Как получают электричество: КАК ПОЛУЧАЮТ ЭЛЕКТРИЧЕСТВО.

Содержание

КАК ПОЛУЧАЮТ ЭЛЕКТРИЧЕСТВО.

КАК ПОЛУЧАЮТ ЭЛЕКТРИЧЕСТВО.

Верходанов И.А. 1

1

Литвиновская Н.Ю. 1

1

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

Введение

Электричество имеет большое значение в нашей жизни. Почти все, что нас окружает, работает на электричестве. Например, бытовая техника у нас дома: телевизоры, стиральные машины, холодильники, компьютеры, лампочки для освещения. На улице за счет электрического тока ездят троллейбусы, трамваи, электрички, и, даже машины, используют электричество для управления и освещения дороги фарами. На заводах на электричестве работают станки, печи и другие сложные механизмы.

Так откуда же берется электричество, которое поступает к нам в дом по проводам?

В своей работе я изучу, как вырабатывается электричество на электростанциях: ТЭЦ, АЭС, гидроэлектростанция, ветроэлектростанция. Как по электрическим проводам, закрепленным на специальных опорах, электричество направляется в город, затем в каждый дом, в каждую квартиру.

В экспериментальной части докажу, как «маленький» генератор вырабатывает ток, которого будет достаточно для освещения домика.

Тема «Как получают электричество» мне особенно интересна, потому что, чтобы изготовить макеты, надо паять настоящие схемы.

Цель исследования: изучение возникновения электричества.

Задачи исследования:

  1. Изучить, как появляется электричество за счет преобразования энергии воды, ветра, солнца и газа.

  2. Понять, как устроен генератор, который вырабатывает электричество.

  3. Рассмотреть, как устроена батарейка (переносной источник энергии).

  4. Провести эксперименты: подключить игрушечный домик к генератору, который будет вырабатывать электрический ток, чтобы включить в домике освещение. Затем, таким же образом включить вентилятор.

  5. Изготовить самодельную батарейку из соленой воды и металлических пластинок.

Содержание работы:

Первое, что необходимо сделать: проанализировать учебную литературу. Из нее я узнал следующее: Электричество вырабатывается на электростанциях, затем по электрическим проводам, закрепленным на специальных опорах, направляется в город, затем в каждый дом, в каждую квартиру.

Электростанции

Электричество вырабатывается на электростанциях за счет преобразования энергии воды, ветра, солнца и газа в электрическую энергию (рис. 1).

а б

в г

Рис.1 Электростанции: а – теплоэлектроцентраль (ТЭЦ), б — атомная электростанция, в – гидроэлектростанция, г – ветроэлектростанции.

Теплоэлектроцентраль (рис.1а), одна из самых распространенных станций, дает городу не только электричество, но и тепло для отопления домов зимой. Таких станций построено очень много. Как она работает? В большой печке сжигают газ, тот самый газ, на котором мы готовим еду в кухне, см. схему на рис.2. Газ нагревает котел с водой. Вода, нагреваясь, превращается в пар. Пар вращает турбину, а она в свою очередь вращает генератор, который и вырабатывает электрический ток. Электричество по линиям электропередачи направляется к нам в город. Дым от сгоревшего газа выходит в трубу, а пар охлаждаясь в градирне, превращаясь обратно в воду, возвращается в котел. Зимой эта горячая вода направляется в наши дома, для отопления квартир.

Теперь мы видим, что механическая энергия вращения, превращается в электрическую энергию, в генераторе . [1, 4]

Рис.2. Схема работы ТЭЦ

Атомная электростанция (АЭС) сложнее предыдущей электростанции, см. рис.1б. Их меньше у нас в стране. Все дело в том, что в них не сжигают газ, а используют тепло от ядерной реакции (рис. 3). Получение такой ядерной энергии очень сложный процесс. На АЭС внутри реактора циркулирует обычная вода, очищенная от всех примесей. Реактор запускается, когда из его активной зоны извлекаются стержни, поглощающие нейтроны. Во время цепной реакции высвобождается большая тепловая энергия. Вода, циркулируя через активную зону, омывая топливные элементы, нагревается до 320

0С. Проходя внутри теплообменных трубок парогенератора, вода первого контура отдает тепло воде второго контура, не соприкасаясь с ней, что исключает попадание радиоактивных веществ за пределы реакторного зала. В остальном схема точно такая же, как и предыдущая. Вода второго контура превращается в пар. Пар с бешеной скоростью вращает турбину, а турбина приводит в движение электрогенератор, который вырабатывает электрический ток. Электричество по линиям электропередачи направляется к нам в город [1, 4].

Рис. 3 Схема работы АЭС

Гидроэлектростанция есть у нас в Перми (рис.1-в). В таких электростанциях используют энергию падающей воды. Для этого — строят поперек реки плотину. С ее высоты вода падает вниз и вращает турбину, а турбина вращает генератор, который вырабатывает электричество. Схема работы гидроэлектростанции показана на рис.4 [1, 4].

Рис. 4 Схема работы гидроэлектростанции

Ветроэлектростанции используют энергию ветра (рис.1-г). Такие электростанции не очень мощные. Ветер вращает лопасти вентилятора, похожие на лопасти самолета, только очень большие. А они уже вращают генератор (рис.5) [4].

Рис. 5 Схема работы ветроэлектростанции

Есть и другие электростанции, в которых ничего не вращается, и в них нет генератора. Это солнечные электростанции [4]. Энергия солнечного света преобразуется в электрическую в солнечных панелях, изготовленных из специального материала, который под воздействием солнечной энергии начинает вырабатывать электрический ток (рис.6).

Рис. 6 Схема работы солнечной электростанции

Устройство генератора

Так как же устроен генератор, который вырабатывает электричество?

Все мы знаем, что такое магнит, любой с ним сталкивался и играл. Магнит притягивает к себе металлические предметы. Магниты бывают разные: большие и маленькие, сильные и слабые [1].

Если в магнитное поле поместить рамку, сделанную из электрического провода, закрепить ее так, чтобы можно было вращать за ручку, то получится простейший генератор [1, 3]. Если вращать рамку, в ней возникнет электрический ток. И, если ток будет достаточно мощный, то им можно будет зажечь электрическую лампочку (рис.7). В настоящих генераторах используют вместо рамки очень длинный провод, намотанный на специальные катушки и за счет этого, генераторы получаются очень мощные.

Рис.7 Схема устройства генератора

Но что будет, если к генератору подвести электрический ток?

Если к генератору подвести электрический ток, то рамка начнет сама вращаться, то есть произойдет обратный эффект (рис.8). Такие устройства называются электродвигатели [1, 3]. Они так же бываю большими и маленькими, мощными и слабыми.

Рис.8 Схема устройства двигателя

Что делать, если источник энергии нужен переносной, а не связанный с розеткой проводами? Для этого существуют, всем нам знакомые, батарейки.

Батарейки

Батарейка — это, емкость в которой происходит химическая реакция. Самая простая батарейка состоит из цинкового стаканчика, графитового стержня и электролита между ними (рис.9).

Рис.9 Устройство батарейки

В процессе использования батарейки, химическая реакция разрушает ее изнутри и батарейка «садится», то есть разряжается. Чем больше мы нагружаем батарейку, тем сильнее химическая реакция и тем быстрее она разрядится [1, 2].

Самую простую батарейку можно изготовить дома [2]. Для этого необходимо взять два разных «металла»: гвоздик и монетка — это будут электроды (рис.10), а в качестве электролита можно использовать лимон.

Рис.10 Самодельная батарейка

Но надо учесть, что такая батарейка будет очень слабая и ее не хватит даже для того, чтобы загорелась лампочка. То, что электричество появилось, мы видим только на приборе, который называется вольтметр.

Еще самодельную батарейку можно изготовить из соленой воды и металлических пластинок (рис.11). Ее устройство очень простое. Имеется три баночки, наполненные простой соленой водой. В каждую из них опускаем по два электрода, изготовленных из металлических пластинок. Одна пластинка покрыта медью, а вторая — цинком.

Рис. 11 Самодельная батарейка

Вот такую батарейку я и продемонстрирую в экспериментальной части моей работы. А также проведу другие эксперименты: подключу игрушечный домик к генератору, который будет вырабатывать электрический ток, чтобы включить в домике освещение. И докажу следующее: механическая энергия вращения преобразуется в электрическую энергию, в генераторе.

Экспериментальная часть:

В первом эксперименте я подключу игрушечный домик к маленькой электростанции (рис.12). Буду вращать ручку, и маленький генератор будет вырабатывать ток, которого хватит, чтобы в домике заработало освещение.

Материалы для изготовления макета: картон, деревянные фанерки размером 90х170 мм, 70х165 мм, розетка, механизм от фонарика, провода, вилка, лампочки (5 шт.), клей.

Рис. 12 Первый эксперимент

Во втором эксперименте я подключу к электростанции вентилятор (рис. 13). Мы увидим, как механическая энергии вращения в генераторе, преобразуется в электрическую, бежит по проводам к вентилятору, и в его двигателе, преобразуется обратно в энергию вращения.

Материалы для изготовления макета: картон, деревянные фанерки размером 95х210 мм, 70х165 мм, розетка, провода, вилка, клей, вентилятор, электродвигатель.

Рис.13 Второй эксперимент

В третьем эксперименте я подключу к батарейкам, по-очереди, все тот же домик и вентилятор (рис.14-а,-б).

Материалы для изготовления макета: картон, деревянные фанерки размером 95х210 мм, 70х165 мм, 90х170 мм, розетка, провода, вилка, клей, вентилятор, электродвигатель, лампочки (5 шт.), батарейки.

а б

Рис.14 Третий эксперимент

В следующем – четвертом эксперименте я продемонстрирую самодельную батарейку (рис. 15-а). Берем баночки заполненные соленой водой. В каждую из них опускаем по два электрода, изготовленные из металлических пластинок. Одна пластинка покрыта медью, а вторая цинком.

Материалы для изготовления макета: картон Ø 20 мм, часовой механизм, лампочка (1 шт.), провода, три баночки с соленой водой, деревянная фанерка 75х330 мм для основания, медные и цинковые пластинки длиной 75 мм, клей.

а б

Рис.15 Четвертый эксперимент

Энергии этих трех батареек хватило, чтобы загорелась лампочка и пошли часы (рис.15-б).

Выводы

В своей работе я рассмотрел, как работают: ТЭЦ, АЭС, гидроэлектростанция, ветроэлектростанция. Схема работы ТЭЦ и АЭС в целом похожи: нагревается котел с водой, вода превращается в пар. Пар вращает турбину, а турбина вращает генератор, который и вырабатывает электрический ток. Электричество по линиям электропередачи направляется к нам в город. В одном случае сжигают газ, а, во втором — используют тепло от ядерной реакции. В гидроэлектростанциях используют энергию падающей воды для вращения турбины, а турбина вращает генератор, который вырабатывает электричество. В ветроэлектростанциях ветер вращает лопасти вентилятора, а они уже вращают генератор.

Во всех электростанциях реализуется следующее: механическая энергия вращения превращается в электрическую энергию, в генераторе. Но есть и другие электростанции, в которых ничего не вращается, и, в них нет генератора. Это — солнечные батареи. Они изготовлены из специального материала, и, под воздействием солнца вырабатывают электрический ток.

Далее в работе я рассмотрел устройство батарейки — переносного источника энергии. И как можно самую простую батарейку изготовить дома.

В практической части я провел несколько экспериментов. В первом эксперименте подключил игрушечный домик к «маленькой электростанции». «Маленький» генератор вырабатывает ток, которого достаточно для включения в доме электричества. Во втором — подключил к электростанции вентилятор. Механическая энергия вращения в генераторе, преобразуется в электрическую, бежит по проводам к вентилятору, и в его двигателе, преобразуется обратно в энергию вращения. В третьем эксперименте я подключил к батарейкам, по очереди, все тот же домик и вентилятор. В четвертом эксперименте я продемонстрировал самодельную батарейку. В каждую из трех баночек с соленой водой опустил по два электрода, изготовленные из металлических пластинок из меди и цинка.

В проведенных двух экспериментах, я подтвердил и наглядно продемонстрировал следующее: механическая энергия вращения в генераторе, преобразуется в электрическую. А также изготовил самодельную батарейку, энергии которой хватило, чтобы загорелась лампочка и пошли часы.

Но, у меня остались вопросы, на которые мне предстоит найти ответы:

Как протекает ядерная реакция? Какие АЭС есть у нас в стране? А еще мне интересно почему произошла авария в Чернобыле.

О, сколько нам открытий чудных

Готовит просвещенья дух,

И опыт – сын ошибок трудных,

И гений, парадоксов друг.

А.С. Пушкин

Список литературы

1 Ю.И. Дик, В. А. Ильин, Д.А. Исаев и др. /Физика: Большой справочник для школьников и поступающих в вузы / Издательство «Дрофа», 2000 год.

2 «Энциклопедия для детей от А до Я» / Издательство «Махаон», Москва, 2010.

3 А.А. Бахметьев/ Электронный конструктор «Знаток»/ Практические занятия по физике. 8, 9, 10, 11 классы.// Москва, 2005 год.

4 Получение и использование электрической энергии: [электронный ресурс] // Мир знаний. URL: http://mirznanii.com/info/id-9244

Просмотров работы: 9548

Откуда берется электричество? | ТГК-1

Наверное, каждому пользователю в душе интересно, откуда берутся эти самые электроны в электрической лампочке. Все знают — вырабатываются на ГЭС, ТЭЦ, с атомных станций. Меньше людей слышали о солнечных, ветряных, геотермальных, приливных станциях, ещё меньше — о ГРЭС (государственные районные электрические станции), и ГАЭС. И уж совсем мало кто знает, как это оказывается сложно — управлять электричеством.

В чём сложность? И вот тут в двух словах не объяснить — приходится лезть в дебри энергетики. А знать стоит, потому что именно из этих знаний складывается самая волнующая нас интрига — цена за киловатт.

Первая хитрость — электричество нельзя запасти «на завтра», и приходится ориентироваться на текущую выработку, а потери при транспортировке высоки — поэтому энергетики вынуждены приспосабливаться буквально на каждом шагу: использовать низкий ток, менять сечения проводов, использовать повышающие и понижающие трансформаторы, дозировать электроэнергию дополнительными станциями.

Мало того, трудности возникают и в частном порядке — есть пики и провалы в энергопотреблении, а тяжесть проводов может не выдержать погодных условий — например, снегопада. Вот почему земля буквально опутана проводами разных сортов — электричество нужно всем и каждому, желательно — бесплатно, а подать его в нужной мощности и за деньги не легко.

Вот пример. Генератор может выдавать только столько мощности, сколько может потребить потребитель. Если даже генератор имеет установленную мощность на 100 МВт, то он не сможет ее набрать, если нет соотвестствующей нагрузки. Как частный случай – выдаст, но с отклонением от принятой частоты в 50Гц, что сделает невозможным использовать такую электроэнергию, а это — невосполнимые затраты.

Всё начинается именно с генератора — это чудесное устройство невообразимым, но легко объяснимым физикой способом вырабатывает с помощью силы воды поток электронов, которые начинают своё экстравагантное путешествие по проводам — к чайнику.

ГЭС преобразует механическую энергию воды в электрическую — в этом она, кстати, самая экологичная. Вода «давит» на лопасти рабочего колеса, которое на одном валу с генератором. Чем больше напор – тем больше давление. Генератор представляет из себя ротор и статор. Статор – неподвижная часть с обмоткой. Ротор вращается в электрическом поле статора, возникает Электродвижущая сила (ЭДС). С выводных устройств идет съем электроэнергии — это описание принципа работы любого генератора.

