Как работает магнитное поле: Из-за чего образуется магнитное поле

Содержание

Из-за чего образуется магнитное поле

Действие магнитного поля распространяется на все виды жизни на Земле и жизни планет. Эта материя, с помощью которой взаимодействуют заряженные частицы. 

Магнит – это предмет, который долгое время находится в одном состоянии, в намагниченном состоянии. С помощью этого свойства такие предметы, как магниты притягивают другие предметы, состоящие из железа и их сплавов. Магниты имеют два полюса – северный и южный, самое сильное магнитное поле располагается около полюсов. 

Магниты бывают натуральными, сделанные из железной руды магнитного железняка. Также магниты бывают искусственными, произведенные человеком. Их делают путем внесения железа в магнитное поле. 

Магнитное поле бывает отрицательным и положительным. Два отрицательных поля и два положительных поля отталкиваются друг от друга, а два поля с разными полюсами будут притягиваться. Это происходит из-за взаимодействия друг с другом магнитных полей.

Магнитное поле – вещь не постоянная. Оно может внезапно появиться и внезапно пропасть, все зависит от внешних факторов, влияющих на магнитное поле. 

Элементарные магнитные поля создаются благодаря движению электронов вокруг ядра атома и движению вокруг своей оси. Само магнитное поле образуется благодаря внесению железного предмета во внешнее магнитное поле, тогда элементарные магнитные поля в железном предмете ориентируются во внешнем магнитном поле абсолютно одинаково. После этих небольших преобразований обычный предмет из железа становится магнитом, со своими магнитными полями. 

Действие магнитного поля влияет только на самого себя, а на электрическое поле оно никак не влияет. Есть электрическая заряженная частица, которая непременно движется, вокруг этой частицу и существует магнитное поле. Есть вторая электрическая заряженная частица, вокруг которой также существует магнитное поле. И эти два магнитных поля друг с другом взаимодействуют. 
Действие магнитного поля – это взаимодействия нескольких тел, такие как притягивание и отталкивание. Различаются эти взаимодействия только по интенсивности действия. Например, все электрические двигатели работают по принципу взаимного магнитного отталкивания. 

Наша планета, Земля, как и многие другие планеты, имеет магнитное поле. Магнитное поле Земли возникло из-за того, что наше планета постоянно движется вокруг Солнца и вокруг своей оси. Ядро нашей планеты состоит металла и является проводником электричества. Магнитное поле оказывает благотворное влияние на жизнь целой планеты и взаимодействия около земного пространства. Например, магнитное поле защищает все живое на земле от неблагоприятных воздействий солнца. Также защищает искусственные спутники Земли. Даже красивые полярные сияния вызваны магнитным полем Земли.

Интересные сведения о магнитном поле Земли: Наука и техника: Lenta.ru

В последние дни на научных информационных сайтах появилось большое количество новостей, посвященных магнитному полю Земли. Например, новость о том, что в последнее время оно существенно изменяется, или о том, что магнитное поле способствует утечке кислорода из земной атмосферы и даже про то, что вдоль линий магнитного поля ориентируются коровы на пастбищах. Что представляет собой магнитное поле и насколько важны все перечисленные новости?

Магнитное поле Земли – это область вокруг нашей планеты, где действуют магнитные силы. Вопрос о происхождении магнитного поля до сих пор окончательно не решен. Однако большинство исследователей сходятся в том, что наличием магнитного поля Земля хотя бы отчасти обязана своему ядру. Земное ядро состоит из твердой внутренней и жидкой наружной частей. Вращение Земли создает в жидком ядре постоянные течения. Как читатель может помнить из уроков физики, движение электрических зарядов приводит к появлению вокруг них магнитного поля.

Одна из самых распространенных теорий, объясняющих природу поля, — теория динамо-эффекта — предполагает, что конвективные или турбулентные движения проводящей жидкости в ядре способствуют самовозбуждению и поддержанию поля в стационарном состоянии.

Землю можно рассматривать как магнитный диполь. Его южный полюс находится на географическом Северном полюсе, а северный, соответственно, на Южном. На самом деле, географический и магнитный полюса Земли не совпадают не только по «направлению». Ось магнитного поля наклонена по отношению к оси вращения Земли на 11,6 градуса. Из-за того что разница не очень существенная, мы можем пользоваться компасом. Его стрелка точно указывает на южный магнитный полюс Земли и почти точно на Северный географический. Если бы компас был изобретен 720 тысяч лет назад, то он бы указывал и на географический и на магнитный северный полюс. Но об этом чуть ниже.

Магнитное поле защищает жителей Земли и искусственные спутники от губительного воздействия космических частиц. К таким частицам относятся, например, ионизированные (заряженные) частицы солнечного ветра. Магнитное поле изменяет траекторию их движения, направляя частицы вдоль линий поля. Необходимость наличия магнитного поля для существования жизни сужает круг потенциально обитаемых планет (если мы исходим из предположения, что гипотетически возможные формы жизни похожи на земных обитателей).

Ученые не исключают, что часть планет земного типа не имеют металлического ядра и, соответственно, лишены магнитного поля. До сих пор считалось, что планеты, состоящие из твердых скальных пород, как и Земля, содержат три основных слоя: твердую кору, вязкую мантию и твердое или расплавленное железное ядро. В недавней работе ученые из Массачусетского технологического института предложили сразу два возможных механизма образования «скалистых» планет без ядра. Если теоретические выкладки исследователей подтвердятся наблюдениями, то формулу для расчета вероятности встретить во Вселенной гуманоидов или хотя бы что-то, напоминающее иллюстрации из учебника биологии, придется переписать.

Земляне тоже могут лишиться своей магнитной защиты. Правда, точно сказать, когда это произойдет, геофизики пока не могут. Дело в том, что магнитные полюса Земли непостоянны. Периодически они меняются местами. Не так давно исследователи установили, что Земля «помнит» о смене полюсов. Анализ таких «воспоминаний» показал, что за последние 160 миллионов лет магнитные север и юг менялись местами около 100 раз. Последний раз это событие произошло около 720 тысяч лет назад.

Смена полюсов сопровождается изменением конфигурации магнитного поля. Во время «переходного периода» на Землю проникает существенно больше космических частиц, опасных для живых организмов. Одна из гипотез, объясняющих исчезновение динозавров, утверждает, что гигантские рептилии вымерли именно во время очередной смены полюсов.

Кроме «следов» плановых мероприятий по смене полюсов исследователи заметили в магнитном поле Земли опасные подвижки. Анализ данных о его состоянии за несколько лет показал, что в последние месяцы в нем начали происходить опасные изменения. Настолько резких «движений» поля ученые не регистрировали уже очень давно. Вызывающая беспокойства исследователей зона находится в южной части Атлантического океана. «Толщина» магнитного поля в этом районе не превышает трети от «нормальной». Исследователи давно обратили внимание на эту «прореху» в магнитном поле Земли. Собранные за 150 лет данные показывают, что за этот период поле здесь ослабло на десять процентов.

На данный момент трудно сказать, чем это грозит человечеству. Одним из последствий ослабления напряженности поля может стать увеличение (пусть и незначительное) содержания кислорода в земной атмосфере. Связь между магнитным полем Земли и этим газом была установлена с помощью системы спутников Cluster – проекта Европейского космического агентства. Ученые выяснили, что магнитное поле ускоряет ионы кислорода и «выбрасывает» их в космическое пространство.

Несмотря на то, что магнитное поле нельзя увидеть, обитатели Земли хорошо его чувствуют. Перелетные птицы, например, отыскивают дорогу, ориентируясь именно на него. Существует несколько гипотез, объясняющих, как именно они ощущают поле. Одна из последних предполагает, что птицы воспринимают магнитное поле визуально. Особые белки – криптохромы – в глазах перелетных птиц способны менять свое положение под воздействием магнитного поля. Авторы теории считают, что криптохромы могут выполнять роль компаса.

Кроме птиц магнитное поле Земли вместо GPS используют морские черепахи. И, как показал анализ спутниковых фотографий, представленных в рамках проекта Google Earth, коровы. Изучив фотографии 8510 коров в 308 районах мира, ученые заключили, что эти животные предпочтительно ориентируют свои тела с севера на юг (или с юга на север). Причем «реперными точками» для коров служат не географические, а именно магнитные полюса Земли. Механизм восприятия коровами магнитного поля и причины именно такой реакции на него остаются неясными.

