Как открыть тиристор – Управление тиристором, принцип действия. Способы управления.

Содержание

Тиристоры: принципы работы и проверки

Эх, знали бы вы, как занудно и безобразно читал нам электротехнику преподаватель в институте. Тему про тиристоры: принципы работы, устройство и их проверку бубнил себе под нос, рисовал на доске графики, P-N переходы с дырками и электронами так, что понять его было очень сложно.

Чтобы подготовиться к экзамену, мне пришлось покупать учебники и разбираться самостоятельно. В зачетку получил пятерку, но предмет был быстро забыт …

Буквально через год после выпуска в должности инженера пришлось разбираться с работой тиристорной схемы. Знания возобновлял практически с нуля.

Помогли коллеги, показавшие удобные методики, избавившие от всех этих высоконаучных заумностей и позволившие представлять сложные электротехнические процессы простыми схемами.

Пользуюсь ими и поныне. Поскольку они не потеряли свою актуальность, то поэтапно раскрываю их технологию для разных случаев практической деятельности ниже.

Содержание статьи

Тиристор в электрической схеме: что это за полупроводник

Если воспользоваться научными терминами, то можно заметить, что конструкция этого сложного электронного прибора включает монокристалл полупроводника с тремя или большим количеством p-n переходов.

Они сделаны для того, чтобы изменять его проводимость до двух критических состояний, когда он:

  1. Открыт и пропускает через себя электрический ток.
  2. Полностью закрыт.

Для подключения к электрической схеме он снабжен, как правило, тремя, двумя или четырьмя выводами от контактных площадок p-n слоев.

Структуры тиристоров

Не стану дальше продолжать эту тему научным языком, ибо новички ничего не поймут, а мне сложно объяснить простыми терминами, как перемещаются носители зарядов (дырки и электроны) по всей этой структуре в каждом конкретном случае.

Да и никому это сейчас не надо кроме студентов, стремящихся сдать экзамен, и работников, проектирующих, разрабатывающих новые устройства.

Домашнему же электрику требуется просто понимать принцип работы конечного прибора дабы уметь проверять его исправность и грамотно эксплуатировать в повседневной жизни.

Поэтому показываю конечный результат — как выглядит вольт амперная характеристика тиристора при его работе.

ВАХ тиристора

На ней выделены две области рабочего состояния при прямом и обратном приложении напряжения, формирующие пять режимов, расписанных на картинке. Не будем вдаваться глубоко в теорию и сделаем для себя краткие выводы:

  1. на начальном этапе области прямых смещений полупроводник закрыт, потом он открывается и остается открытым;
  2. при обратном подключении к источнику напряжения он вначале не пропускает ток, но при достижении критического состояния пробивается.

Как же выглядит и обозначается тиристор на электрических схемах

Современная промышленность использует огромный ассортимент этих уникальных полупроводников. Они выпускаются в разных корпусах с возможностями передачи и коммутирования всевозможных мощностей.

Привожу внешний вид только небольшой их части, изготавливаемых в металлическом корпусе, предназначенном для работы в силовых цепях с большими токами.

Виды тиристоров

А еще имеются конструкции, выпускаемые в пластиковом корпусе, позволяющем коммутировать токи меньших величин. Они применяются в схемах управления различных бытовых устройств.

Как выглядит тиристор

Внешне тиристор выглядит как диод.

Как выглядит диод

Только в большинстве случаев он имеет дополнительный вывод для подключения к внешней цепи — управляющий электрод. Обозначение на схеме тоже примерно одинаковое.

Изменение касается только небольшой дорисовки катодного вывода — маленькой ломаной линии. Все это хорошо видно при сравнении.

Внешний вид диодов и тиристоров, а также их обозначения на схемах похожи не случайно. Они, хоть и немного отличаются конструктивно, но работают по общему принципу: пропускают электрический ток только в одну сторону.

Этот вопрос я излагаю дальше более конкретно.

Как просто понять принципы работы и научные термины этого сложного полупроводника: 2 мневмонических правила

Заповедь №1 для новичка

Представим, что мы сплавляемся на большом плоту по широкой реке. Двигаться мы можем только по течению, а не против него. Поток воды перемещается за счет разности высот (потенциалов), обладающих различным уровнем потенциальной энергии.

Вот и ток в диоде может проходить только в одну сторону: от анода к катоду. Иное движение электронов блокирует полупроводниковый переход. Других средств регулирования здесь нет.

Все это полностью соответствует работе тиристора, но с небольшими дополнениями: диод сразу открывается при прямом приложении напряжения к его выводам.

Тиристор же в этом случае закрыт, ток не проводит. Он действует как плотина со шлюзами, загораживающая реку. Наш плот просто остановится перед возникшей преградой. Для возобновления движения ему необходимо открыть ворота водяного заграждения.

Система шлюзов

Делается все это по команде, когда импульс тока определенного направления подается через управляющий электрод, например, на анод (при соответствующем управлении).

Только в этом случае закрытый полупроводниковый переход открывается и сохраняет свое состояние в течение всего времени, пока на него подано прямое входное напряжение.

Если импульс тока исчезает, то это не влияет на работу полупроводникового перехода: он остается открытым. Для закрытия тиристора необходимо: разорвать цепь питания в любом месте или вывести из работы источник напряжения либо надежно зашунтировать анод с катодом.

Вот такое простое мневмоническое правило, основанное на сравнении гидравлических и электротехнических процессов позволяет легче работать с этим сложным электронным изделием.

Завет №2: особенности применения тиристоров внутри цепей постоянного и переменного тока

Внутреннее сопротивление полупроводниковых переходов в открытом состоянии довольно маленькое. Ток через него определяется по закону Ома, а при приложенном постоянном напряжении по величине он не меняется.

Схема управления тиристором в этом случае не позволяет корректировать его силу. Регулировать ее нужно другими средствами.

Схема управления тиристором

Импульс же тока, подаваемый посредством управляющей команды, регулируется до безопасного значения подключенным токоограничивающим резистором R.

Делается это для исключения пробоя слоя полупроводников, задействованных в протекании управляющего сигнала.

Как работает тиристор в схеме бытовых приборов на переменном токе

Иные перспективы создают переменные цепи, а, особенно, синусоидальные источники напряжения. У них сигнал имеет не строго постоянную величину, а меняющуюся во времени форму синусоиды.

Здесь каждый период колебания состоит из двух полупериодов:

  1. положительного;
  2. отрицательного.

Они имеют свои знаки на графике: «плюс» и «минус». Реально же при смене полупериода направление протекания тока меняется на строго противоположное.

Когда синусоида достигает нулевой амплитуды, то ток через полупроводниковый переход прекращается, он закрывается. Для возобновления процесса необходимо на следующем положительном полупериоде вновь подать импульс на управляющий электрод.

Тиристор в цепи переменного тока

Все это происходит автоматически. Одновременно смещение положения открывающего импульса по времени (в угловой системе измерения — по фазе) позволяет регулировать силу тока за счет изменения момента открытия перехода.

Включение второго тиристора с соответствующей полярностью в нижнюю полуволну позволяет регулировать и ее величину. Тогда мы получаем не чистую синусоидальную форму, а немного обрезанную по времени (до момента включения управляющего импульса).

3 варианта такого сигнала показаны на нижнем графике выходного тока при открытии двух тиристоров в моменты:

  1. возрастания полуволны;
  2. на ее амплитуде;
  3. и при спаде.
2 тиристора в цепи переменного тока

Таким обрезанным, а не чисто синусоидальным током питается наш электроинструмент: дрели, перфораторы, болгарки и другие приборы с тиристорным или симисторным управлением.

В общем-то ничего страшного в подобном изменении формы сигнала нет: все производители провели массу экспериментов и запустили эту схему в эксплуатацию.

Нам же все это необходимо четко представлять, ибо при ремонте или наладке с помощью осциллографа такие сигналы напряжения необходимо проследить на контрольных точках электрической цепи.

Выпрямительные устройства с регулировкой тока — второй принцип работы

Схемы зарядных, пускозарядных приборов и сварочных аппаратов постоянного тока работают на выпрямленном напряжении. При этом часто устройства выпрямления типового диодного моста заменяется на трансформаторное преобразование однофазного сигнала с двумя диодами или тиристорами.

Ее принято называть двухполупериодным выпрямлением.

Схема двухполупериодного выпрямления

Здесь в каждой выходной полуобмотке силового трансформатора вмонтирован тиристор, обрабатывающий свою полуволну.

Выпрямление же достигается схемой подключения полуобмоток с общей точкой и выбором направления подключения цепи «анод-катод» каждого полупроводникового прибора.

Итоговая форма выпрямленного и измененного сигнала выглядит следующим образом.

Тиристорное выпрямление тока

Опять же, для сравнения с предыдущим принципом показываю форму сигналов в трех вариантах запуска фазосдвигающего управляющего импульса. Здесь видно, что отрицательный полупериод перевернулся, а работа схемы управления не изменилась.

Правило №3: отличия управления транзистором и тиристором

У меня как-то так получилось, что вначале пришлось практически осваивать электронные схемы, работающие на транзисторах, а только после них — тиристорные сборки.

Поэтому я вначале уяснил и запомнил, что выходной сигнал на транзисторе можно изменять за счет величины разницы потенциалов на его базе, то есть напряжением.

Мои же друзья разъяснили, что тиристорная схема, как правило, открывается током, протекающим через управляющий электрод.