Но вот в чём чудо — в этом «пахтании океана» появляются электроны, и они не одиноки. Есть ещё электрически заряженные частицы, квази частицы. Электроны в проводах можно сравнить с рыбами в воде: проводники для них — среда обитания. В диэлектриках жизни нет)

Трансформаторами мощность и понижают, и повышают, и что там происходит с частицами — можно представить. И через поля проходят — правда, магнитные; притягиваются и отталкиваются, исчезают — и возникают! В путешествиях по подстанциям могут менять и вид энергии, и форму. Двигаются с небольшой скоростью, но по отношению с неподвижными собратьями находятся на границе, которая уже имеет скорость света… У электронов море приключений прежде, чем они постучатся в ваш дом.

Поздороваться с электронами нельзя, как и поговорить. По сути они — просто другая форма жизни, которую нам по счастливой случайности или глубокой закономерности удалось приручить — как оленей, кошек, окучить картошку. С этой точки зрения наше существование на планете явление столь же необычное и интересное, как и бег электронов.

Но вернёмся на Землю. Для нас важно – уровень напряжения, частота электрического тока в сети. Суточная неравномерность потребления регулируется автоматикой: у системного оператора стоит основной управляющий блок станциями, которые в этой системе состоят. Генераторы например работают в системе ГРАМ – «групповое регулирование активной мощности». Система распределяет нагрузку оптимально для каждого генератора. Естественно, стараются применять типовые генераторы. Тогда случае изменения нагрузки потребителем система ГРАМ загружает или разгружает генераторы за секунды.

Есть еще система АРЧМ – «автоматическое регулирование частоты и мощности». Это специальная программа, которая воздействует на управление регуляторами скоростей. Ее задача – держать заданные показатели в норме. Допустим, задано держать переток из Кольской энергосистемы в Карельскую мощность в 500 МВт. И вдруг «отваливается» какой-то крупный потребитель на 50 МВт. Значит, система АРЧМ должна воздействовать на некоторые управляющие элементы и где-то в энергосистеме снизить  их мощность.

Система действует в течении секунд. В пределах 10 секунд обычно устраняется возмущение. При очень крупных дисбалансах установка равновесия может занимать 1-2 минуты.

То есть ГРАМ управляет в масштабе одной станции, а АРЧМ управляет станциями. К сожалению, и это не всегда эффективно. Допустим, маленькая станция, 6 МВт. А потребитель в нашем примере «отвалился» на 50 МВт. Что там регулировать?

Потому АРЧМ стараются ставить на больших станциях, например, на Верхнетуломской ГЭС, на Серебрянских, на Териберке. На Княжегубской ГЭС. Каждая система управления это немалые расходы на монтаж и содержание, хоть процессы и автоматизированы. И всё это — только начальные дебри! 

Как получают электричество. IV Международный конкурс научно-исследовательских и творческих работ учащихся Старт в науке


Как получают электричество

Производство и использование электрической энергии

В наше время уровень производства и потребления энергии — один из важнейших показателей развития производственных сил общества. Ведущую роль при этом играет электроэнергия — самая универсальная и удобная для использования форма энергии. Если потребление энергии в мире увеличивается в 2 раза примерно за 25 лет, то увеличение потребления электроэнергии в 2 раза происходит в среднем за 10 лет. Это означает, что все больше и больше процессов, связанных с расходованием энергоресурсов, переводится на электроэнергию…

 

Производство электроэнергии. Производится электроэнергия на больших и малых электрических станциях в основном с помощью электромеханических индукционных генераторов. Существует два основных типа электростанций: тепловые и гидроэлектрические. Различаются эти электростанции двигателями, вращающими роторы генераторов.

На тепловых электростанциях источником энергии является топливо: уголь, газ, нефть, мазут, горючие сланцы. Роторы электрических генераторов приводятся во вращение паровыми и газовыми турбинами или двигателями внутреннего сгорания. Наиболее экономичны крупные тепловые паротурбинные электростанции (сокращенно: ТЭС). Большинство ТЭС нашей страны использует в качестве топлива угольную пыль. Для выработки 1 кВт • ч электроэнергии затрачивается несколько сот граммов угля. В паровом котле свыше 90% выделяемой топливом энергии передается пару. В турбине кинетическая энергия струй пара передается ротору. Вал турбины жестко соединен с валом генератора. Паровые турбогенераторы весьма быстроходны: число оборотов ротора составляет несколько тысяч в минуту.

Из курса физики 10 класса известно, что КПД тепловых двигателей увеличивается с повышением температуры нагревателя и соответственно начальной температуры рабочего тела (пара, газа). Поэтому поступающий в турбину пар доводят до высоких параметров: температуру — почти до 550 °С и давление — до 25 МПа. Коэффициент полезного действия ТЭС достигает 40% . Большая часть энергии теряется вместе с горячим отработанным паром.

Тепловые электростанции — так называемые теплоэлектроцентрали (ТЭЦ) — позволяют значительную часть энергии отработанного пара использовать на промышленных предприятиях и для бытовых нужд (для отопления и горячего водоснабжения). В результате КПД ТЭЦ достигает 60—70%. В настоящее время в России ТЭЦ дают около 40% всей электроэнергии и снабжают электроэнергией и теплом сотни городов.

На гидроэлектростанциях (ГЭС) для вращения роторов генераторов используется потенциальная энергия воды. Роторы электрических генераторов приводятся во вращение гидравлическими турбинами. Мощность такой станции зависит от создаваемой плотиной разности уровней воды (напор) и от массы воды, проходящей через турбину в каждую секунду (расход воды).

Значительную роль в энергетике играют атомные электростанции (АЭС). В настоящее время АЭС в России дают около 10% электроэнергии.

Основные типы электростанций

Тепловые электростанции строятся быстро, дёшево, но много вредных выбросов в окружающую среду и природные запасы энергоресурсов ограничены.

Гидроэлектростанции строятся дольше, дороже; себестоимость электроэнергии минимальна, но происходит затопление плодородных земель и строительство возможно только в определённых местах.

Атомные электростанции строятся долго, дорого, но электроэнергия дешевле чем на ТЭС, вредное воздействие на окружающую среду не значительное ( при правильной эксплуатации), но требует захоронения радиоактивных отходов.

Использование электроэнергии

Главным потребителем электроэнергии является промышленность, на долю которой приходится около 70% производимой электроэнергии. Крупным потребителем является также транспорт. Все большее количество железнодорожных линий переводится на электрическую тягу. Почти все деревни и села получают электроэнергию от электростанций для производственных и бытовых нужд. О применении электроэнергии для освещения жилищ и в бытовых электроприборах знает каждый.

Большая часть используемой электроэнергии сейчас превращается в механическую энергию. Почти все механизмы в промышленности приводятся в движение электрическими двигателями. Они удобны, компактны, допускают возможность автоматизации производства.

Около трети электроэнергии, потребляемой промышленностью, используется для технологических целей (электросварка, электрический нагрев и плавление металлов, электролиз и т. п.).

Современная цивилизация немыслима без широкого использования электроэнергии. Нарушение снабжения электроэнергией большого города и даже маленьких сёл при аварии парализует их жизнь.

Передача электроэнергии

Потребители электроэнергии имеются повсюду. Производится же она в сравнительно немногих местах, близких к источникам топливо- и гидроресурсов. Электроэнергию не удается консервировать в больших масштабах. Она должна быть потреблена сразу же после получения. Поэтому возникает необходимость в передаче электроэнергии на большие расстояния.

Передача электроэнергии связана с заметными потерями, так как электрический ток нагревает провода линий электропередачи. В соответствии с законом Джоуля — Ленца энергия, расходуемая на нагрев проводов линии, определяется формулой Q= I2Rt где R — сопротивление линии.

При очень большой длине линии передача энергии может стать экономически невыгодной. Значительно снизить сопротивление линии R практически весьма трудно. Приходится уменьшать силу тока.

Поэтому на крупных электростанциях устанавливают повышающие трансформаторы. Трансформатор увеличивает напряжение в линии во столько же раз, во сколько раз уменьшает силу тока.

Чем длиннее линия передачи, тем выгоднее использовать более высокое напряжение. Так, в высоковольтной линии передачи Волжская ГЭС — Москва и некоторых других используют напряжение 500 кВ. Между тем генераторы переменного тока настраивают на напряжения, не превышающие 16—20 кВ. Более высокое напряжение потребовало бы принятия сложных специальных мер для изоляции обмоток и других частей генераторов.

Для непосредственного использования электроэнергии в двигателях электропривода станков, в осветительной сети и для других целей напряжение на концах линии нужно понизить. Это достигается с помощью понижающих трансформаторов. Общая схема передачи энергии и ее распределения показана на рисунке.

Обычно понижение напряжения и соответственно увеличение силы тока осуществляются в несколько этапов. На каждом этапе напряжение становится все меньше, а территория, охватываемая электрической сетью, — все шире.

При очень высоком напряжении между проводами может начаться разряд, приводящий к потерям энергии. Допустимая амплитуда переменного напряжения должна быть такой, чтобы при заданной площади поперечного сечения провода потери энергии вследствие разряда были незначительными.

Электрические станции ряда районов страны объединены высоковольтными линиями электропередачи, образуя общую электрическую сеть, к которой подключены потребители. Такое объединение, называемое энергосистемой, дает возможность сгладить пиковые нагрузки потребления энергии в утренние и вечерние часы. Энергосистема обеспечивает бесперебойность подачи энергии потребителям вне зависимости от места их расположения. Сейчас почти вся территория нашей страны обеспечивается электроэнергией объединенными энергетическими системами. Действует Единая энергетическая система европейской части страны.

www.electrum.su

Изобретение электричества: история, применение, получение

Одной из важнейших вех в истории планеты является изобретение электричества. Именно это открытие помогает и по сей день развиваться нашей цивилизации. Электричество – один из наиболее экологичных видов энергии. Кому принадлежит открытие этого явления? Каким образом электричество получают и применяют? Можно ли самостоятельно создать гальванический элемент?

История изобретения электричества кратко

Электричество было обнаружено еще в 7 веке до нашей эры древнегреческим философом Фалесом. Он выяснил, что натертый шерстью янтарь способен притягивать меньшие по массе предметы.

Однако масштабные эксперименты с электричеством начинаются в эпоху возрождения в Европе. В 1650 г. магдебургским бургомистром фон Герике была построена электростатическая установка. В 1729 г. Стивеном Греем был поставлен опыт по передаче электроэнергии на расстояние. В 1747 Бенджамин Франклин издал очерк, где была собраны все известные факты об электричестве и выдвинуты новые теории. В 1785-м был открыт закон Кулона.

1800 год стал переломным: итальянец Вольт изобретает первый источник постоянного тока. В 1820-м датским ученым Эрстедом было обнаружено электромагнитное взаимодействие предметов. Годом позднее Ампер выяснил, что магнитное поле создается электрическим током, но не статическими зарядами.

Такие великие исследователи, как Гаусс, Джоуль, Ленц, Ом внесли неоценимый вклад в изобретение электричества. Год 1830-й также стал важным, ведь Гауссом была разработана теория электростатического поля. Явление электромагнитной индукции и разработка двигателя, работающего на токе, принадлежит Майклу Фарадею.

В конце 19 века опыты с электричеством проводились многими учеными, в их числе Пьер Кюри, Лачинов, Герц, Томсон, Резерфорд. В начале 20 века появилась теория квантовой электродинамики.

Электричество в природе

Открытие и изобретение электричества произошло уже очень давно. Однако ранее считалось, что в природе его просто нет. Но американец Франклин выяснил, что такое явление, как молния, имеет чисто электрическую природу. Долгое время его точка зрения отвергалась научным сообществом.

Электричество имеет огромное значение в природе. Многие ученые полагают, что благодаря разрядам молний осуществился синтез аминокислот, в результате чего на Земле зародилась жизнь. Без нервных импульсов невозможно функционирование организма ни одного животного. Существуют разновидности морских организмов, которые применяют электричество как средство для обороны, нападения, ориентации в пространстве и поиска пищи.

Получение электричества

Изобретение электричества оказало влияние на научно-технический прогресс. Для получения электроэнергии создаются вот уже на протяжении многих десятилетий электростанции. Электричество создается с помощью генераторов энергии, а затем оно передается по ЛЭП. Принцип создания тока заключается в переводе механической энергии в электрическую. Электростанции подразделяются на следующие типы:

  • атомные;
  • ветровые;
  • гидроэнергетические;
  • приливно-отличные;
  • солнечные;
  • тепловые.

Применение электричества

Изобретение электричества по праву является величайшим открытием, ведь без него становится невозможной современная жизнь. Оно имеется почти в каждом доме и применяется для освещения, обмена информацией, приготовления пищи, обогрева, функционирования бытовых приборов. Также электроэнергия необходима для движения трамваем, троллейбусов, метро, электропоездов. Работа компьютера, сотового телефона тоже невозможна без электричества.

Любопытный опыт

Оказывается, гальванический элемент можно изготовить самостоятельно, и делается это достаточно просто. Такой способ получил известность в начале 20 века.

Для начала необходимо пополам разрезать достаточно острым ножом лимон посередине. Крайне нежелательно снимать или срывать перегородки между дольками. После этого нужно к каждой дольке подсоединить поочередно небольшой кусок проволоки, размером около 2 сантиметров. В ячейках должны чередоваться медная и цинковая проволоки. Затем следует концы торчащих проволок последовательно соединить металлической проволокой меньшего диаметра. Таким образом можно получить элемент питания. Как проверить, работает ли он? Для этого можно замерить напряжение вольтметром.

Одним из важнейших открытий в истории человечества стало изобретение электричества. Дата открытия точно неизвестна. Однако эксперименты начал проводить еще древнегреческий ученый Фалес. Активное изучение электричества началось в эпоху возрождения. Без него невозможна деятельность ни одного живого организма. Сегодня без этого изобретения мы практически не можем представить свою жизнь. Люди уже давно научились получать, передавать и использовать электроэнергию.

fb.ru

Откуда берется электричество? Источники электроэнергии

Жизнь современного человека организована таким образом, что ее инфраструктурное обеспечение задействует множество компонентов с разными технико-функциональными свойствами. К таким относится и электроэнергия. Рядовой потребитель не видит и не ощущает, как именно она выполняет свои задачи, но конечный результат вполне заметен в работе бытовой техники, да и не только. При этом вопросы, касающиеся того, откуда берется электричество, в представлении многих пользователей тех же домашних приборов остаются нераскрытыми. Для расширения знаний в этой области стоит начать с понятия об электроэнергии как таковой.

Что такое электричество?

Сложность данного понятия вполне объяснима, так как энергию невозможно обозначить как обычный предмет или явление, доступное визуальному восприятию. При этом существуют два подхода к ответу на вопрос о том, что такое электричество. Определение ученых гласит, что электричество является потоком заряженных частиц, который характеризуется направленным движением. Как правило, под частицами понимаются электроны.

В самой же отрасли энергетики чаще рассматривают электроэнергию как продукт, вырабатываемый подстанциями. С этой точки зрения имеют значение и элементы, которые непосредственно участвуют в процессе формирования и передачи тока. То есть в данном случае рассматривается энергетическое поле, создаваемое вокруг проводника или другого заряженного тела. Чтобы приблизить такое понимание энергии к реальному наблюдению, следует разобраться с таким вопросом: откуда берется электричество? Существуют разные технические средства для производства тока, и все они подчинены одной задаче — снабжению конечных потребителей. Впрочем, до момента, когда пользователи смогут обеспечить свои приборы энергией, она должна пройти несколько этапов.