Кроме перечисленных замечательных свойств магнитное поле способствует появлению полярных сияний. Они возникают в результате резких изменений поля, происходящих в удаленных регионах поля.

Магнитное поле не обошли своим вниманием сторонники одной из «теорий заговора» – теории о лунной мистификации. Как уже упоминалось выше, магнитное поле защищает нас от космических частиц. «Собранные» частицы скапливаются в определенных частях поля – так называемых радиационных поясах Ван Алена. Скептики, не верящие в реальность высадок на Луну, считают, что во время пролета сквозь радиационные пояса астронавты получили бы смертельную дозу радиации.

Магнитное поле Земли — удивительное следствие законов физики, защитный щит, ориентир и создатель полярных сияний. Если бы не оно, жизнь на Земле, возможно, выглядела бы совсем иначе. В общем, если бы магнитного поля не было — его необходимо было бы придумать.

Магнитное поле земли и здоровье человека

Сейфулла Р.Д. 
М.: ООО «Самполиграфист», 2013. 120 с.

Магнитное поле Земли в первом приближении представляет собой диполь, полюса которого располагаются рядом с полюсами планеты. Магнитное поле – разновидность электромагнитного поля, создаваемого движущимися электрическими зарядами или токами и оказывающая силовое воздействие на движущиеся заряды или токи. Поле определяет магнитосферу, которая отклоняет частицы солнечного ветра. Они накапливаются в радиационных поясах – двух концентрических областях в форме экватора вокруг Земли. Около магнитных поясов эти частицы могут «высыпаться» в атмосферу и приводить к появлению полярных сияний. Нашу планету окружает магнитное поле, которое существует с момента её формирования. Всё, что находится на Земле подвержено действию невидимых силовых линий этого поля. Именно это обстоятельство заинтересовало нас в большей степени, так как структура и функция Земли, а также и человеческого организма тесным образом связана с наличием электрических зарядов, которые определяют все процессы, связанные с жизнедеятельностью всех организмов, находящихся на её поверхности, в воде, в почве, в воздухе. Земля обладает электрическим и магнитным полем. Вся планета имеет отрицательный заряд, а ионосфера положительный. Линии напряженности электрического поля направлены сверху (от ионосферы) вниз (к Земле). Напряженность поля порядка Е = 120 – 130 в/м. Проведя несложные вычисления был сделан вывод, что в электромагнитном поле Земли заключена колоссальная энергия. Проблема получения энергии из магнитного поля Земли весьма актуальна для человечества. Такой приёмник — генератор был сделан ещё в 1889 году Николой Тесла, но правительство США запретило разглашать эту тайну по коммерческим соображениям. В теле человека имеется своё силовое поле, вследствие протекания крови по сосудам. В здоровом теле человека и в нормальных атмосферных условиях имеется полное соответствие и взаимодействие внешнего и внутреннего магнитных полей. Кроме того, существует магнитное поле Солнца, космических галактик и Земли, которые оказывают своё действие на поведение человека и животных (перелётных птиц, рыб, членистоногих, насекомых), которые безошибочно определяют направления движения на тысячи километров.

Оказалось, что изменение магнитного поля Земли является причиной многих заболеваний, которые лечатся другими способами, что требует особого внимания специалистов и лечащих врачей. Так называемые магнитные бури, в которых принимают участие Солнце, солнечный ветер, а также магнитное поле Земли создают много проблем и являются причиной ненормального поведения человека, в том числе и криминального, а также тяжелейших заболеваний: инсультов мозга, инфарктов миокарда, психических расстройств, ДТП и другого криминального и суицидального поведения, о чем пойдёт речь ниже. Японский врач – исследователь Киочи Накагава обратил внимание в середине ХХ века на то, что дефицит магнитного поля Земли является причиной многочисленных заболеваний, которые он объединил общим названием синдром дефицита магнитного поля Земли . Накагава, а также другие ученые поддержали это открытие и предложили проводить коррекцию магнитного поля при его дефиците, при помощи магнитотерапии, что позволило проводить профилактику и лечение многих заболеваний при помощи компенсации недостающего магнитного поля. Это касается, прежде всего, сердечно-сосудистой системы, которая занимает в настоящее время первое место среди других заболеваний. Дело в том, что каждая молекула в магнитном поле вытягивается и поляризуется. Один её конец становится северным магнитным полюсом, а другой — южным. В таком виде каждая молекула легче вступает в электрохимические реакции и в организме идёт правильный обмен веществ. Резкое усиление магнитного поля при магнитной буре или геомагнитной зоне всегда отрицательно сказывается на самочувствии человека. Однако, отсутствие или ослабление магнитного поля является для организма критической ситуацией. Дополнительным фактором риска является электромагнитный смог (создаваемый компьютерными дисплеями, электробытовыми приборами, TV и другими) уменьшают воздействие на наш организм геомагнитного поля Земли. У вернувшихся из космического полёта космонавтов обнаруживали остеопороз, тяжелую депрессию и другие патологические состояния. Важной составляющей для нормализации физиологических функций является восстановление полярности клеток и активизация работы ферментных систем, а также улучшения кровообращения. Автор в течение 33 лет занимается проблемами спортивной фармакологии со спортсменами высшей квалификации, что требует нестандартных, недопинговых подходов (к подготовке спортсменов экстра — класса) особенно восстановления. Поэтому нас заинтересовала, в своё время, проблема дефицита магнитного поля Земли и соответствующие меры её коррекции для того, чтобы повысить работоспособность физически одарённых спортсменов без применения искусственных стимуляторов. Автор не ставил перед собой задачи процитировать всех авторов, которые занимались проблемами магнитного поля Земли, так как их существует многие тысячи как в нашей стране, так и за рубежом, а попытался продемонстрировать основные тенденции этой проблемы, касающихся здоровья человека.

Издание носит научно-популярный характер. В космосе постоянно работают и накапливают необходимый опыт для межпланетных полётов коллективы отечественных и зарубежных ученых исследователей для перспективы создания постоянно действующих обитаемых станций с человеком и разработки полезных ископаемых.
 



Часть I.
Природа магнитного поля Земли и влияние его на человека

Глава 1. Вселенная и строение солнечной системы
Глава 2. Солнечная система во вселенной
Глава 3. Напряженность магнитного поля Земли
Глава 4. Позитивные свойства магнитного поля Земли
Глава 5. Роль магнитного поля в жизнедеятельности человека
Глава 6. Атмосфера Земли
Глава 7. Влияние магнитных бурь на организм человека

Часть II.
Электрические и магнитные свойства при передаче нервного импульса

Глава 8. Поляризация мембраны живой клетке
Глава 9. Живые ткани как источник энергетических потенциалов
Глава 10. Синдром дефицита магнитного поля Земли
Глава 11. Коррекция магнитного поля спортсменов при помощи магнитотерапии
Глава 12. Естественный баланс дефицита магнитного поля Земли
Глава 13. Влияние магнитного поля Земли на космонавтов
Глава 14. Биоэлектрические явления (при эпилепсии) в процессах передачи информации в организме
Глава 15. Патофизиологические причины эпилепсии
Глава 16. Межнейронные связи при передаче информации в организме 
Глава 17. Необходимые условия для нормальной работы ЦНС
Глава 18. Профилактическое действие магнитотерапии при дефиците магнитного поля
Глава 19. О пользе магнитов при дефиците магнитного поля Земли
Глава 20. Перспективы развития цивилизаций


Магнитное поле — все статьи и новости

Магнитное поле — это силовое поле, действующее на движущиеся электрические заряды и тела, обладающие магнитным моментом. Это одна из пяти известных нам сил, управляющих Вселенной от микромасштабов до масштабов межгалактических. С тех пор как Джеймс Клерк Максвелл связал в своих знаменитых пяти уравнениях электродинамики электричество и магнетизм, объединение всех пяти сил стало для физиков одной из главных задач. В так называемой Стандартной модели им удалось объединить слабое взаимодействие с электромагнитным. С Великим объединением, включающим в силовой союз и сильное взаимодействие, пока не получается, но уже в наличии прогресс в виде множества моделей. Вопрос за малым: каким-то образом, объединить все это еще и с гравитацией.