Такое небольшое дополнение к вышеизложенному материалу новичкам стоит запомнить. А чтобы понять разницу между силой электрического тока и величиной действующего напряжения я написал две отдельные статьи.

Рекомендую ознакомиться с ними подробнее. Они тоже изложены простым языком.

Как проверить тиристор: 3 доступные методики для новичков

Принцип этой технологии я буду показывать на примере силового тиристора КУ202Н по одной простой причине: он оказался под рукой при написании статьи, а все более мощные модели я умудрился раздать друзьям для их самоделок…

Тиристор КУ202Н

Способы электрических
проверок буду показывать на его примере. Для этого публикую важные характеристики, которые надо учитывать при работе. Они делятся на две группы:

  1. предельные;
  2. номинальные.

Параметры первой категории относятся к импульсному режиму, используемому кратковременно. Они нас не интересуют: длительную эксплуатацию могут создать только номинальные показатели.

Обращаем внимание на:

  1. Максимально допустимое напряжение — 400 В;
  2. Постоянный ток в открытом и закрытом состоянии — 10 А;
  3. Ток удержания — 200 мА;
  4. Отпирающий постоянный ток — 100 мА.

Эти данные для других полупроводниковых приборов можно взять в технических справочниках и на многочисленных сайтах в сети интернет.

Самый первый метод проверки: стрелочным тестером или цифровым мультиметром

Оценка состояния исправности КУ202Н прибором Ц4324 за 3 шага

Такой раритетный измерительный инструмент старого электрика у меня до сих пор в рабочем состоянии. Он сохранился благодаря знаку качества и постоянной внимательности при замерах.

Шаг №1. Выставление режима и замер закрытого состояния перехода

Устанавливаю центральным переключателем режим измерения сопротивлений и кнопкой — предел «килоомы». Плюсовой вывод цешки сажу на анод, а минусовой подключаю к катоду.

Замер сопротивления n-p перехода

Для наглядности пометил их на фотографии ярким красным цветом «+» и «-» прямо на изоляции крокодилов.

Измерительная стрелка показывает очень большое сопротивление. Оно же будет при обратной полярности выводов. Можете проверить.

Шаг №2. Открытие тиристора

Касанием руки подключаю вывод управляющего электрода на корпус (анод) полупроводника.

Закоротка цепи

Стрелка резко отклоняется к началу шкалы в сторону меньшего сопротивления. Показание порядка 0,15 k свидетельствует об открытии n-p перехода.

Шаг №3. Проверка открытого состояния при снятии управляющего сигнала

Отвожу провод вывода от корпуса полупроводника и наблюдаю показание стрелки.

Снятие управляющего сигнала

Оно не изменилось: переход сохранил свое открытое положение. Он исправен.

Проверка состояния КУ202Н цифровым мультиметром

Принципиальных отличий анализа тиристорных устройств здесь нет. Технология та же. Показываю ее фотографиями на примере моего карманного мультиметра Mestek MT-102.

Для первого шага перевожу его в режим проверки полупроводников и подключаю прибор крокодилами.

Замер сопротивления n-p перехода мультиметром

На дисплее видно, что переход закрыт: сопротивление большое.

Затем перемыкаю вывод управляющего электрода на анод. Полупроводник открылся.

Открытие тиристора

При разрыве перемычки показания на дисплее не изменились.

Доступный для всех способ проверки током от батарейки и обычной лампочкой

Эта методика популярна, но она требует предварительно учитывать технические характеристики испытуемого прибора и выходные величины от нагрузки, создаваемые лампочкой.

Для силовых транзисторов это не критично, но у маломощных изделий можно нерасчетным током повредить структуру электронных компонентов.

Демонстрацию методики буду выполнять на примере конструкции самого доступного китайского фонарика на светодиодах и обычной лампочки. Принципиальных различий нет при использовании одной батарейки формата АА или ААА.

На всякий случай выполнил мультиметром замер тока лампочки.

Замер тока лампочки

Получил результат 183 миллиампера, что вполне нормально для нашего случая.

Теперь использую этот блок батареек для проверки. Подаю его плюс на анод, а минус на катод проверяемого полупроводника через лампочку.

Проверка тиристора лампочкой

Свечения нет. Это значит, что сопротивление проверяемой цепи большое, все переходы закрыты.

Замыкаю управляющий электрод на корпус прибора — анод.

Проверка тиристора

Лампочка загорается: прибор открылся.

Запуск тиристора в работу можно выполнить подачей плюса напряжения от пальчиковой батарейки на его анод, а минус необходимо предварительно подключить к управляющему электроду.

Запуск тиристора батарейкой

Так рекомендуют справочники, но я предпочитаю первый способ. Он проще.

Теперь размыкаю созданное подключение. Лапочка не прекращает светиться: ток продолжает течь по цепи анод-катод.

Проверка исправности тиристора

Полупроводник остался в открытом положении, он исправен.

Как можно проверить тиристор на электронной плате без выпаивания со схемы: советы бывалых

Работу, как и всегда, необходимо выполнять при снятом напряжении. Это делается не только в целях безопасности, но и для достоверности результата.

Следующим шагом потребуется выцепить из схемы платы управляющий электрод. Разъединить его контакт можно паяльником или перерезать дорожку ножом.

Я же буду проводить эксперимент на том же самом КУ202Н без платы. Для проверки потребуется 2 отдельных прибора:

  1. омметр;
  2. милливольтметр постоянного тока.

Их можно заменить двумя мультиметрами или тестерами, что я и показываю следующими фотографиями. Свой тестер Ц4324 перевожу в режим измерения постоянного напряжения на пределе =1,2В. Подключаю его к аноду и катоду.

Mestek MT-102 устанавливаю в режим омметра и крокодилами сажу его на выводы полупроводника так, чтобы плюс попал на управляющий электрод, а минус — на анод.

Проверка тиристора на плате

Стрелка тестера отклонилась вправо, показывая значение меньшее вольта. По этому замеру можно судить об исправности полупроводникового перехода.

Любая из трех методик проверки основана на принципах работы тиристоров. Она учитывает протекание в них токов через полупроводниковые переходы. При их выполнении важно оценить четыре последовательных этапа: Обычное закрытое состояние до получения команды.Открытие по команде.Удержание в открытом состоянии при отключении управляющего сигнала.Закрытие при пропадании питания.

Для более наглядного представления этих процессов я специально записал видеоролик. Смотрите его здесь.

Однако я рассмотрел только КУ202Н, как довольно распространенную модель, хоть она уже и снята с производства. В одной статье сложно показать все остальные. А их очень много.

Какие существуют разновидности тиристоров: краткие сведения

Развитие науки и электронных технологий в частности способствовало созданию большого количества полупроводниковых приборов с различной структурой слоев и переходов. (Смотрите картинку в начале статьи.)

Я относительно подробно показал выше структуру и принцип работы КУ202 и аналогичных тиристоров с тремя выводами. Однако это не полный обзор, а только частный случай, характерный для большинства подобных приборов.

Они отличаются по:

  • количеству выводов и способу управления;
  • проводимости;
  • режимам работы;
  • быстродействию;
  • другим эксплуатационным параметрам.

Количество выводов

У основной четырехслойной структуры может быть создано 2, 3 или 4 контактных отвода для подключения к внешней схеме.

Виды тиристоров

Что такое динистор

Корпуса с двумя выводами называют динисторами. Для открытия этих полупроводников между анодом и катодом импульсом подают повышенное напряжение.

Динисторы

По принципу работы динисторы бывают:

  1. симметричные;
  2. несимметричные.

Второй тип при обратном напряжении (плюс на катоде, а минус на аноде) всегда закрыт. Он ведет себя как диод и при аварийном токе сгорает. Симметричные же динисторы работают при любой полярности.

Как работает тринистор

Такое название закрепилось за триодными тиристорами (с третьим выводом управляющего электрода). Частный случай этих приборов мы уже разобрали, но на практике следует учитывать, что подобные изделия могут выпускаться с:

  1. Катодным управлением, когда командный сигнал поступает по цепи управляющий электрод — катод.
  2. Анодным — тот случай, что показан на примере КУ202.

При проверке работоспособности полупроводникового перехода следует учесть его конструкцию, а не бездумно копировать мою методику или любую другую, взятую из интернета.

Тринисторы могут выполняться с различными способами закрытия:

  1. запираемые;
  2. незапираемые.

Первым для перехода в закрытое состояние достаточно снизить ток по цепи «анод-катод». Вторым необходимо подать напряжение запирания на управляющий электрод.

Запираемые и незапираемые тиристоры

Еще раз хочу подчеркнуть, что изложенная методика проверки на примере КУ202 применима для незапираемых тиристоров с управлением по аноду.

Виды проводимостей

В самом начале я сравнивал работу полупроводников с течением реки и заострил внимание на том, что через них ток проходит в одну сторону. Только это утверждение характерно для большинства, а не всех поголовно случаев.

Однако учтите, что есть и иные конструкции, специально созданные:

  1. с не высоким обратным напряжением, которые называют обратно-проводящими;
  2. без нормировки обратной проводимости. Их применяют в схемах, исключающих появление обратного напряжения;
  3. для пропускания тока в обе стороны по цепи анод-катод. Это симметричные тиристоры, называемые симисторами либо триаком (от англ — «triac»).

При их проверке следует в обязательном порядке учитывать конструктивные особенности электронных переходов.