Выработка электричества

На сегодняшний день в сфере энергетики применяется порядка 10 видов станций, которые обеспечивают генерацию электричества. Это процесс, в результате которого происходит преобразование определенного вида энергии в токовый заряд. Иными словами, электричество формируется в ходе переработки другой энергии. В частности, на специализированных подстанциях используют в качестве основного рабочего ресурса тепловую, ветреную, приливную, геотермальную и другие виды энергии. Отвечая на вопрос относительно того, откуда приходит электричество, стоит отметить инфраструктуру, которой обеспечена каждая подстанция. Любой электрогенератор обеспечен сложной системой функциональных узлов и сетей, которые позволяют аккумулировать вырабатываемую энергию и готовить ее для дальнейшей передачи на узлы распределения.

Традиционные электростанции

Хотя за последние годы тенденции в энергетике меняются быстрыми темпами, можно выделить основные виды электростанций, работающих по классическим принципам. В первую очередь это объекты тепловой генерации. Выработка ресурса производится в результате сгорания органического топлива и последующего преобразования выделяемой тепловой энергии. При этом существуют разные виды таких станций, в числе которых теплофикационные и конденсационные. Главным отличием между ними является возможность объектов второго типа также генерировать и тепловые потоки. То есть при ответе на вопрос о том, откуда берется электричество, можно отметить и станции, которые параллельно производят и другие виды энергии. Кроме тепловых объектов выработки, достаточно распространены гидро- и атомные станции. В первом случае предполагается преобразование энергии от движения воды, а во втором — в результате деления атомов в специальных реакторах.

Альтернативные источники энергии

К данной категории источников энергии принято относить солнечные лучи, ветер, земельные недра и т. д. Особенно распространены различные генераторы, ориентированные на аккумуляцию и преобразование в электричество солнечной энергии. Подобные установки привлекательны тем, что их может использовать любой потребитель в объемах, требуемых для снабжения его дома. Впрочем, широкому распространению подобных генераторов мешает высокая стоимость оборудования, а также нюансы в эксплуатации, обусловленные зависимостью рабочих фотоэлементов от интенсивности света.

На уровне крупных энергетических компаний активно развиваются ветряные альтернативные источники электричества. Уже сегодня целый ряд стран использует программы постепенного перехода на этот вид энергообеспечения. Впрочем, и в данном направлении есть свои препятствия, обусловленные маломощностью генераторов при высокой стоимости. Относительно новым альтернативным источником энергии является естественное тепло Земли. В данном случае станции преобразуют тепловую энергию, полученную из глубин подземных каналов.

Распределение электроэнергии

После выработки электроэнергии начинается этап ее передачи и распределения, который обеспечивается энергосбытовыми компаниями. Поставщики ресурса организуют соответствующую инфраструктуру, основу которой составляют электрические сети. Существует два вида каналов, по которым реализуется передача электричества, — воздушные и подземные кабельные линии. Данные сети являются конечным источником и главным ответом на вопрос о том, откуда берется электричество для разных нужд пользователей. Организации-поставщики прокладывают специальные трассы для организации сетевого распределения электроэнергии, используя при этом разные виды кабелей.

Потребители электричества

Электроэнергия требуется для самых разных задач как в бытовом хозяйстве, так и в промышленном секторе. Классическим примером использования данного носителя энергии является освещение. Однако в наши дни электричество в доме служит для обеспечения работы более широкого спектра приборов и оборудования. И это лишь небольшая часть потребностей общества в энергоснабжении.

Данный ресурс также требуется для поддержания работы транспортной инфраструктуры: для обслуживания линий троллейбусов, трамваев и метро и т. д. Отдельно стоит отметить промышленные предприятия. Заводы, комбинаты и перерабатывающие комплексы зачастую требуют подключения огромных мощностей. Можно сказать, это самые крупные потребители электроэнергии, использующие данный ресурс для обеспечения работы технологического оборудования и местной инфраструктуры.

Управление объектами электроэнергетики

Помимо организации электросетевого хозяйства, которое технически обеспечивает возможность передачи и распределения энергии для конечных потребителей, работа данного комплекса невозможна без систем управления. Для реализации этих задач поставщики используют оперативно-диспетчерские пункты, сотрудники которых реализуют централизованный контроль и управление работой вверенных им объектов электроэнергетики. В частности, подобные службы контролируют параметры сетей, к которым подключаются потребители электроэнергии на разных уровнях. Отдельно стоит отметить и отделы диспетчерских пунктов, которые выполняют техобслуживание сетей, предотвращая износы и восстанавливая повреждения на отдельных участках линий.

Заключение

За все время существования энергетическая отрасль претерпела несколько этапов своего развития. В последнее время наблюдаются новые перемены, обусловленные активным освоением альтернативных источников энергии. Успешное развитие этих направлений уже сегодня дает возможность использовать электричество в доме, полученное от индивидуальных бытовых генераторов независимо от центральных сетей. Впрочем, и в этих отраслях есть определенные сложности. В первую очередь они связаны с финансовыми затратами на закупку и монтаж соответствующего оборудования — тех же солнечных панелей с аккумуляторами. Но поскольку энергия, вырабатываемая от альтернативных источников, является полностью бесплатной, то перспективы дальнейшего продвижения этих областей сохраняют актуальность для разных категорий потребителей.

fb.ru

Рассмотрим как получить электричество из земли

Добрый день, эксперты-электрики!

Имя мое Саша, и меня мучает вот такой вопрос. Сегодня в сети можно накопать кучу материала на тему, как «матушка Земля» способна обеспечить нас дармовым электричеством, а негодяи нефтяники и атомщики (монополисты) не дают развития технологиям, так как это может перевернуть весь мир.

В общем, слышали вы что-нибудь о том, может ли электрическое и магнитное поле Земли стать источником дешевой электроэнергии? Спасибо за внимание!

Катушка Тесла в работе

Ответ читателю

Спасибо Вам, Александр, за очень интересный вопрос. Данная тема, поверьте, волнует не только Вас, но и большое количество жителей наше планеты, в том числе и автора данного материала и причин тому несколько.

  • Во-первых, это постоянный рост цен на энергоносители, что очень сильно толкает вверх инфляцию на прочие товары, из-за чего мы вынуждены вращаться как белки в колесе, постоянно наращивая производства, плюс современные банковские системы, но не будем об этом.
  • Во-вторых, многим не дает покоя окутанная тайной биография знаменитого сербского изобретателя Никола Тесла, который, по слухам, смог построить полноценную электростанцию, которая смогла обеспечить электрической энергией, взятой из эфира, целы город, но технологию заблокировали царившие в то время в Америке промышленники.
  • В-третьих, существуют рабочие схемы, которые мы и обсудим сегодня, а, как известно, все, что работает, можно усовершенствовать.

В интернете можно найти огромное количество видео, в которых домашние умельцы демонстрируют свои установки, которые в качестве источника энергии используют магнитное и электрическое поле Земли. Кто-то даже умудряется такие агрегаты продавать, но видеть в работе подобные устройства нам не приходилось, что, однако, не отрицает их реального существования.

Ходят слухи, что некая швейцарская компания, чье название автор успешно позабыл, официально продает за баснословные деньги компактные аппараты, с условием обслуживания только ее специалистами, компактные установки, способные обеспечивать электричеством полноценный дом со всеми приборами в нем.

Однако стоит понимать, что большинство таких фото и видео материалов являются подделками, с целью получения выгоды или славы, а отговорки, мол, выложить схемы устройств не можем, так как тут же изобретателей «прессанут» спецслужбы, можно считать лишь отговорками. При желании в интернет можно запустить что угодно, и вычистить это полностью будет нереально, хотя отрицать до конца теорию заговора, мы не хотим. Мало ли…

Но все это лирика, давайте поговорим, что мы можем соорудить своими руками, и может ли такая энергия пригодиться в быту.

Что правда, а что миф

Пробуем зажечь лампочку

Итак, можно ли получить электричество, использовав электрическое магнитное поле Земли?

Теоретически да! Земля – это, по сути, один огромный конденсатор, имеющий сферическую форму.

  • На внутренней поверхности планеты происходит накопление отрицательного заряда, тогда как на наружной – положительного.
  • Изолятор между ними – это атмосфера, через которую постоянно протекает ток, а разница потенциалов при этом сохраняется;
  • Потерянные заряды восстанавливаются за счет магнитного поля, являющегося, по сути, генератором.

Как же извлечь электричество из этой нехитрой схемы? Устройство должно состоять из следующих элементов:

  • Катушка Тесла (эмиттер) — генератор высоковольтный, который позволяет электронам покидать проводник;
  • Проводник;
  • Контур заземляющий, соединенный с проводником.

Дальнейшая инструкция в теории проста! В идеале, нам осталось подключиться к полюсу генератора и позаботится о качественном заземлении, но…

  • Самая высока точка установки, где располагается эмиттер, должна расположиться на такой высоте, чтобы потенциал электрического поля Земли, а точнее его разница, поднимал электроны вверх по проводнику.
  • Эмиттер, в виде ионов, станет их высвобождать в атмосферу и будет это происходить до тех пор, пока уровень потенциалов не сравняется.
  • К такой цепи могут подключаться потребители тока, причем их количество будет зависеть от мощности катушки Тесла.
  • Да, чуть не забыли! Нужно учесть высоту всех заземленных проводников в округе (деревья, металлические столбы, высотки и прочее) и сделать установку выше их всех, что делает затею практически нереальной к исполнению.

Что можно попробовать сделать

Давайте разберем два простейших способа, как добыть энергию из земли.

Принцип гальванической пары

Наша задача, найти разность потенциала, и в земле это сделать проще всего, так как она состоит из газов, воды и минеральных веществ. Грунт – это множество твердых частиц, между которыми находятся пузырьки воздуха и молекулы воды.

Элементарная единица почвы – мицелла. Это глинисто-гумусовый комплекс, обладающий разностью потенциалов. Эти частицы накапливают заряды по тому же принципу, что и вся планета, поэтому в почве постоянно протекают электрохимические реакции. И наша задача подключится к этой «сети».

Использовать можно два электрода, сделанных из разных металлов (медь и оцинкованное железо), то есть будет использоваться принцип, как в обычной солевой батарейке. Помимо гальванической пары нам потребуется электролит (раствор соли).

  • Погружаем электроды в грунт где-то на полметра, на расстоянии в 25 сантиметров друг от друга.
  • Устанавливаем вокруг кусок трубы нужного диаметра, чтобы оградить остальную почву от электролита, так как уровень соли не позволить расти в месте поливки никаким растениям.
  • Готовим насыщенный водный раствор соли и проливаем им землю между электродами.
  • Подключаем к выводам вольтметр спустя минут 15 и видим, что прибор показывает напряжение в 3В.

Итого, к полученному источнику питания можно подключить маломощную светодиодную лампу. Показания вольтметра будет разниться в зависимости от плотности грунта, его влажности и прочих показателей, так что на разных участках результаты будут отличными.

Способ с заземлением

Если ваш частный дом оборудован нормальным контуром заземления, то знайте, что часть потребляемого вами тока уходит через него в грунт, особенно если включено сразу много электроприборов.

В результате этого процесса, между нулевым проводом вашей сети и заземляющим возникает разница потенциалов, составляя от 15 до 20 Вольт. Подключив к ним низковольтную лампочку, вы заставите ее светиться

Интересно знать! Данный ток не будет регистрироваться электрическим счетчиком, так как фактически он через него уже прошел.

Схему можно усовершенствовать, установив трансформатор и выровняв тем напряжение. А включив в схему аккумулятор, можно запасать энергию, что позволит использовать схему, когда остальные приборы в доме «молчат».

Вариант рабочий, но подходит он только для частных домовладений, так как в квартирах нет нормального заземления, а использование водопроводных труб для этого законодательно запрещено. Тем более нельзя использовать для подключения землю и фазу, так как заземление окажется под напряжением в 220В – цена такого опыта, возможно, чья-то жизнь.

Вывод

Итак, поле электрическое нашей планеты, безусловно, может послужить практически неисчерпаемым источником энергии, но официально извлекать ее пока не научились и в этом направлении ведутся многие разработки. Не стоит забывать, что многие законы физики человек так и не объяснил, и ориентируется по теориям, которые периодически нарушаются.  А что озвученные нами схемы, то они малоэффективны, но при желании вы можете поэкспериментировать. На этом все! Надеемся, материал был Вам полезен!

elektrik-a.su

КАК ПОЛУЧАЮТ ЭЛЕКТРИЧЕСТВО.

КАК ПОЛУЧАЮТ ЭЛЕКТРИЧЕСТВО.

Верходанов И.А. 1

1

Литвиновская Н.Ю. 1

1

Текст работы размещён без изображений и формул.Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

Введение

Электричество имеет большое значение в нашей жизни. Почти все, что нас окружает, работает на электричестве. Например, бытовая техника у нас дома: телевизоры, стиральные машины, холодильники, компьютеры, лампочки для освещения. На улице за счет электрического тока ездят троллейбусы, трамваи, электрички, и, даже машины, используют электричество для управления и освещения дороги фарами. На заводах на электричестве работают станки, печи и другие сложные механизмы.

Так откуда же берется электричество, которое поступает к нам в дом по проводам?

В своей работе я изучу, как вырабатывается электричество на электростанциях: ТЭЦ, АЭС, гидроэлектростанция, ветроэлектростанция. Как по электрическим проводам, закрепленным на специальных опорах, электричество направляется в город, затем в каждый дом, в каждую квартиру.

В экспериментальной части докажу, как «маленький» генератор вырабатывает ток, которого будет достаточно для освещения домика.

Тема «Как получают электричество» мне особенно интересна, потому что, чтобы изготовить макеты, надо паять настоящие схемы.

Цель исследования: изучение возникновения электричества.

Задачи исследования:

  1. Изучить, как появляется электричество за счет преобразования энергии воды, ветра, солнца и газа.

  2. Понять, как устроен генератор, который вырабатывает электричество.

  3. Рассмотреть, как устроена батарейка (переносной источник энергии).

  4. Провести эксперименты: подключить игрушечный домик к генератору, который будет вырабатывать электрический ток, чтобы включить в домике освещение. Затем, таким же образом включить вентилятор.

  5. Изготовить самодельную батарейку из соленой воды и металлических пластинок.

Содержание работы:

Первое, что необходимо сделать: проанализировать учебную литературу. Из нее я узнал следующее: Электричество вырабатывается на электростанциях, затем по электрическим проводам, закрепленным на специальных опорах, направляется в город, затем в каждый дом, в каждую квартиру.

Электростанции

Электричество вырабатывается на электростанциях за счет преобразования энергии воды, ветра, солнца и газа в электрическую энергию (рис.1).

а б

в г

Рис.1 Электростанции: а – теплоэлектроцентраль (ТЭЦ), б — атомная электростанция, в – гидроэлектростанция, г – ветроэлектростанции.

Теплоэлектроцентраль (рис.1а), одна из самых распространенных станций, дает городу не только электричество, но и тепло для отопления домов зимой. Таких станций построено очень много. Как она работает? В большой печке сжигают газ, тот самый газ, на котором мы готовим еду в кухне, см. схему на рис.2. Газ нагревает котел с водой. Вода, нагреваясь, превращается в пар. Пар вращает турбину, а она в свою очередь вращает генератор, который и вырабатывает электрический ток. Электричество по линиям электропередачи направляется к нам в город. Дым от сгоревшего газа выходит в трубу, а пар охлаждаясь в градирне, превращаясь обратно в воду, возвращается в котел. Зимой эта горячая вода направляется в наши дома, для отопления квартир. Теперь мы видим, что механическая энергия вращения, превращается в электрическую энергию, в генераторе . [1, 4]

Рис.2. Схема работы ТЭЦ

Атомная электростанция (АЭС) сложнее предыдущей электростанции, см. рис.1б. Их меньше у нас в стране. Все дело в том, что в них не сжигают газ, а используют тепло от ядерной реакции (рис. 3). Получение такой ядерной энергии очень сложный процесс. На АЭС внутри реактора циркулирует обычная вода, очищенная от всех примесей. Реактор запускается, когда из его активной зоны извлекаются стержни, поглощающие нейтроны. Во время цепной реакции высвобождается большая тепловая энергия. Вода, циркулируя через активную зону, омывая топливные элементы, нагревается до 320 0С. Проходя внутри теплообменных трубок парогенератора, вода первого контура отдает тепло воде второго контура, не соприкасаясь с ней, что исключает попадание радиоактивных веществ за пределы реакторного зала. В остальном схема точно такая же, как и предыдущая. Вода второго контура превращается в пар. Пар с бешеной скоростью вращает турбину, а турбина приводит в движение электрогенератор, который вырабатывает электрический ток. Электричество по линиям электропередачи направляется к нам в город [1, 4].