Похоже, что магнитное поле — непременное условие для существования жизни. Оно представляет собой единственную защиту от убивающей радиации Солнца. По одной из гипотез истории Марса, у него в далекой древности были моря и воздух, но потом что-то сильно его ударило и лишило магнитного поля. Атмосферу снесло солнечным ветром, океан, тогда существовавший, усох, и сегодня он непригоден для жизни.

О магнитах и их силе люди, наверное, знали, чуть ли не с момента появления у них разума. Самый первый компас — сынань — был изобретен в Китае еще в третьем веке до н.э. Однако «по-настоящему» магнитное поле люди начали изучать лишь в Средние века. В 1269 году французский ученый Петр Перегрин (рыцарь Пьер из Мерикура) отметил магнитное поле на поверхности сферического магнита, применяя стальные иглы, и определил, что получающиеся линии магнитного поля пересекались в двух точках, которые он назвал «полюсами» — по аналогии с полюсами Земли. Почти три столетия спустя Уильям Гилберт Колчестер, заложивший основы магнетизма как науки, впервые определенно заявил, что сама Земля является магнитом. В XVIII-XIX веках ученые доказали, что у магнита обязательно должно быть два полюса, а также то, что электрический ток может порождать магнитное поле и наоборот. Ампер, Фарадей, Кельвин и Максвелл завершили классическое описание электромагнитного поля.

Изображение: NASA

Магнитные аксессуары могут вызывать помехи на камерах iPhone

Магниты, встроенные в некоторые аксессуары iPhone, могут создавать магнитные поля, которые влияют на работу камер, расположенных на задней панели iPhone. В этой статье описано, какие действия нужно предпринять, чтобы избежать такого эффекта. 

С помощью камер iPhone можно делать отличные снимки даже в неблагоприятных для съемки условиях. Если в процессе фотосъемки вы случайно сместите камеру, изображение может получиться размытым. Чтобы избежать этого, в некоторых моделях iPhone используется технология оптической стабилизации изображения (OIS).

1. OIS позволяет делать четкие снимки, даже если камера случайно смещается. Кроме того, некоторые модели iPhone оснащены функцией замкнутой автофокусировки.2. Эта функция противодействует гравитации и вибрации, сохраняя четкую фокусировку при фото- и видеосъемке, а также съемке панорамных видов.

Благодаря функции оптической стабилизации изображения гироскоп распознает, когда камера смещается: Чтобы уменьшить смещение изображения и получающуюся в результате этого размытость, объектив двигается в соответствии с углом гироскопа. А благодаря функции замкнутой автофокусировки встроенные акселерометры измеряют уровни воздействия гравитации и вибрации и компенсируют их. Магнитные датчики определяют положение объектива и нужным образом регулируют компенсирующее движение.

Сильное магнитное поле может стать помехой функциям оптической стабилизации изображения и замкнутой автофокусировки

Датчики положения объектива реагируют на магнитные поля. Если рядом с этими датчиками разместить магнит, магнитное поле будет влиять на их работу или временно выводить их из строя. Это может ухудшить их точность и ограничить доступный диапазон движения объектива. Камера будет задействовать другие средства стабилизации при съемке, но не функции оптической стабилизации изображения и замкнутой автофокусировки.

Как избежать магнитных помех

Некоторые аксессуары сторонних производителей оснащены мощными магнитами или намагничиваемыми металлическими пластинами, расположенными рядом с камерой (или камерами) на задней панели iPhone. Эти магниты и пластины можно крепить на чехлы-книжки или съемные чехлы либо на крепления с фиксаторами, например автомобильные. Чтобы обеспечить оптимальную работу камеры, не используйте аксессуары, в состав которых входят магниты или магнитные металлы, рядом с камерой (или камерами) на задней панели iPhone.

Если камера все равно не работает

Если после того как вы сняли чехол и другие магнитные аксессуары с iPhone, камера все равно не работает, см. инструкции в этой статье.

  1. Технология OIS доступна на iPhone SE (2-го поколения), iPhone 11, iPhone 11 Pro, iPhone 11 Pro Max, iPhone XS, iPhone XS Max, iPhone XR, iPhone X, iPhone 8, iPhone 8 Plus, iPhone 7, iPhone 7 Plus, iPhone 6 Plus и iPhone 6s Plus. Обратите внимание, что сверхширокоугольная камера на iPhone 11, iPhone 11 Pro и iPhone 11 Pro Max, а также телеобъектив на iPhone 7 Plus и iPhone 8 Plus не оборудованы OIS.
  2. Функция замкнутой автофокусировки доступна на iPhone SE (2-го поколения), iPhone 11, iPhone 11 Pro, iPhone 11 Pro Max, iPhone XS, iPhone XS Max и iPhone XR.

Информация о продуктах, произведенных не компанией Apple, или о независимых веб-сайтах, неподконтрольных и не тестируемых компанией Apple, не носит рекомендательного или одобрительного характера. Компания Apple не несет никакой ответственности за выбор, функциональность и использование веб-сайтов или продукции сторонних производителей. Компания Apple также не несет ответственности за точность или достоверность данных, размещенных на веб-сайтах сторонних производителей. Обратитесь к поставщику за дополнительной информацией.

Дата публикации: 

Магнитные поля галактик

Пульсары и магнетары

Магнитная мощь нейтронных звезд превращает их в источники непрерывного направленного радиоизлучения. Способ его генерации в деталях еще не известен, но общее объяснение таково. Вращающееся магнитное поле нейтронной звезды индуцирует чрезвычайно сильные электрические поля, отрывающие от ее поверхности заряженные частицы. Эти частицы начинают двигаться по спиралям с очень плотной намоткой, направленным вдоль магнитных силовых линий. Такое движение порождает узкие пучки радиоволн, уходящих в пространство вдоль магнитной оси нейтронной звезды. Поскольку эта ось не совпадает с осью вращения, каждый пучок радиоволн очерчивает в пространстве коническую поверхность. При пересечении Земли с такой поверхностью радиотелескоп принимает радиоимпульсы, следующие друг за другом с одинаковыми короткими промежутками времени. Такие источники называются радиопульсарами. Имеются и более редкие разновидности космических прожекторов — оптические, рентгеновские и гамма-пульсары.

Магнетары работают иначе. Эти экзотические звезды по несколько раз облучают космос короткими, но чрезвычайно мощными выбросами мягкого гамма-излучения и рентгена. «Считается, что в нашей Галактике содержится от ста миллионов до миллиарда нейтронных звезд, причем каждая десятая из них в младенчестве была магнетаром, — рассказывает профессор физики Колумбийского университета Андрей Белобородов. — Все они покрыты твердой кристаллической корой толщиной до 2 км, окружающей сердцевину из жидкой вырожденной материи, где и сконцентрировано магнитное поле. Поля магнетаров настолько сильны, что не в состоянии долго сохранять стабильность. Мало-помалу они деформируются и вызывают в веществе оболочки сильные напряжения, локализованные на небольших участках. Когда напряжение превышает предел прочности коры, она лопается и ломается, причем очень быстро, где-то за одну десятую долю секунды. Магнитное поле в этом месте вырывается наружу и спирально закручивается, создавая сильнейшие возмущения магнитосферы. В результате генерируются концентрированные пучки высокочастотных фотонов, которые мы регистрируем в виде всплесков мягкого гамма-излучения и рентгена. Как правило, за первой гигантской вспышкой следуют более слабые, магнетар отключается постепенно».

Для чего нужна магнитотерапия?

Для чего нужна магнитотерапия?

Магнитотерапия – это терапевтическое воздействие на организм человека для лечения или профилактики ряда заболеваний.

Такие процедуры проводятся с помощью влияния магнитного поля на патологические участки, отличаются безопасностью и высокой эффективностью воздействия и на кожу, и на внутренние органы. О положительном воздействии магнитных полей на организм человека писали еще древние китайские ученые, греческие философы и врачи. В России магниты начал применять Боткин С.П. – для лечения нервных заболеваний, нарушений опорно-двигательного аппарата.

Особенности воздействия магнитотерапии на организм человека

Классический магнит – это сплав, который состоит из железа, кобальта и никеля. И в крови человека также находится определенное количество железа, частицы которого переносят кислород по кровотоку, улучшая усвояемость питательных веществ и гормонов организмом. При дефиците железа человек начинает чувствовать хроническую усталость и недомогание, страдает от бессонницы, снижается уровень гемоглобина.