Тринисторы чаще всего создаются для работы в схеме электронного ключа. Они управляют мощной силовой нагрузкой за счет подачи слабого сигнала команды через управляющий электрод.

Быстродействие

Этим параметром оценивают скорость перехода полупроводниковых изделий из закрытого состояния в открытое и наоборот. Он может быть критичен при работе сложных схем защит или управления технологическими процессами.

Запираемые и незапираемые тиристоры

Импульсный режим работы

Созданы и такие приборы, способные мгновенно реагировать на быстро возникающие электротехнические ситуации на сложном производстве. Но в домашнем оборудовании их не применяют.

Особенности лавинных тиристоров

Такие конструкции имеют лавинную вольт-амперную характеристику. При подаче обратного напряжения развивается лавинный процесс. Такая ВАХ:

  • устойчива к высоким перенапряжениям схемы;
  • способна работать без дополнительных защит;
  • равномерно перераспределяет энергию по последовательно подключенным полупроводниковым переходам.
ВАХ лавинного тиристора

Их используют в схемах защит полупроводниковых разрядников и преобразователях.

Тиристоры имеют очень много разновидностей внутренней схемы, корпусов и принципов работы. Проверка их технического состояния должна учитывать все эти особенности.

Довольно оригинально эта информация изложена в видеоролике владельца Радиолюбитель.

Поскольку тема про тиристоры, принципы их работы и проверки весьма обширная, то жду ваших дополнений или комментариев, которые будут полезны и понятны всем домашним электрикам, включая новичков.

electrikblog.ru

что это, принцип работы, свойства, применение

Чтобы понять как работает схема, необходимо знать действие и назначение каждого из элементов. В этой статье рассмотрим принцип работы тиристора, разные виды и режимы работы, характеристики и виды. Постараемся объяснить все максимально доступно, чтобы было понятно даже для начинающих. 

Содержание статьи

Что такое тиристор, его устройство и обозначение на схеме

Тиристор — полупроводниковый элемент, имеющий только два состояния: «открыто» (ток проходит) и «закрыто» (тока нет). Причем оба состояния устойчивые, то есть переход происходит только при определенных условиях. Само переключение происходит очень быстро, хоть и не мгновенно.

Так выглядят тиристоры

Так выглядят тиристоры

По способу действия его можно сравнить с переключателем или ключом. Вот только переключается тиристор при помощи напряжения, а отключается пропаданием тока или снятием нагрузки. Так что принцип работы тиристора понять несложно. Можно представлять его как ключ с электрическим управлением. Так, да не совсем.

Тиристор, как правило, имеет три выхода. Один управляющий и два, через которые протекает ток. Можно попробовать коротко описать принцип работы. При подаче напряжения на управляющий выход, коммутируется цепь через анод-коллектор. То есть, он сравним с транзистором. Только с той разницей, что у транзистора величина пропускаемого тока зависит от поданного на управляющий вывод напряжения. А тиристор либо полностью открыт, либо полностью закрыт.

Внешний вид

Внешний вид тиристора зависит от даты его производства. Элементы времен Советского Союза — металлические, в виде «летающей тарелки» с тремя выводами. Два вывода — катод и управляющий электрод — находятся на «дне» или «крышке» (это с какой стороны смотреть). Причем электрод управления меньше по размерам. Анод может находиться с противоположной стороны от катода, или торчать вбок из-под шайбы, которая есть на корпусе.

Два вида тиристоров - современные и советские, обозначение на схемах

Два вида тиристоров — современные и советские, обозначение на схемах

Современные тиристоры выглядят по-другому. Это небольшой пластиковый прямоугольник с металлической пластиной сверху и тремя выводами-ножками снизу. В современном варианте есть одно неудобство: надо смотреть в описании какой из выводов анод, где катод и управляющий электрод. Как правило, первый — анод, затем катод и крайний правый — это электрод. Но это как правило, то есть, не всегда.

Принцип работы

По принципу действия, тиристор можно еще сравнить с диодом. Пропускать ток он будет в одном направлении — от анода к катоду, но происходить это будет только в состоянии «открыто». На схемах тиристор похож на диод. Также имеется анод и катод, но есть еще дополнительный элемент — управляющий электрод. Понятное дело, есть отличия и в выходном напряжении (если сравнивать с диодом).

Принцип работы тиристора в устройствах переменного напряжения: на выходе есть только верхняя часть синусоиды

Принцип работы тиристора в устройствах переменного напряжения: на выходе есть только верхняя часть синусоиды

В схемах переменного напряжения тиристор будет пропускать только одну полуволну — верхнюю. Когда приходит нижняя полуволна, он сбрасывается в состояние «закрыто».

Принцип работы тиристора простыми словами

Рассмотрим принцип работы тиристора. Стартовое состояние элемента — закрыто. «Сигналом» к переходу в состояние «открыто» является появление напряжения между анодом и управляющим выводом. Вернуть тиристор в состояние «закрыто» можно двумя способами:

  • снять нагрузку;
  • уменьшить ток ниже тока удержания (одна из технических характеристик).

В схемах с переменным напряжением, как правило, сбрасывается тиристор по второму варианту. Переменный ток в бытовой сети имеет синусоидальную форму, когда его значение приближается к нулю и происходит сброс. В схемах, питающихся от источников постоянного тока, надо либо принудительно убирать питание, либо снимать нагрузку.

После снятия отпирающего напряжения, тиристор остается в открытом состоянии (лампочка горит)

После снятия отпирающего напряжения, тиристор остается в открытом состоянии (лампочка горит)

То есть, работает тиристор в схемах с постоянным и переменным напряжением по-разному. В схеме постоянного напряжения, после кратковременного появления напряжения между анодом и управляющим выводом, элемент переходит в состояние «открыто». Далее может быть два варианта развития событий:

  • Состояние «открыто» держится даже после того, как напряжение анод-выход управления пропало. Такое возможно если напряжение, поданное на анод-управляющий вывод,  выше чем неотпирающее напряжение (эти данные есть в технических характеристиках).  Прекращается прохождение тока через тиристор, фактически только разрывом цепи или выключением источника питания. Причем выключение/обрыв цепи могут быть очень кратковременными. После восстановления цепи, ток не течет до тех пор, пока на анод-управляющий вывод снова не подадут напряжение.
  • После снятия напряжения (оно меньше чем отпирающее) тиристор сразу переходит в состояние «закрыто».

Так что в схемах постоянного тока есть два варианта использования тиристора — с удержанием открытого состояния и без. Но чаще применяют по первому типу — когда он остается открытым.

Если говорить о внутреннем устройстве, то это три перехода P-N-P-N

Если говорить о внутреннем устройстве, то это три перехода P-N-P-N

Принцип работы тиристора в схемах переменного напряжения отличается. Там возвращение в запертое состояние происходит «автоматически» — при падении силы тока ниже порога удержания. Если напряжение на анод-катод подавать постоянно, на выходе тиристора получаем импульсы тока, которые идут с определенной частотой. Именно так построены импульсные блоки питания. При помощи тиристора они преобразуют синусоиду в импульсы.

Проверка работоспособности

Проверить тиристор можно либо при помощи мультиметра, либо создав простенькую проверочную схему. Если при прозвонке иметь перед глазами технические характеристики, можно заодно проверить сопротивление переходов.

Один из видов: силовой Т122-25

Один из видов: силовой Т122-25

Прозвонка мультиметром

Для начала разберем прозвонку мультиметром. Переводим прибор в режим прозвонки.

На цифровых мультиметрах есть режим прозвонки, который позволяет проверять полупроводниковые приборы

На цифровых мультиметрах есть режим прозвонки, который позволяет проверять полупроводниковые приборы

Далее поочередно прикасаемся щупами к парам выводов:

  • При подключении щупов к аноду и катоду, прибор должен показывать обрыв — «1» или «OL» в зависимости от мультиметра. Если отображаются иные показатели хоть в одном направлении, тиристор пробит.
  • Между анодом и управляющим электродом (выводом) должно быть небольшое сопротивление в одном из направлений. В противоположном — обрыв. Если в обоих направлениях или обрыв, или небольшое сопротивление — элемент поврежден. Проверка тиристора при помощи мультиметра

    Проверка тиристора при помощи мультиметра. На левом рисунке на табло отображается «1», т.е. сопротивление между анодом и катодом слишком велико и прибор не может его зафиксировать. На правом рисунке сопротивление небольшое, так как подано прямое напряжение смещения между анодом и управляющим электродом

Обратите внимание, что величина сопротивления у разных серий разная — на это не стоит обращать особого внимания. Если хотите проверить и сопротивление переходов, посмотрите в технических характеристиках.

Схема проверки работоспособности тиристора мультиметром

Схема проверки работоспособности тиристора мультиметром

На рисунке представлены схемы испытаний. Крайний справа рисунок — усовершенствованный вариант с кнопкой, которую устанавливают между катодом и управляющим выводом. Для того чтобы мультиметр зафиксировал протекающий по цепи ток, кратковременно нажимаем на кнопку.

При помощи лампочки и источника постоянного тока (батарейка тоже пойдет)

Если мультиметра нет, можно проверить тиристор при помощи лампочки и источника питания. Подойдет даже обычная батарейка или любой другой источник постоянного напряжения. Вот только напряжение должно быть достаточным для того, чтобы засветить лампочку. Потребуется еще сопротивление или обычный кусок проволоки. Из этих элементов собирается простая схема:

Схема проверки тиристора при помощи лампочки и источника питания

Схема проверки тиристора при помощи лампочки и источника питания

  • Плюс от источника питания подаем на анод.
  • К катоду подключаем лампочку, второй ее вывод подключаем к минусу источника питания. Лампочка не горит, так как термистор заперт.
  • Кратковременно (при помощи куска проволоки или сопротивления) соединяем анод и управляющий вывод.
  • Лампочка загорается и продолжает гореть, хотя перемычка убрана. Термистор остается в открытом состоянии.
  • Если выкрутить лампочку или выключить источник питания, то лампочка, естественно, погаснет.
  • Если восстановить цепь/питание, она не загорится.

Заодно с проверкой, эта схема позволяет понять принцип работы тиристора. Ведь картинка получается очень наглядной и понятной.

Виды тиристоров и их особые свойства

Полупроводниковые технологии все еще разрабатываются и совершенствуются. За несколько десятилетий появились новые разновидности тиристоров, которые имеют некоторые отличия.

  • Динисторы или диодные тиристоры. Отличаются тем, что имеют только два вывода. Открываются подачей на анод и катод высокого напряжения в виде импульса. Называют еще «неуправляемые тиристоры».
  • Тринисторы или триодные тиристоры. В них есть управляющий электрод, но управляющий импульс может подаваться:
    • На управляющий выход и катод. Название — с управлением катодом.
    • На управляющий электрод и анод. Соответственно — управление анодом.
Тиристоры могут управляться как с анода, так и с катода

Тиристоры могут управляться как с анода, так и с катода

Есть также разные виды тиристоров по способу запирания. В одном случае достаточно уменьшения анодного тока ниже уровня тока удержания. В другом случае — подается запирающее напряжение на управляющий электрод.

По проводимости

Мы говорили, что проводят тиристоры ток только в одном направлении. Обратной проводимости нет. Такие элементы называют обратно-непроводящие, но существуют не только такие. Есть и другие варианты:

  • Имеют невысокое обратное напряжение, называются обратно-проводящие.
  • С ненормируемой обратной проводимостью. Ставят в схемах, где обратное напряжение возникнуть не может.
  • Симисторы. Симметричные тиристоры. Проводят ток в обоих направлениях.

Различают в основном, по типу проводимости и способу управления

Различают в основном, по типу проводимости и способу управления

Тиристоры могут работать в режиме ключа. То есть при поступлении импульса управления подавать ток на нагрузку. Нагрузка, в этом случае, рассчитывается исходя из напряжения в открытом виде. Надо также учитывать наибольшую рассеиваемую мощность. Вот в этом случае лучше выбирать металлические модели в виде «летающей тарелки». К ним удобно приделывать радиатор — для более быстрого охлаждения.

Классификация по особым режимам работы

Еще можно выделить следующие подвиды тиристоров:

  • Запираемые и незапираемые. Принцип работы тиристора незапираемого немного другой. Он находится в открытом состоянии когда плюс приложен к аноду, минус — на катоде. Переходит в закрытое состоянии при смене полярности.
  • Быстродействующие. Имеют малое время перехода из одного состояния в другое.
  • Импульсные. Очень быстро переходит из одного состояние в другое, используется в схемах с импульсными режимами работы.
Основное назначение - включение и выключение мощной нагрузки при помощи маломощных управляющих сигналов

Основное назначение — включение и выключение мощной нагрузки при помощи маломощных управляющих сигналов

Основная область использования тиристоров — в качестве электронного ключа, служащего для замыкания и размыкания электрической цепи. В общем много привычных устройств построены на тиристорах. Например, гирлянда с бегущими огнями, выпрямители, импульсные источники тока, выпрямители и многие другие.

Характеристики и их значение

Некоторые тиристоры могут коммутировать очень большие токи, в этом случае их называют силовыми тиристорами. Они изготавливаются в металлическом корпусе — для лучшего отвода тепла. Небольшие модели с пластиковым корпусом — это обычно маломощные варианты, которые используют в малоточных схемах. Но, всегда есть исключения. Так что для каждой конкретной цели подбирают требуемый вариант. Подбирают, понятное дело, по параметрам. Вот основные:

  • Максимальный прямой ток. Значение тока, который может протекать через анод-катод. У мощных моделей он может достигать сотен Ампер.
  • Максимально допустимый обратный ток. Указывается не для всех видов, только у обратно-проводящих.
  • Прямое напряжение. Это максимально допустимое падение напряжения в открытом состоянии при прохождении максимального тока.
  • Напряжение включения. Минимальный уровень управляющего сигнала, при котором тиристор сработает. Пример характеристик

    Пример характеристик

  • Удерживающий ток. Если ток, протекающий через анод-катод ниже этого значения, устройство переходит в запертое состояние.
  • Минимальный ток управляющего сигнала. При подаче тока ниже этого значения, элемент не откроется.
  • Максимальный ток управления. Если превысить этот параметр, p-n переход выйдет из строя.
  • Рассеиваемая мощность. Определяет величину подключаемой нагрузки.

Есть еще динамический параметр — время перехода из закрытого в открытое состояние. В некоторых схемах это важно. Может еще указываться тип быстродействия: по времени отпирания или по времени запирания.

elektroznatok.ru

как открыть тиристор | Электрознайка. Домашний Электромастер.

Тиристор в цепи переменного тока. Импульсно — фазовый метод.




data-ad-client=»ca-pub-5076466341839286″
data-ad-slot=»1544101189″>

♠     Система управления тиристорами в цепях переменного и пульсирующего тока использует, синхронизированную с сетью, бесконечную серию управляющих импульсов и осуществляет сдвиг фазы фронтов управляющих импульсов относительно перехода напряжения сети через ноль.
Сформированный специальным устройством управляющий импульс подается на переход управляющий электрод – катод тиристора, которым и подключает электрическую сеть в нагрузку.
Разберем работу такой системы на примере регулятора температуры жала электрического паяльника мощностью до 100 ватт и напряжением 220 вольт. Схема этого устройства изображена на рис 1.

 

♠     Регулятор температуры электрического паяльника в сети переменного тока 220 вольт, состоит из диодного мостика на КЦ405А, тиристора КУ202Н, стабилитрона , узла формирования импульсов управления.
С помощью мостика переменное напряжение превращается в пульсирующее напряжение (Umax = 310 B) положительной полярности (точка Т1).

Узел формирования состоит :
— стабилитрон,  формирует за каждый полупериод трапецевидное напряжение (точка Т2);
— временная зарядно-разрядная цепочка R2, R3, C;
— аналог динистора Тр1, Тр2.

С резистора R4 снимается напряжение импульса для запуска тиристора (точка 4).

На графиках (рис 2) показан процесс формирования напряжений в точках Т1 – Т5  при изменении переменного резистора R2 от нуля до максимума.

Через резистор R1 пульсирующее напряжение сети поступает на стабилитрон КС510.
На стабилитроне формируется напряжение трапецевидной формы величиной 10 вольт (точка Т2). Оно определяет начало и конец участка регулирования.


♠     Параметры временной цепочки (R2, R3, C) подобраны так, чтобы за время одного полупериода конденсатор С успел зарядиться полностью.
С началом перехода напряжения сети Uc через ноль, с появлением трапецеидального напряжения, начинает расти напряжение на конденсаторе С.  При достижении напряжения на конденсаторе Uк = 10 вольт, пробивается аналог тиристора (Тр1, Тр2). Конденсатор С через аналог разряжается на резистор R4 и, включенный параллельно ему, переход Уэ – К тиристора (точка Т3) и включает тиристор.
Тиристор КУ202 пропускает основной ток нагрузи по цепи:  сеть – КЦ405 – спираль паяльника – анод – катод тиристора – КЦ405 – предохранитель — сеть.
Резисторы R5 — R6 служат для устойчивой работы устройства.

♠      Запуск управляющего узла автоматически синхронизирован с напряжением Uc сети.
Стабилитрон может быть Д814В,Г,Д. или КС510,КС210 на напряжение 9 – 12 вольт.
Переменный резистор  R2 – 47 — 56 Ком мощностью не менее 0,5 ватт.
Конденсатор С – 0,15 — 0,22 мкФ, не более.
Резистор R1 – желательно набрать из трех резисторов по 8,2 Ком, двух ваттных, чтобы не сильно нагревались.
Транзисторы Тр1, Тр2 – пары КТ814А, КТ815А; КТ503А, КТ502А и др.

♠     Если регулируемая мощность не превысит 100 ватт, можно использовать тиристор без радиатора. Если мощность нагрузки больше 100 ватт необходим радиатор площадью 10 – 20 см.кв.
♠     В данном импульсно – фазовом методе импульс запуска для тиристора вырабатывается в пределах всего полупериода.
Т.е. происходит регулировка мощности почти от ноля до 100%, при регулировании фазового угла от а=0 до а=180 градусов.
На графиках в точке №5 показаны формы напряжений на нагрузке при выборочных фазовых углах: а = 160, а = 116, а = 85, а = 18 градусов.
При значении а = 160 градусов, тиристор закрыт почти во все время прохождения полупериода сетевого напряжения (мощность в нагрузке очень мала).
При значении а = 18 градусов, тиристор открыт почти во все время действия полупериода (мощность в нагрузке равна почти 100%).
В графиках в точке  №4 во время открытия тиристора, вместе с появлением запускающего импульса, добавляется падение напряжения на открытом тиристоре (Uп на графике в точке №4).

Все показанные эпюры напряжений в точках Т1 — Т5, относительно точки Т6, можно посмотреть на осциллографе.




data-ad-client=»ca-pub-5076466341839286″
data-ad-slot=»1544101189″>

domasniyelektromaster.ru

принцип действия, обозначение, основные характеристики и применение

История изобретенияВ электронике существует такое понятие, как «электронные ключи». Это приборы, имеющие два устойчивых состояния. Одним из их представителей является тиристор, представляющий, по сути, полупроводниковый элемент. Его работа задаётся с помощью тока или напряжения, поступающего на специальный вывод. Применение устройства позволяет управлять мощной нагрузкой, используя слаботочные цепи. При этом его конструкция проста, а принцип работы довольно понятен.

История изобретения

Суть устройстваИзобретение тиристора стало возможным после открытия полупроводников и исследования их свойств. После обнаружения в 1600 году английским физиком Уильямом Гилбертом электричества многие инженеры и ученые посвятили себя изучению этого явления. Выдающими людьми, изучающими электромагнетизм в разное время, были: Эрстед, Ампер, Вольт, Фарадей, Максвелл, Кюри, Яблочков. Благодаря их исследованиям и теоретическим догадкам было установлено, что все окружающие твёрдые тела можно разделить на три группы:

  • проводники — вещества, обладающие большим количеством свободных носителей зарядов и способные практически без потерь проводить электрический ток;
  • диэлектрики — физические тела, плохо проводящие ток;
  • полупроводники — материалы, у которых в кристаллической решётке концентрация подвижных зарядов намного ниже, чем количество атомов.

Типичным признаком полупроводников является зависимость их проводимости от изменения температуры или другого внешнего воздействия, например, света, электромагнитного поля.

Принцип работыВ 1947 году американцы Бардин, Бреттейн и Шокли создали первый транзистор, что и послужило толчком к бурному развитию полупроводниковой техники. В разных странах начались исследования этих материалов. Так, русским инженером Лошкарёвым была выявленная биполярная диффузия. А Красиловым и Мадояном разработаны образцы германиевых элементов.

В 60-х годах полученные исследования позволили создать чипы, которые содержали несколько объединённых транзисторов. Начали создаваться компании и заводы, выпускающие серийно электронные компоненты. В процессе изучения свойств полупроводников было установлено, что структура монокристаллов, то есть тел, имеющих непрерывную кристаллическую решётку, может иметь три и более p-n переходов. В зависимости от уровня напряжения, подаваемого на один из них, изменялись состояния других.

Изучая монокристаллы полупроводников, учёные компании Белла выявили их технические характеристики. В дальнейшем её инженеры смогли создать прибор, имеющий третий вывод. С помощью его и происходило управление процессом прохождения тока через весь элемент. Через некоторое время в Дженерал Электроникс анонсировали устройство, получившее название «триак» (thyristor).

Суть устройства

Термин «тиристор» произошёл из-за слияния двух слов: греческого hýra — дверь или вход и английского resistor — сопротивляющийся. Этим названием было названо полупроводниковое устройство, изготавливаемое на основе монокристалла полупроводникового вещества и обладающего тремя и более p-n переходами. При работе этот прибор может иметь два устойчивых положения:

  • закрытое — соответствующее низкой проводимости;
  • открытое — неоказывающее сопротивление прохождению тока.

Характеристики и параметрыТо есть, перефразируя определения, можно сказать, что тиристор работает как ключ, по аналогии с дверью. В одном его состоянии замок на дверях открыт, и через неё могут свободно проходить люди (электрический ток), а в другом закрыт и дверь заперта. Поэтому нередко его называют электронный выключатель. Выражаясь же научным языком, его правильное название звучит как полупроводник с управляемым вентилем (диодом).

Принятие элементом одного из устойчивых состояний происходит быстро, но не мгновенно. Чтобы сменить одно на другое, используется напряжение. Когда оно есть, тиристор находится в открытом состоянии, а когда нет — закрывается. Для этого используется специальный дополнительный вывод. Поэтому прибор имеет три выхода и по виду похож на транзистор. При этом их принцип действия схож, только в отличие от транзистора тиристор либо полностью пропускает ток, либо препятствует его прохождению.

Принцип работы

Конструкция прибораТиристоры по своей сути — это переключающие приборы. Структура простого элемента состоит из n-p-n-p слоёв и имеет три перехода. Два из них работают в прямом направлении, а один в обратном. Прибор имеет две крайние области, называемые анодом (p) и катодом (n). Для понимания принципа действия тиристора его можно представить в виде сдвоенных транзисторов: n-p-n и p-n-p. При этом средняя зона второго транзистора (n) соединена с крайней зоной первого.

В результате получится, что крайние зоны будут являться эмиттерными переходами, а средние — коллекторными. Область базы же первого элемента будет совпадать с коллектором второго и наоборот. Исходя из этого коллекторный ток транзисторов, одновременно будет являться и базовым.

Маркировка радиодеталиФизические процессы, происходящие в элементе, можно описать следующим образом. При существовании лишь одного перехода в устройстве бы возникал лишь обратный ток, вызванный неосновными носителями заряда. Если к эмиттерному переходу приложить прямое напряжение, то ток коллектора увеличится, а напряжение на нём уменьшится. В транзисторе для перехода его в режим насыщения (максимальная пропускная способность) на эмиттер подаётся прямое напряжение, при этом оно между базой и коллектором снижается до единичных значений.

Так и в тиристоре. Через переходы анода и катода инжектируются неосновные заряды, приводящие к снижению сопротивления управляющего электрода. При приложении прямого напряжения, то есть к катоду — минусовой потенциал, а к аноду — плюсовой, через прибор начинает протекать небольшой ток. Это состояние соответствует закрытому положению.

Повышение напряжения приводит к инжекции носителей в управляемый переход. В итоге, с одной стороны, увеличивается его сопротивление из-за обеднения основными носителями, так как переход получается включённым в обратном направлении, а с другой — обогащение, связанное с поступлением в его область новых зарядов.

При достижении напряжением определённого значения эти два явления уравновешиваются, и даже возрастание на небольшую величину напряжения приводит к возникновению лавинообразного процесса отпирания тиристора. Это состояние напоминает режим насыщения транзистора. Сопротивление перехода становится минимальным, а величина тока определяется нагрузочным сопротивлением.

Характеристики и параметры

Тиристор — это прибор, одновременно совмещающий в себе три функции: выпрямителя, выключателя и усилителя. Основные свойства, характеризующие прибор можно представить в виде следующих пунктов:

  • тиристор по подобию диода пропускает ток только в одном направлении, то есть работает как выпрямитель;
  • прибор переключается из одного состояния в другое при помощи напряжения;
  • величина тока, необходимая для переключения тиристора, составляет порядка нескольких миллиампер, при этом он может пропускать через себя десятки ампер;
  • изменяя время приложенного сигнала к управляющему выводу, можно регулировать среднее значение тока, протекающего через нагрузку, другими словами — управлять мощностью.

Главной же функцией, описывающей работу прибора, является вольт-амперная характеристика (ВАХ). Представляет она из себя плоскую систему координат по оси Y, на которой откладывается ток нагрузки, а по оси X — напряжение на управляющем электроде. По виду нелинейности соответствия этих двух величин ВАХ относится к S-типу устройств.

На характеристике используются буквенные обозначения, соответствующие ключевым точкам в работе тиристора. Так, координата (Vbo; IL) соответствует моменту включения, а точка с координатами (Vн; Iн) — открытому состоянию. Зона, лежащая на отрезке с координатами (Vbo; IL) и (Vн; Iн) считается переходной, то есть неустойчивой.

Тиристорный прибор, кроме ВАХ, характеризуется рядом параметров:

  1. Классификация и различияНаибольшее постоянное обратное напряжение — значение, при превышении которого наступает пробой перехода.
  2. Напряжение включения — величина сигнала, при достижении которой происходит отпирание элемента.
  3. Допустимый ток — максимальное значение, которое может через себя пропустить радиоприбор без изменения своих характеристик.
  4. Ток удержания — это ток, текущий через анод и провоцирующий запирание элемента.
  5. Применение электронных переключателейПадение напряжения — показывает величину энергии, которая рассеивается на приборе (0,5 -1 В).
  6. Максимальна мощность — определяется допустимым током и максимально возможным напряжением, приложенным к управляемым выводам, то есть характером нагрузки.
  7. Время отключения — промежуток времени, за который тиристор полностью закроется. Составляет микросекунды.
  8. Отпирающий постоянный ток управления — обозначает значение, которое необходимо для поддержания устройства в открытом состоянии (анод-катод). Обычно составляет порядка 100 мА.

Конструкция прибора

Тиристор принцип работыЛюбой тиристорный прибор имеет как минимум три вывода: анод, катод и вход. Выпускаются они различными производителями и могут иметь форму таблетки или штыря. Как правило, материалом для их изготовления служит кремний. Он обеспечивает хорошую теплопроводность и может выдерживать большую мощность.

Эмиттерные переходы выполняются по сплавной технологии, а коллекторные — методом диффузии. Используется также и планарная технология. Концентрация примесей в эмиттерных областях делается значительно большей, чем в базовых. При этом самым толстым слоем является центральный. Эти два фактора — толщина и низкая концентрация — позволяют прибору выдерживать довольно большое обратное напряжение (порядка сотен вольт). Анод прибора соединяется с корпусом изделия, что в итоге положительно сказывается на отводе тепла.

Тиристор

Немного другую конструкцию имеют асимметричные тиристоры. В их конструкции катод соединяется с n+ и p зоной, а анод с p+ и n областью. Такие соединения называются анодным или катодным коротким замыканием. Их использование приводит к появлению дополнительного сопротивления межу переходами. Такое подключение уменьшает переходные процессы и время жизни основных носителей.

В простейшую конструкцию тиристора входит основание, соединённое с полупроводниковым кристаллом и являющееся анодом, вывода катода и управляющего электрода. Сверху кристалл накрывается изолятором и крышкой, способствующей защите прибора от механических повреждений и одновременно служащей теплоотводом.

Маркировка радиодетали

Тиристор принцип работыСогласно системе, указанной в ГОСТ 10862–72, для обозначения тиристора используется буквенно-цифровой код, состоящий из четырёх символов. Первый элемент кода указывает на вид материала, из которого сделано устройство. Например, Г — германий, К — кремний, А — арсенид галлия. Второй обозначает принадлежность устройства — Н-динистор, У-триак. Третий элемент характеризует функциональность, возможности и номер партии.

Так, числа с 101 до 199 обозначают диодные и незапираемые триодные тиристоры малой мощности, а интервал от 401 до 499 — триодные запираемые тиристоры средней мощности. Последняя буква указывает на тип устройства.

Но после 1989 года была принята новая система обозначений. Поэтому тиристоры, выпускаемые с начала 1989 года, маркировались уже согласно ГОСТ 20859.1.89. В основе этого обозначения используется многозначный код, состоящий из следующих элементов:

  1. На первом месте стоит буква, указывающая тип устройства. Например, ТО — оптотиристор, ТЗ — тиристор запираемый и так далее.
  2. На втором — буква, определяющая тип цепи, в которой может работать тиристор (Ч — высокочастотная, Б — быстродействующая, И — импульсная).
  3. Третья цифра — обозначает порядковый номер.
  4. Четвёртый знак — характеризует габариты корпуса прибора.
  5. Пятый — конструктивное исполнение.
  6. Шестой — допустимый ток.
  7. Седьмой — полярность. Так, буква Х указывает на то, что катод соединён с корпусом.
  8. Восьмой — класс устройства, соответствующий импульсной разности потенциалов для закрытого состояния.
  9. Последующие цифры образуют сочетание классификационных параметров.

На схемах и в литературе тиристор подписывается латинскими буквами VS. Графически же изображается наподобие диода, то есть равностороннего треугольника с вертикальной полосой у его вершины. Через середину основания и вершину проходит линия, символизирующая электрическую цепь. Но в отличие от диода у тиристора от нижней стороны треугольника дополнительно отводится прямая линия, обозначающая управляющий электрод (У).

Классификация и различия

Выпускаемые тиристоры различаются не только по тому, как выглядят, и своим характеристикам, но и по виду проводимости, а также количеству выводов. Существует довольно большое их количество, но при этом их можно классифицировать по следующим признакам:

  1. Способу управления. Разделяют на приборы, управление которыми происходит путём подачи импульса напряжения на анод-катод (динисторы) или тока на управляющей вывод (тринисторы). В свою очередь, последние можно разделить на управляющиеся по аноду или катоду. А также существует ещё один тип приборов, управляемый квантами света (оптотиристор).
  2. Типом обратной проводимости. Существует три вида: проводящие, непроводящие, симметричные (симисторы) — проводящие ток в обоих своих направлениях.
  3. Быстродействию. Существуют как сверхбыстрые приборы, так и обыкновенные.

Существенных отличий между динистором и тринистором нет. Но если в первом отпирание происходит при достижении определённого значения напряжения, то во втором это напряжение может быть совсем несущественным, а переключение происходит из-за подачи импульса определённого значения на дополнительный электрод.

Переключение состояний классических тиристоров происходит снижением величины тока либо в случае динистора изменением полярности. Запирающий же тип отличается тем, что через дополнительный вывод понадобится пропустить ток обратной полярности. Поэтому, пропуская через такой тиристор переменный ток, его работа будет соответствовать импульсному режиму.

Применение электронных переключателей

Характеристики приборов способствуют их применению в различных электротехнических областях. Такой элемент, как тиристор нужен там, где возникает необходимость управлять мощной нагрузкой. Поэтому основным назначением устройства считается коммутация нагрузки путём использования малых токов.

Например, устройства могут применяться в гирлянде с бегущими огнями, импульсных генераторах тока, выпрямительных узлах. Их используют в схемах преобразования постоянного тока в токи промышленного значения, при этом они могут изменять и частоту сигнала. Они применяются при управлении асинхронным двигателем, в системе индукционного нагрева. На тиристорах создаются источники питания повышенной частоты для автономного потребления различными устройствами.

Преобразователи на этом элементе в несколько раз превосходят по технико-экономическим показателям конструкции, выполненные на ионных приборах. Их стоимость и масса меньше, а скорость срабатывания в несколько раз выше.

Использование тиристоров позволяет автоматизировать многие процессы, например, оптотиристором управляют открытием ширмы в театре, а симистором регулируют плавно мощность паяльников или источников освещения. А также с помощью них можно создавать датчики, регистрирующие появление света, тока или напряжения.

Важной особенность элементов является то, что они пропускают через себя высокочастотный и низкочастотный сигнал. Поэтому, собрав мостовую схему из этих устройств, можно сконструировать «трансформатор», например, для сварочного аппарата.

Схема включения

Зачем нужны тиристоры, можно понять, разобравшись в их принципе работы. Для этого есть смысл рассмотреть включение элемента в простейшей схеме. Тиристор в ней используется как электронный ключ.

Как работает тиристорК аноду тиристора подсоединяется лампочка L, служащая нагрузочным сопротивлением. К ней через кнопку К2 подключается положительная клемма источника питания GB, а его минус подводится к катоду полупроводникового элемента. Подача тока на управляющий электрод выполняется через ограничительный резистор R и кнопку K1.

При замыкании переключателя К2 к аноду и катоду полупроводника будет приложено напряжение, соответствующее величине ЭДС источника питания. При этом прибор будет заперт, ток через него не потечёт, а лампочка не загорится. Чтобы в цепи VS – L появился ток, понадобится отпереть тиристор.

Делается это путём замыкания первого выключателя К1. В этом случае ток от блока питания через К2, К1, R поступит на управляющий электрод тиристора. Элемент изменит своё состояние на открытое, и через него начнёт протекать ток, поступающий с батареи GB. Итогом будет загоревшая лампочка.

Дальнейшее нажатие кнопки K1 никоим образом не будет влиять на состояние схемы. Для того чтобы потушить лампочку, понадобится разорвать цепь кнопкой K2 или отсоединить источник питания. Но при этом тиристор может закрыться и при снижении напряжения на аноде до определённой величины, определяемой параметрами тиристора.

Таким образом, тиристор — это полупроводниковый элемент, использующийся в схемах как электронный ключ. Это возможно благодаря свойствам p-n переходов. При этом, осуществляя коммутацию больших токов, сам прибор имеет небольшие габариты, а его корпус может выдерживать значительную тепловую мощность. Но всё же для предотвращения его повреждения тепловым пробоем часто совместно с элементом используется теплоотвод, представляющий собой, в зависимости от мощности нагрузки, простую алюминиевую пластинку или массивного вида радиатор.

rusenergetics.ru

Как проверить тиристор | Практическая электроника

Как проверить тиристор, если вы полный чайник? Итак, обо всем по порядку.

Принцип работы тиристора

Принцип работы тиристора основан на принципе работы электромагнитного реле. Реле – это электромеханическое изделие, а тиристор – чисто электрическое. Давайте же рассмотрим принцип работы тиристора, а иначе как мы его тогда сможем проверить? Думаю, все катались на лифте ;-). Нажимая кнопку на какой-нибудь этаж, электродвигатель лифта начинает свое движение, тянет трос с кабиной с вами  и  соседкой тетей Валей килограммов под двести и  вы перемещаетесь с этажа на этаж.  Как  же так с помощью малюсенькой кнопочки мы подняли кабину с тетей Валей на борту?

В этом примере и основан принцип работы тиристора.  Управляя маленьким напряжением кнопочки мы управляем большим напряжением… разве это не чудо? Да еще и в тиристоре нет никаких клацающих контактов, как в реле. Значит, там нечему выгорать и при нормальном режиме работы такой тиристор прослужит вам, можно сказать, бесконечно.

Тиристоры выглядят  как-то вот так:

ку202нвиды тиристоровтиристор в корпусе TO-220

А вот и  схемотехническое обозначение тиристора

обозначение тиристора на схеме

В настоящее время мощные тиристоры используются для переключения (коммутации) больших напряжений в электроприводах, в установках плавки металла с помощью электрической дуги ( короче говоря с помощью короткого замыкания, в результате чего происходит такой мощный нагрев, что даже начинает плавиться металл)

силовой тиристорсиловой таблеточный тиристор

Тиристоры, которые слева, устанавливают на алюминиевые радиаторы, а тиристоры-таблетки даже на радиаторы с водяным охлаждением, потому что через них проходит бешеная сила тока и коммутируют они очень большую мощность.

Маломощные тиристоры используются в радиопромышленности и, конечно же, в радиолюбительстве.

Как проверить тиристорку103в1ку221Как проверить тиристор

Параметры тиристоров

Давайте разберемся с некоторыми важными параметрами  тиристоров. Не зная эти параметры, мы не догоним принцип проверки тиристора. Итак:

1) Uy отпирающее постоянное напряжение управления  – наименьшее постоянное напряжение на управляющем электроде, вызывающее переключение тиристора из закрытого состояния в открытое. Короче говоря простым языком, минимальное напряжение на управляющем электроде, которое открывает тиристора и электрический ток начинает спокойно себе течь через два оставшихся вывода – анод и катод тиристора. Это и есть минимальное напряжение открытия тиристора.

2) Uобр max –  обратное напряжение, которое может выдержать тиристор, когда, грубо говоря, плюс подают на катод, а минус – на анод.

3) Iос ср среднее значение тока, которое может протекать через тиристор  в прямом направлении без вреда для его здоровья.

Остальные параметры не столь критичны для начинающих радиолюбителей. Познакомиться с ними можете в любом справочнике.

Как проверить тиристор КУ202Н

Ну и наконец-то переходим к самому важному – проверке тиристора. Будем проверять самый ходовый и знаменитый советский тиристор – КУ202Н.

А вот и его цоколевка

ку202н распиновка

Для проверки тиристора нам понадобится лампочка, три проводка и блок питания с постоянным током. На блоке питания выставляем напряжение загорания лампочки. Привязываем и припаиваем проводки к каждому выводу тиристора.

На анод подаем “плюс” от блока питания, на катод через лампочку “минус”.

Теперь же нам надо подать относительно анода напряжение на Управляющий Электрод (УЭ). Для такого вида тиристора Uy отпирающее постоянное напряжение управления  больше чем 0,2 Вольта.  Берем полуторавольтовую батарейку и подаем напряжение на УЭ. Вуаля! Лампочка зажглась!

также можно использовать щупы мультиметра в режиме прозвонки, на щупах напряжение тоже больше 0,2 Вольта

Убираем батарейку или щупы, лампочка должна продолжать гореть.

Мы открыли тиристор с помощью подачи на УЭ импульса напряжения.  Все элементарно и просто! Чтобы тиристор опять закрылся, нам надо или разорвать цепь, ну то есть отключить лампочку или убрать щупы, или же подать на мгновение обратное напряжение.

Как проверить тиристор мультиметром

Можно также проверить тиристор с помощью мультиметра. Для этого собираем его по этой схемке:

проверка тиристора с помощью мультиметра

Так как на щупах мультиметра в режиме прозвонки имеется напряжение, то подаем его на УЭ. Для этого замыкаем между собой анод и УЭ и сопротивление через Анод-Катод тиристора резко падает.  На мультике мы видим 112 милливольт падение напряжения. Это значит, что он открылся.

После отпускания мультиметр снова показывает бесконечно большое сопротивление.

Почему же тиристор закрылся? Ведь лампочка  в прошлом примере у нас горела? Все дело в том, что тиристор закрывается, когда ток удержания стает очень малым. В мультиметре ток через щупы очень малый, поэтому и тиристор закрылся без напряжения УЭ.

Есть также схема отличного прибора для проверки тиристора, ее можно глянуть в этой статье.

Также советую глянуть видео от ЧипДипа про проверку тиристора и ток удержания:

www.ruselectronic.com

объяснение принципа работы, устройства и подключения

Применение управляемого тиристораМигающая наружная реклама украшает городские кварталы. Забавный световой эффект «бегущие огни» сопровождает выступления эстрадных артистов. Новогодняя гирлянда на ёлке создаёт праздничное настроение. Маленькая деталь, которая управляет огромными электронными приборами, называется тиристор.

Принцип работы

Радиотехнический термин thyristor составлен из двух частей. В начале употреблено слово thyra, что означает на греческом языке «дверь» или «вход». Затем использовано окончание английского слова resistor, которое переводится как «сопротивление».

Тиристором называется полупроводниковое устройство, где на базе монокристалла собираются более двух p — n переходов. Суть электронно-дырочного соединения пары химических элементов — так расшифровывается понятие «p — n переход» — состоит в том, что при подключении прямого тока на выводах появляется разность потенциалов. При обратном токе совершается блокировка носителей заряда.

В устройство коммутируется сигнальный контакт, назначение которого состоит в управлении током пробоя границы разнозаряженных зон. На электрических схемах обозначение тиристора почти совпадает со значком диода. Различие состоит в том, что к катодному выводу пририсована стрелка управляющего электрода.

Конструкция прибора

Полупроводниковый прибор представляет собой структуру, которую образуют четыре слоя разной полярности, соединённых последовательно. Образуется цепочка p — n — p — n типа. К наружному слою с положительным зарядом подключён анодный вывод, к отрицательному полупроводнику — катод. К внутренним прослойкам допустимо присоединение до двух управляющих контактов.

Принцип работы тиристораОсновообразующим элементом тиристора является кристалл кремния с заданной толщиной. Для формирования p-слоя применяются примеси бора и алюминия. Чтобы получить n-область используется фосфор. Нанесение добавок происходит с помощью диффузионной технологии. При температуре от 1000° C до 1300° C создаётся переходный слой глубиной 60 Мкм.

Внешний вид современных устройств непохож на детали, изготовленные два десятка лет назад. Раньше они выглядели как «летающие тарелки». Минусовый электрод и сигнальный контакт располагались на торце, а анодный вывод устанавливался с противоположной стороны или сбоку изделия. Сейчас тиристор представляет собой небольшой пластмассовый коробок с тремя электродами внизу. Расположение контактов указывается в описании устройства.

Режимы работы

Принцип действия тиристора характеризуется работой в двух устойчивых состояниях. Положение «закрыто» свидетельствует о низкой проводимости. Значение «открыто» указывает высокую электропроводность.

Как работает тиристор, для чайников объяснит диаграмма зависимости силы тока от напряжения. В исходной позиции полупроводниковый элемент заперт.

Даже значительное увеличение разности потенциалов на контактах не приведёт устройство в рабочее состояние. Линия графика почти горизонтальна.

Но стоит подать ток на управляющий вывод, как тиристор откроется. В этот момент линейный отрезок на графике круто изменяет угол наклона, близкий к вертикальному положению. От величины сигнального тока зависит уровень пробойного напряжения. Вольт-амперная характеристика объясняет, зачем требуется применение управляющего электрода. После обнуления командного сигнала устройство останется открытым, пока напряжение не уменьшится до уровня удержания.

ТранзисторыРабота транзистора также основана на взаимодействии p — n переходов. От полупроводникового триода, который, как вентиль, плавно регулирует напряжение, тиристорный элемент отличается скачкообразным ростом разности потенциалов после появления сигнала управления. Своеобразный электронный ключ по команде открывает дорогу питанию электрической цепи.

Классификация тиристоров

Существует два варианта управления полупроводником: через катод или анод. Это зависит от полярности слоя, к которому подключено управление. Поэтому различают тиристоры с катодным или анодным управлением.

Классификация тиристоровВозможен вариант отсутствия управляющего электрода. Такой прибор называется диодным тиристором, и включение устройства производит напряжение, подаваемое на основные контакты. Отсюда классификация на динисторы, не имеющие вывода управления, и тринисторы, у которых есть управляющий контакт.

По способностям пропускать ток в том или ином направлении тиристоры подразделяются на симметричные и асимметричные устройства. Симметричные полупроводники, которые профессионалы называют симисторами, способны проводить ток в обоих направлениях. В сущности, симистор — это пара тиристоров, включённых по встречно-параллельной схеме.

Асимметричные приборы пропускают ток только в одну сторону:

  • прямонаправленные устройства заперты при подключении напряжения обратного направления;
  • приборы, пропускающие обратный ток, открываются при подаче напряжения противоположной полярности.

В электронных схемах также используются запираемые тиристоры. Устройство открывается, когда на управляющий электрод подаётся ток. В положение «закрыто» прибор переходит при изменении полярности тока управления.

Технические характеристики

Области применения полупроводника разнообразны. В зависимости от того, для чего нужен тиристор, подбирается деталь с требуемыми техническими данными. Выбрать необходимый тип полупроводникового триода помогут рабочие параметры устройства:

  1. Максимальный ток от анода к катоду.
  2. Наибольшая величина обратного тока указывается только для типов, обладающих такой функцией.
  3. Технические характеристики тиристоровМаксимальное прямоточное напряжение в положении «открыто».
  4. Минимальные напряжение и сила тока раскрытия p — n перехода.
  5. Предельный уровень сигнального тока, приводящий к пробою тиристора.
  6. Ток удержания определяет уровень, ниже которого наступает состояние «закрыто».
  7. Мощность указывает величину допустимой нагрузки.
  8. Время срабатывания.

Контроль работоспособности

Перед установкой тиристора в схему необходимо убедиться в его исправности. Целостность детали проверяется мультиметром или лампочкой, подключённой к источнику питания.

На измерительном приборе устанавливают функцию прозвонки. Сначала щупы присоединяют к аноду и катоду попеременно в прямом и обратном направлении. Цифра «1» на дисплее укажет, что ток не проходит, и деталь исправна. Затем прозванивают линию от анода до сигнального контакта.

Одна из цепей должна быть оборвана, а другая покажет небольшое сопротивление. Если в обоих случаях мультиметр обнаружит одинаковый результат, то тиристор неисправен.

Работоспособность детали можно проверить, собрав простую электрическую цепь. Анодный контакт присоединяют к «плюсовому» зажиму батарейки. Катод замыкают на «минус» источника питания через лампочку. Куском провода кратковременно смыкаются анодный и управляющий выводы. Лампа должна загореться и не гаснуть после разрыва цепочки «анод — управляющий электрод».

Контроль работоспособности тиристора

Работающий осветительный прибор указывает на исправность тиристора. При проверке необходимо учитывать величину подаваемого напряжения, которая должна быть достаточной для включения лампы.

Практическое применение

Благодаря принципу работы тиристор используют в преобразователях напряжения и выпрямителях тока. Вместе с силовым трансформатором полупроводник способен изменять уровень тока. На этой основе собраны зарядные устройства автомобильных аккумуляторов, а также мощные электросварочные аппараты. Способность прибора изменять переменное напряжение на постоянное напряжение используется в преобразователях.

В устройствах сигнализации тиристор включается командой от внешнего датчика, изменяющего напряжение на управляющем электроде. Конструкции, которые контролируют окружающую обстановку, могут реагировать на изменение температурного режима или объёмного наполнения пространства. За освещённостью объекта наблюдает оптотиристор.

Практическое применение тиристоров

Полупроводниковый тиристор предназначен для управления большими токами слаботочным сигналом. С помощью диммерных блоков, на которые подаётся команда от светового пульта, управляются театральные прожекторы и светильники.

Поддержание заданного температурного режима в печи обеспечивается регулятором мощности дуги горения. В электрических двигателях скорость вращения ведущего вала контролирует тиристорный регулятор частоты хода.

Архимед обещал перевернуть Землю, если бы у него была точка опоры. Управляемый тиристорный полупроводник является тем рычагом, который расширяет области применения электронных устройств. Небольшая радиодеталь умножает возможности человека в развитии научно-технического прогресса.

rusenergetics.ru

принцип работы и способы управления

Схема подключения ку202Схема подключения ку202Тиристор — электронный компонент, изготовленный на основе полупроводниковых материалов, может состоять из трёх или более p-n-переходов и имеет два устойчивых состояния: закрытое (низкая проводимость), открытое (высокая проводимость).

Это сухая формулировка, которая для тех, кто только начинает осваивать электротехнику, абсолютно ни о чём не говорит. Давайте разберём принцип работы этого электронного компонента для обычных людей, так сказать, для чайников, и где его можно применить. По сути, это электронный аналог выключателей, которыми вы каждый день пользуетес

Есть много типов этих элементов, обладающие различными характеристиками и имеющие различные области применения. Рассмотрим обычный однооперационный тиристор.

Способ обозначения на схемах показан на рисунке 1.

Электронный элемент имеет следующие выводы:

  • анод — положительный вывод;
  • катод — отрицательный вывод;
  • управляющий электрод G.

Принцип действия тиристора

Обозначение тиристораОбозначение тиристораОсновное применение этого типа элементов — это создание на их основе силовых тиристорных ключей для коммутации больших токов и их регулирования. Включение выполняется сигналом, переданным на управляющий электрод. При этом элемент является не полностью управляемым, и для его закрытия необходимо применение дополнительных мер, которые обеспечат падение величины напряжения до нуля.

Если говорить, как работает тиристор простым языком, то он, по аналогии с диодом, может проводить ток только в одном направлении, поэтому при его подключении нужно соблюдать правильную полярность. При подаче напряжения к аноду и катоду этот элемент будет оставаться закрытым до момента, когда на управляющий электрод будет подан соответствующий электрический сигнал. Теперь, независимо от наличия или отсутствия управляющего сигнала, он не изменит своего состояния и останется открытым.

Условия закрытия тиристора:

  1. Снять сигнал с управляющего электрода;
  2. Снизить до нуля напряжение на катоде и аноде.

Для сетей переменного тока выполнение этих условий не вызывает особых трудностей. Синусоидальное напряжение, изменяясь от одного амплитудного значения до другого, снижается до нулевой величины, и если в этот момент управляющего сигнала нет, то тиристор закроется.

В случае использования тиристоров в схемах постоянного тока для принудительной коммутации (закрытия тиристора) используют ряд способов, наиболее распространённым является использование конденсатора, который был предварительно заряжен. Цепь с конденсатором подключается к схеме управления тиристором. При подключении конденсатора в цепь произойдёт разряд на тиристор, ток разряда конденсатора будет направлен встречно прямому току тиристора, что приведёт к уменьшению тока в цепи до нулевого значения и тиристор закроется.

Можно подумать, что применение тиристоров неоправданно, не проще ли использовать обычный ключ? Огромным плюсом тиристора является то, что он позволяет коммутировать огромные токи в цепи анода-катода при помощи ничтожно малого управляющего сигнала, поданного в цепь управления. При этом не возникает искрения, что немаловажно для надёжности и безопасности всей схемы.

Схема включения

Схема тиристорного ключаСхема тиристорного ключаСхема управления может выглядеть по-разному, но в простейшем случае схема включения тиристорного ключа имеет вид, показанный на рисунке 2.

К аноду присоединена лампочка L, а к ней выключателем К2 подключается плюсовая клемма источника питания G. B. Катод соединяется с минусом питания.

После подачи питания выключателем К2 к аноду и катоду будет приложено напряжение батареи, но тиристор остаётся закрытым, лампочка не светится. Для того чтобы включить лампу, необходимо нажать на кнопку К1, сигнал через сопротивление R будет подан на управляющий электрод, тиристорный ключ изменит своё состояние на открытое, и лампочка загорится. Сопротивление ограничивает ток, подаваемый на управляющий электрод. Повторное нажатие на кнопку К1 никакого влияния на состояние схемы не оказывает.

Для закрытия электронного ключа нужно отключить схему от источника питания выключателем К2. Этот тип электронных компонентов закроется, и в случае снижения напряжения питания на аноде до определённой величины, которая зависит от его характеристик. Вот так можно описать, как работает тиристор для чайников.

Характеристики

К основным характеристикам можно отнести следующие:

  • Как проверить тиристор мультиметром Как проверить тиристор мультиметром Максимально допустимый прямой ток — наибольшая возможная величина тока открытого элемента;
  • Максимально допустимый обратный ток — ток при максимальном обратном напряжении;
  • Прямое напряжение — падение величины напряжения при максимальном токе;
  • Обратное напряжение — наибольшая допустимая величина напряжения в закрытом состоянии;
  • Напряжение включения — наименьшее напряжение при котором сохраняется работоспособность электронного устройства;
  • Минимальный и максимальный ток управляющего электрода;
  • Максимально допустимая рассеиваемая мощность.

Рассматриваемые элементы, кроме электронных ключей, часто применяются в регуляторах мощности, которые позволяют изменять подводимую к нагрузке мощность за счёт изменения среднего и действующего значений переменного тока. Величина тока регулируется изменением момента подачи на тиристор открывающего сигнала (за счёт варьирования угла открывания). Углом открытия (регулирования) называется время от начала полупериода до момента открытия тиристора.

Типы данных электронных компонентов

Существует немало различных типов тиристоров, но наиболее распространены, помимо тех что мы рассмотрели выше, следующие:

  • динистор — элемент, коммутация которого происходит при достижении определённого значения величины напряжения, приложенного между анодом и катодом;
  • симистор;
  • оптотиристор, коммутация которого осуществляется световым сигналом.

Симисторы

Условное обозначение симистораУсловное обозначение симистораХотелось бы более подробно остановиться на симисторах. Как говорилось ранее, тиристоры могут проводить ток только в одном направлении, поэтому при установке их в цепи переменного тока, такая схема регулирует один полупериод сетевого напряжения. Для регулирования обоих полупериодов необходимо установить встречно-параллельно ещё один тиристор либо применить специальные схемы с использованием мощных диодов или диодных мостов. Все это усложняет схему, делает её громоздкой и ненадёжной.

Вот для таких случаев и был изобретён симистор. Поговорим о нем и о принципе работы для чайников. Главное отличие симисторов от рассмотренных выше элементов заключается в способности пропускать ток в обоих направлениях. По сути, это два тиристора с общим управлением, подключённые встречно-параллельно (рисунок. 3 А).

Условное графическое обозначение этого электронного компонента показано на Рис. 3 В. Следует заметить, что называть силовые выводы анодом и катодом будет не корректно, так как ток может проводиться в любом направлении, поэтому их обозначают Т1 и Т2. Управляющий электрод обозначается G. Для того чтобы открыть симистор, необходимо подать управляющий сигнал на соответствующий вывод. Условия для перехода симистора из одного состояния в другое и обратно в сетях переменного тока не отличаются от способов управления, рассмотренных выше.

Применяется этот тип электронных компонентов в производственной сфере, бытовых устройствах и электроинструментах для плавного регулирования тока. Это управление электродвигателями, нагревательными элементами, зарядными устройствами.

В завершение хотелось бы сказать, что и тиристоры и симисторы, коммутируя значительные токи, обладают весьма скромными размерами, при этом на их корпусе выделяется значительная тепловая мощность. Проще говоря, они сильно греются, поэтому для защиты элементов от перегрева и теплового пробоя используют теплоотвод, который в простейшем случае представляет собой алюминиевый радиатор.

Оцените статью: Поделитесь с друзьями!

chebo.biz

Отправить ответ

avatar
  Подписаться  
Уведомление о