Рис. 3 Схема работы АЭС

Гидроэлектростанция есть у нас в Перми (рис.1-в). В таких электростанциях используют энергию падающей воды. Для этого — строят поперек реки плотину. С ее высоты вода падает вниз и вращает турбину, а турбина вращает генератор, который вырабатывает электричество. Схема работы гидроэлектростанции показана на рис.4 [1, 4].

Рис. 4 Схема работы гидроэлектростанции

Ветроэлектростанции используют энергию ветра (рис.1-г). Такие электростанции не очень мощные. Ветер вращает лопасти вентилятора, похожие на лопасти самолета, только очень большие. А они уже вращают генератор (рис.5) [4].

Рис. 5 Схема работы ветроэлектростанции

Есть и другие электростанции, в которых ничего не вращается, и в них нет генератора. Это солнечные электростанции [4]. Энергия солнечного света преобразуется в электрическую в солнечных панелях, изготовленных из специального материала, который под воздействием солнечной энергии начинает вырабатывать электрический ток (рис.6).

Рис. 6 Схема работы солнечной электростанции

Устройство генератора

Так как же устроен генератор, который вырабатывает электричество?

Все мы знаем, что такое магнит, любой с ним сталкивался и играл. Магнит притягивает к себе металлические предметы. Магниты бывают разные: большие и маленькие, сильные и слабые [1].

Если в магнитное поле поместить рамку, сделанную из электрического провода, закрепить ее так, чтобы можно было вращать за ручку, то получится простейший генератор [1, 3]. Если вращать рамку, в ней возникнет электрический ток. И, если ток будет достаточно мощный, то им можно будет зажечь электрическую лампочку (рис.7). В настоящих генераторах используют вместо рамки очень длинный провод, намотанный на специальные катушки и за счет этого, генераторы получаются очень мощные.

Рис.7 Схема устройства генератора

Но что будет, если к генератору подвести электрический ток?

Если к генератору подвести электрический ток, то рамка начнет сама вращаться, то есть произойдет обратный эффект (рис.8). Такие устройства называются электродвигатели [1, 3]. Они так же бываю большими и маленькими, мощными и слабыми.

Рис.8 Схема устройства двигателя

Что делать, если источник энергии нужен переносной, а не связанный с розеткой проводами? Для этого существуют, всем нам знакомые, батарейки.

Батарейки

Батарейка — это, емкость в которой происходит химическая реакция. Самая простая батарейка состоит из цинкового стаканчика, графитового стержня и электролита между ними (рис.9).

Рис.9 Устройство батарейки

В процессе использования батарейки, химическая реакция разрушает ее изнутри и батарейка «садится», то есть разряжается. Чем больше мы нагружаем батарейку, тем сильнее химическая реакция и тем быстрее она разрядится [1, 2].

Самую простую батарейку можно изготовить дома [2]. Для этого необходимо взять два разных «металла»: гвоздик и монетка — это будут электроды (рис.10), а в качестве электролита можно использовать лимон.

Рис.10 Самодельная батарейка

Но надо учесть, что такая батарейка будет очень слабая и ее не хватит даже для того, чтобы загорелась лампочка. То, что электричество появилось, мы видим только на приборе, который называется вольтметр.

Еще самодельную батарейку можно изготовить из соленой воды и металлических пластинок (рис.11). Ее устройство очень простое. Имеется три баночки, наполненные простой соленой водой. В каждую из них опускаем по два электрода, изготовленных из металлических пластинок. Одна пластинка покрыта медью, а вторая — цинком.

Рис. 11 Самодельная батарейка

Вот такую батарейку я и продемонстрирую в экспериментальной части моей работы. А также проведу другие эксперименты: подключу игрушечный домик к генератору, который будет вырабатывать электрический ток, чтобы включить в домике освещение. И докажу следующее: механическая энергия вращения преобразуется в электрическую энергию, в генераторе.

Экспериментальная часть:

В первом эксперименте я подключу игрушечный домик к маленькой электростанции (рис.12). Буду вращать ручку, и маленький генератор будет вырабатывать ток, которого хватит, чтобы в домике заработало освещение.

Материалы для изготовления макета: картон, деревянные фанерки размером 90х170 мм, 70х165 мм, розетка, механизм от фонарика, провода, вилка, лампочки (5 шт.), клей.

Рис. 12 Первый эксперимент

Во втором эксперименте я подключу к электростанции вентилятор (рис.13). Мы увидим, как механическая энергии вращения в генераторе, преобразуется в электрическую, бежит по проводам к вентилятору, и в его двигателе, преобразуется обратно в энергию вращения.

Материалы для изготовления макета: картон, деревянные фанерки размером 95х210 мм, 70х165 мм, розетка, провода, вилка, клей, вентилятор, электродвигатель.

Рис.13 Второй эксперимент

В третьем эксперименте я подключу к батарейкам, по-очереди, все тот же домик и вентилятор (рис.14-а,-б).

Материалы для изготовления макета: картон, деревянные фанерки размером 95х210 мм, 70х165 мм, 90х170 мм, розетка, провода, вилка, клей, вентилятор, электродвигатель, лампочки (5 шт.), батарейки.

а б

Рис.14 Третий эксперимент

В следующем – четвертом эксперименте я продемонстрирую самодельную батарейку (рис.15-а). Берем баночки заполненные соленой водой. В каждую из них опускаем по два электрода, изготовленные из металлических пластинок. Одна пластинка покрыта медью, а вторая цинком.

Материалы для изготовления макета: картон Ø 20 мм, часовой механизм, лампочка (1 шт.), провода, три баночки с соленой водой, деревянная фанерка 75х330 мм для основания, медные и цинковые пластинки длиной 75 мм, клей.

а б

Рис.15 Четвертый эксперимент

Энергии этих трех батареек хватило, чтобы загорелась лампочка и пошли часы (рис.15-б).

Выводы

В своей работе я рассмотрел, как работают: ТЭЦ, АЭС, гидроэлектростанция, ветроэлектростанция. Схема работы ТЭЦ и АЭС в целом похожи: нагревается котел с водой, вода превращается в пар. Пар вращает турбину, а турбина вращает генератор, который и вырабатывает электрический ток. Электричество по линиям электропередачи направляется к нам в город. В одном случае сжигают газ, а, во втором — используют тепло от ядерной реакции. В гидроэлектростанциях используют энергию падающей воды для вращения турбины, а турбина вращает генератор, который вырабатывает электричество. В ветроэлектростанциях ветер вращает лопасти вентилятора, а они уже вращают генератор.

Во всех электростанциях реализуется следующее: механическая энергия вращения превращается в электрическую энергию, в генераторе. Но есть и другие электростанции, в которых ничего не вращается, и, в них нет генератора. Это — солнечные батареи. Они изготовлены из специального материала, и, под воздействием солнца вырабатывают электрический ток.

Далее в работе я рассмотрел устройство батарейки — переносного источника энергии. И как можно самую простую батарейку изготовить дома.

В практической части я провел несколько экспериментов. В первом эксперименте подключил игрушечный домик к «маленькой электростанции». «Маленький» генератор вырабатывает ток, которого достаточно для включения в доме электричества. Во втором — подключил к электростанции вентилятор. Механическая энергия вращения в генераторе, преобразуется в электрическую, бежит по проводам к вентилятору, и в его двигателе, преобразуется обратно в энергию вращения. В третьем эксперименте я подключил к батарейкам, по очереди, все тот же домик и вентилятор. В четвертом эксперименте я продемонстрировал самодельную батарейку. В каждую из трех баночек с соленой водой опустил по два электрода, изготовленные из металлических пластинок из меди и цинка.

В проведенных двух экспериментах, я подтвердил и наглядно продемонстрировал следующее: механическая энергия вращения в генераторе, преобразуется в электрическую. А также изготовил самодельную батарейку, энергии которой хватило, чтобы загорелась лампочка и пошли часы.

Но, у меня остались вопросы, на которые мне предстоит найти ответы:

Как протекает ядерная реакция? Какие АЭС есть у нас в стране? А еще мне интересно почему произошла авария в Чернобыле.

О, сколько нам открытий чудных

Готовит просвещенья дух,

И опыт – сын ошибок трудных,

И гений, парадоксов друг.

А.С. Пушкин

Список литературы

1 Ю.И. Дик, В. А. Ильин, Д.А. Исаев и др. /Физика: Большой справочник для школьников и поступающих в вузы / Издательство «Дрофа», 2000 год.

2 «Энциклопедия для детей от А до Я» / Издательство «Махаон», Москва, 2010.

3 А.А. Бахметьев/ Электронный конструктор «Знаток»/ Практические занятия по физике. 8, 9, 10, 11 классы.// Москва, 2005 год.

4 Получение и использование электрической энергии: [электронный ресурс] // Мир знаний. URL: http://mirznanii.com/info/id-9244

Просмотров работы: 160

school-science.ru

Бесплатное электричество своими руками [инструкции+схемы]

Toggle navigation

  • Главная
  • Новичкам
    • Что такое криптовалюта
    • Блокчейн простыми словами
    • Что такое Bitcoin
    • Что такое майнинг
    • Что такое Ethereum
    • Что такое smart-контракт
    • Что такое ICO
    • Что такое токен
  • Рейтинги
    • Рейтинг валют (1300+)
    • Рейтинг бирж (30+)
    • Облачный майнинг
    • Перспективные криптовалюты
  • Купить Криптовалюты
    • Как купить биткоин
    • Как купить ethereum
    • Как купить Bitcoin Cash
    • Как купить Litecoin
    • Как купить Ripple
  • Кошельки
    • Как создать Bitcoin кошелек
    • Как создать Ethereum кошелек
    • Как создать Ripple кошелек
    • Как создать Bitcoin Cash кошелек
    • Как создать Dash кошелек
    • Как создать Litecoin кошелек
    • Как создать EOS кошелек
    • Как создать Stellar кошелек
  • Майнинг
    • Что такое облачный майнинг
    • Калькуляторы майнинга
    • Майнинг на процессоре
    • Майнинг на видеокарте
    • ASIC майнинг
    • Браузерный майнинг
    • Майнинг на ноутбуке
    • Майнинг на мобильном телефоне
  • Блог

prostocoin.com

Откуда берётся электричество?

Электричество (от греч. elektron – янтарь, так как янтарь притягивает легкие тела), или ток начали использовать только в 1800 году, когда итальянский физик Алессандро Джузеппе Антонио Анастасио Вольта изобрёл первую в мире батарею и тем самым дал первый надёжный постоянный источник электроэнергии.

А как же возникает электричество?

Всё вокруг состоит и малюсеньких частиц, которые не видны человеческому глазу, – атомов. Атом состоит из более мелких частиц:  в центре – ядро, а вокруг него вращаются электроны. Ядро состоит из нейронов и протонов. Электроны, которые вращаются вокруг ядра, имеют отрицательный заряд (-), а протоны, которые находятся в ядре, – положительный (+). Обычно количество электронов в атоме совпадает с количеством протонов в ядре, поэтому атом не имеет заряда – он нейтрален.

Бывают  такие атомы, у которых может не хватать одного электрона. Они имеют положительный заряд (+) и начинают притягивать электроны (-) из других атомов. И в этих, других атомах электроны слетают со своих орбит, меняют траекторию движения. Движение электронов от одного атома к другому приводит к образованию энергии.  Эта энергия и называется электричеством.

А откуда берётся электричество в наших домах?

Мы получаем электричество благодаря большим электростанциям. На электростанциях есть генераторы – большие машины, которые работают от источника энергии. Обычно источник – это тепловая энергия, которую получают при нагревании воды (пар). А  для нагревания воды используют уголь, нефть, природный газ или ядерное топливо. Пар, который образуется при нагревании воды, приводит в действие огромные лопасти турбины, а те в свою очередь запускают генератор.

Энергию можно получить, используя силу воды, падающей с большой высоты: с плотин или водопадов (гидроэнергетика).

Как источник питания для генераторов можно использовать силу ветра или тепло Солнца, но к ним прибегают не часто.

Далее работающий генератор при помощи огромного магнита создаёт поток электрических зарядов (ток), который проходит по медным проводам. Чтобы передавать электричество на большие расстояния, необходимо увеличить напряжение. Для этого используют трансформатор – устройство, которое может повышать и понижать напряжение. Теперь электричество с большой мощностью (до 10000 вольт и более) по огромным кабелям, которые находятся глубоко под землёй или высоко в воздухе, движется  к месту назначения. Перед тем, как попасть в квартиры и дома, электричество проходит через другой трансформатор, который понижает его напряжение. Теперь готовое к использованию электричество движется по проводам к необходимым объектам. Количество использованного электричества регулируется специальными счётчиками, которые прикрепляются к проводам, которые проложенные через стены и полы.    подводят электричество в каждую комнату дома или квартиры. Благодаря электричеству работает освещение и телевидение, различные бытовые приборы.

Если Вам необходима помощь при решении задач по физике или математике, онлайн репетиторы всегда готовы Вам помочь. В любое время и в любом месте ученик может обратиться за помощью к онлайн репетитору и получить консультацию по любому предмету школьной программы. Обучение проходит  посредством специально разработанного программного обеспечения. Квалифицированные педагоги оказывают помощь при выполнении домашних заданий, объяснении непонятного материала; помогают подготовиться к ГИА и ЕГЭ. Ученик выбирает сам, проводить занятия с выбранным репетитором на протяжении  длительного времени, или использовать помощь педагога только в конкретных ситуациях, когда возникают сложности с определённым заданием.

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

blog.tutoronline.ru

Почему в Новосибирской области резко упала выработка электричества на ТЭЦ :: Новосибирск :: РБК

Резервы мощности в генерации

Читайте на РБК Pro

Директор по работе на энергорынках Сибирской генерирующей компании Антон Данилов рассказал, что в целом в России есть большой резерв мощности. «Если все генерирующие объекты в стране будут работать на полную мощность, энергии будет значительно больше, чем нужно системе, — отметил Данилов. — В результате работают те, кто предложил меньшую цену за энергию. Если спрос большой, то в процесс довключается и дорогая генерация, если спрос низкий, работает самая дешевая».

Цена для конечного потребителя складывается из трех составляющих — свободной цены на рынке электрической энергии и мощности, сетевой составляющей, которая включает стоимость передачи, а также энергосбытовой надбавки компании-продавца.

Цена на энергию формируется на оптовом рынке каждый час и зависит от рыночного пересечения спроса и предложения. На рынок и цену влияют много факторов: сезон, время суток, сетевые ремонты, которые ограничивают переток дешевой энергии, поставки в Европу.

Как формируется цена

Ценовые заявки на оптовом рынке подают только тепловые станции. «Каждая ТЭЦ ставит свою цену и баланс замыкается на последнем мегаватте, который востребован, — говорит Данилов. — Все генераторы, которые отобраны, получают заявки от системы по маржинальной цене с учетом потерь».

В России две ценовые зоны: первая простирается до Урала, вторая — Сибирь. В Сибири источники генерации разнообразны: здесь много ГЭС и экономичных угольных ТЭЦ. Поэтому электричество в Сибири дешевле. Чем ближе к Уралу, и чем дальше в европейскую часть страны, тем выше цена.

Рынок работает с опережением. За два дня до факта потребления определяется состав генераторов, что будет работать — ТЭС, ГРЭС, ГЭС или АЭС. За день определяется степень нагрузки, так как каждый источник генерации может работать с разной степенью загруженности.

В сутки, когда будет собственно выработка и потребление, включаются механизмы дооптимизации. Идет балансировка системы в реальном времени, учет текущей ситуации, аварийных отключений и так далее.

«Летом волатильность цены на энергию возрастает, зимой цены более стабильны, — продолжает Данилов. — Летом есть даже нулевые цены, в часы прохождения ночного минимума».

Бесплатное электричество характерно, например, для Иркутской области, где есть разные виды генерации, мощные ГЭС и ТЭС. «Нулевая цена — это когда спроса нет, а генерация есть, и выгоднее продать электричество по нулю или ниже себестоимости, чем останавливать генератор на несколько часов», — поясняет эксперт.

Пики выработки электричества на ТЭЦ приходятся на холодное время года. ГЭС активно вырабатывает электричество весной и летом. Пики перетоков из других систем приходятся на конец лета и начало осени, когда ТЭЦ еще не развернуты в полную силу, а большого притока воды на ГЭС уже нет

Сибирское электричество

Электроэнергия, произведенная на ТЭЦ и ГРЭС Сибири, дешевле из-за стоимости исходного сырья — все это угольные, а не газовые станции, говорит директор по работе на энергорынках СГК. Сибирь по максимуму, сколько может, передает энергию в первую ценовую зону, там она дороже.

Самая низкая себестоимость у ГЭС, где источник энергии бесплатный, это вода. Затраты — водный налог и средства на поддержание техсостояния ГЭС и зарплату персоналу.

Среди теплоэнергостанций (ТЭС) есть ТЭЦ и ГРЭС. Основная задача первых — выработка тепла, электричество тут побочный продукт, у эффективных станций оно дешевое. У ГРЭС себестоимость энергии выше, так как удельный расход основного топлива на ТЭЦ ниже ГРЭС. Если говорить о разнице цен по регионам, то мВт/час на Урале стоит 1100 руб, в Сибири — 900, а в Иркутске — 800.

«Ситуация с падением выработки на ТЭЦ характерна для всей Сибири, — комментирует конъюнктуру рынка Данилов. — Потребление упало из-за пандемии, снизились перетоки в первую ценовую зону и в страны Европы.

Плюс сдвинулся баланс гидрогенерации, по части регионов до 50%. Обычно этот процент вдвое ниже. Сказалась теплая зима и экстремальная многоводность, это негативно повлияло на цены во второй ценовой зоне».

За последние пять лет потребление электричества в Новосибирской области выросло на 4%, выработка электричества ТЭС и ГЭС снизилась на 6,5%, перетоки из смежных энергосистем выросли вдвое. При этом мощности не уменьшались, они были и остаются недозагруженными.

Говоря об экономической эффективности выработки электричества на ТЭЦ Новосибирска, Данилов отметил, что зимой ТЭЦ-5 и ТЭЦ-3 загружены полностью и работают в том числе и на покрытие электрического трафика. Остальные ТЭЦ работают в основном на тепло.

«При формировании заявок СГК оценивают, например, что выгоднее — включить оборудование «старых» ТЭЦ-2 и ТЭЦ-4, или Беловскую ГРЭС, — поясняет эксперт. — И вариант с ГРЭС даже с учетом стоимости передачи электричества выходит дешевле. В энергетике нельзя мыслить рамками одного региона».

Зеленая энергетика и запас электричества

Данилов объясняет, что вся ветро- солнце- и гидроэнергетика характеризуется неравномерной выработкой, и ее падение в системе должно перекрываться, и делают это ТЭС.

«Ситуация восполнения неудобна с точки зрения эффективности производства, — на ТЭС разворачивание и сворачивание мощностей дело небыстрое и недешевое, — говорит спикер СГК. — Если говорить о распределенной генерации и зеленой энергетике, поставке в систему энергии солнечной и ветровой генерации, пока это не практикуется, но возможность обсуждается».

Сейчас в России такая выработка локальна — поступления от солнечных батарей используются на обеспечение объекта, установившего такие коллекторы.

Ведутся разработки аккумуляторов большой емкости для промышленных объемов энергии, это бы позволило запасать дешевое электричество. По мнению Данилова, ситуация зависит от цены таких решений: «В Европе есть промышленные образцы, но там цена на электричество гораздо выше. В России уровень благосостояния не так высок. Грубо говоря, мы пока не можем себе позволить электричество из ветра и солнца. Промышленные аккумуляторы — это перспектива лет 10-15».

Россияне смогут заработать на излишках «зелёного» электричества

Хозяев установок, работающих на энергии солнца, ветра или воды и позволяющих получать электричество мощностью до 15 кВт, могут освободить от уплаты НДФЛ при продаже излишек сетевым компаниям. Соответствующий законопроект был одобрен к внесению в Госдуму на заседании Правительства 15 августа. А документ, который разрешает владельцам малых ветряков и солнечных батарей торговать электроэнергией, тем временем готовится ко второму чтению. Ожидается, что депутаты рассмотрят его уже в осеннюю сессию.

Частному дому — собственный ветряк

Потребности населения в электроэнергии грозят опередить ещё недавно подключенные мощности. Эксперты предупреждают, что через семь лет ресурс введённых за последние 10 лет в России 35 тысяч МВт может быть исчерпан. Так что нам необходимо не менее 15 процентов «зелёной энергии» в общей генерации, считают специалисты. Выходом может стать как строительство крупных мощностей, так и появление у населения личных источников альтернативной энергии.

В феврале в первом чтении Госдума одобрила законопроект, внесённый Минэнерго в рамках программы по развитию возобновляемых источников энергии (ВИЭ). Документ, кроме прочего, предусматривает, что физические лица, имеющие электростанции мощностью до 15 кВт включительно, работающих на ВИЭ, смогут продавать выработанную электроэнергию на розничных рынках.

Председатель Комитета Госдумы по энергетике Павел Завальный пояснил «Парламентской газете», что благодаря этому «каждый гражданин получит право поставить солнечную батарею или ветряк на собственном доме».

«Бытовые компании и генерирующие компании будут функционировать отдельно. Закон даст право людям производить электроэнергию самим. Мало того, при её избытке — поставлять её в сети. Сетевые компании будут обязаны покупать эту электроэнергию по цене рынка», — объяснил он.

«Личная» энергия обезопасит жителей Севера

Обеспечение стабильной электроэнергией жителей труднодоступных регионов Сибири и Дальнего Востока всегда было актуальной задачей. Но для этого приходится тянуть ЛЭП на сотни километров. Там, где это невозможно, приходится завозить по воде тысячи тонн мазута, причём процесс усложняется тем, что период навигации ограничен. Есть примеры изолированной от остальной страны генерации электроэнергии — это Билибинская АЭС на Чукотке и идущая ей на смену плавучая АЭС «Ломоносов», береговая инфраструктура для которой уже строится.

В то же время удалённые регионы обладают огромным потенциалом возобновляемых источников энергии, в первую очередь — ветряной, отчасти солнечной. В Тикси, например, начато строительство ветряной электростанции, которая сможет снабжать отрезанный от энергосистемы страны один из важнейших портов на Северном морском пути. Но если посёлок в целом может иметь независимую «зелёную» генерацию, почему и его жителям также не могут организовать автономные источники энергии, чтобы использовать климатические сложности как преимущества — морской арктический ветер и полярную ночь?

Павел Завальный. Фото: Пресс-служба Госдумы

Если каждый житель удалённых регионов сможет законно иметь собственную генерацию, он будет чувствовать себя в большей безопасности, — такое мнение высказал «Парламентской газете» первый заместитель председателя Комитета Госдумы по энергетике Игорь Ананских. «Основная задача рассматриваемого нами закона о микрогенерации — позволить пользоваться «зелёной» энергетикой в виде ветряков и солнечных батарей в труднодоступных районах», — пояснил депутат.

Он также отметил, что, хотя сейчас в России малые агрегаты для возобновляемой энергетики «дороговаты», как и в принципе вся «зелёная» энергетика, тем не менее собственные солнечные батареи стали уже «одними из самых эффективных в мире».

«Думаю, что этот закон будет стимулировать производство российских агрегатов для малой генерации — солнечных панелей и других», — надеется депутат.

Игорь Ананских: Юрий Паршинцев / ПГ

Выгода для дачников и владельцев частных домов

Впрочем, даже в российских регионах с развитыми электросетями есть «белые пятна», куда большим компаниям невыгодно тянуть ЛЭП. Поэтому рассматриваемый закон, по словам Ананских, может решить и эту проблему.

«Там, где невыгодно проводить газ или электричество, 15 собственных киловатт для личных нужд иметь гораздо выгодней. И поэтому данный закон призван удешевить электричество на отдалённых и приусадебных участках, дачных посёлках, на метеостанциях, куда невыгодно проводить электричество», — объяснил парламентарий.

Он также добавил, что законопроект пока не касается городов и многоквартирных домов, так как там уже действует особый правовой порядок. «Там, где инфраструктуры в достатке, генерирующая организация по уже существующему законодательству обязана за небольшую сумму поставить и довести до каждого потребителя 15 кВт, что гораздо выгодней», — констатировал он.

Там, где невыгодно проводить газ или электричество, 15 собственных киловатт для личных нужд иметь гораздо выгодней.

В то же время для частных домов, по его мнению, в дальнейшем необходимо будет скорректировать разрешённое значение для личной генерации. «В дальнейшем нам надо подумать над увеличением разрешённой мощности для малой генерации. Если дом большой, то 15 кВт может не хватить», — считает Ананских.

Это мнение разделяет и первый заместитель Комитета Госдумы по экономической политике, промышленности, инновационному развитию и предпринимательству Валерий Гартунг.

«Надо расширять зону действия закона. Даже для частных лиц 15 кВт — это минимум. Если приличный дом, то 50, 60 и даже 100 кВт нужны точно. В качестве первого шага можно остановиться на 15 кВт. А уже через год надо бы поднять до 100 кВт», — подчеркнул Гартунг в комментарии для «Парламентской газеты».

Валерий Гартунг. Фото: Юрий Паршинцев / ПГ

Для снижения цен и демонополизации рынка электроэнергии

Дальнейшее повышение разрешённого порогового значения для микрогенерации предполагает ещё одну цель — демонополизацию и децентрализацию российской электроэнергетики в будущем, считает Гартунг. Он отметил, что для этого необходимо развивать малую генерацию в принципе, причём не только основанную на альтернативных источниках энергии, и для личных нужд физических лиц. «Надо дать возможность малому бизнесу развивать источники малой генерации, чтобы они тоже имели достаточно простые и понятные условия по продаже излишков энергии и подачи её в сеть», — сказал он.

Депутат объяснил, что, таким образом, в перспективе эффективность производства и потребления электроэнергии может возрасти.

«Тогда бы мы децентрализовали источники генерации, и фактически у нас сам бизнес, потребитель, смог бы сбалансировать спрос и предложение. На производстве — разная загрузка в течение суток. Даже на непрерывном цикле у многих предприятий основная нагрузка идёт в первую смену, а во вторую и третью — снижается. В то же время у граждан больше потребность в электроэнергии в основном вечером. Так что есть утренние и вечерние пики потребления. И это можно было бы сглаживать за счёт малой генерации», — считает Гартунг.

Депутат посетовал, что электросети оказывают «дикое» сопротивление таким предложениям, так как им невыгодно присутствие на рынке малой генерации, потому что «малая генерация будет размонополивать рынок, децентрализировать его». А ведь, отметил он, последнее как раз выгодно и гражданам, потребителям, и государству, так как сократит издержки на передачу, составляющие от трети до половины цены, и в итоге снизит стоимость энергии.

Впрочем, Гартунг уверен, что внесённый закон в нынешнем виде пока «больше символический», он — «первый шаг в правильном направлении, но явно недостаточный». «С другой стороны, этот закон — как прецедент — важен. Он позволит отработать механизмы взаимодействия частной малой генерации с сетевиками, вскроет недостатки, препятствия, описав которые, можно будет дорабатывать схему и устранять недостатки. И уже потом можно поднимать порог генерации», — заключил депутат.

«Зелёная» энергетика в России и в мире

Человечество активно переходит к использованию возобновляемых источников энергии (ВИЭ) на фоне угрозы исчерпания ископаемого топлива и негативных последствий от его использования для экологии. В целом увеличение мощностей возобновляемой энергетики уже опережает традиционные источники — с 2015 года это 55 процентов прироста. 47 стран к середине века планируют на 100 процентов перейти на «зелёную» энергию, а о переводе 30 процентов генерации на ВИЭ к 2030 году заявили Китай, Бразилия, Япония и Канада.

Только ветряные электростанции по всему миру уже вырабатывают больше, чем вся энергетика России. Одним из ярких примеров в использовании энергии ветра является Дания — там ветер даёт более 40 процентов генерации.

Сейчас лидером по использованию ВИЭ в целом является Китай — как ветра, так и солнца (почти 26 процентов генерации). В США для сравнения: 21 процент. Лидирующие позиции также занимают такие страны, как Германия, Испания и Индия.

В России, где использование ВИЭ не превышает одного процента, несмотря на огромные запасы углеводородов и другого ископаемого топлива, имеется огромный потенциал для развития «зеленой» энергии. Ещё с советских времён действует Кислогубская приливная электростанция, ряд других мощностей — геотермальные, солнечные и ветряные станции. С 2010-х возобновлены проекты по постройке ветряных электростанций в Ростовской области, Адыгее и других регионах.

К 2024 году Россия планирует довести долю ВИЭ до 2,4 процента

Откуда берут электроэнергию немцы и британцы? | Экономика в Германии и мире: новости и аналитика | DW

Дело в том, что вода, которой они охлаждаются, чрезмерно разогревается, и ее нельзя больше сливать обратно в реки, поскольку температура речной воды оказывается тогда выше установленных законом норм. В который раз внимание экспертов обращается к альтернативной энергетике, которая, согласно результатам исследования специалистов нефтяного концерна Shell, к середине века будет поставлять половину всей вырабатываемой на земле электроэнергии. С начала правления «красно-зеленой» коалиции в Германии начался настоящий бум ветро- и гелиоэнергетики, поддерживаемый государственными программами инвестиций.

Немецкие «ветряки»

В области использования возобновляемых источников энергии Германия – всем кризисам вопреки — по-прежнему держит первое место в мире. В стране работает 14 тысяч ветровых установок, которые генерируют треть мирового объема ветроэлектроэнергии. Весьма обширны и планы немцев в области использования солнечной энергии. Управляющий объединением предприятий Solarwirtschaft Карстен Кёрниг настроен оптимистично:

«У нас в Германии существует более тысячи предприятий, работающих с такими технологиями. В настоящее время мы занимаем второе место в мире сразу после Японии. Пару недель назад мы обогнали Соединенные Штаты по такому показателю, как суммарная мощность солнечных энергоустановок. Так что я думаю, мы на правильном пути. Германии удалось стать лидером в области использования энергии ветра, и я уверен, что то же удастся нам и в области солнечной энергии».

«Закон о возобновляемой энергии»

С апреля 2000 года в ФРГ действует «Закон о возобновляемой энергии», согласно которому за каждый киловатт-час солнечной энергии или энергии, полученной на ветроэлектростанциях, государство выплачивает производителю 48 центов – это во много раз больше рыночной цены, составляющей до пяти центов. Понятно, что экологические ЭС растут в Германии как грибы после дождя. В минувшем году их суммарная производственная мощность выросла по сравнению с предшествующим годом на 22 процента. Целый ряд предприятий, работающих в области альтернативной энергетики, вышли на биржу и получили там под свои честолюбивые проекты сотни миллионов евро. Однако теперь золотая лихорадка закончилась. В Германии осталось мало площадей, свободных от нелепо торчащих и портящих пейзаж ветровых мачт. Да и с солнечными электростанциями ситуация не лучше. В минувшем году было введено в эксплуатацию лишь 65 тысяч новых гелиоустановок – это наполовину меньше, чем в 2001-ом году. И тем не менее, пока Германия остается в этом секторе энергетики на втором месте в мире после Японии. Для федерального министра по делам окружающей среды Юргена Триттина, представителя партии «зеленых», это – предмет особой гордости:

«В 1998-ом году, незадолго до нашей победы на выборах, последний еще работавший в Германии производитель гелиоустановок объявил, что он намерен уйти с немецкого рынка, потому что для его продукции в стране нет спроса. Сегодня предприятия, выпускающие такие установки, есть в Гельзенкирхене и во Фрайбурге».

Для полноты картины надо отметить, что доля энергии, получаемой от солнечных батарей, все еще крайне мала. Она составляет менее одного процента от суммарного объема всей производимой в Германии электроэнергии. Мощность крупнейшей в мире гелиоустановки, пущенной в начале нынешнего года в Гемау на юге ФРГ, не превышает 4 мегаватт. Этой мощности едва хватает на то, чтобы удовлетворить нужды жителей городка – а их всего-то 4,5 тысяч человек.

Возобновляемые источники энергии в Великобритании

Согласно планам британского правительства, к 2010-му году их доля в суммарном производстве электроэнергии в стране должна возрасти до 10 процентов. В настоящий момент основную часть электроэнергии на Британских островах генерируют атомные электростанции.

Мало где в Европе так часто дует ветер, как в Великобритании. Однако энергия ветра в этой стране пока используется крайне мало. 1200 работающих ветровых турбин вырабатывают около одного процента от ежедневно потребляемой островитянами энергии. Теперь британское правительство планирует к 2010-ому году увеличить долю электроэнергии, произведенной с помощью возобновляемых источников, на 10 процентов. Однако надежды активистов природоохранного движения, что это поможет приблизить конец эры атомной энергетики, похоже, безосновательны. По крайней мере, судя по словам министра торговли и промышленности Великобритании Патриши Хьюит:

«Мы приложим все усилия к тому, чтобы максимально эффективно использовать электроэнергию и чтобы увеличить объем инвестиций в альтернативные источники энергии. В «Белой книге» речь идет как раз о том, что необходимо для достижения этой цели. Однако окончательно исключить строительство новых атомных электростанций мы не можем».

Район Уэльса знаменит тем, что там почти всегда дует сильный ветер. Поэтому датская фирма Westers совместно с британской компанией Mayflower решили построить там, в семи километрах от северного побережья, целый парк ветряных турбин North Oil. Они будут пущены в эксплуатацию предположительно уже нынешней осенью и смогут обеспечить энергией свыше 50 тысяч семей. И это не единственный проект такого масштаба в Уэльсе. Над осуществлением некоторых из них вместе работают казалось бы, непримиримые противники – энергетические компании и международная природоохранная организация Greenpeace, — рассказывает английский эколог Мэтью Спенсер:

«Мы не намерены быстро снимать боевые доспехи. Загрязнителям природы и дальше придется иметь дело с гринписовцами. Однако одновременно мы будем сотрудничать с теми организациями, которые пытаются найти решения экологических проблем».

Электричество для детей — что такое электричество и откуда оно берется?

Представьте, вы с ребенком собрались просмотреть мультфильм или познавательную передачу, улеглись на диван и вдруг ваше чадо спрашивает: «А от чего работает телевизор/телефон/планшет?» Вроде бы ответ простой — от электричества, но не нужно быть Нострадамусом, чтобы предугадать следующий вопрос, который поступит от ребенка: «А откуда берется электричество?» И здесь у многих родителей наступает ступор, в особенности у тех, кто не заканчивал физмат, и их профессия никоим образом не связана с этим направлением.

Конечно, можно ответить так же просто, как и на предыдущий вопрос: «Электричество берется из розетки». Но чтобы ваш ребенок получил полный и раскрытый ответ, причем доступным и понятным языком, без заумных формул и определений, которыми написана большая часть учебников по физике, мы предлагаем задержаться на этой странице и прочитать, возможно, не новую, но полезную и познавательную информацию.

Что такое электричество?

Само слово «электричество», а точнее, «электрическая» сила появилось более 2000 лет назад в Древней Греции. Люди заметили, что если потереть янтарь о шерсть, то камень начинает притягивать к себе различные предметы небольшого размера. Янтарь на древнегреческом языке именовался «электроном», отсюда и произошло само название.

Но дальше простых экспериментов со статическим электричеством у Древних Греков изучение загадочного феномена не продвинулось. А раскрывать сущность всего явления стали намного позже. Ученые выяснили, что окружающие предметы состоят из элементарных частиц: протонов и электронов. Эти два вида частичек имеют электрический заряд: у электрона он отрицательный, а вот у протона — положительный. Притягиваясь друг к другу, они тесно взаимодействуют и в зависимости от количества протонов и электронов образуют атомы разных материй.

Сами протоны располагаются в ядре атома, а вот электроны вращаются возле них по кругу. Атомы с количеством протонов равным числу электронов имеют нулевой заряд. Например, если камень янтаря лежит сам по себе, и его никто не трогает, то его атомы также имеют нулевой заряд. Но стоит потереть атомы янтаря об атомы шерсти, как электроны из шерсти мигом переберутся на янтарные, и их «переизбыток» сделает заряд отрицательным. Такой камушек с «новой силой» и начинает притягивать к себе мелкие предметы с нулевым или положительным зарядом, а если у предмета будет отрицательный заряд — он их оттолкнет.

Электрический ток — организованный отряд электронов

Но каким образом электричество живет в розетке, если все настолько рассеянно в этой схеме?

Почти все атомы могут терять и хватать электроны. Так, если у одних их будет избыток, а у других —недостаток, то направляемые электрическими силами электроны устремятся туда, где их не хватает. Вот этот поток и называется электрическим током.

Среди привычных нам понятий электрический ток похож на реку, которая, разливаясь на множество ответвлений, питает электроприборы. Но перед тем, как направить этот поток отрицательно заряженных частиц, их нужно откуда-то взять?

Над этим вопросом бились лучшие умы прошлого тысячелетия, но первым смог сделать прорыв итальянский ученый — Алессандро Вольта, который в 1800 году изобрел первую батарею, получившую название «Вольтов столб», тем самым подарив миру надежный источник постоянной электроэнергии. В благодарность за такое открытие фамилия ученого была увековечена, и с того времени напряжение тока измеряется в вольтах.

Откуда берется электричество?

Несмотря на то, что «Вольтов столб» и совершил прорыв в науке того времени, за последующие 200 лет была сделана уйма более глобальных открытий и выявлено множество способов добывать электрический ток, для которых построены огромные сооружения и используются новейшие технологии! А теперь по порядку.

ТЭС — тепловая электростанция

Для выработки тока на ТЭС установлен турбоэлектрогенератор, состоящий из:

  • неподвижной части — статора в виде двухполярного магнита;
  • вращающегося ротора, который обмотан медной проволокой, так как этот металл считается наилучшим и наиболее доступным проводником.

Беспрерывное вращение магнита постоянно меняет полярность (полюса) отчего электроны в проволоке приходят в движение, как в примере с янтарем и шерстью, только в больших масштабах. Но чтобы весь этот механизм работал и вырабатывалось электричество, «что-то» должно крутить огромную турбину. Для этой цели на ТЭС установлены огромные котлы, которые нагревают воду до 450 ℃, отчего она превращается в пар. Далее под высоким давлением пар поступает из котла на лопасти, закрепленные к ротору, и запускает его в работу с невероятной скоростью — 3000 оборотов в минуту!

АЭС — атомная электростанция

Здесь так же, как и в ТЭС, установлен турбоэлектрогенератор, но вот за нагрев воды отвечает очень опасный, но энергоэффективный Уран-235. Чтобы он выделил тепло, на АЭС построены огромные ядерные реакторы, в которых Уран-235 распадается на мелкие частички, отчего и вырабатывается большое количество энергии, используемой для нагрева воды до состояния пара и запуска турбоэлектрогенератора.

ГЭС — гидроэлектростанция

Более безопасный, но не менее эффективный способ получения энергии. Хотя для него и потребуется соорудить целую цепь гидротехнических сооружений, чтобы создать необходимый напор воды для обеспечения работы турбин электрогенератора. А далее принцип, как и в предыдущих двух электростанциях: крутится ротор и вырабатывается электричество.

Ветряные станции

Выглядят они величественно и красиво, да и с помощью силы ветра еще в древности запускали в работу огромные механизмы, такие как ветряные мельницы.

В современном мире решили усовершенствовать этот механизм и использовать для преобразования механической энергии в электрическую. Принцип следующий: ветер толкает огромные лопасти, которые запускают в работу ротор генератора, а он уже, как мы знаем на примере первых трех электростанций, и вырабатывает ток.

Но таким способом при помощи одного ветрогенератора не обеспечишь электричеством даже небольшой городок, поэтому и устанавливается целая сеть огромных механизмов, состоящая из 100 и более единиц.

Немного истории

Первая в мире электростанция для общественного пользования «Перл Стрит» была построена в Нью-Йорке в 1882 году. Ее спроектировал и установил не кто иной, как Томас Эдисон. И даже не брал плату за пользование вырабатываемой электроэнергией, пока весь механизм не заработал слаженно и без перебоев.

Но «прабабушка» всех станций могла зажечь только 10000 ламп, хотя и по тем временам это было чем-то сверхъестественным. В то же время современные электростанции вырабатывают в тысячи раз больше, обеспечивая электрическим током города с населением в 100000 человек!

Как электрический ток поступает в дома?

После того, как электростанции выработают ток, он по кабелю попадает на распределительную подстанцию для измерения и преобразования. Там же установленные трансформаторы повышают напряжение до 10000 вольт. Благодаря такому напряжению ток с минимальными потерями передается на дальние расстояния с невероятной скоростью, составляющей до 3000 км в секунду!

Потом ток поступает на понижающую подстанцию, где трансформаторы уменьшают напряжение до 220 вольт — стандарт, принятый в РФ. И далее электричество направляется на распределительные сети города, а оттуда — к вам в дом и квартиру. Вот такой непростой путь он проделывает, чтобы зарядить наш телефон, зажечь лампочку или заставить работать холодильник.

Как ток заставляет работать электроприборы?

Но как же у тока получается запустить в работу электрические устройства? Для наглядного понимания возьмем за основу обычную лампу накаливания и вернемся к нашим маленьким частицам.

Когда электроны с невероятной скоростью проходят по спирали лампочки, они постоянно наталкиваются на атомы металла, из которых состоит спираль. Атомы раскачиваются, и их температура сильно поднимается. Таким образом, электрический ток нагревает спираль лампы до 3000 градусов, отчего она начинает светиться. Именно поэтому для спирали не подходит использование любого металла, потому что он просто будет плавиться из-за высокой температуры.

В современных устройствах — мобильных телефонах, телевизорах, микроволновых печах — задействованы более сложные схемы, но принцип остается таким же: из-за быстрого потока частиц атомы проводников нагреваются, отчего и выделяют энергию и запускают в работу приборы.

Не только друг, но и враг!

Конечно же, электричество — важное и незаменимое изобретение для всего человечества. С его помощью люди:

  • сделали и ежедневно делают уйму открытий;
  • лечат смертельные в прошлом болезни;
  • ездят на электротранспорте, не загрязняя окружающую среду выхлопными газами;
  • могут путешествовать по миру, узнавать и видеть достопримечательности не выходя из дома!

Всей пользы электричества просто не описать в одной статье!

Но при всем этом ток может быть и опасным и в долю секунды забрать жизнь любого живого существа.

Кстати, любопытный факт. Птицы, которые сидят на высоковольтных проводах, не получают разряда из-за того, что принимают такое же напряжение, как и в самом кабеле. Дело в том, что они сидят только на одной фазе, но если вдруг хвостом или другой частью тела птица коснется земли, столба или другого провода, то ток сразу же ее ударит.

Правила безопасного обращения с электричеством для детей

Маленькие дети не понимают всей опасности обращения с электричеством. Конечно, речь сейчас идет не об игрушках, питающихся от батареек напряжением в 12 вольт, а об опасном и сильном «звере», живущем в розетках. Поэтому малышей нельзя оставлять вблизи розеток без специальных заглушек, да еще и без родительского присмотра.

Для более взрослых детей стоит провести беседу и объяснить следующие правила. Нельзя:

  1. Ставить или вешать посторонние предметы на провод прибора.
  2. Закручивать кабель в узлы.
  3. Пользоваться грязным проводом.
  4. Использовать электроприбор вблизи источников тепла: батарей, плит, духовых шкафов и т. п.
  5. Включать несколько мощных устройств одновременно в одну розетку. Покажите ребенку, где и как можно посмотреть мощность, или сами заранее составьте список, что с чем можно включать, а что — нет.
  6. Использовать или пытаться починить сломанный электроприбор, в том числе если нарушена изоляция (целостность) кабеля, повреждена вилка и т. п.
  7. Браться мокрыми руками за прибор или кабель.
  8. Тянуть за шнур (нужно выключать прибор из розетки, держась за вилку).

Также могут возникнуть непредвиденные ситуации:

  • искры из розетки;
  • дым от кабеля или прибора;
  • запах гари и т. п.

На этот случай необходимо показать ребенку, где находится электрический щиток и как его выключить, и объяснить, что после отключения электричества нужно обязательно позвонить кому-то из взрослых.

И в заключение

Мы живем в прекрасное время, когда с помощью электричества создаются невероятные вещи, делающие нашу жизнь комфортной и безопасной. Чтобы оставить нам этот бесценный дар, многие ученые положили десятилетия своей жизни на его изучение. А с нашей стороны требуется всего лишь малость — научить детей правилам обращения с электричеством и подать им правильный пример, чтобы все труды лучших умов были использованы лишь на благо человечества!

Курсы по физике для детей 7-14 лет

Обучаем физике и естественным наукам в увлекательном игровом формате.

узнать подробнее

Как производится электричество | Endesa

А ветер? От куда это?

Возможно, мы никогда об этом не думали. Солнце оказывает на наш мир ряд эффектов, и одно из них — ветер. Между от 1% до 2% солнечной радиации, поглощаемой планетой, в конечном итоге превращается в ветер. Это связано с тем, что земная кора передает в воздух большее количество солнечной энергии, заставляя его нагреваться, становиться менее объемным и расширяться. В то же время самый холодный и тяжелый воздух, исходящий из морей, рек и океанов, приходит в движение, чтобы занять место, оставленное теплым воздухом.Эти колебания создают движущийся воздух, а ветер — не что иное, как движущийся воздух.

Каждая масса воздуха, которая перемещается из областей с высоким атмосферным давлением в области с более низким давлением со скоростью, пропорциональной разнице давления между обеими областями (чем больше разница, тем сильнее дует ветер), считается ветром.

А солнце? Как он превращается в электричество?

Солнечная энергия исходит от солнечного света и тепла.Чтобы преобразовать их в энергию, необходимы листы полупроводникового металла: фотоэлектрических элементов .

Эти элементы покрыты прозрачным стеклом, которое пропускает излучение и минимизирует потери тепла, и имеют один или несколько слоев полупроводникового материала. Благодаря этим элементам они могут управлять всей солнечной энергией.

Все чаще можно увидеть солнечные батареи на крышах домов и построек. Эти панели полностью сформированы этими фотоэлектрическими элементами.

Говорят, что установка дорогая, но данные показывают, что покупка окупается , с экономией около 30% потребления, что в долгосрочной перспективе (25 лет) означает оплату от 20000 евро до евро. На 30 000 меньше, что делает его очень ценным в среднесрочной и долгосрочной перспективе.Еще одним преимуществом является то, что они не требуют особого ухода.

А как работает солнечная панель?

В основном через солнечные лучи. Они состоят из фотонов , которые достигают фотоэлектрических элементов пластины, создавая между ними электрическое поле и, таким образом, электрическую цепь. Чем ярче свет, тем больше ток электричества.

Фотоэлементы отвечают за преобразование солнечного света в электричество в форме постоянного тока с градуировкой от 380 до 800 вольт.Полученный результат можно улучшить с помощью инвертора, который отвечает за преобразование этой энергии в переменного тока , который мы используем в наших домах.

Наконец, этот переменный ток проходит через счетчик, который измеряет его и подает в общую электрическую сеть.

Откуда у нас электричество?

Электроэнергия необходима для современной жизни, но почти миллиард человек живет без доступа к ней.Такие проблемы, как изменение климата, загрязнение и разрушение окружающей среды, требуют, чтобы мы изменили способ производства электроэнергии.

За последнее столетие основными источниками энергии, используемыми для производства электроэнергии, были ископаемое топливо, гидроэлектроэнергия и, с 1950-х годов, ядерная энергия. Несмотря на стремительный рост возобновляемых источников энергии за последние несколько десятилетий, ископаемые виды топлива остаются доминирующими во всем мире. Их использование для производства электроэнергии продолжает расти как в абсолютном, так и в относительном выражении: в 2017 году на ископаемом топливе было произведено 64.5% мировой электроэнергии по сравнению с 61,9% в 1990 году.

Доступ к надежному электроснабжению жизненно важен для благополучия человека. В настоящее время каждый седьмой человек в мире не имеет доступа к электричеству. Таким образом, спрос на электроэнергию будет продолжать расти. В то же время выбросы парниковых газов должны резко сократиться, если мы хотим смягчить последствия изменения климата, и мы должны перейти на более чистые источники энергии, чтобы уменьшить загрязнение воздуха. Это, вероятно, потребует значительного увеличения всех низкоуглеродных источников энергии, важной частью которых является ядерная энергия.

Для достижения устойчивого мира необходимо декарбонизация всех секторов экономики, включая транспорт, тепло и промышленность. Электричество предоставляет средства для использования низкоуглеродных источников энергии, и поэтому широко распространенная электрификация рассматривается как ключевой инструмент декарбонизации секторов, традиционно работающих на ископаемом топливе. По мере того, как конечное использование электроэнергии растет, а выгоды от электричества распространяются на всех людей, спрос будет значительно расти.

Уголь, газ и нефть

Электростанции, работающие на ископаемом топливе, сжигают уголь или нефть для получения тепла, которое, в свою очередь, используется для выработки пара для привода турбин, вырабатывающих электричество.На газовых установках горячие газы приводят в действие турбину для выработки электроэнергии, в то время как газотурбинная установка с комбинированным циклом (ПГУ) также использует парогенератор для увеличения количества производимой электроэнергии. В 2017 году ископаемое топливо произвело 64,5% электроэнергии во всем мире.

Эти электростанции надежно вырабатывают электроэнергию в течение длительных периодов времени и, как правило, дешевы в строительстве. Однако при сжигании топлива на основе углерода образуется большое количество углекислого газа, что приводит к изменению климата. Эти растения также производят другие загрязнители, такие как оксиды серы и азота, которые вызывают кислотные дожди.

Электростанция Коттам в Великобритании, которая использует уголь и газ для производства электроэнергии (Изображение: EDF Energy)

Сжигание ископаемого топлива для получения энергии вызывает значительное число смертей из-за загрязнения воздуха. Например, по оценкам, только в одном Китае 670 000 человек умирают преждевременно — каждый год из-за использования угля.

Установкам, работающим на ископаемом топливе, требуется очень большое количество угля, нефти или газа. Во многих случаях это топливо необходимо транспортировать на большие расстояния, что может привести к потенциальным проблемам с поставками.Цена на топливо исторически была нестабильной и может резко возрасти в периоды нехватки или геополитической нестабильности, что может привести к нестабильным затратам на производство электроэнергии и повышению потребительских цен.

Гидроэлектростанция

Большинство крупных гидроэлектростанций вырабатывают электроэнергию, накапливая воду в обширных резервуарах за плотинами. Вода из резервуаров проходит через турбины для выработки электроэнергии. Плотины гидроэлектростанций могут генерировать большое количество электроэнергии с низким содержанием углерода, но количество площадок, подходящих для новых крупномасштабных плотин, ограничено.Гидроэлектроэнергия также может производиться русловыми электростанциями, но большинство рек, которые подходят для этого, уже освоены.

Плотина «Три ущелья» в Китае — крупнейшая в мире плотина гидроэлектростанций и крупнейшая в мире электростанция (Изображение: Le Grand Portage, CC BY-SA 2.0)

В 2017 году на гидроэнергетику приходилось 16% мирового производства электроэнергии.

Затопление водохранилищ за плотинами и замедление течения речной системы ниже плотины также может иметь серьезные последствия для окружающей среды и местного населения.Например, во время строительства крупнейшей в мире плотины гидроэлектростанций — плотины «Три ущелья» в Китае — около 1,3 миллиона человек были перемещены.
По количеству погибших в результате аварий гидроэнергетика — самый смертоносный источник энергии. Несчастным случаем с наибольшим числом погибших стало обрушение в 1975 году плотины Баньцяо в китайской провинции Хэнань, в результате которого, по официальным оценкам, погибло 171 000 человек, прямо и косвенно.

Атомная энергетика

Ядерные энергетические реакторы используют тепло, выделяемое при расщеплении атомов, для генерации пара для привода турбины.В процессе деления не образуются парниковые газы, и в течение всего жизненного цикла ядерной энергии образуются лишь очень небольшие количества. Атомная энергия является экологически чистой формой производства электроэнергии и не способствует загрязнению воздуха. В 2018 году ядерная энергия произвела 10,5% мировой электроэнергии.

Атомная электростанция Палюэль на севере Франции, одна из крупнейших атомных электростанций в мире (Изображение: Areva)

Атомные электростанции, как и электростанции, работающие на ископаемом топливе, очень надежны и могут работать в течение многих месяцев без перебоев, обеспечивая большое количество чистой электроэнергии, независимо от времени суток, погоды или сезона.

Ядерное топливо можно использовать в реакторе в течение нескольких лет благодаря огромному количеству энергии, содержащейся в уране. Мощность одного килограмма урана примерно равна 1 тонне угля.

В результате образуется соответственно небольшое количество отходов. В среднем реактор, снабжающий человека электроэнергией в течение года, создает около 500 граммов отходов — их можно было бы поместить в банку из-под газировки. Всего 5 граммов из этого количества используется ядерное топливо — эквивалент листа бумаги.Существует несколько стратегий управления использованным топливом, таких как прямая утилизация или переработка в реакторах для выработки более низкоуглеродной электроэнергии.

Ветровая и солнечная

Возобновляемые источники энергии, такие как ветер, солнечная энергия и малая гидроэнергетика, производят электроэнергию с низким уровнем выбросов парниковых газов на протяжении всего их жизненного цикла. В 2017 году ветряная и солнечная энергия производили 4,4% и 1,3% соответственно мировой электроэнергии. Они не производят электричество предсказуемо или постоянно из-за своей естественной зависимости от погоды.Производство электроэнергии от ветряных турбин зависит от скорости ветра, и если ветер слишком слабый или слишком сильный, электричество не производится вообще. Мощность солнечных панелей зависит от силы солнечного света, которая зависит от ряда различных факторов, таких как время суток и количество облачного покрова (а также количество пыли на панелях).

Другая проблема заключается в том, что может не хватить места или желания общественности разместить огромное количество турбин или панелей, необходимых для выработки достаточного количества электроэнергии.Это связано с тем, что энергия ветра или солнца является рассеянной, а это означает, что для выработки значительного количества электроэнергии требуется очень значительное количество земли.

Поскольку электроэнергию нелегко хранить, возобновляемые источники энергии должны поддерживаться другими формами производства электроэнергии. Самые большие батареи не могут работать в течение нескольких дней, не говоря уже о неделях, которые потребовались бы для резервного копирования возобновляемых источников энергии, чтобы обеспечить круглосуточное электроснабжение. Чтобы обеспечить стабильную подачу электроэнергии, газовые заводы все чаще предоставляют услуги резервного копирования электроэнергии из возобновляемых источников.Установки, работающие на природном газе, выделяют большое количество углекислого газа во время работы, и значительные количества метана часто выделяются во время добычи и транспортировки газа, и то и другое способствует изменению климата.

Биомасса

Электростанции, работающие на биомассе, работают аналогично газовым и угольным электростанциям. Вместо сжигания газа или угля установка работает на различных формах биомассы (например, специально выращенных деревьях, древесной щепе, бытовых отходах или «биогазе»). В 2017 году биомасса произвела 2.3% мировой электроэнергии.

Электростанция Drax в Великобритании частично заменила уголь импортной биомассой в качестве топлива для производства электроэнергии (Изображение: Andrew Whale, CC BY-SA 2.0)

Для производства биомассы может потребоваться много энергии как с точки зрения производства самой биомассы, так и с точки зрения транспорта. Из-за этого требуемая энергия может быть больше, чем энергетическая ценность конечного топлива, а выбросы парниковых газов могут быть такими же или даже большими, чем выбросы от эквивалентного ископаемого топлива.Кроме того, для абсорбции выделяемого углекислого газа может потребоваться более 100 лет, что приводит к кратковременному увеличению выбросов.

Другие воздействия на окружающую среду, связанные с землепользованием и экологической устойчивостью, могут быть значительными. Кроме того, как и в случае с углем, использование биомассы может способствовать загрязнению воздуха и, таким образом, иметь негативные последствия для здоровья населения, проживающего на заводах по производству биомассы.

Что будет движущей силой нашего электрического будущего?

Электричество приобретает все большее значение.Если мы хотим решить проблему изменения климата и уменьшить загрязнение воздуха, нам нужно будет расширить использование всех низкоуглеродных источников энергии, важной частью которых является ядерная энергия.

Чтобы удовлетворить растущий спрос на устойчивую энергию, Всемирная ядерная ассоциация представила программу Harmony, которая ставит цель для ядерной энергетики производить не менее 25% электроэнергии до 2050 года. Это будет означать, что к тому времени производство ядерной энергии в мире должно будет утроиться. . Чтобы резко снизить уровень ископаемого топлива, ядерная и возобновляемая энергии должны работать вместе, чтобы обеспечить надежное, доступное и чистое энергоснабжение будущего.

В официальном документе «Тихий гигант» Всемирной ядерной ассоциации содержится дополнительная информация о необходимости использования ядерной энергии в системе чистой энергии.


Вас также может заинтересовать

Что такое электричество?

Вы могли задаваться вопросом в тот или иной момент; что такое на самом деле электричество?

Трудно сбежать; смотрите ли вы на природу и наблюдаете, как надвигается гроза с ее красивыми, но мощными ударами молний.Или вы просто идете на кухню, включаете свет и открываете холодильник; электричество — это часть нашей повседневной жизни.

Но чтобы по-настоящему понять, что такое электричество, нам нужно взглянуть на науку, лежащую в основе его на атомном уровне.

Все начинается с атомов

Атомы — это маленькие частицы, проще говоря, они являются основными строительными блоками всего, что нас окружает, будь то наши стулья, столы или даже наше собственное тело. Атомы состоят из еще более мелких элементов, называемых протонами, электронами и нейтронами.

Когда электрические и магнитные силы перемещают электроны от одного атома к другому, образуется электрический ток.

Посмотрите это видео, чтобы увидеть электроны в действии.

Как производится электричество?

Во-первых, для выработки электроэнергии вам потребуется источник топлива, например уголь, газ, гидроэнергия или ветер.

В Австралии большая часть электроэнергии вырабатывается с использованием традиционных видов топлива, таких как уголь и природный газ, при этом около 14 процентов приходится на возобновляемые источники энергии. 1

Независимо от выбранного топлива, большинство генераторов работают по одному и тому же проверенному принципу: поверните турбину так, чтобы она вращала магниты, окруженные медной проволокой, чтобы получить поток электронов через атомы, который, в свою очередь, вырабатывает электричество.

Уголь и газ работают аналогично; они оба сжигаются, чтобы нагреть воду, которая создает пар и вращает турбину.

Возобновляемые источники энергии, такие как гидроэнергетика и ветер, работают несколько иначе: вода или ветер используются для вращения турбины и выработки электроэнергии.

Солнечные фотоэлектрические панели используют другой подход: они вырабатывают электроэнергию, преобразуя солнечное излучение в электричество с помощью полупроводников.

Электростанции перерабатывают топливо в электричество

Уголь и газ сжигаются для нагрева воды и превращения ее в пар.

Затем пар под очень высоким давлением используется для вращения турбины.

Вращающаяся турбина заставляет большие магниты вращаться внутри катушек из медной проволоки — это называется генератором.

Движущиеся магниты заставляют электроны в проводах перемещаться из одного места в другое, создавая электрический ток и производя электричество.

Электроэнергия уходит в сеть

В Австралии мы получаем электроэнергию через сложную сетевую сеть.

Электричество оставляет генераторы и перемещается по проводам в сетевой сети к домам и предприятиям по всей стране. К тому времени, когда электричество дойдет до вас, оно, скорее всего, пройдет сотни километров по сети.

Национальный рынок электроэнергии Австралии или NEM является крупнейшей объединенной энергосистемой в мире.

Интересует, как вы используете энергию дома? Если у вас есть цифровой интеллектуальный счетчик, вы можете отслеживать его использование через Моя учетная запись или через приложение Origin.

Список литературы

Согласно анализу от Origin Energy, данные включают всю Австралию: национальный рынок электроэнергии (QLD, NSW, Vic, SA, TAS), а также Западную Австралию и Северную территорию, но не включают Mt Isa.Данные встроенной генерации взяты из отчета о состоянии энергетического рынка за 2014 год, Австралийского регулятора энергетики, данных WA за 2012 год от Грега Рутвена, 2012 год, брифинга «Заявление о возможностях» перед запуском, Независимого оператора рынка за 2012 год и NT FY13; данные Ассоциации энергоснабжения Австралии 2012 г., Электричество Газ Австралия 2014 г.

Центр обработки данных по альтернативным видам топлива: производство и распределение электроэнергии

Подключаемые гибридные электромобили (PHEV) и полностью электрические транспортные средства (EV) — собирательно именуемые подзаряжаемыми электромобилями (PEV) — накапливают электричество в батареях для питания одного или нескольких электродвигателей.Батареи заряжаются в основном путем подключения к внешним источникам электроэнергии, произведенной из природного газа, угля, ядерной энергии, энергии ветра, гидроэнергии и солнечной энергии.

Электромобили

, а также PHEV, работающие в полностью электрическом режиме, не производят выхлопных газов. Однако есть выбросы, связанные с производством большей части электроэнергии в Соединенных Штатах. См. Раздел о выбросах для получения дополнительной информации о местных источниках электроэнергии и выбросах.

Производство

По данным U.По данным Управления энергетической информации США, большая часть электроэнергии в стране в 2019 году была произведена за счет природного газа, угля и ядерной энергии.

Электроэнергия также производится из возобновляемых источников, таких как гидроэнергия, биомасса, ветер, геотермальная энергия и солнечная энергия. В совокупности возобновляемые источники энергии произвели около 17% электроэнергии страны в 2019 году.

За исключением фотоэлектрической (PV) генерации, первичные источники энергии используются прямо или косвенно для перемещения лопаток турбины, подключенной к электрическому генератору.Турбогенератор преобразует механическую энергию в электрическую. В случае природного газа, угля, ядерного деления, биомассы, нефти, геотермальной энергии и солнечной энергии выделяемое тепло используется для создания пара, который перемещает лопасти турбины. В случае ветроэнергетики и гидроэнергетики лопасти турбины перемещаются непосредственно потоком ветра и воды соответственно. Солнечные фотоэлектрические панели преобразуют солнечный свет непосредственно в электричество с помощью полупроводников.

Количество энергии, производимой каждым источником, зависит от сочетания видов топлива и источников энергии, используемых в вашем районе.Чтобы узнать больше, см. Раздел о выбросах. Узнайте больше о производстве электроэнергии в Управлении энергетической информации Министерства энергетики США.

Передача и распределение электроэнергии

Электроэнергия в Соединенных Штатах часто перемещается на большие расстояния от генерирующих объектов до местных распределительных подстанций через сеть высоковольтных электропередач протяженностью почти 160 000 миль. Генерирующие объекты обеспечивают энергоснабжение сети при низком напряжении от 480 вольт (В) на малых генерирующих объектах до 22 киловольт (кВ) на более крупных электростанциях.Когда электричество покидает генерирующую установку, напряжение повышается или «повышается» с помощью трансформатора (типичные диапазоны от 115 кВ до 765 кВ), чтобы минимизировать потери мощности на больших расстояниях. Поскольку электричество передается через сеть и поступает в зоны нагрузки, напряжение понижается трансформаторами подстанции (диапазоны от 69 кВ до 4,16 кВ). Чтобы подготовиться к подключению клиентов, напряжение снова снижается (бытовые клиенты используют 120/240 В; коммерческие и промышленные клиенты обычно используют 208/120 В или 480/277 В).

Подключаемые к электросети автомобили и инфраструктура электроснабжения

Полностью электрические автомобили и гибридные электромобили с подзарядкой от электросети представляют собой новый спрос на электроэнергию, но они вряд ли в ближайшем будущем перегрузят большую часть имеющихся у нас ресурсов производства. Значительное увеличение количества этих транспортных средств в Соединенных Штатах не обязательно потребует добавления новых мощностей по выработке электроэнергии в зависимости от того, когда, где и на каком уровне мощности заряжаются транспортные средства.

Спрос на электроэнергию растет и падает в зависимости от времени суток и времени года. Мощности по производству, передаче и распределению электроэнергии должны удовлетворять спрос в периоды пиковой нагрузки; но большую часть времени электроэнергетическая инфраструктура не работает на полную мощность. В результате электромобили и PHEV могут практически не создавать необходимости в дополнительных мощностях.

Согласно исследованию Тихоокеанской северо-западной национальной лаборатории, существующая электроэнергетическая инфраструктура США обладает достаточной мощностью, чтобы удовлетворить около 73% потребностей в энергии легковых автомобилей страны.Согласно моделям развертывания, разработанным исследователями из Национальной лаборатории возобновляемых источников энергии (NREL), разнообразие бытовых электрических нагрузок и электрических нагрузок должно позволить введение и рост рынка PEV при расширении сетей «умных сетей». Интеллектуальные сетевые сети обеспечивают двустороннюю связь между коммунальным предприятием и его потребителями, а также контроль линий электропередачи с помощью интеллектуальных счетчиков, интеллектуальных приборов, возобновляемых источников энергии и энергоэффективных ресурсов. Интеллектуальные сетевые сети могут предоставить возможность контролировать и защищать жилую распределительную инфраструктуру от любых негативных воздействий из-за увеличения спроса на электроэнергию со стороны транспортных средств, поскольку они способствуют зарядке в непиковые периоды и сокращают затраты для коммунальных предприятий, операторов сетей и потребителей.

Анализ NREL также продемонстрировал потенциал синергизма между PEV и распределенными источниками возобновляемой энергии. Например, маломасштабные возобновляемые источники энергии, такие как солнечные панели на крыше, могут как обеспечивать чистую энергию для транспортных средств, так и снижать спрос на распределительную инфраструктуру за счет выработки электроэнергии вблизи точки использования.

Коммунальные предприятия, производители транспортных средств, производители зарядного оборудования и исследователи работают над тем, чтобы обеспечить плавную интеграцию PEV в U.S. электроэнергетическая инфраструктура. Некоторые коммунальные предприятия предлагают более низкие тарифы в непиковое время, чтобы стимулировать зарядку бытовых транспортных средств, когда спрос на электроэнергию самый низкий. Транспортные средства и многие типы зарядного оборудования (также известного как оборудование для подачи электромобилей или EVSE) можно запрограммировать так, чтобы зарядка была отложена до непиковых периодов. «Умные» модели даже способны связываться с сетью, агрегаторами нагрузки или владельцами объектов / домов, что позволяет им автоматически взимать плату, когда спрос на электроэнергию и цены на нее наиболее благоприятны; например, когда цены самые низкие, соответствуют потребностям местного распределения (например, температурным ограничениям) или соответствуют требованиям возобновляемой генерации.

Как производится электроэнергия? | Г-н Электрик

Каждый из нас зависит от электричества, чтобы беспрепятственно двигаться в течение дня. Наши сотовые телефоны, ноутбуки и бесчисленное множество других устройств работают на электроэнергии. Наша потребность в электричестве очевидна и особенно очевидна, когда что-то идет не так, что наиболее вероятно, когда вы звоните нам!

Вы знаете, что вам нужно электричество, но знаете ли вы, что это такое на самом деле и как оно производится? Присоединяйтесь к Mr.Электричество, когда мы вернемся к основам и ближе познакомимся с электричеством, которое питает нашу жизнь.

Что такое электричество?

Прежде чем углубляться в то, как производится электричество, давайте начнем с небольшого «Электричество 101». Проще говоря, электричество — это поток электронов из одного места в другое, а точнее, по цепи.

Вы, вероятно, можете вспомнить свой школьный урок химии (с нежностью или отвращением — между ними не так уж много!), Где вы узнали об атомах или «строительных блоках жизни».«Электроны — это отрицательно заряженные субатомные частицы. Если один из этих электронов освобожден от атома и вынужден двигаться, будет произведено электричество.

Наиболее удаленные электроны или валентные электроны требуют наименьшего количества силы для освобождения от атома. Когда свободные электроны находят новые атомы, чтобы зацепиться за них, они «выбивают» существующий электрон, и процесс начинается заново, производя электрический ток.

Элементы, такие как медь, серебро и золото, имеют очень подвижные электроны, что означает, что эти элементы являются отличными проводниками электричества.Эти знания играют важную роль в производстве нашей электроэнергии!

Как производится?

Чтобы вы щелкнули выключателем или нажали кнопку «включения», за кулисами усиленно работает электричество. Давайте посмотрим, как электричество проходит от электростанции к вам.

Электроэнергетика начинается с одного из трех основных видов топлива: ископаемого топлива (например, угля, нефти и природного газа), ядерной энергии и возобновляемых источников энергии (например, ветра, солнца и гидроэнергии).Это топливо создает пар или жидкость, которая приводит в движение турбину, которая вращает магнит в генераторе. Это движение заставляет эти электроны двигаться, что производит электричество!

Но это еще не все — этому электрическому току еще предстоит пройти долгий путь, чтобы добраться до вас. Как только генератор вырабатывает электрический ток, он передается по толстым проводам к трансформаторам, которые усиливают напряжение. Это высоковольтное электричество передается в электросеть. Одна в электросети, электричество перемещается на разные подстанции, которые снижают напряжение для использования в больших помещениях, таких как фабрики.

Для того, чтобы электричество действительно доставлялось к вам, оно распределяется по местным трансформаторам по линиям электропередач, которые либо проложены под землей, либо смонтированы. Эти местные трансформаторы дополнительно снижают напряжение, поэтому вы безопасно получаете электроэнергию. Когда он, наконец, прибывает в ваш дом, и вы щелкаете этим переключателем или нажимаете кнопку «включения», вы замыкаете цепь, и электричество течет.

Вот и все! Теперь, когда вы хорошо знакомы с основами электричества и того, как оно доходит до вас, вы готовы решать любые возникающие у вас вопросы, связанные с электричеством, — которые могут пригодиться вашим детям в школьном школьном проекте по химии!

Требуется небольшое электрическое усиление? Дружелюбный техник в Mr.Электрик готов помочь. График и встреча с нами сегодня!

Плюс, вы хотите узнать больше о том, как это работает? Прочтите этот блог нашего коллеги по бренду Neighborly, Mr. Appliance, о том, как ваш холодильник остается холодным.

Ищете специалиста по обслуживанию? Посетите GetNeighborly.com, чтобы найти решение для ремонта вашего дома.

Этот блог предоставляется компанией Mr. Electric только в образовательных целях, чтобы дать читателю общую информацию и общее понимание по конкретной теме, указанной выше.Блог не должен использоваться в качестве замены лицензированного специалиста-электрика в вашем штате или регионе. Перед выполнением любого домашнего проекта сверьтесь с законами города и штата.

Можно ли вырабатывать электричество из воды?

Вы когда-нибудь принимали вещи как должное? Например, подумайте о своем утреннем распорядке. Когда вы просыпаетесь, вы включаете свет? Взять обед из холодильника? Включи телевизор, пока не уйдешь в школу? Большинство людей не задумывается об этих действиях.Они считают само собой разумеющимся, что щелчок переключателя заставит все это включиться!

Однако для того, чтобы эти устройства работали, должно произойти многое. Для начала вам нужно, чтобы электричество поступало на розетки и выключатели в вашем доме. Без электричества лампы, холодильники и телевизоры были бы бесполезны.

Откуда у вас электричество? Некоторые люди получают электроэнергию от угольных электростанций. Другие получают электричество от солнечных батарей. Некоторые используют ветряные турбины. Некоторые люди даже получают электричество из воды! Это называется гидроэлектричеством.

Гидроэлектроэнергия производится за счет проточной воды. Если вы живете рядом с рекой, у которой есть плотины, вы можете использовать гидроэлектроэнергию. Так как же плотина использует воду для производства электроэнергии?

На самом деле это довольно просто. Аналогичным образом вырабатывают электроэнергию гидроэлектростанции и угольные электростанции. Оба используют машину, называемую турбиной. Они используют источник энергии для вращения гребных винтов турбины. Во время вращения турбина вращает металлический вал, соединенный с электрическим генератором. По сути, это двигатель, вырабатывающий электричество.

В случае плотины гидроэлектростанции проточная вода используется в качестве источника энергии для вращения турбины. Плотины гидроэлектростанций имеют специальный проход для воды. Эти проходы имеют наклон вниз, чтобы создать поток падающей воды.

Когда вода падает по проходу, она проходит мимо пропеллеров турбины. Сила текущей воды вращает турбину. Турбина, в свою очередь, раскручивает металлический вал электрогенератора. Вот и получается электричество!

Но зачем нужны дамбы? Можно ли построить гидроэлектростанцию ​​на любой реке? Не совсем.Плотины гидроэлектростанций должны быть на крупных реках. У них также должен быть большой перепад высот. Затем инженеры контролируют поток воды, чтобы производить электричество по запросу с определенной скоростью.

Многие люди хотят использовать электричество из воды вместо угля. Это потому, что это лучше для окружающей среды. Когда мы используем уголь для производства электричества, мы его сжигаем. Это увеличивает количество парниковых газов, вызывающих изменение климата. Кроме того, когда уголь сжигается, он исчезает. С другой стороны, вода, используемая в плотинах гидроэлектростанций, продолжает течь.Благодаря естественному круговороту воды гидроэлектростанции используют возобновляемый источник энергии!

Стандарты: CCRA.L.3, CCRA.L.6, CCRA.R.1, CCRA.R.2, CCRA.R.4, CCRA.R.10, CCRA.SL.1

Гидроэлектроэнергия: как это работает

• Школа водных наук ГЛАВНАЯ • Темы водопользования •

Падающая вода производит гидроэлектроэнергию.

Кредит: Управление долины Теннесси

Так как же нам получить электричество из воды? Фактически, гидроэлектростанции и угольные электростанции производят электроэнергию одинаковым образом. В обоих случаях источник энергии используется для вращения пропеллероподобной детали, называемой турбиной, которая затем вращает металлический вал в электрическом генераторе, который является двигателем, вырабатывающим электричество. На угольной электростанции пар вращает лопасти турбины; тогда как гидроэлектростанция использует падающую воду для вращения турбины.Результаты такие же.

Взгляните на эту схему (любезно предоставленную Управлением долины Теннесси) гидроэлектростанции, чтобы увидеть подробности:

Теория состоит в том, чтобы построить плотину на большой реке , которая имеет большой перепад высот (в Канзасе или Флориде не так много гидроэлектростанций). Плотина хранит много воды за собой в резервуаре . У подножия стены дамбы находится водозабор. Гравитация заставляет его проваливаться через напорный водовод внутри дамбы.В конце напорного водовода находится пропеллер турбины, который вращается движущейся водой. Вал турбины идет вверх в генератор, который производит мощность. К генератору подключены линии электропередач, по которым электричество доставляется в ваш дом и в мой. Вода проходит мимо гребного винта через отводной канал в реку мимо плотины. Кстати, играть в воде прямо под плотиной, когда выходит вода, — не лучшая идея!

Турбина и генератор вырабатывают электроэнергию

Схема гидроэлектрической турбины и генератора.

Источник: Инженерный корпус армии США

Что касается того, как работает этот генератор, Инженерный корпус объясняет это следующим образом:
«Гидравлическая турбина преобразует энергию проточной воды в механическую энергию. Гидроэлектрический генератор преобразует эту механическую энергию в электричество. Принцип работы генератора основан на На принципах, открытых Фарадеем, он обнаружил, что когда магнит проходит мимо проводника, он заставляет течь электричество.В большом генераторе электромагниты создаются путем циркуляции постоянного тока через петли из проволоки, намотанные на стопки пластин из магнитной стали. Они называются полевыми полюсами и устанавливаются по периметру ротора. Ротор прикреплен к валу турбины и вращается с фиксированной скоростью. Когда ротор вращается, полюса поля (электромагниты) проходят мимо проводников, установленных в статоре. Это, в свою очередь, вызывает прохождение электричества и повышение напряжения на выходных клеммах генератора.»

Насосный накопитель: повторное использование воды для пикового спроса на электроэнергию

Спрос на электроэнергию не «плоский», а постоянный. Спрос повышается и понижается в течение дня, и за ночь потребность в электричестве в домах, на предприятиях и других объектах снижается. Например, здесь, в Атланте, штат Джорджия, в 17:00 в жаркий августовский выходной день можно поспорить, что существует огромный спрос на электроэнергию для работы миллионов кондиционеров! Но 12 часов спустя, в 5:00 … не так уж и много.Гидроэлектростанции более эффективны в обеспечении пиковой потребности в энергии в течение коротких периодов времени, чем электростанции, работающие на ископаемом топливе и атомные электростанции, и один из способов сделать это — использовать «гидроаккумулирующие станции», которые повторно используют одну и ту же воду более одного раза.

Насосный накопитель — это метод сохранения воды в резерве на период пиковой нагрузки за счет перекачки воды, которая уже прошла через турбины, в резервный бассейн над электростанцией в то время, когда потребность потребителей в энергии низка, например, во время полночь.Затем воде позволяют течь обратно через турбогенераторы в периоды, когда потребность высока и на систему ложится большая нагрузка.

Насосный накопитель: повторное использование воды для пикового спроса на электроэнергию

Резервуар действует как батарея, накапливая энергию в виде воды, когда потребности в ней низкие, и вырабатывая максимальную мощность в периоды суточных и сезонных пиковых нагрузок.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *