, тогда ток холостого хода трансформатора устанавливаем порядка 10% от максимального тока, при максимальной нагрузке трансформатора. Замерив полученное напряжение, намотанной вторичной контрольной обмотки, делаем расчет количества витков на вольт.
Пример: входное напряжение 220вольт, измеренное напряжение вторичной обмотки 7,8 вольта, количество витков 14.

Рассчитываем количества витков на вольт
14/7,8=1,8 витка на вольт.

Если нет под рукой амперметра, то вместо него можно использовать вольтметр, замеряя падение напряжение на резисторе, включенного в разрыв подачи напряжения к первичной обмотке, потом рассчитать ток из полученных измерений.

Вариант 2 расчета трансформатора.
Зная необходимое напряжение на вторичной обмотке (U2) и максимальный ток нагрузки (Iн), трансформатор рассчитывают в такой последовательности:

1. Определяют значение тока, протекающего через вторичную обмотку трансформатора:
I2 = 1,5 Iн,
где: I2 — ток через обмотку II трансформатора, А;
Iн — максимальный ток нагрузки, А.
2. Определяем мощность, потребляемую выпрямителем от вторичной обмотки трансформатора:
P2 = U2 * I2,
где: P2 — максимальная мощность, потребляемая от вторичной обмотки, Вт;
U2 — напряжение на вторичной обмотке, В;
I2 — максимальный ток через вторичную обмотку трансформатора, А.
3. Подсчитываем мощность трансформатора:
Pтр = 1,25 P2,
где: Pтр — мощность трансформатора, Вт;
P2 — максимальная мощность, потребляемая от вторичной обмотки трансформатора, Вт.
Если трансформатор должен иметь несколько вторичных обмоток, то сначала подсчитывают их суммарную мощность, а затем мощность самого трансформатора.
4. Определяют значение тока, текущего в первичной обмотке:
I1 = Pтр / U1,
где: I1 — ток через обмотку I, А;
Ртр — подсчитанная мощность трансформатора, Вт;
U1 — напряжение на первичной обмотке трансформатора (сетевое напряжение).
5. Рассчитываем необходимую площадь сечения сердечника магнитопровода:
S = 1,3 Pтр,
где: S — сечение сердечника магнитопровода, см2;
Ртр — мощность трансформатора, Вт.
6. Определяем число витков первичной (сетевой) обмотки:
w1 = 50 U1 / S,
где: w1 — число витков обмотки;
U1 — напряжение на первичной обмотке, В;
S — сечение сердечника магнитопровода, см2.
7. Подсчитывают число витков вторичной обмотки:
w2 = 55 U2 / S,
где: w2 — число витков вторичной обмотки;
U2 — напряжение на вторичной обмотке, В;
S-сечение сердечника магнитопровода, см2.
8. Высчитываем диаметр проводов обмоток трансформатора:
d = 0,02 I,
где: d-диаметр провода, мм;
I-ток через обмотку, мА.

Ориентировочный диаметр провода для намотки обмоток трансформатора в таблице 1.

  Таблица 1
Iобм, ma <25 25 — 60 60 — 100 100 — 160 160 — 250 250 — 400 400 — 700 700 — 1000
d, мм 0,1 0,15 0,2 0,25 0,3 0,4 0,5 0,6

После выполнения расчетов, приступаем к выбору самого трансформаторного железа, провода для намотки и изготовление каркаса на которой намотаем обмотки. Для прокладки изоляции между слоями обмоток приготовим лакоткань, суровые нитки, лак, фторопластовую ленту. Учитываем тот факт, что Ш — образный сердечник имеют разную площадь окна, поэтому будет не лишним провести расчет проверки: войдут ли они на выбранный сердечник. Перед намоткой производим расчет — поместится ли обмотки на выбранный сердечник.
Для расчета определения возможности размещения нужного количества обмоток:
1. Ширину окна намотки делим на диаметр наматываемого провода, получаем количество витков наматываемый
на один слой — N¹.
2. Рассчитываем сколько необходимо слоев для намотки первичной обмотки, для этого разделим W1 (количество витков первичной обмотки) на N¹.
3. Рассчитаем толщину намотки слоев первичной обмотки. Зная количество слоев для намотки первичной обмотки умножаем на диаметр наматываемого провода, учитываем толщину изоляции между слоями.
4. Подобным образом считаем и для всех вторичных обмоток.
5. После сложения толщин обмоток делаем вывод: сможем ли мы разместить нужное количество витков всех обмоток на каркасе трансформатора.

Еще один способ расчета мощности трансформатора по габаритам.
Ориентировочно посчитать мощность трансформатора можно используя формулу:
P=0.022*S*С*H*Bm*F*J*Кcu*КПД;
P — мощность трансформатора, В*А;
S — сечение сердечника, см²
L, W — размеры окна сердечника, см;
Bm — максимальная магнитная индукция в сердечнике, Тл;
F — частота, Гц;
Кcu — коэффициент заполнения окна сердечника медью;
КПД — коэффициент полезного действия трансформатора;
Имея в виду что для железа максимальная индукция составляет 1 Тл.
   Варианты значений для подсчета мощности трансформатора КПД = 0,9, f =50, B = 1 — магнитная индукция [T], j =2.5 — плотность тока в проводе обмоток [A/кв.мм] для непрерывной работы, KПД =0,45 — 0,33.

Если вы располагаете достаточно распространенным железом — трансформатор ОСМ-0,63 У3 и им подобным, можно его перемотать?
Расшифровка обозначений ОСМ: О — однофазный, С — сухой, М — многоцелевого назначения.
По техническим характеристикам он не подходит в для включения однофазную сеть 220 вольт т.к. рассчитан на напряжение первичной обмотки 380 вольт.
Что же в этом случае делать?
Имеется два пути решения.
1. Смотать все обмотки и намотать заново.
2. Смотать только вторичные обмотки и оставить первичную обмотку, но так как она рассчитана на 380В, то с нее необходимо смотать только часть обмотки оставив на напряжение 220в.
При сматывании первичной обмотки получается примерно 440 витков (380В) когда сердечник Ш-образной формы, а когда сердечник трансформатора ОСМ намотан на ШЛ данные другие — количество витков меньше.
Данные первичных обмоток на 220в трансформаторов ОСМ Минского электротехнического завода 1980 год.

  • 0,063 — 998 витков, диаметр провода 0,33 мм
  • 0,1 — 616 витков, диаметр провода 0,41 мм
  • 0,16 — 490 витков, диаметр провода 0,59 мм
  • 0,25 — 393 витка, диаметр провода 0,77 мм
  • 0,4 — 316 витков, диаметр провода 1,04 мм
  • 0,63 — 255 витков, диаметр провода 1,56 мм
  • 1,0 — 160 витков, диаметр провода 1,88 мм

ОСМ 1,0 (мощность 1 кВт), вес 14,4кг. Сердечник 50х80мм. Iхх-300ма

Подключение обмоток трансформаторов ТПП

Рассмотрим на примере ТПП-312-127/220-50 броневой конструкции.

В зависимости от напряжения в сети подавать напряжение на первичную обмотку можно на выводы 2-7, соединив между собой выводы 3-9, если повышенное — то на 1-7 (3-9 соединить) и т.д. На схеме подключение показано случае пониженного напряжение в сети.
Часто возникает необходимость применять унифицированные трансформаторы типа ТАН, ТН, ТА, ТПП на нужное напряжение и для получения необходимой нагрузочной способности, а простым языком нам надо подобрать, к примеру, трансформатор со вторичной обмоткой 36 вольт и чтобы он отдавал 4 ампера под нагрузкой, первичная конечно 220 вольт.
Как подобрать трансформатор?
С начало определяем необходимую мощность трансформатора, нам необходим трансформатор мощностью 150 Вт.
Входное напряжение однофазное 220 вольт, выходное напряжение 36 вольт.
После подбора по техническим данным определяем, что в данном случае нам больше всего подходит трансформатор марки ТПП-312-127/220-50 с габаритной мощностью 160 Вт (ближайшее значение в большую сторону ), трансформаторы марки ТН и ТАН в данном случае не подходят.
Вторичные обмотки ТПП-312 имеют по три раздельные обмотки напряжением 10,1в 20,2в и 5,05в, если соединить их последовательно 10,1+20,2+5,05=35,35 вольт, то получаем напряжение на выходе почти 36 вольт. Ток вторичных обмоток по паспорту составляет 2,29А, если соединить две одинаковые обмотки параллельно, то получим нагрузочную способность 4,58А (2,29+2,29).
После выбора нам только остается правильно соединить выходные обмотки параллельно и последовательно.
Последовательно соединяем обмотки для включения в сеть 220 вольт. Последовательно включаем вторичные обмотки, набирая нужное напряжение по 36В на обеих половинках трансформатора и соединяем их параллельно для получения удвоенного значения нагрузочной способности.
Самое важное, правильно соединить обмотки при параллельном и последовательном включении, как первичной так и вторичной обмоток.

Если неправильно включить обмотки трансформатора, то он будет гудеть и перегреваться, что потом приведет его к преждевременному выходу из строя.

По такому же принципу можно подобрать готовый трансформатор на практически любое напряжение и ток, на мощность до 200 Вт, конечно, если напряжение и ток имеют более или менее стандартные величины.
Разные вопросы и советы.
   1. Проверяем готовый трансформатор, а у него ток первичной обмотки оказывается завышенным, что делать? Чтобы не перематывать и не тратить лишнее время домотайте поверх еще одну обмотку, включив ее последовательно с первичной.
   2. При намотке первичной обмотки когда мы делаем большой запас, чтобы уменьшить ток холостого хода, то учитывайте, что соответственно уменьшается и КПД транса.
   3. Для качественной намотки, если применен провод диаметром от 0,6 и выше , то его обязательно надо выпрямить, чтоб он не имел малейшего изгиба и плотно ложился при намотке, зажмите один конец провода в тиски и протяните его с усилием через сухую тряпку, далее наматывайте с нужным усилием, постепенно наматывая слой за слоем. Если приходится делать перерыв, то предусмотрите фиксацию катушки и провода, иначе придется делать все заново. Порой подготовительные работы занимают много времени, но это того стоит для получения качественного результата.
   4. Для практического определения количества витков на вольт, для попавшегося железа в сарае, можно намотать на сердечник проводом обмотку. Для удобства лучше наматывать кратное 10, т.е. 10 витков, 20 витков или 30 витков, больше наматывать не имеет большого смысла. Далее от ЛАТРа постепенно подаем напряжение его увеличивая от 0 и пока не начнет гудеть испытываемый сердечник, вот это и является пределом. Далее делим полученное напряжение подаваемое от ЛАТРа на количество намотанных витков и получаем число витков на вольт, но это значение немного увеличиваем. На практике лучше домотать дополнительную обмотку с отводами для подбора напряжения и тока холостого хода.
   5. При разборке — сборке броневых сердечников обязательно помечайте половинки, как они прилегают друг к другу и собирайте их в обратном порядке, иначе гудение и дребезжание вам обеспечено. Иногда гудения избежать не удается даже при правильной сборке, поэтому рекомендуется собрать сердечник и скрепить чем либо (или собрать на столе, а сверху через кусок доски приложить тяжелый груз), подать напряжение и попробовать найти удачное положение половинок и только потом окончательно закрепить. Помогает и такой совет, поместить готовый собранный трансформатор в лак и потом хорошо просушить при температуре до полного высыхания (иногда используют эпоксидную смолу, склеивая торцы и просушка до полной полимеризации под тяжестью).

Соединение обмоток отдельных трансформаторов

Иногда необходимо получить напряжение нужной величины или ток большей величины, а в наличии имеются готовые отдельные унифицированные трансформаторы, но на меньшее напряжение чем нужно, встает вопрос: а можно ли отдельные трансформаторы включать вместе, чтобы получить нужный ток или величину напряжения?
Для того чтобы получить от двух трансформаторов постоянное напряжение, к примеру 600 вольт постоянного тока, то необходимо иметь два трансформатора которые бы после выпрямителя выдавали бы 300 вольт и после соединив их последовательно два источника постоянного напряжения получим на выходе 600 вольт.

www.110volt.ru

Мощность силового трансформатора

Выбор силового трансформатора по  мощности и расчет мощности

Наверное, не нужно рассказывать о важности такого устройства как трансформатор. А вот о том, как его выбрать, пожалуй, будет полезно узнать. Существуют разнообразные методики, но наиболее популярной является выбор силовых трансформаторов по мощности.

Трансформаторы бывают сухими и масляными, при этом масляные распространены и применяются гораздо шире.

В двухтрансформаторных станциях используются объекты третьей категории надежности, в однотрансформаторных, соответственно, — первой и второй. При выборе мощности обязательно учитывается перегрузочная способность трансформатора при работе в аварийном и плановом режиме.

Мощности силовых трансформаторов таблица

В таблице ниже можно посмотреть коэффициенты работы трансформатора в разных режимах.

Коэффициент допустимой перегрузки для масляного трансформатора Коэффициент загрузки масляного трансформатора в плановом режиме
Для 2хтрансформаторной подстанции Для 3хтрансформаторной подстанции
1,0 0,5 0,666
1,1 0,55 0,735
1,2 0,6 0,8
1,3 0,65 0,86
1,4 0,7 0,93

Оговоримся, что для сухих максимальный коэффициент не может быть больше 1,2.

Для выбора мощности трансформатора следует сравнить полную планируемую мощность объекта (кВА) с возможными интервалами допустимой нагрузки трансформаторов в плановом и аварийном режимах и для разных потребителей.

А теперь вспомним устройство трансформатора. Он представляет собой сердечник, у которого есть 2 катушки. У каждой катушки есть обмотка, они носят названия «первичная» и «вторичная». При прохождении переменного тока между обмотками и его преобразования и происходит распределение электроэнергии.

При этом можно определить коэффициент трансформации, который определяется как отношение числа витков первичной обмотки ко вторичной (его обозначают как К).

Процесс ручного расчета мощности трансформатора достаточно трудоемкий, но вполне выполнимый, если у вас возникла в этом потребность.

Сперва рассчитывается мощность для каждой обмотки как произведение напряжения и силы тока каждой обмотки.

Формула будет выглядеть так:

Рх – мощность обмотки в вольтах,
Iх — сила тока в амперах;
Uх – напряжение обмотки в вольтах.

Чтобы рассчитать общую мощность трансформатора, нужно сложить мощности обмоток и умножить на коэффициент, который позволяет учесть возможные потери в трансформаторе и принимается равным 1,25.

При помощи полученного значения мощности трансформатора можно рассчитать величину сечения сердечника в квадратных сантиметрах по этой формуле:
А при помощи следующей формулы рассчитывается число витков на один вольт напряжения:
Теперь рассчитываем количество витков каждой обмотки. Для первичной вот по такой формуле:

А для остальных по следующей:

Для определения диаметра провода обмотки используется стандартная формула:

I — это сила тока в амперах в обмотке; d — собственно, диаметр провода в миллиметрах.
Отношением общей мощности трансформатора к напряжению в первичной обмотке определяется сила тока в ней.

Также, если вы рассчитываете заняться сборкой трансформатора самостоятельно, вам понадобится такая величина как типоразмер пластин сердечника. Он рассчитывается по формуле:

Dх – это величина диаметров проводов обмотки в миллиметра,
nх — общее количество витков обмотки.

По результату следует выбрать пластину так, чтобы ваша обмотка поместилась в ее окне.

Потери мощности в силовых трансформаторах

Так как трансформатор – статичное устройство, в нем не бывает потерь, связанных с плохой работы механики. Потери могут возникать в обмотках или иных составляющих устройства при отличающихся режимах его работы и это потери в активной мощности системы. Один из основных видов таких потерь – это основные потери, возникающие в обмотках трансформатора. При передаче электромагнитного импульса между первичной и вторичной обмотками в них возникает ток (соответственно, I1 и I2). При этом происходит потеря мощности, которая рассчитывается по формуле:

Рнагр = I21r1 + I22r2,
(r1, r2 — это величины сопротивления обмоток)

Потери находятся в зависимости и от мощности, которая нужна потребителю электроэнергии. Соответственно, если фактически потребляемая мощность составляет, например, 0,75 от номинальной, то и потери составят 0,75*0,75=0,5625. Так как фактическое потребление электроэнергии в разное время суток различно, то и потери могут очень значительно колебаться.

Кроме того, в обмотках бывают еще так называемые добавочные потери. Дело в том, что помимо названных токов, возникают еще токи, не выходящие за пределы обмотки, — внутри проводов (вихревые) и между ветвями обмотки, идущими параллельно (циркулирующие).

Поэтому при расчете потерь обмотки для получения реальной величины рекомендуется сложить все три показателя: ток нагрузки, циркулирующий и вихревой. Помимо названных, в конструкции трансформатора могут возникать и другие виды потерь, снижающие его эффективность (например, в стенках его бака или в прессующих кольцах). Поэтому для расчета общей суммы потерь используется суммирование всех потерь: активной мощности, нагрузочных и добавочных.

Еще один вид потерь возникает при работе трансформатора в режиме холостого хода и так и называется «потери холостого хода». Потери в этом случае возникают в магнитопроводе, они являются постоянными и присутствуют при любой нагрузке транформатора.

Рассчитываются по формуле:
Р0=Рм+I20r1, в которой r1 — это активное сопротивление первичной обмотки, Рм – потери в магнитопроводе.

 

Колпинский металлообрабатывающий завод КМЗ оснащенный самым современным высокотехнологичным сварочным оборудованием немецкой компании EWM, предоставляет клиентам  широкий спектр услуг по сварочным работам различной степени сложности, в том числе сварка меди. ( kmz-laser.ru/svarka-medi.html)

 

jelektro.ru

Как узнать мощность трансформатора? Определение мощности силового трансформатора — Radiodvor.com

 Для изготовления трансформаторных блоков питания необходим силовой однофазный трансформатор, который понижает переменное напряжение электросети 220 вольт до необходимых 12-30 вольт, которое затем выпрямляется диодным мостом и фильтруется электролитическим конденсатором. Эти преобразования электрического тока необходимы, поскольку любая электронная аппаратура собрана на транзисторах и микросхемах, которым обычно требуется напряжение не более 5-12 вольт.

 Чтобы самостоятельно собрать блок питания, начинающему радиолюбителю требуется найти или приобрести подходящий трансформатор для будущего блока питания. В исключительных случаях можно изготовить силовой трансформатор самостоятельно. Такие рекомендации можно встретить на страницах старых книг по радиоэлектронике.

 

Но в настоящее время проще найти или купить готовый трансформатор и использовать его для изготовления своего блока питания.

Полный расчёт и самостоятельное изготовление трансформатора для начинающего радиолюбителя довольно сложная задача. Но есть иной путь. Можно использовать бывший в употреблении, но исправный трансформатор. Для питания большинства самодельных конструкций хватит и маломощного блока питания, мощностью 7-15 Ватт.

Если трансформатор приобретается в магазине, то особых проблем с подбором нужного трансформатора, как правило, не возникает. У нового изделия обозначены все его главные параметры, такие как мощностьвходное напряжение,выходное напряжение, а также количество вторичных обмоток, если их больше одной.

Но если в ваши руки попал трансформатор, который уже поработал в каком-либо приборе и вы хотите его вторично использовать для конструирования своего блока питания? Как определить мощность трансформатора хотя бы приблизительно? Мощность трансформатора весьма важный параметр, поскольку от него напрямую будет зависеть надёжность собранного вами блока питания или другого устройства. Как известно, потребляемая электронным прибором мощность зависит от потребляемого им тока и напряжения, которое требуется для его нормальной работы. Ориентировочно эту мощность можно определить, умножив потребляемый прибором ток (Iн на напряжение питания прибора (Uн). Думаю, многие знакомы с этой формулой ещё по школе.

P=Uн * Iн

, где Uн – напряжение в вольтах; Iн – ток в амперах; P – мощность в ваттах.

Рассмотрим определение мощности трансформатора на реальном примере. Тренироваться будем на трансформаторе ТП114-163М. Это трансформатор броневого типа, который собран из штампованных Ш-образных и прямых пластин. Стоит отметить, что трансформаторы такого типа не самые лучшие с точки зрения коэффициента полезного действия(КПД). Но радует то, что такие трансформаторы широко распространены, часто применяются в электронике и их легко найти на прилавках радиомагазинов или же в старой и неисправной радиоаппаратуре. К тому же стоят они дешевле тороидальных (или, по-другому, кольцевых) трансформаторов, которые обладают большим КПД и используются в достаточно мощной радиоаппаратуре.

Итак, перед нами трансформатор ТП114-163М. Попробуем ориентировочно определить его мощность. За основу расчётов примем рекомендации из популярной книги В.Г. Борисова «Юный радиолюбитель».

Для определения мощности трансформатора необходимо рассчитать сечение его магнитопровода. Применительно к трансформатору ТП114-163М, магнитопровод – это набор штампованных Ш-образных и прямых пластин выполненных из электротехнической стали. Так вот, для определения сечения необходимо умножить толщину набора пластин (см. фото) на ширину центрального лепестка Ш-образной пластины.

При вычислениях нужно соблюдать размерность. Толщину набора и ширину центрального лепестка лучше мерить в сантиметрах. Вычисления также нужно производить в сантиметрах. Итак, толщина набора изучаемого трансформатора составила около 2 сантиметров.

Далее замеряем линейкой ширину центрального лепестка. Это уже задача посложнее. Дело в том, что трансформатор ТП114-163М имеет плотный набор и пластмассовый каркас. Поэтому центральный лепесток Ш-образной пластины практически не видно, он закрыт пластиной, и определить его ширину довольно трудно.

Ширину центрального лепестка можно замерить у боковой, самой первой Ш-образной пластины в зазоре между пластмассовым каркасом. Первая пластина не дополняется прямой пластиной и поэтому виден край центрального лепестка Ш-образной пластины. Ширина его составила около 1,7 сантиметра. Хотя приводимый расчёт и являетсяориентировочным, но всё же желательно как можно точнее проводить измерения.

Перемножаем толщину набора магнитопровода (2 см.) и ширину центрального лепестка пластины (1,7 см.). Получаем сечение магнитопровода – 3,4 см2. Далее нам понадобиться следующая формула.

, где S  — площадь сечения магнитопровода; Pтр  — мощность трансформатора; 1,3  — усреднённый коэффициент.

После нехитрых преобразований получаем упрощённую формулу для расчёта мощности трансформатора по сечению его магнитопровода. Вот она.

Подставим в формулу значение сечения S = 3,4 см2, которое мы получили ранее.

В результате расчётов получаем ориентировочное значение мощности трансформатора ~ 7 Ватт. Такого трансформатора вполне достаточно, чтобы собрать блок питания для монофонического усилителя звуковой частоты на 3-5 ватт, например, на базе микросхемы усилителя TDA2003.

 

Вот ещё один из трансформаторов. Маркирован как PDPC24-35. Это один из представителей трансформаторов — «малюток». Трансформатор очень миниатюрный и, естественно, маломощный. Ширина центрального лепестка Ш-образной пластины составляет всего 6 миллиметров (0,6 см.).

Толщина набора пластин всего магнитопровода – 2 сантиметра. По формуле мощность данного мини-трансформатора получается равной около 1 Вт.

Данный трансформатор имеет две вторичные обмотки, максимально допустимый ток которых достаточно мал, и составляет десятки миллиампер. Такой трансформатор можно использовать только лишь для питания схем с малым потреблением тока.

radiodvor.com

Выбор и расчёт сердечника трансформатора

Площадь сечения сердечника трансформатора -очень важный параметр. На величину магнитного потока, создаваемого в сердечнике трансформатора, кроме числа витков первичной обмотки и величины протекающего в ней тока, оказывает влияние и размер самого сердечника. Если трансформатор имеет сердечник малого размера, то создать в таком сердечнике магнитный поток большой величины нельзя и на выходе такого трансформатора получить большую мощность не удастся. Это объясняется тем, что материал, из которого изготовлен сердечник, имеет способность насыщаться. Явление насыщения трансформатора состоит в том, что, несмотря на увеличение тока в обмотке, магнитный поток в сердечнике, достигнув некоторой максимальной величины, далее практически не изменяется.

Предположим, что имеется катушка с железным сердечником, по которой протекает постоянный ток. При увеличении тока магнитный поток будет также увеличиваться. При малых величинах тока возрастание потока окажется пропорциональным увеличению тока. Затем поток будет нарастать всё медленнее и наконец при некоторой величине тока перестанет увеличиваться совсем. Наступит насыщение стали (насыщение сердечника).

В трансформаторе режим насыщения приводит к тому, что передача энергии из первичной обмотки во вторичную частично прекращается. Нормальная работа трансформатора возможна лишь тогда, когда магнитный поток в его сердечнике изменяется пропорционально изменению тока в первичной обмотке. Для выполнения этого условия необходимо, чтобы сердечник не был в состоянии насыщения, а это возможно лишь тогда, когда его объём и сечение не меньше вполне определённой величины. Следовательно, чем больше мощность трансформатора, тем большим должен быть его сердечник.

Расчёт мощности трансформатора. Формула.

На практике часто приходится рассчитывать сечение сердечника по заданной мощности трансформатора:

Sсерд = 1.2√P, см2

Если известно сечение сердечника, то можно ориентировочно рассчитать мощность трансформатора по формуле:

P = S2серд / 1.44, вт.

katod-anod.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о