Наличие в крови кобальта, меди, марганца улучшает усвоение железа организмом. При воздействии магнита одинаковые химические элементы притягиваются друг к другу. То есть, при воздействии магнита на человеческий организм в этом месте кровоток активизируется, и уровень кислорода значительно увеличивается.

Особенности магнитотерапии:

Методики магнитологии основаны на исследованиях реакций организма на магнитное поле. Магнитные поля с сильной интенсивностью (индукцией) вызывают стресс, средней – активацию внутренних процессов, малой – реакцию тренировки. При использовании высокочастотного влияния необходимо проведение процедуры квалифицированным специалистом, низкочастотные воздействия могут осуществляться пациентами самостоятельно, с помощью особых аппликаторов. Низкочастотная магнитотерапия применяется для лечения и профилактики различных заболеваний, хорошо переносится и молодыми, и пожилыми людьми.
Для такой терапии применяются специальные приборы и аппликаторы, место и время воздействия которых должно быть рекомендовано врачом.
Магнитотерапия успешно применяется для лечения заболеваний желудочно-кишечного тракта, нарушения работы опорно-двигательного аппарата, проблем, связанных с низким уровнем гемоглобина и мн. др.

Магнитное влияние может оказываться на весь организм, на определенный участок тела, в котором возникла патология, или на рефлекторные зоны, связанные с заболевшим органом. В некоторых случаях очень эффективно применение омагниченной воды.

Как действует магнитотерапия на человека

По мнению немецких ученых, терапия, основанная на воздействии магнитным полем, стимулирует не только материальную структуру организма, но, в большей степени, воздействует на биополе человека. За счет биологического резонансного эффекта стимулируется поступление кислорода в ткани, ускоряется выведение молочной кислоты и токсинов. Благодаря увеличению поступления кислорода к поврежденным тканям они начинают восстанавливаться, снимается болевой синдром. По результатам многочисленных исследований было установлено, что магнитотерапия по своей эффективности приближена к результативности гомеопатии.

Воздействие магнитного поля дает высокие результаты в процессе восстановления поврежденных тканей – за счет синтеза белков и углеводов, которые образуются в магнитном поле. Таким образом, происходит быстрое заживление ран – при наружных и внутренних повреждениях (переломы, гематомы, язвы). Низкочастотная магнитотерапия повышает иммунитет, насыщает кровь лимфоцитами.

магнетизм | Национальное географическое общество

Магнетизм — это сила, проявляемая магнитами, когда они притягиваются или отталкиваются друг от друга. Магнетизм вызывается движением электрических зарядов.

Каждое вещество состоит из крошечных единиц, называемых атомами. В каждом атоме есть электроны, частицы, несущие электрические заряды. Вращаясь, как волчки, электроны вращаются вокруг ядра или ядра атома. Их движение генерирует электрический ток и заставляет каждый электрон действовать как микроскопический магнит.

В большинстве веществ равное количество электронов вращается в противоположных направлениях, что нейтрализует их магнетизм. Вот почему такие материалы, как ткань или бумага, считаются слабомагнитными. В таких веществах, как железо, кобальт и никель, большинство электронов вращаются в одном направлении. Это делает атомы в этих веществах сильно магнитными, но они еще не являются магнитами.

Чтобы стать намагниченным, другое сильно магнитное вещество должно войти в магнитное поле существующего магнита.Магнитное поле — это область вокруг магнита, обладающая магнитной силой.

Все магниты имеют северный и южный полюса. Противоположные полюса притягиваются друг к другу, а одни и те же полюса отталкиваются. Когда вы протираете кусок железа по магниту, северные полюса атомов в железе выстраиваются в одном направлении. Сила, создаваемая выровненными атомами, создает магнитное поле. Железка стала магнитом.

Некоторые вещества могут намагничиваться электрическим током.Когда электричество проходит через катушку с проволокой, создается магнитное поле. Однако поле вокруг катушки исчезнет, ​​как только отключится электрический ток.

Геомагнитные полюса

Земля — ​​это магнит. Ученые не до конца понимают, почему, но они думают, что движение расплавленного металла во внешнем ядре Земли порождает электрические токи. Токи создают магнитное поле с невидимыми силовыми линиями, протекающими между магнитными полюсами Земли.

Геомагнитные полюса не совпадают с Северным и Южным полюсами. Магнитные полюса Земли часто перемещаются из-за активности далеко под поверхностью Земли. Смещение геомагнитных полюсов фиксируется в породах, которые образуются, когда расплавленный материал, называемый магмой, проникает сквозь земную кору и изливается в виде лавы. Когда лава охлаждается и превращается в твердую породу, сильно магнитные частицы внутри породы намагничиваются магнитным полем Земли. Частицы выстраиваются вдоль силовых линий в поле Земли.Таким образом, камни фиксируют положение геомагнитных полюсов Земли в то время.

Как ни странно, магнитные записи пород, образовавшихся в одно и то же время, похоже, указывают на разные местоположения полюсов. Согласно теории тектоники плит, скальные плиты, составляющие твердую оболочку Земли, постоянно перемещаются. Таким образом, плиты, на которых застывала порода, переместились с тех пор, как породы зафиксировали положение геомагнитных полюсов. Эти магнитные записи также показывают, что геомагнитные полюса менялись местами — превращались в полюсы противоположного типа — сотни раз с момента образования Земли.

Магнитное поле Земли не движется быстро и часто не меняется. Следовательно, это может быть полезным инструментом, помогающим людям сориентироваться. Сотни лет люди использовали магнитные компасы для навигации по магнитному полю Земли. Магнитная стрелка компаса совпадает с магнитными полюсами Земли. Северный конец магнита указывает на северный магнитный полюс.

Магнитное поле Земли доминирует в области, называемой магнитосферой, которая охватывает планету и ее атмосферу.Солнечный ветер, заряженные частицы от Солнца, прижимает магнитосферу к Земле со стороны, обращенной к Солнцу, и растягивает ее в форме капли на теневой стороне.

Магнитосфера защищает Землю от большинства частиц, но некоторые из них просачиваются сквозь нее и попадают в ловушку. Когда частицы солнечного ветра сталкиваются с атомами газа в верхних слоях атмосферы вокруг геомагнитных полюсов, они создают световые эффекты, называемые полярными сияниями. Эти полярные сияния появляются над такими местами, как Аляска, Канада и Скандинавия, где их иногда называют «Северным сиянием».«Южное сияние» можно увидеть в Антарктиде и Новой Зеландии.

Как работают магнитные поля?

Обновлено 28 декабря 2020 г.

Автор: С. Хуссейн Атер

••• Сайед Хуссейн Атер

Магнитные поля описывают, как магнитная сила распределяется в пространстве вокруг объектов. Как правило, для объекта, который является магнитным, силовые линии магнитного поля проходят от северного полюса объекта к южному полюсу, так же, как и для магнитного поля Земли, как показано на диаграмме выше.

Та же самая магнитная сила, которая заставляет предметы прилипать к поверхности холодильника, используется в магнитном поле Земли, которое защищает озоновый слой от вредного солнечного ветра. Магнитное поле формирует пакеты энергии, которые не позволяют озоновому слою терять углекислый газ.

Вы можете наблюдать это, засыпая железные опилки, маленькие порошкообразные железки в присутствии магнитного поля. Подложите магнит под лист бумаги или легкий кусок ткани. Вылейте железные опилки и посмотрите, какие формы и формы они принимают.Определите, какие силовые линии должны быть, чтобы опилки располагались и распределялись таким образом в соответствии с физикой магнитных полей.

Чем больше плотность силовых линий магнитного поля, проведенных с севера на юг, тем больше величина магнитного поля. Эти северный и южный полюса также определяют, будут ли магнитные объекты привлекательными (между северным и южным полюсами) или отталкивающими (между идентичными полюсами). Магнитные поля измеряются в единицах Тесла, Тл .

Наука о магнитных полях

Поскольку магнитные поля образуются всякий раз, когда заряды движутся, магнитные поля индуцируются электрическим током через провода. Поле дает вам способ описать потенциальную силу и направление магнитной силы в зависимости от тока через электрический провод и расстояния, которое проходит ток. Силовые линии магнитного поля образуют концентрические круги вокруг проводов. Направление этих полей можно определить с помощью «правила правой руки».»

Это правило говорит вам, что если вы поместите большой палец правой руки в направлении электрического тока через провод, результирующие магнитные поля будут в том направлении, в котором изгибаются пальцы вашей руки. Чем больше ток, тем больше магнитное поле индуцируется.

Как определить магнитное поле?

Вы можете использовать различные примеры правила правой руки , общего правила для определения направления различных величин, включая магнитное поле, магнитную силу и ток.Это эмпирическое правило полезно во многих случаях, связанных с электричеством и магнетизмом, поскольку это диктуется математикой величин.

••• Syed Hussain Ather

Это правило правой руки может также применяться в другом направлении для магнитного соленоида или серии электрического тока, намотанного на проволоку вокруг магнита. Если вы направите большой палец правой руки в направлении магнитного поля, пальцы правой руки будут сгибаться в направлении электрического тока.Соленоиды позволяют использовать силу магнитного поля с помощью электрического тока.

••• Syed Hussain Ather

При перемещении электрического заряда создается магнитное поле, поскольку вращающиеся и перемещающиеся электроны сами становятся магнитными объектами. Элементы, которые имеют неспаренные электроны в своих основных состояниях, такие как железо, кобальт и никель, могут быть выровнены так, что они образуют постоянные магниты. Магнитное поле, создаваемое электронами этих элементов, облегчает прохождение электрического тока через эти элементы.Сами магнитные поля также могут нейтрализовать друг друга, если они равны по величине в противоположных направлениях.

Ток, протекающий через батарею I излучает магнитное поле B на радиусе r в соответствии с уравнением для закона Ампера :

B = 2 \ pi r \ mu_0 I

, где μ 0 — магнитная постоянная вакуумной проницаемости, 1,26 x 10 -6 Гн / м («Генри на метр», в котором Генри является единицей индуктивности) . Увеличение тока и приближение к проводу увеличивают возникающее магнитное поле.

Типы магнитов

Чтобы объект был магнитным, электроны, составляющие объект, должны иметь возможность свободно перемещаться между атомами в объекте. Для того чтобы материал был магнитным, идеальными кандидатами являются атомы с неспаренными электронами одного и того же спина, поскольку эти атомы могут образовывать пары друг с другом, позволяя электронам свободно перемещаться. Тестирование материалов в присутствии магнитных полей и изучение магнитных свойств атомов, из которых состоят эти материалы, могут рассказать вам об их магнетизме.

Ферромагнетики обладают постоянным магнитным полем. Парамагнетики , напротив, не будут демонстрировать магнитные свойства, если только в присутствии магнитного поля не выравнивает спины электронов так, чтобы они могли свободно перемещаться. Диамагнетики имеют такой атомный состав, что на них вообще не влияют магнитные поля или на них очень мало влияют магнитные поля. У них нет или мало неспаренных электронов, через которые проходят заряды.

Парамагнетики работают, потому что они сделаны из материалов, которые всегда имеют магнитных моментов , известных как диполи. Эти моменты — их способность выравниваться с внешним магнитным полем из-за спина неспаренных электронов на орбиталях атомов, из которых состоят эти материалы. В присутствии магнитного поля материалы выравниваются, чтобы противостоять силе магнитного поля. Парамагнитные элементы включают магний, молибден, литий и тантал.

Внутри ферромагнетика диполь атомов является постоянным, обычно в результате нагрева и охлаждения парамагнитного материала.Это делает их идеальными кандидатами для электромагнитов, двигателей, генераторов и трансформаторов для использования в электрических устройствах. Диамагнетики, напротив, могут создавать силу, которая позволяет электронам свободно течь в виде тока, который затем создает магнитное поле, противоположное любому приложенному к ним магнитному полю. Это нейтрализует магнитное поле и не дает им стать магнитными.

Магнитная сила

Магнитные поля определяют, как магнитные силы могут распределяться в присутствии магнитного материала.В то время как электрические поля описывают электрическую силу в присутствии электрона, магнитные поля не имеют такой аналогичной частицы, на которой можно было бы описать магнитную силу. Ученые предположили, что магнитный монополь может существовать, но не было экспериментальных доказательств того, что эти частицы существуют. Если бы они существовали, эти частицы имели бы магнитный «заряд» почти так же, как заряженные частицы имеют электрические заряды.

Магнитная сила возникает из-за электромагнитной силы, силы, которая описывает как электрические, так и магнитные компоненты частиц и объектов.Это показывает, насколько магнетизм присущ тем же явлениям электричества, как ток и электрическое поле. Заряд электрона — это то, что заставляет магнитное поле отклонять его посредством магнитной силы, так же, как электрическое поле и электрическая сила.

Магнитные поля и электрические поля

Хотя только движущиеся заряженные частицы излучают магнитные поля, а все заряженные частицы излучают электрические поля, магнитные и электромагнитные поля являются частью одной и той же фундаментальной силы электромагнетизма.Электромагнитная сила действует между всеми заряженными частицами во Вселенной. Электромагнитная сила принимает форму повседневных явлений электричества и магнетизма, таких как статическое электричество и электрически заряженные связи, удерживающие молекулы вместе.

Эта сила наряду с химическими реакциями также формирует основу электродвижущей силы, которая позволяет току течь через цепи. Когда магнитное поле переплетается с электрическим полем, полученный продукт известен как электромагнитное поле.

Уравнение силы Лоренца

F = qE + qv \ times B

описывает силу, действующую на заряженную частицу q , движущуюся со скоростью v в присутствии электрического поля E и магнитное поле B . В этом уравнении x между qv и B представляет собой перекрестное произведение. Первый член qE представляет собой вклад электрического поля в силу, а второй член qv x B представляет собой вклад магнитного поля.

Уравнение Лоренца также говорит вам, что магнитная сила между скоростью заряда v и магнитным полем B составляет qvbsinϕ для заряда q , где ϕ («фи») — это угол между v и B , который должен быть меньше 1 80 градусов. Если угол между v и B больше, то вы должны использовать угол в противоположном направлении, чтобы исправить это (из определения перекрестного произведения).Если ϕ равно 0, например, скорость и магнитное поле указывают в одном направлении, магнитная сила будет равна 0. Частица будет продолжать движение, не отклоняясь от магнитного поля.

Перекрестное произведение магнитного поля

••• Syed Hussain Ather

На диаграмме выше перекрестное произведение двух векторов a и b равно c . Обратите внимание на направление и величину c . Это в направлении, перпендикулярном a и b , если задано правилом правой руки.Правило правой руки означает, что направление результирующего перекрестного произведения c задается направлением большого пальца, когда указательный палец правой руки находится в направлении b , а средний палец правой руки находится в направление а .

Перекрестное произведение — это векторная операция, которая приводит к вектору, перпендикулярному как qv , так и B , заданному правилом правой руки трех векторов и с величиной площади параллелограмма, которая векторы qv и B простираются.Правило правой руки означает, что вы можете определить направление перекрестного произведения между qv и B , поместив указательный палец правой руки в направлении B , средний палец в направлении направление qv , и результирующее направление вашего большого пальца будет направлением перекрестного произведения этих двух векторов.

••• Syed Hussain Ather

На приведенной выше диаграмме правило правой руки также демонстрирует взаимосвязь между магнитным полем, магнитной силой и током в проводе.Это также показывает, что перекрестное произведение между этими тремя величинами может представлять собой правило правой руки, поскольку перекрестное произведение между направлением силы и полем равно направлению тока.

Магнитное поле в повседневной жизни

Магнитные поля примерно от 0,2 до 0,3 тесла используются в МРТ, магнитно-резонансной томографии. МРТ — это метод, который врачи используют для изучения внутренних структур в теле пациента, таких как мозг, суставы и мышцы. Обычно это делается путем помещения пациента в сильное магнитное поле так, чтобы оно проходило вдоль оси тела.Если вы представите пациента магнитным соленоидом, электрические токи будут обволакивать его или ее тело, а магнитное поле будет направлено в вертикальном направлении по отношению к телу, как это диктуется правилом правой руки.

Затем ученые и врачи изучают, как протоны отклоняются от своего нормального положения, чтобы изучить структуры внутри тела пациента. Благодаря этому врачи могут безопасно и неинвазивно диагностировать различные заболевания.

Человек не чувствует магнитное поле во время процесса, но, поскольку в человеческом теле очень много воды, ядра водорода (которые являются протонами) выстраиваются под действием магнитного поля.Сканер МРТ использует магнитное поле, из которого протоны поглощают энергию, и, когда магнитное поле выключается, протоны возвращаются в свое нормальное положение. Затем устройство отслеживает это изменение положения, чтобы определить, как протоны выровнены, и создать изображение внутренней части тела пациента.

Что такое магнетизм? | Магнитные поля и магнитная сила

Магнетизм — это один из аспектов комбинированной электромагнитной силы. Это относится к физическим явлениям, возникающим из-за силы, вызванной магнитами, объектами, которые создают поля, которые притягивают или отталкивают другие объекты.

Согласно веб-сайту HyperPhysics Университета штата Джорджия, магнитное поле воздействует на частицы в поле за счет силы Лоренца. Движение электрически заряженных частиц порождает магнетизм. Сила, действующая на электрически заряженную частицу в магнитном поле, зависит от величины заряда, скорости частицы и силы магнитного поля.

Все материалы обладают магнетизмом, некоторые сильнее других. Постоянные магниты, сделанные из таких материалов, как железо, испытывают сильнейшее воздействие, известное как ферромагнетизм.За редким исключением, это единственная форма магнетизма, достаточно сильная, чтобы ее могли почувствовать люди.

Противоположности притягиваются

Магнитные поля генерируются вращающимися электрическими зарядами, согласно HyperPhysics. Все электроны обладают свойством углового момента или спина. Большинство электронов имеют тенденцию образовывать пары, в которых один из них имеет «спин вверх», а другой — «спин вниз», в соответствии с принципом исключения Паули, согласно которому два электрона не могут находиться в одном и том же энергетическом состоянии одновременно. В этом случае их магнитные поля имеют противоположные стороны, поэтому они компенсируют друг друга. Однако некоторые атомы содержат один или несколько неспаренных электронов, спин которых может создавать направленное магнитное поле. Направление их вращения определяет направление магнитного поля, согласно Ресурсному центру неразрушающего контроля (NDT). Когда значительное большинство неспаренных электронов выровнены своими спинами в одном направлении, они объединяются, чтобы создать магнитное поле, достаточно сильное, чтобы его можно было почувствовать в макроскопическом масштабе.

Источники магнитного поля биполярные, с северным и южным магнитными полюсами. По словам Джозефа Беккера из Университета Сан-Хосе, противоположные полюса (северный и южный) притягиваются, а аналогичные полюса (северный и северный, или южный и южный) отталкиваются. Это создает тороидальное поле или поле в форме пончика, поскольку направление поля распространяется наружу от северного полюса и входит через южный полюс.

Земля сама по себе является гигантским магнитом. Согласно HyperPhysics, планета получает свое магнитное поле от циркулирующих электрических токов внутри расплавленного металлического ядра.Компас указывает на север, потому что маленькая магнитная стрелка в нем подвешена, так что он может свободно вращаться внутри корпуса, выравниваясь с магнитным полем планеты. Парадоксально, но то, что мы называем Северным магнитным полюсом, на самом деле является южным магнитным полюсом, потому что он притягивает северные магнитные полюса стрелок компаса.

Ферромагнетизм

Если выравнивание неспаренных электронов продолжается без приложения внешнего магнитного поля или электрического тока, образуется постоянный магнит.Постоянные магниты — результат ферромагнетизма. Приставка «ферро» относится к железу, потому что постоянный магнетизм впервые наблюдался в форме природной железной руды, называемой магнетитом, Fe 3 O 4 . Кусочки магнетита можно найти разбросанными на поверхности земли или вблизи нее, и иногда они намагничиваются. Эти встречающиеся в природе магниты называются магнитными камнями. «Мы до сих пор не уверены в их происхождении, но большинство ученых считают, что магнитный камень — это магнетит, пораженный молнией», — говорится в сообщении Университета Аризоны.

Вскоре люди узнали, что они могут намагнитить железную иглу, поглаживая ее магнитом, в результате чего большинство неспаренных электронов в игле выстраиваются в одном направлении. По данным НАСА, около 1000 г. н.э. китайцы обнаружили, что магнит, плавающий в чаше с водой, всегда выстраивается в направлении север-юг. Таким образом, магнитный компас стал огромным помощником в навигации, особенно днем ​​и ночью, когда звезды были скрыты облаками.

Было обнаружено, что другие металлы, помимо железа, обладают ферромагнитными свойствами.К ним относятся никель, кобальт и некоторые редкоземельные металлы, такие как самарий или неодим, которые используются для создания сверхпрочных постоянных магнитов.

Другие формы магнетизма

Магнетизм принимает многие другие формы, но, за исключением ферромагнетизма, они обычно слишком слабы, чтобы их можно было наблюдать за исключением чувствительных лабораторных приборов или при очень низких температурах. Диамагнетизм был впервые открыт в 1778 году Антоном Бругнамсом, который использовал постоянные магниты в поисках материалов, содержащих железо.По словам Джеральда Кюстлера, широко публикуемого независимого немецкого исследователя и изобретателя, в его статье «Диамагнитная левитация — исторические вехи», опубликованной в Румынском журнале технических наук, Бругнамс заметил: «Только темный и почти фиолетовый висмут проявлял конкретное явление в исследовании; потому что, когда я положил его кусок на круглый лист бумаги, плавающий на воде, он оттолкнулся обоими полюсами магнита ».

Было установлено, что висмут обладает самым сильным диамагнетизмом среди всех элементов, но, как обнаружил Майкл Фарадей в 1845 году, это свойство всей материи отталкиваться магнитным полем.

Диамагнетизм вызван орбитальным движением электронов, создающих крошечные токовые петли, которые создают слабые магнитные поля, согласно HyperPhysics. Когда к материалу прикладывается внешнее магнитное поле, эти токовые петли имеют тенденцию выравниваться таким образом, чтобы противостоять приложенному полю. Это заставляет все материалы отталкиваться постоянным магнитом; однако результирующая сила обычно слишком мала, чтобы быть заметной. Однако есть некоторые заметные исключения.

Пиролитический углерод, вещество, похожее на графит, демонстрирует даже более сильный диамагнетизм, чем висмут, хотя и только вдоль одной оси, и действительно может подниматься над сверхсильным редкоземельным магнитом.Некоторые сверхпроводящие материалы демонстрируют даже более сильный диамагнетизм ниже своей критической температуры, поэтому над ними можно левитировать редкоземельные магниты. (Теоретически из-за их взаимного отталкивания один может левитировать над другим.)

Парамагнетизм возникает, когда материал временно становится магнитным, когда помещается в магнитное поле, и возвращается в немагнитное состояние, как только внешнее поле устраняется. При приложении магнитного поля некоторые из неспаренных электронных спинов выравниваются с полем и преодолевают противоположную силу, создаваемую диамагнетизмом. Однако, по словам Дэниела Марша, профессора физики Южного государственного университета Миссури, эффект заметен только при очень низких температурах.

Другие, более сложные формы включают антиферромагнетизм, при котором магнитные поля атомов или молекул выстраиваются рядом друг с другом; и поведение спинового стекла, которое включает как ферромагнитные, так и антиферромагнитные взаимодействия. Кроме того, ферримагнетизм можно рассматривать как комбинацию ферромагнетизма и антиферромагнетизма из-за множества общих черт между ними, но, по данным Калифорнийского университета в Дэвисе, у него все еще есть своя уникальность.

Электромагнетизм

Когда провод перемещается в магнитном поле, поле индуцирует в проводе ток. И наоборот, магнитное поле создается движущимся электрическим зарядом. Это соответствует закону индукции Фарадея, который лежит в основе электромагнитов, электродвигателей и генераторов. Заряд, движущийся по прямой линии, как по прямому проводу, создает магнитное поле, которое вращается вокруг провода по спирали. Когда этот провод превращается в петлю, поле приобретает форму пончика или тора.Согласно Справочнику по магнитной записи (Springer, 1998) Marvin Cameras, это магнитное поле можно значительно усилить, поместив ферромагнитный металлический сердечник внутри катушки.

В некоторых приложениях постоянный ток используется для создания постоянного поля в одном направлении, которое можно включать и выключать вместе с током. Это поле может затем отклонить подвижный железный рычаг, вызывая слышимый щелчок. Это основа для телеграфа, изобретенного в 1830-х годах Сэмюэлем Ф. Б. Морзе, который позволял осуществлять связь на большие расстояния по проводам с использованием двоичного кода, основанного на импульсах большой и малой длительности.Импульсы посылались опытными операторами, которые быстро включали и выключали ток с помощью подпружиненного переключателя с мгновенным контактом или ключа. Другой оператор на принимающей стороне затем переводил слышимые щелчки обратно в буквы и слова.

Катушку вокруг магнита также можно заставить двигаться по шаблону с изменяющейся частотой и амплитудой, чтобы навести ток в катушке. Это основа для ряда устройств, в первую очередь для микрофона. Звук заставляет диафрагму двигаться внутрь и наружу с волнами переменного давления.Если диафрагма соединена с подвижной магнитной катушкой вокруг магнитопровода, она будет производить переменный ток, аналогичный падающим звуковым волнам. Затем этот электрический сигнал может быть усилен, записан или передан по желанию. Крошечные сверхсильные магниты из редкоземельных элементов сейчас используются для изготовления миниатюрных микрофонов для сотовых телефонов, сообщил Марш Live Science.

Когда этот модулированный электрический сигнал подается на катушку, он создает колеблющееся магнитное поле, которое заставляет катушку входить и выходить по магнитному сердечнику по той же схеме.Затем катушка прикрепляется к подвижному диффузору динамика, чтобы он мог воспроизводить звуковые волны в воздухе. Первым практическим применением микрофона и динамика был телефон, запатентованный Александром Грэмом Беллом в 1876 году. Хотя эта технология была усовершенствована и усовершенствована, она по-прежнему является основой для записи и воспроизведения звука.

Применение электромагнитов практически бесчисленное множество. Закон индукции Фарадея составляет основу многих аспектов нашего современного общества, включая не только электродвигатели и генераторы, но и электромагниты всех размеров.Тот же принцип, что и гигантский кран для подъема старых автомобилей на свалку металлолома, также используется для выравнивания микроскопических магнитных частиц на жестком диске компьютера для хранения двоичных данных, и каждый день разрабатываются новые приложения.

Штатный писатель Таня Льюис внесла свой вклад в этот отчет.

Дополнительные ресурсы

Что создает магнитное поле Земли?

Путешествие, чтобы увидеть северное или южное сияние, вошло в список желаний почти каждого.Но неизвестно большинству, эти прекрасные проявления света вызваны опасными космическими лучами, которые были отклонены магнитным полем нашей Земли.

Магнитные поля вокруг планет ведут себя так же, как стержневой магнит. Но при высоких температурах металлы теряют свои магнитные свойства. Итак, ясно, что горячее железное ядро ​​Земли не создает магнитное поле вокруг нашей планеты.

Напротив, магнитное поле Земли вызвано динамо-эффектом.

Эффект работает так же, как динамо-светильник на велосипеде.Магниты в динамо-машине начинают вращаться при нажатии на педали велосипеда, создавая электрический ток. Затем электричество используется для включения света.

Этот процесс также работает в обратном порядке. Если у вас есть вращающийся электрический ток, он создаст магнитное поле.

На Земле течение жидкого металла во внешнем ядре планеты генерирует электрические токи. Вращение Земли вокруг своей оси заставляет эти электрические токи образовывать магнитное поле, которое распространяется вокруг планеты.

Магнитное поле чрезвычайно важно для поддержания жизни на Земле. Без этого мы были бы подвержены воздействию большого количества солнечной радиации, и наша атмосфера могла бы свободно просачиваться в космос.

Это, вероятно, то, что случилось с атмосферой на Марсе. Поскольку в ядре Марса нет текучего жидкого металла, он не производит такого же динамо-эффекта. Это оставило планету с очень слабым магнитным полем, из-за чего ее атмосфера была унесена солнечными ветрами, что сделало ее непригодной для жизни.

Магнитное поле Земли, подобное магнитному полю стержневого магнита, наклоненного на 11 градусов от оси вращения Земли. Предоставлено: Dea / D’Arco Editor / Getty Images

.

Королевский институт Австралии имеет образовательный ресурс, основанный на этой статье. Вы можете получить к нему доступ здесь.

Вишну Варма Р. Веджаян

Вишну Варма Р. Веджаян — студент-физик из Лондонского университета Королевы Марии, интересующийся научными работами и исследованиями в области физики.Стажировался в Cosmos в начале 2017 года.

Читайте научные факты, а не беллетристику . ..

Никогда еще не было более важного времени для объяснения фактов, сохранения знаний, основанных на фактах, и для демонстрации последних научных, технологических и инженерных достижений. «Космос» издается Королевским институтом Австралии, благотворительной организацией, призванной связывать людей с миром науки. Финансовые взносы, какими бы большими они ни были, помогают нам предоставлять доступ к достоверной научной информации в то время, когда она больше всего нужна миру.Пожалуйста, поддержите нас, сделав пожертвование или купив подписку сегодня.

Physics4Kids.com: Электричество и магнетизм: магнитные поля


Магнитные поля отличаются от электрических полей. Хотя оба типа полей взаимосвязаны, они выполняют разные функции. Идея магнитных силовых линий и магнитных полей была впервые исследована Майклом Фарадеем , а затем Джеймсом Клерком Максвеллом . Оба этих английских ученых сделали великие открытия в области электромагнетизма .

Магнитные поля — это области, на которые объект оказывает магнитное влияние. Поля воздействуют на соседние объекты вдоль линий магнитного поля. Магнитный объект может притягивать или отталкивать другой магнитный объект. Вы также должны помнить, что магнитные силы НЕ связаны с гравитацией. Величина силы тяжести зависит от массы объекта, а сила магнитного поля — от материала, из которого сделан объект.

Если вы поместите объект в магнитное поле, это повлияет на него, и эффект будет происходить вдоль силовых линий.Во многих экспериментах в классе можно наблюдать, как маленькие кусочки железа (Fe) выстраиваются вокруг магнитов вдоль силовых линий. Магнитные полюса — это точки начала и конца силовых линий магнитного поля. Линии поля сходятся или сходятся на полюсах. Вы, наверное, слышали о полюсах Земли. Эти полюса — места, где сходятся силовые линии наших планет. Мы называем эти полюса северным и южным, потому что именно там они расположены на Земле. Все магнитные объекты имеют силовые линии и полюса.Это может быть как атом, так и звезда.

Вы знаете о заряженных частицах. Есть положительные и отрицательные заряды. Вы также знаете, что положительные заряды притягиваются к отрицательным. Французский ученый по имени Андре-Мари Ампер изучал взаимосвязь между электричеством и магнетизмом. Он обнаружил, что магнитные поля создаются движущимися зарядами (током). На движущиеся заряды действуют магниты. С другой стороны, стационарные заряды не создают магнитных полей и на них не действуют магниты.Два провода, по которым течет ток, при размещении рядом друг с другом могут притягиваться или отталкиваться, как два магнита. Все это связано с движущимися зарядами. Магниты — простые примеры естественных магнитных полей. Но знаете что? У Земли огромное магнитное поле. Поскольку ядро ​​нашей планеты заполнено расплавленным железом (Fe), существует большое поле, которое защищает Землю от космической радиации и частиц, таких как солнечный ветер . Когда вы смотрите на крошечные магниты, они работают аналогичным образом.Магнит имеет поле вокруг себя.

Как отмечалось ранее, ток в проводах вызывает магнитный эффект. Вы можете увеличить силу этого магнитного поля, увеличивая ток через провод. Мы можем использовать этот принцип для создания искусственных регулируемых магнитов, называемых электромагнитами , , путем создания катушек из проволоки, а затем пропускания тока через катушки.




Или выполните поиск на сайтах по определенной теме.

(PDF) Как работает магнитное поле

Как работает магнитное поле

Франклин Т.Ху

19166 130 Кт. NE, Bothell, WA 98011

Электронная почта: [email protected]

О существовании магнитного поля и создаваемой им силы известно давно, но только

, как это магнитное поле работает и что создает силы то, что действуют магниты, осталось полной загадкой. В этой статье делается попытка полностью объяснить происхождение и физическую механику магнитной силы

, которая опосредована невидимым дипольным морем позитронов / электронов, которое может быть поляризовано

как магнитное поле и может отклонять электроны, проходящие через него.

1. Что опосредует магнитное поле

Когда мы подносим гвоздь к магниту, мы говорим, что гвоздь на

притягивается к «магнитному полю». Но что это за магнитное поле

? Кажется, что магнит создает особую область вокруг магнита

, где он воздействует на другие объекты, не касаясь их

. Из чего могло состоять это магнитное «поле»? Чем

отличается между областью пространства, имеющей магнитное поле

, и областью без магнитного поля?

Если бы вы были фермером, вы могли бы подумать о «поле» как о поле

кукурузы, которое состоит из отдельных стеблей, а это

, которые заполняют пространство на ферме.Это один из способов представить себе «поле»

, которое представляет собой область, заполненную идентичными объектами. Итак,

вы также можете представить себе «магнитное» поле как область, которая

заполнена каким-то предметом. Предположим, мы заполнили поле

флагов вместо кукурузы. Если у нас ветер дует через поле,

все флаги выровняются в одном направлении. Итак, теперь у нас есть поле

, которое может иметь свойство «указывать» в определенном направлении

.Таким образом, вместо случайной ориентации флагов

, мы можем сказать, что существует «поле», где все флаги

направлены в одном направлении. Эта аналогия является ключом к пониманию

того, как работает магнитное поле.

Я бы сказал, что должно быть что-то физическое,

, состоящее из реальных физических частиц, которые действуют точно так же, как флаги в

аналогии ветра, которые формируют поле. Когда все эти частицы

«указывают» в одном направлении, это то, что мы распознаем как «магнитное» поле

.Итак, мы начинаем с моря случайно ориентированных

частиц, которые заполняют все пространство. Когда эти частицы выровнены по точке

в одном направлении, это то, что я бы назвал магнитным полем

.

Но что может быть за это море флагообразных частиц, которые

опосредуют магнитное поле? Что бы это море ни было построено из

,

должно быть чрезвычайно трудно обнаружить. Это поле является повсеместным, и

должно существовать повсюду, включая космический вакуум, поскольку

магнитных полей могут проходить через идеальный вакуум.Никакого «поля» из

физических частиц в вакууме никогда не обнаруживалось. Однако,

и

одни из самых сложных для обнаружения частиц — это «нейтральные» частицы.

Эти частицы представляют собой комбинацию положительного и отрицательного заряда

, и в целом они не имеют чистого заряда. Эти нейтральные частицы

очень мало взаимодействуют с веществом. Они не оставляют следов

в наших экспериментах по физике элементарных частиц, потому что нет ничего, чтобы

запускало след в камере Вильсона или регистрировало прохождение частицы

через детектор. Это невидимые частицы-призраки.

Самая распространенная нейтральная частица, о которой мы знаем, — это нейтрон,

, но он распадается примерно за 15 минут, поэтому мы не можем создать магнитное морское поле

из этой нестабильной частицы.

2. Нейтральная посэлектронная частица

Простейшая нейтральная частица, о которой мы могли бы подумать, будет

состоять из одного отрицательного заряда электрона и одного положительного заряда

протона.Но это известно как простой водород

дроген. Вакуум водородом не заполняется. Но есть другая гипотетическая частица, которая была бы даже проще, чем

атом водорода. Эта частица будет состоять из «позитрона» и

электрона. В этой статье он будет называться «посэлектрон», поскольку

он состоит из позитрона и электрона. Позитрон — это

антиматериальный эквивалент электрона.Он идентичен электрону

tron ​​во всех отношениях, за исключением того, что имеет противоположный положительный заряд.

Его не следует путать с гораздо более сложным протоном

, который почти в 2000 раз массивнее.

Однако, поскольку позитрон является антиматериальным партнером электрона

, когда вы собираете их вместе, они аннигилируют их —

себя и преобразуются в гамма-лучи. Обычный wis-

dom говорит, что частицы «преобразовались» в энергию, а

от «частиц» ничего не осталось.2 используется для утверждения, что масса должна была быть уничтожена

. Таким образом, теоретически посэлектрон не может существовать в сознании большинства людей

.

Однако каковы реальные доказательства того, что

на самом деле не образовал нейтральную посэлектронную частицу? Если бы нейтральная частица образовалась из позитрона и электрона

, то результат был бы

, который было бы чрезвычайно трудно обнаружить. Он не будет отображаться ни на одном из

наших детекторов и не будет отображаться как ничто.Таким образом, свидетельство того, что

мы ничего «не видим» не является особенно хорошим свидетельством того, что

позитрон и электрон действительно растворились в энергии. Мы,

, вполне ожидаем, что если позитрон и электрон действительно образуют связь

, а не разрушаются, мы не сможем легко обнаружить образующуюся частицу

. Это было бы особенно верно

, если бы частица исчезла в море одинаковых частиц.

Это было бы похоже на наблюдение, как 2 атома водорода и

атом кислорода соединяются в море воды. Вы увидите, что в результате реакции исходит энергия

, а затем атом водорода и кислорода

, по-видимому, исчезнет, ​​потому что вы не можете определить разницу между вновь образованной молекулой воды и всеми

существующих молекул воды, окружающих ее. . Он полностью скрыт от глаз

.Помните, что по этой же логике говорилось, что

материи было уничтожено, потому что мы видели создание энергии.

Нет никакой разницы в логике, но мы знаем, что кислород

и водород не были разрушены, так почему мы думаем, что трон и электрон позиции

были уничтожены?

Как мы можем определить, что позитрон и электрон все еще существуют?

нет? Один из способов — разбить частицу позитрон / электрон

, и тогда мы увидим свободный росток позитрона и электрона

магнитное поле | Определение и факты

Магнитное поле , векторное поле в окрестности магнита, электрического тока или изменяющегося электрического поля, в котором наблюдаются магнитные силы. Магнитные поля, такие как у Земли, заставляют стрелки магнитного компаса и другие постоянные магниты выстраиваться в линию в направлении поля. Магнитные поля заставляют электрически заряженные частицы двигаться по круговой или винтовой траектории. Эта сила, действующая на электрические токи в проводах в магнитном поле, лежит в основе работы электродвигателей. (Для получения дополнительной информации о магнитных полях, см. магнетизм.

Подробнее по этой теме

Магнетизм: основы

В основе магнетизма лежат магнитные поля и их воздействие на материю, как, например, отклонение движущихся зарядов и крутящих моментов друг от друга…

Магнитное поле вокруг постоянного магнита или провода, по которому проходит постоянный электрический ток в одном направлении, является стационарным и называется магнитостатическим полем. В любой момент его величина и направление остаются неизменными. Магнитное поле вокруг переменного или постоянного тока постоянно меняет свою величину и направление.

Магнитные поля могут быть представлены непрерывными силовыми линиями или магнитным потоком, которые исходят из магнитных полюсов, направленных на север, и входят в магнитные полюсы, направленные на юг.Плотность линий указывает на величину магнитного поля. Например, на полюсах магнита, где сильное магнитное поле, силовые линии сжимаются или становятся более плотными. Дальше, где магнитное поле слабое, они разветвляются, становясь менее плотными. Однородное магнитное поле представлено параллельными прямыми, расположенными на одинаковом расстоянии друг от друга. Направление потока — это направление, в котором указывает северный полюс небольшого магнита. Линии потока непрерывны, образуя замкнутые контуры.В случае стержневого магнита они выходят из северного полюса, расходятся веером, входят в магнит на южном полюсе и проходят через магнит к северному полюсу, где снова появляются. Единицей измерения магнитного потока в системе СИ является вебер. Число веберов — это мера общего количества линий поля, пересекающих данную область.

Магниты и связанные с ними силовые линии магнитного поля

Постоянный магнит (такой как стержневой или дисковый магнит) обладает магнитным полем благодаря выравниванию всех магнитных частиц, из которых он состоит.Электромагнит создается током, протекающим через проволочную петлю в центре поля.

© Merriam-Webster Inc.

Магнитные поля могут быть представлены математически величинами, называемыми векторами, которые имеют направление и величину. Два разных вектора используются для представления магнитного поля: один, называемый плотностью магнитного потока или магнитной индукцией, обозначается как B ; другой, называемый напряженностью магнитного поля или напряженностью магнитного поля, обозначается как H .Магнитное поле H можно рассматривать как магнитное поле, создаваемое протеканием тока в проводах, а магнитное поле B — как полное магнитное поле, включая также вклад, вносимый магнитными свойствами материалов в поле. Когда ток течет по проволоке, намотанной на цилиндр из мягкого железа, намагничивающее поле H довольно слабое, но фактическое среднее магнитное поле ( B ) внутри утюга может быть в тысячи раз сильнее, поскольку B значительно усилен за счет ориентации мириад крошечных природных атомных магнитов железа в направлении поля. См. Также магнитную проницаемость .

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *