Как узнать маркировку конденсатора: Маркировка конденсаторов расшифровка онлайн по напряжению. Советские керамические и пленочные конденсаторы

Содержание

емкость, номинал, обозначение SDM конденсаторов

Схемотехника является современной и довольно сложной наукой с высоким порогом вхождения по уровню квалификации. Кто-то пытается освоить её самостоятельно, но, как правило, дело не заходит далее сборки простых электронных схем и ремонта бытовой техники. Для успешной самостоятельной сборки плат претенденты на звание радиолюбителя должны обладать базовыми знаниями в области физики, а также уметь правильно определять номинал того или иного электронного компонента.

Если площадь конденсатора или резистора позволяет, то на таких элементах практически всегда наносятся основные характеристики изделия, в противном случае у начинающего проектировщика и сборщика устройств могут возникнуть непреодолимые трудности. В этой статье будет рассказано о том, как узнать емкость конденсатора SMD, а также о способах определения других параметров такого вида изделий.

Что собой представляют SMD конденсаторы

Что такое SMD конденсаторы и для чего они нужны

Многие электронные компоненты имеют значительный размер и крепятся на плате с помощью проволочных ответвлений или широких ножек, как у микросхем. Для надежной фиксации контактные элементы таких деталей устанавливаются в специально сделанные отверстия, в которых они обволакиваются расплавленным припоем для обеспечения качественного электрического контакта.

Стандартный монтаж радиодеталей

Если рассеиваемая мощность резисторов или номинал конденсаторов слишком мал, то нет необходимости делать такое изделие слишком объемным. Установка элементов этого типа методом сверления платы вынудило бы разработчиков электронных схем выделять неоправданно большую площадь печатной схемы для их установки. Логичным решением этой проблемы является использование SMD компонентов.

SMD технология (Surface Mounted Device) — метод установки электронных деталей без сверления платы. Такой компонент просто припаивается с одной стороны поверхности, тем самым позволяя экономить значительную площадь, не снижая ее прочность наличием большого количества микроотверстий.

Обратите внимание! Методом поверхностного монтажа могут быть установлены не только конденсаторы, но и резисторы, транзисторы и микросхемы.

Применение SMD компонентов позволяет максимально оптимизировать расположение деталей на плате. Благодаря использованию этой технологии схемы сложных устройств можно изготовить относительно малых размеров, что особенно актуально при проектировании мобильных изделий.

Виды SMD конденсаторов

Разбираться в видах конденсаторов, монтирующихся методом поверхностного закрепления, необходимо каждому радиолюбителю. Такие изделия могут отличаться не только по емкости, но и по напряжению, поэтому игнорирование условий использования деталей может привести к тому, что они выйдут из строя.

Электролитические компоненты

Электролитические SMD конденсаторы не отличаются принципиально от стандартных изделий. Такие электронные компоненты наиболее часто представляют собой бочонки, в которых под алюминиевым корпусом располагается скрученный в цилиндр тонкий металл, а между ним твердый или жидкий электролит.

Электролитические SMD конденсаторы

Основное отличие такой детали от стандартного электролитического элемента заключается в том, что его контакты закреплены на плоской диэлектрической подложке. Такие изделия очень надежны в эксплуатации, особенно удобны в том случае, когда необходимо установить новое изделие при минимальных временных затратах. Кроме этого, во время пайки изделие не перегревается, что очень важно для электролитических конденсаторов.

Керамические компоненты

В керамических элементах в качестве диэлектрика применяется фарфор либо аналогичные неорганические материалы. Основное достоинство таких изделий заключается в устойчивости к высоким температурам и возможности производства изделий крайне малых размеров.

Важно! SMD конденсаторы керамического типа также устанавливаются методом пайки на печатную плату.

Визуально такой элемент, как правило, напоминает небольшой кирпичик, к которому с торцов припаиваются контактные площадки.

Керамические SMD конденсаторы

В отличие от радиодеталей стандартных размеров SMD элементы небольшого размера вначале приклеивают к плате, а уже потом припаивают выводы. На производстве керамические изделия этого типа устанавливаются специальными автоматами.

Маркировка танталовых SMD конденсаторов

Танталовые SMD конденсаторы устойчивы к повышенным механическим нагрузкам. Такие изделия также могут быть изготовлены в виде небольшого параллелепипеда, к которому с боковых сторон припаиваются контактные выводы. Тантал представляет собой очень прочный металл, обладающий высокими показателями пластичности. Фольга из этого материала может иметь толщину в сотые доли миллиметра.

К сведению! Благодаря наличию определенных физических свойств на основе тантала удается изготовить радиодетали высочайшей точности.

Танталовые конденсаторы

Танталовые конденсаторы, как правило, имеют небольшие размеры корпуса, поэтому нанести полную маркировку на изделия, выполненные в корпусе типоразмера «А», не всегда представляется возможным. Зная особенности обозначения радиодеталей этого типа, можно легко определить номинал изделия. Максимально допустимое напряжение в вольтах для танталовых изделий обозначается латинскими буквами:

  • G — 4;
  • J — 6,3;
  • A — 10;
  • C — 16;
  • D — 20;
  • E — 25;
  • V — 35;
  • T — 50.

Обратите внимание! Емкость изделий указывается в микрофарадах после буквы «μ», а положительный контакт — жирной линией.

Обозначение SMD конденсаторов

Чтобы установить номинал SMD конденсатора, потребуется тщательно изучить его маркировку. На больших по размеру элементах, как правило, наносится основная информация не только о его номинале, но и указывается логотип производителя.

При выяснении параметров маленьких кирпичиков придется потратить определенное количество времени, ведь даже при наличии на их корпусе необходимых сведений увидеть символы на их поверхности невооруженным глазом вряд ли получится.

Важно! В зависимости от типа конденсатора обозначения его параметров также могут существенно отличаться, что необходимо учитывать в работе.

Маркировка керамических SMD конденсаторов

Небольшие керамические конденсаторы SMD маркируются буквенно-цифровым кодом, состоящим из 3 символов. Первый указывает на минимальное значение рабочей температуры, например:

  • Z — от 10 °С;
  • Y — от −30 °С;
  • X — от 55 °С.
Маркировка SMD конденсаторов

Второй символ указывает на верхний предел нагрева радиодетали:

  • 2 — до 45 °С;
  • 4 — до 65 °С;
  • 5 — до 85 °С;
  • 6 — до 105 °С;
  • 7 — до 125 °С;
  • 8 — до 150 °С;
  • 9 — до 200 °С.

Третий символ указывает на точность электронного компонента:

  • A — до ± 1,0 %;
  • B — до ± 1,5 %;
  • C — до ± 2,2 %;
  • D — до ± 3,3 %;
  • E — до ± 4,7 %;
  • F — до ± 7,5 %;
  • P — до ± 10 %;
  • R — до ± 15 %;
  • S — до ± 22 %;
  • T — до ± 33 %;
  • U — до ± 56 %;
  • V — до ± 82 %.

Ёмкость небольших керамических SMD конденсаторов указывается в пикофарадах. Чтобы сэкономить площадь небольшого радиоэлемента, основное число мантисса закодировано в букве латинского алфавита. В таблице, указанной ниже, приведен полный список подобных обозначений.

Таблица с закодированными символами

После цифры указывается множитель, например, обозначение на керамическом конденсаторе Х3 означает, что конденсатор имеет емкость 7,5 * 10 ^ 3 Pf.

Обратите внимание! Перед кодом, обозначающим емкость керамического SMD конденсатора, может стоять латинская буква, которая указывает на бренд производителя электронного компонента.

Если площадь керамического конденсатора этого типа достаточно велика, то на ней может быть отображен тип диэлектрика. С этой целью применяются:

  • NP0. Диэлектрическая проницаемость такого элемента находится на крайне низком уровне. Основное достоинство компонентов этого типа заключается в хорошей устойчивости к резким температурным перепадам. Недостаток элементов, в которых используется диэлектрик этого типа — высокая цена;
  • X7R. Среднего качества диэлектрик. Изделия, в которых используется изолятор этого типа, не обладают отличными характеристиками по устойчивости к пробою, но в среднем температурном диапазоне они способны проработать значительно дольше многих, более дорогих элементов;
  • Z5U. Диэлектрик с высокими значениями электрической проницаемости, но обратной стороной этого показателя является слишком большая емкостная погрешность;
  • Y5V. Изолирующий материал обладает примерно такими же характеристиками, как и Z5U. По стоимости этот диэлектрик является самым дешевым, поэтому электрические компоненты, изготовленные на его основе, реализуется по самым низким ценам.
Сгоревший SMD конденсатор

Учитывая все выше изложенное, можно быть уверенным в том, что если SMD конденсатор не подгорел или не изменил цвет поверхности по другим причинам, то всегда можно определить его номинал по нанесенной на его корпусе маркировке.

Маркировка электролитических SMD конденсаторов

Электролитические конденсаторы этого типа, как правило, имеют относительно большие размеры, поэтому многие параметры таких элементов указываются без шифрования. То есть максимальное значение напряжения будет указано цифрой и буквой «V», а емкость — mF.

Маркировка электролитических SMD конденсаторов

В некоторых случаях номинал SMD конденсатора электролитического типа также может быть закодирован. Как правило, для этой цели используется 4 символа (одна буква и 3 цифры). Первый символ — это напряжение в вольтах:

  • e 2,5;
  • G 4;
  • J 6,3;
  • A 10;
  • C 16;
  • D 20;
  • E 25;
  • V 35;
  • H 50.

Обратите внимание! В трех следующих цифрах закодирована информация о емкости конденсатора (2 цифры + множитель).

Таким образом даже на очень небольших по размеру электролитических SMD конденсаторах может быть нанесена маркировка с информацией об основных параметрах изделия.

Как определить емкость, номинал и напряжение SMD конденсаторов

Выше была изложена подробная информация о том, как правильно определять номинал SMD конденсаторов по маркировке. Основная сложность при выполнении такой операции заключается в том, что символы могут быть настолько малы, что их невозможно идентифицировать невооруженным глазом. В такой ситуации рекомендуется использовать лупу либо любой другой увеличительный прибор с подходящей кратностью, а также установить качественное освещение в месте проведения подобных исследований.

Лупа для радиолюбителя

Обратите внимание! Иногда на поверхности радиоэлемента не читаются либо полностью отсутствуют обозначения, поэтому каждому радиолюбителю следует знать, как определить емкость электролитического конденсатора без маркировки. Для выполнения такой работы не обойтись без специального измерительного прибора.

Как определить емкость SMD конденсатора без маркировки с помощью прибора

Для получения корректных показателей перед началом измерения емкости конденсатора радиоэлемент необходимо полностью разрядить.

Предельное напряжение измеряется на конденсаторе, который устанавливается в электронную схему, где данный элемент может быть безопасно подключен к электрическому напряжению. После отключения источника тока проводят измерение напряжения на контактах радиодетали. Полученное значение в вольтах следует умножить на 1,5 для получения точного значения этого параметра.

Напряжение можно измерить дешевым мультиметром

Конденсаторы SMD являются очень удобными при самостоятельной сборке различных схем, а при автоматическом монтаже благодаря им удается добиться максимальной компактности расположения радиодеталей. Зная принципы расшифровки обозначения таких элементов, можно без каких-либо затруднений проектировать и собирать даже сложные устройства в домашних условиях.

Маркировка конденсаторов таблица с расшифровкой

Как неотъемлемые элементы всех без исключения электрических схем конденсаторы отличаются большим разнообразием вариантов конструктивного исполнения. Они выпускаются многими производителями по всему миру с применением различных технологий. Как следствие, маркировка имеет множество вариантов в соответствии с внутренними стандартами производителя, что делает попытки расшифровывать обозначения трудной задачей.

Конденсаторы различных типов

Зачем нужна маркировка

Задачей маркировки стоит соответствие каждого конкретного элемента определенным значениям рабочей характеристики. Маркировка конденсаторов включает в себя следующее:

  • собственно, емкость – основная характеристика;
  • максимально допустимое значение напряжения;
  • температурный коэффициент емкости;
  • допустимое отклонение емкости от номинального значения;
  • полярность;
  • год выпуска.

Максимальное значение напряжения важно тем, что при превышении его значения происходят необратимые изменения в элементе, вплоть до его разрушения.

Температурный коэффициент емкости (ТКЕ) характеризует изменение ёмкости при колебаниях температуры окружающей среды или корпуса элемента. Данный параметр крайне важен, когда конденсатор используется в частотозадающих цепях или в качестве элемента фильтра.

Допустимое отклонение означает точность, с которой возможно отклонение номинальной емкости конденсаторов.

Полярность подключения в основном характерна для электролитических конденсаторов. Несоблюдение полярности включения, в лучшем случае, приведет к тому, что реальная ёмкость элемента будет сильно занижена, а в реальности элемент практически мгновенно выйдет из строя из-за механического разрушения в результате перегрева или электрического пробоя.

Наибольшее отличие в принципах маркировки конденсаторов наблюдается в радиоэлементах, выпущенных за рубежом и предприятиями на постсоветском пространстве. Все предприятия бывшего СССР и те, что продолжают работать сейчас, кодируют выпускаемую продукцию по единому стандарту с небольшими отличиями.

Маркировка отечественных конденсаторов

Многие отечественные радиоэлементы отличаются максимально полной маркировкой, при чтении которой можно почерпнуть большинство возможных характеристик элемента.

Емкость

На первом месте стоит основная характеристика – электрическая емкость. Она имеет буквенно-цифровое обозначение. Для букв применяются следующие символы латинского, греческого или русского алфавита:

  • p или П – пикофарада, 1 pF = 10-3 nF = 10-6 μF = 10-9 mF = 10-12 F;
  • n или Н – нанофарада, 1 nF = 10-3 μF = 10-6 mF = 10-9 F;
  • μ или М – микрофарада, 1 μF = 10-3 mF = 10-6 F;
  • m или И – миллифарада, 1 mF = 10-3 F;
  • F или Ф – фарада.

Буква, обозначающая величину, ставится на месте запятой в дробном обозначении. Например:

  • 2n2 = 2.2 нанофарад или 2200 пикофарад;
  • 68n = 68 нанофарад или 0,068 микрофарад;
  • 680n или μ68 = 0.68 микрофарад.

Важно! Номиналы конденсаторов в пикофарадах или микрофарадах могут не иметь буквенных обозначений. К примеру, 2200 может обозначать как 2200 pF так и 2200 μF. Здесь на помощь приходят габариты конденсатора и здравый смысл.

Пример обозначения

Обратите внимание! Обозначение емкости в миллифарадах встречается крайне редко, а такая величина как фарада является очень большой и также не имеет особого распространения.

Допустимое отклонение

Значения ёмкостей, указанные на корпусе, не всегда соответствует реальному значению. Это отклонение характеризует точность изготовления детали и определения его номинала. Величина разброса параметров может быть от тысячных долей процента у прецизионных деталей до десятков процентов у электролитических конденсаторов, предназначенных для фильтрации пульсаций в цепях питания, где точные цифры не имеют особого значения.

Величина допустимого отклонения обозначается буквами латинского алфавита или русскими буквами у радиодеталей старых годов выпуска.

Температурный коэффициент емкости

Маркировка ТКЕ довольно сложна, а поскольку данная величина критична в основном для малогабаритных элементов времязадающих цепей, то возможна как цветная кодировка, так и использование буквенных обозначений или комбинации обоих типов. Таблица возможных вариантов значений встречается в любом справочнике по отечественным радиокомпонентам.

Многие керамические конденсаторы, как и плёночные, имеют определенные нюансы в маркировке ТКЕ. Данные случаи оговариваются ГОСТами на соответствующие элементы.

Номинальное напряжение

Напряжение, при котором сохраняется работоспособность элемента с сохранением характеристик в заданных пределах, называется номинальным. Обычно обозначается верхний порог номинального напряжения, превышать который запрещается ввиду возможного выхода элемента из строя.

В зависимости от габаритов, возможны варианты как цифрового, так и буквенного обозначения номинального напряжения. Если позволяют габариты корпуса, то напряжение до 800 В обозначается в единицах вольт с символом V (или В для старых конденсаторов) или без него. Более высокие значения наносятся на корпус в виде единиц киловольт с обозначением символами kV или кВ.

Пример обозначения напряжения

Малогабаритные конденсаторы имеют кодированное буквенное обозначение напряжения, для чего используются буквы латинского алфавита, каждая из которых соответствует определенной величине напряжения.

Год и месяц выпуска

Дата производства также имеет буквенное обозначение. Каждому году соответствует буква латинского алфавита. Месяцы с января по сентябрь обозначаются цифрой, соответственно, от 1 до 9, октябрю соответствует 0, ноябрю буква N, декабрю – D.

Обратите внимание! Кодированное обозначение года выпуска одинаково с другими радиоэлементами.

Расположение маркировки на корпусе

Маркировка керамических конденсаторов в первой строке на корпусе имеет значение емкости. В той же строке без каких-либо разделительных знаков или, если не позволяют габариты, под обозначением емкости наносится значение допуска.

Подобным же методом наносится маркировка пленочных конденсаторов.

Пример маркировки различных характеристик

Дальнейшее расположение элементов регламентируется ГОСТ или ТУ на каждый конкретный тип элементов.

Цветовая маркировка отечественных радиоэлементов

С распространением линий автоматического монтажа нашла применение цветовая маркировка конденсаторов. Наибольшее распространение получила четырехцветная маркировка при помощи цветных полос.

Первые две полосы означают номинальную емкость в пикофарадах и множитель, третья полоса – допустимое отклонение, четвертая – номинальное напряжение. Например, на корпусе имеется желтая, голубая, зеленая и фиолетовая полосы. Следовательно, элемент имеет такие характеристики: емкость – 22*106 пикофарад (22 μF), допустимое отклонение от номинала – ±5%, номинальное напряжение – 50 В.

Цветовая маркировка

Первая цветная полоса (в данном случае, которая имеет желтый цвет) делается более широкой или располагается ближе к одному из выводов. Также следует ориентироваться по цвету крайних полос. Такой цвет, как серебряный, золотой и черный, не может быть первым, поскольку обозначает множитель или ТКЕ.

Маркировка конденсаторов импортного производства

Для обозначения импортных, а в последние годы и отечественных радиоэлементов приняты рекомендации стандарта IEC, согласно которому на корпусе радиоэлемента наносится кодовая маркировка из трех цифр. Первые две цифры кода обозначают емкость в пикофарадах, третья цифра – число нулей. Например, цифры 476 означают емкость 47000000 pF (47 μF). Если емкость меньше 1 pF, то первая цифра 0, а символ R ставится вместо запятой. Например, 0R5 – 0,5 pF.

Трехзначная кодировка

Для высокоточных деталей применяется четырехзнаковая кодировка, где первые три знака определяют емкость, а четвертый – количество нулей. Обозначение допуска, напряжения и прочих характеристик определяется фирмой-производителем.

Цветовая маркировка импортных конденсаторов

Цветовое обозначение конденсаторов строится по тому же принципу, что и у резисторов. Первые две полосы означают емкость в пикофарадах, третья полоса – количество нулей, четвертая – допустимое отклонение, пятая – номинальное напряжение. Полос может быть и меньше, если нет необходимости в обозначении напряжения или допуска. Первая полоса делается шире или у одного из выводов. Синие цвета отсутствуют. Вместо них используются голубые полосы.

Обратите внимание! Две соседние полосы одинакового цвета могут не иметь между собой промежутка, сливаясь в широкую полосу.

Маркировка SMD компонентов

SMD компоненты для поверхностного монтажа имеют очень малые размеры, поэтому для них разработана сокращенная буквенно-цифровая кодировка. Буква означает значение емкости в пикофарадах, цифра – множитель в виде степени десяти, например G4 – 1.8*105 пикофарад (180 nF). Если спереди две буквы, то первая означает производителя компонента или рабочее напряжение.

Маркировка SMD

Электролитические конденсаторы SMD могут иметь на корпусе значение основного параметра в виде десятичной дроби, где вместо точки может быть вставлен символ μ (напряжение обозначается буквой V (5V5 – 5.5 вольт) или могут иметь кодированное значение, зависящее от производителя. Положительный вывод обозначается полосой на корпусе.

Маркировка конденсаторов имеет большое число вариантов. Особенно этим отличаются импортные конденсаторы. Часто можно встретить малогабаритные элементы, которые вовсе не имеют каких-либо обозначений. Определить параметры можно только непосредственным измерением или, глядя на обозначение конденсаторов на электрической схеме. Произведенные разными фирмами радиоэлементы могут иметь схожие обозначения, но различные параметры. Здесь расшифровка обозначений должна базироваться на том, какой производитель выпускает преимущественное количество подобных элементов в конкретном устройстве.

Видео

Оцените статью:

Таблицы цветовой маркировки конденсаторов

В данной статье речь пойдет об определении параметров конденсатора по таблицам цветовой маркировки конденсаторов.

Цветовая маркировка конденсаторов содержит сокращенное обозначение параметров конденсатора и может быть представлена в виде полос, колец или точек.

На конденсаторе маркируют такие параметры как:

  • номинальная емкость;
  • множитель;
  • допускаемое отклонение напряжения;
  • температурный коэффициент емкости (ТКЕ) и (или) номинальное напряжение.

Три метки информируют о допуске 20%. При этом возможно сочетание двух колец и точки, указывающий на множитель. При пяти метках цвет корпуса указывает на значение рабочего напряжения.

Цветовая маркировка шестью метками применяется для прецизионных конденсаторов с малыми ТКЕ.

В зарубежных конденсаторов используется маркировка по допуску и температурному коэффициенту.

Обозначение группы ТКЕ приведено в соответствии со стандартом EIA, в скобках – IEC. В зависимости от технологий, которыми обладает фирма, диапазон температуры может быть другим. Например, фирма PHILIPS для группы Y5P нормирует -55…+125 С. Буквенный код указан в таблице соответствии с EIA.

Рассмотрим на примере как использовать представленные таблицы цветовой маркировки для определения параметров конденсаторов.

Пример

Определим параметры конденсатора с шесть полосами: зеленый, коричневый, черный, красный, красный, желтый, используя таблицу «Цветовая маркировка конденсаторов (общая таблица)», номиналы элементов указаны в пФ – 10-12.

  • первая цифра (1 — элемент) – 5;
  • вторая цифра (2 — элемент) – 1;
  • третья цифра(3 — элемент) – 0;
  • множитель – 102;
  • допуск,% – 2;
  • группа ТКЕ – М220.

Соответственно получается: 510*10-12 * 102 = 51*10-9 Ф или 51 нФ±2%, М220.

Определим параметры для конденсатора с тремя полосами: коричневый, красный и желтый.

  • первая цифра (1 — элемент) – 1;
  • вторая цифра (2 — элемент) – 2;
  • множитель – 104;

Соответственно получается: 12*10-12 * 104 = 0,12*10-6 Ф или 0,12 мкФ.

Как мы видим ничего сложного в определении параметров конденсаторов нету, не много практики и вскоре Вам данные таблицы будут уже не нужны, уже на автомате будете определять номинальную емкость конденсатора.

Поделиться в социальных сетях

Smd конденсаторы без маркировки как определить

Как определить номинал и напряжение

Каждый миниатюрный конденсатор характеризуется двумя основными параметрами: номинальной ёмкостью и предельным напряжением, при котором он ещё может работать. Рассмотрим порядок выявления каждого из этих показателей более подробно.

Номинальное значение

Для определения первого из параметров можно воспользоваться следующими методами:

  • Попытаться измерить их номинальную ёмкость посредством прибора (мультиметра), имеющего соответствующую функцию;
  • Использовать для этих целей специальный измеритель RLC.

Измеритель RLC

Обратите внимание! Оба эти способа предполагают удаление конденсатора из платы или отпаивание хотя бы одной контактной площадки.

С порядком измерения SMD-конденсаторов тем и другим прибором можно ознакомиться в инструкции по их применению.

Рабочее напряжение

Для того чтобы проявить ситуацию с предельным рабочим напряжением данного элемента, существует всего лишь один надёжный способ. Он состоит в том, чтобы попытаться измерить напряжение между контактами, куда запаян неизвестный конденсатор (при включённой аппаратуре естественно).

После определения этого показателя можно предположить, что сам конденсатор рассчитан на напряжение, примерно в полтора раза превышающее полученное после измерения значение.

hi-electric.com

Впервые столкнувшийся с видом SMD-конденсатора радиолюбитель недоумевает, как же разобраться во всех этих «квадратиках» и «бочонках», если на некоторых вообще отсутствует маркировка, а если и есть таковая, то и не поймешь, что же она обозначает. А ведь хочется идти в ногу со временем, а значит, придется разобраться все-таки, как определить принадлежность элемента платы, отличить один компонент от другого. Как оказалось, все же различия есть, и маркировка, хотя и не всегда и не на всех конденсаторах, дает представление о параметрах. Есть, конечно, SMD-компоненты и без опознавательных знаков, но обо всем по порядку. Для начала следует понять, что же представляет собой этот элемент и в чем его задача.

Работает такой компонент следующим образом. На каждую из двух пластинок, расположенных внутри, подаются разноименные заряды (полярность их разнится), которые стремятся один к другому согласно законам физики. Но «проникнуть» на противоположную пластину заряд не может по причине того, что между ними диэлектрическая прокладка, а следовательно, не найдя выхода и не имея возможности «уйти» от близлежащего противоположного полюса, накапливается в конденсаторе до заполнения его емкости.

Виды конденсаторов

Конденсаторы различаются по видам, их насчитывается всего три:

  • Керамические, пленочные и им подобные неполярные не маркируются, но их характеристики легко определяются при помощи мультиметра. Диапазон емкостей от 10 пикофарад до 10 микрофарад.
  • Электролитические – производятся в форме алюминиевого бочонка, маркируются, с виду напоминают обычные вводные, но монтируются на поверхности.
  • Танталовые – корпус прямоугольный, размеры разные. Цвет выпуска – черный, желтый, оранжевый. Маркируются специальным кодом.

Электролитические компоненты

На таких SMD-компонентах обычно промаркирована емкость и рабочее напряжение. К примеру, это может быть 156v, что будет означать, что его характеристики – 15 микрофарад и напряжение в 6 В.

А может оказаться, что маркировка совершенно другая, например D20475. Подобный код определяет конденсатор как 4.7 мкФ 20 В. Ниже представлен перечень буквенных обозначений совместно с их эквивалентом напряжения:

  • е – 2.5 В;
  • G – 4 В;
  • J – 6.3 В;
  • A – 10 В;
  • С – 16 В;
  • D – 20 В;
  • Е – 25 В;
  • V – 35 В;
  • Н – 50 В.

Полоска, равно как и срез, показывает положение ввода «+».

Керамические компоненты

Маркировка керамических SMD-конденсаторов имеет более широкое количество обозначений, хотя сам код их содержит всего 2–3 символа и цифру. Первым символом, при его наличии, обозначен производитель, второй говорит о номинальном напряжении конденсатора, ну а цифра – емкостный показатель в пкФ.

К примеру, простейшая маркировка Т4 будет означать, что емкость данного керамического конденсатора равна 5.1 × 10 в 4-й степени пкФ.

Таблица обозначений номинального напряжения представлена ниже.

Маркировка танталовых SMD-конденсаторов

Такие элементы типоразмера «а» и «в» маркируются буквенным кодом по номинальному напряжению. Таких букв 8 – это G, J, A, C, D, E, V, T. Каждая буква соответствует напряжению, соответственно – 4, 6.3, 10, 16, 20, 25, 35, 50. За ним следует емкостный код в пкФ, состоящий из трех цифр, последняя из которых будет обозначать число нулей. К примеру, маркировкой Е105 обозначен конденсатор 1 000 000 пкФ = 10 мкФ, а его номинал составит 25 В.

Размеры C, D, E маркируются прямым кодом, подобно коду электролитических конденсаторов.

Основная сложность в в том, что на данный момент, хотя и есть общепринятые правила обозначений, некоторые крупные и известные компании вводят свою систему обозначений и кодов, которая кардинально отличается от общепринятой. Делается это для того, чтобы при ремонте изготовленных ими печатных плат применялись только оригинальные детали и SMD-компоненты.

Обозначение в схемах

Вообще при ремонте и перепайке современных печатных SMD-плат удобнее всего, когда под рукой все же имеется схема, глядя на которую намного проще разобраться с тем, что установлено, узнать расположение определенной детали, потому как SMD-конденсатор по виду может совершенно не отличаться от того же транзистора. Обозначения этих деталей в схемах остались такими же, как и были до прихода на рынок чипов, а потому и емкость, и другие нужные характеристики можно также без труда найти радиолюбителю, который не сталкивался с SMD-компонентами.

В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.

1. Кодировка 3-мя цифрами

Первые две цифры указывают на значение емкости в пикофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пф первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пф, код0R5 — 0.5 пФ.

* Иногда последний ноль не указывают.

2. Кодировка 4-мя цифрами

Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах (pF).

3. Маркировка ёмкости в микрофарадах

Вместо десятичной точки может ставиться буква R.

4. Смешанная буквенно-цифровая маркировка ёмкости, допуска, ТКЕ, рабочего напряжения

В отличие от первых трех параметров, которые маркируются в соответствии со стандар-
тами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.

SMD конденсаторы ввиду малых размеров маркируются используется символы и цифры. В зависимости от типа конденсатора (танталовых, электролетических, керамических и т.д.) маркировка осуществляется различными способами.

Маркировка керамических SMD конденсаторов

Код таких конденстаторов состоит их 2 или 3-х символов и цифры. Первый символ (при наличии такового) говорит о производителе

(пример K — Kemet), второй это мантиса, а цифра является показателем степени емкости в пикоФарадах.

Пример

S3 это керамический SMD конденсатор с емкростью 4.7×10 3 пФ

Символ Мантиса Символ Мантиса Символ Мантиса Символ Мантиса
A 1.0 J 2.2 S 4.7 a 2.5
B 1.1 K 2.4 T 5.1 b 3.5
C 1.2 L 2.7 U 5.6 d 4.0
D 1.3 M 3.0 V 6.2 e 4.5
E 1.5 N 3.3 W 6.8 f 5.0
F 1.6 P 3.6 X 7.5 m 6.0
G 1.8 Q 3.9 Y 8.2 n 7.0
H 2.0 R 4.3 Z 9.1 t 8.0

коденсаторы могут иметь различные типы диэлектриков:

NP0 или C0G диэлектрик иммеет низкую диэлектрическую проницаемость и хорошую температурную стабильность. Z5U и Y5V дижлектрики обладают высокой диэлектрической проницаемостью с помощью чего достигается большая емкость конденсаторов и больший разброс параметров. X7R и Z5U широко используются в цепях общего назначения.

Диэлектрики обозначаются тремя симоволами, первые два это температурные пределы а третий это изменение емкости в % в данном интревале температур.

Z5U — точность +22, -56% в диапазоне температур от -55 o C до -125 o C до

Температурный диапазон Изменение емкости
Первый символ Нижний предел Второй символ Верхний предел Третий символ Точность
X +10 o C 2 +45 o C A 1.0%
Y -30 o C 4 +65 o C B 1.5%
Z -55 o C 5 +85 o C C 2.2%
6 +105 o C D 3.3%
7 +125 o C E 4.7%
8 +150 o C F 7.5%
9 +200 o C P 10%
R 15%
S 22%
T +22%,-33%
U +22%,-56%
V +22%,-82%

Маркировка электролитических SMD конденсаторов

Для маркировки таких конденсаторов также используется символьно — цифровая маркировка в которую добавляется рабочее напряжение. Обозгачение состоит из 1-го символа и 3-х цифр. Символ означает рабочее напряжение

A475 А — это рабочее напряжение, 47-значение, 5-мантиса.

A475 = 47×10 5 пФ=4,7×10 6 пФ=4,7мФ 10В.

  • e-2.5В;
  • G-4В;
  • J-6.3В;
  • A-10В;
  • C-16В;
  • D-20В;
  • E-25В;
  • V-35В;
  • H-50В.

Существует также и другая маркировка используемые такими широко известными фирмами как Panasonic, Hitach и другие. Кодировние осуществляется 3-мя основными способами кодирования

Первый способ:

Маркировка осуществлется при помощи 3-х символов, первый это рабочее напряжение, второй это значение емкость третий это множитель. Если указаны только два символа то это означает что не указано рабочее напряжение (3-й символ).

Код Емкость Напряжение Код Емкость Напряжение
A6 1.0 16/35 ES6 4,7 25
A7 10 4 EW5 0,68 25
AA7 10 10 GA7 10 4
AE7 15 10 GE7 15 4
AJ6 2,2 10 GJ7 22 4
AJ7 22 10 GN7 33 4
AN6 3,3 10 GS6 4,7 4
AN7 33 10 GS7 47 4
AS6 4,7 10 GW6 6,8 4
AW6 6,8 10 GW7 68 4
CA7 10 16 J6 2,2 6.3/7/20
CE7 15 16 JE7 15 6.3/7
CJ6 4,7 10 GW6 6,8 4
CN6 3,3 16 JN6 3,3 6,3/7
CS6 4,7 16 JN7 33 6,3/7
CW6 6,8 16 JS6 4,7 6,3/7
DA6 1,0 10 JS7 47 6,3/7
DA7 10 20 JW6 6,8 6,3/7
DE6 1,5 20 N5 0,33 35
DJ6 2,2 20 N6 3,3 4/16
DN6 3,3 20 S5 0,47 25/35
DS6 4,7 20 VA6 1,0 35
DW6 6,8 20 VE6 1,5 35
E6 1,5 10/25 VJ6 2,2 35
EA6 1,0 25 VN6 3,3 35
EE6 1,5 25 VS5 0,47 35
EJ6 2,2 25 VW5 0,68 35
EN6 3,3 25 W5 0,68 20/35

Второй способ:

Маркировка четырмя символами (буквами и цифрами), которые обозначают номинальную емкость и рабочее напряжение. Первый символ (буква) означает рабочее напряжение, следующие за ним 2 символа (цифры) означают емкость в пф, а последний символ(цифра) это количество нулей. Такая маркировка конденсаторов имеет 2 варианта.

Как маркируются большие конденсаторы

Чтобы правильно прочитать технические характеристики устройства, необходимо провести определенную подготовку. Начинать изучение нужно с единиц измерения. Для определения емкости применяется специальная единица – фарад (Ф). Значение одного фарада для стандартной цепи представляется слишком большим, поэтому маркировка бытовых конденсаторов осуществляется менее крупными единицами измерения. Чаще всего используется mF = 1 мкф (микрофарад), что составляет 10-6 фарад.

При расчетах может применяться внемаркировочная единица – миллифарад (1мФ), имеющая значение 10-3 фарад. Кроме того, обозначения могут быть в нанофарадах (нФ) равных 10-9 Ф и пикофарадах (пФ), составляющих 10-12 Ф.

Нанесение маркировки емкости конденсаторов с большими размерами осуществляется прямо на корпус. В некоторых конструкциях маркировка может отличаться, но в целом, необходимо ориентироваться по единицам измерения, которые упоминались выше.

Обозначения иногда наносятся прописными буквами, например, MF, что на самом деле соответствует mF – микрофарадам. Также встречается маркировка fd – сокращенное английское слово farad. Поэтому mmfd будет соответствовать mmf или пикофараду. Кроме того, существуют обозначения, включающие число и одну букву. Такая маркировка выглядит как 400m и применяется для маленьких конденсаторов.

В некоторых случаях возможно нанесение допусков, которые являются допустимым отклонением от номинальной емкости конденсатора. Данная информация имеет большое значение, когда при сборке отдельных видов электрических цепей могут потребоваться конденсаторы с точным значением емкости. Если в качестве примера взять маркировку 6000uF + 50%/-70%, то значение максимальной емкости составит 6000 + (6000 х 0,5) = 9000 мкФ, а минимальной 1800 мкФ = 6000 — (6000 х 0,7).

При отсутствии процентов, необходимо отыскать букву. Обычно она располагается отдельно или после числового обозначения емкости. Каждой букве соответствует определенное значение допуска. После этого можно приступать к определению номинального напряжения.

При больших размеров корпуса конденсатора, маркировка напряжения обозначается числами, за которыми расположены буквы или буквенные сочетания в виде V, VDC, WV или VDCW. Символы WV соответствуют английскому словосочетанию WorkingVoltage, что в переводе означает рабочее напряжение. Цифровые показатели считаются максимально допустимым напряжением конденсатора, измеряемым в вольтах.

При отсутствии на корпусе устройства какого-либо обозначения, указывающего на напряжение, такой конденсатор должен использоваться только в низковольтных цепях. В цепи переменного тока следует использовать устройство, предназначенное именно для этих целей. Нельзя применять конденсаторы, рассчитанные на постоянный ток, без возможности преобразования номинального напряжения.

Следующим этапом будет определение положительных и отрицательных символов, указывающих на наличие полярности. Определение плюса и минуса имеет большое значение, поскольку неправильное определение полюсов может привести к короткому замыканию и даже взрыву конденсатора. При отсутствии специальных обозначений, подключение устройства может быть выполнено к любым клеммам, независимо от полярности.

Обозначение полюсов иногда наносится в виде цветной полосы или кольцеобразного углубления. Такая маркировка соответствует отрицательному контакту в электролитических алюминиевых конденсаторах, своей формой напоминающих консервную банку. В танталовых конденсаторах с очень маленькими размерами эти же обозначения указывают на положительный контакт. При наличии символов плюса и минуса цветовую маркировку можно не принимать во внимание.

Расшифровка маркировки конденсаторов

Чтобы расшифровать маркировку, необходимо значение первых двух цифр, обозначающих емкость. Если конденсатор имеет очень маленькие размеры, не позволяющие обозначить емкость, его маркировка происходит по стандарту EIA, применяемому для всех современных изделий.

Обозначение цифр

Если в обозначении присутствует только две цифры и одна буква, в этом случае цифровые значения соответствуют емкости устройства. Все остальные маркировки расшифровываются по-своему, в соответствии с той или иной конструкцией.

Третья цифра в обозначении является множителем нуля. В этом случае расшифровка выполняется в зависимости от цифры, расположенной в конце. Если такая цифра находится в диапазоне 0-6, то к первым двум цифрам добавляются нули в определенном количестве. Для примера можно взять маркировку 453, которая будет расшифровываться как 45 х 103 = 45000.

Когда последняя цифра будет 8, то первые две цифры умножаются на 0,01. Таким образом, при маркировке 458, получается 45 х 0,01 = 0,45. Если же 3-й цифрой будет 9, то первые две цифры нужно умножить на 0,1. В результате обозначение 459 преобразуется в 45 х 0,1 = 4,5.

После определения емкости, нужно определить единицу для ее измерения. Самые мелкие конденсаторы – керамические, пленочные и танталовые имеют емкость, измеряемую в пикофарадах (пФ), составляющих 10-12. Для измерения емкости больших конденсаторов применяются микрофарады (мкФ), равные 10-6. Единицы измерения могут обозначаться буквами: р – пикофарад, u– микрофарад, n – нанофарад.

Обозначение букв

После цифр необходимо расшифровать буквы, входящие в маркировку. Если буква присутствует в двух первых символах, ее расшифровка производится несколькими способами. При наличии буквы R, она заменяется запятой, применяемой для десятичной дроби. Расшифровка маркировки 4R1 будет выглядеть как 4,1 пФ.

При наличии букв р, n, u, соответствующих пико-, нано- и микрофараде также выполняется замена на десятичную запятую. Обозначение n61 читается как 0,61 нФ, маркировка 5u2 соответствует 5,2 мкФ.

Маркировка керамических конденсаторов

Керамические конденсаторы обладают плоской круглой формой и двумя контактами. На корпусе кроме основных показателей, указывается допуск отклонений от номинальной емкости. С этой целью используется определенная буква, проставляемая сразу же после цифрового обозначения емкости. Например, буква «В» соответствует отклонению + 0,1 пФ, «С» — + 0,25 пФ, D — + 0,5 пФ. Эти значения применяются при емкости менее 10 пФ. У конденсаторов с емкостью более 10 пФ буквенные обозначения соответствуют определенному проценту отклонений.

Смешанная буквенно-цифровая маркировка

Маркировка допуска может состоять из буквенно-цифрового обозначения по схеме «буква-цифра-буква». Первый буквенный символ соответствует минимальной температуре, например, Z = 10 градусам, Y = -300C, X = -550C. Второй цифровой символ – это максимальная температура.

Цифры соответствуют следующим показателям: 2 – 450С, 4 – 650С, 5 – 850С, 6 – 1050С, 7 – 1250С. Значение третьего буквенного символа означает изменяющуюся емкость конденсатора, в пределах между минимальной и максимальной температурой. К более точным показателям относится «А» со значением + 1,0%, а к менее точным – «V» с показателем от 22 до 82%. Чаще всего используется «R», составляющая 15%.

Как интерпретировать маркировку конденсаторов> ENGINEERING.com

При сборке схемы было бы неплохо, если бы все спецификации дискретных компонентов были написаны прямо на них. Но дело в том, что обычно просто не хватает места для отображения этой информации на простом английском языке. Хотя любой инженер знает, что цветовая маркировка на резисторе обозначает сопротивление, некоторые могут не понимать, что конденсаторы также имеют свой собственный набор маркировок, которые варьируются в зависимости от размера устройства.В этой статье мы рассмотрим, что означают эти маркировки на различных компонентах.

Важные характеристики конденсатора

Проще говоря, конденсатор — это устройство, которое может накапливать заряд, действуя как своего рода краткосрочная батарея, которая может сглаживать колебания мощности и выполнять множество других задач. Они различаются по размеру от булавочной головки до банки с газировкой, поэтому как характеристики конденсаторов, так и возможность печати на них информации сильно различаются.

Соответствующие характеристики конденсатора включают:

  • Емкость: Сколько заряда может хранить компонент, измеряется в фарадах (кулонах на вольт)
  • Напряжение пробоя: Напряжение, при котором конденсатор больше не может накапливать заряд, вызывая короткое (или почти короткое) замыкание
  • Допуск: Насколько близко к заданной емкости можно ожидать сохранения конденсатора
  • Поляризация: Некоторые (но не все) конденсаторы имеют положительный и отрицательный вывод.Если это так, маркировка поляризации указывает на отрицательную сторону и обычно имеет форму светлой полосы
  • .

Типовая маркировка

Давайте рассмотрим типичную маркировку конденсаторов.

На изображении выше изображен электролитический конденсатор с пометкой «100 мкФ», что означает, что он имеет емкость 100 мкФ (префикс μ указывает на 10 −6 ). Другими словами, это 0,0001 фарад. Хотя это может показаться очень маленьким числом, на самом деле это довольно типично, поскольку с практической точки зрения полный фарад довольно велик.

Этот конкретный конденсатор также имеет маркировку «50 В», что означает его напряжение пробоя. Это говорит о том, что конденсатор выходит из строя при напряжении 50 вольт. Наконец, белая полоса указывает на отрицательную ветвь этого конденсатора, которая обычно также является более короткой.

На изображении выше показан пленочный конденсатор из майлара. Верхняя отметка «683» указывает значение емкости, которое составляет 68 000 пикофарад (пФ). Чтобы получить это значение, вы умножаете ведущие цифры (в данном случае 68) на 10 в степени последней цифры (3), и в результате получается емкость в пикофарадах (в данном случае мы получаем 68×10 3 пФ ).Есть три исключения для последней цифры: 7 не используется, 8 означает умножение первых цифр на 0,01, а 9 означает умножение первых цифр на 0,1.

Напряжение пробоя диэлектрика этого конденсатора написано под емкостью как «100V», что означает, что он пробивается при 100 вольт. Нет отрицательного индикатора, так как этот конденсатор не имеет специальной полярности и может быть установлен любым способом.

На изображении выше показана пара керамических дисковых конденсаторов, обозначенных только цифрами «10» и «15».«Эти конденсаторы — и все те, что менее 1000 пФ — показывают свою емкость в пикофарадах. Следовательно, емкость этих двух конденсаторов составляет 10 и 15 пикофарад соответственно. Как и в предыдущем случае, эти конденсаторы также не имеют отображаемой полярности. Из-за их небольшого размера на них нет маркировки напряжения пробоя диэлектрика — вам нужно будет найти ее в технических характеристиках конденсатора.

Прочая маркировка

Помимо приведенных выше примеров, конденсаторы могут также отображать другие характеристики, такие как диапазон рабочих температур, дату изготовления и даже название производителя.Конденсаторы также могут указывать свой допуск с помощью буквы, помещенной после первых трех цифр. Эти буквы варьируются от A (± 0,05 пФ) до Z (от -20 до 80%). В таблице ниже приведены другие коды допусков.

Capacitor tolerance table.

Коды допусков конденсаторов.

Если вы пытаетесь определить конденсаторы для новой конструкции, лучше всего подойдет техническое описание. Однако, следуя этим рекомендациям, вы сможете определить основные характеристики конденсатора.

Последнее предупреждение: конденсаторы могут нести заряд, даже если цепь отключена, поэтому будьте предельно осторожны при обращении с этими устройствами (особенно с большими конденсаторами, так как многие из них накапливают большой заряд).

Зак Вендт и Джереми С. Кук — инженеры, которым нравится рассказывать, как электронные компоненты могут повлиять на дизайн. Зак из Arrow Electronics имеет опыт разработки потребительских товаров. Джереми работал в сфере автоматизации производства и пишет для различных технических изданий. Вы можете узнать больше о конденсаторах здесь.

.Конденсаторы

: основы, работа и различные типы конденсаторов с их применением в схемах

Конденсаторы — это слово, кажется, предлагает идею емкости , что, согласно словарю, означает «способность что-то удерживать». Это ровно то же самое, что конденсатор — он держит электрический заряд. Но что делает его общим компонентом почти во всех электронных схемах? Давайте разберемся с конденсаторами, чтобы понять, что они делают и как их можно использовать в этой статье.

Что такое конденсатор?

Конденсатор в самом примитивном виде состоит из двух проводящих пластин, разделенных диэлектрической средой. Термин диэлектрик — это просто модное слово для изолятора, который может быть поляризован, то есть образовывать отрицательные и положительные заряды на противоположных сторонах. Когда напряжение подается на эти две пластины, ток течет через проводящие пластины. Одна сторона заряжается положительно (отсутствие электронов), а другая сторона заряжается отрицательно (избыточные электроны).Все мы знакомы с тем фактом, что в отличие от зарядов притягиваются, поэтому, поскольку пластины заряжены противоположно, заряды на пластинах притягиваются.

Attraction of Opposite Charges in Capacitors

Помните, что между пластинами находится изолятор , поэтому заряды не могут «течь», чтобы уравновесить друг друга, и (в идеале) застревают во взаимном притяжении и остаются на месте. Именно так конденсаторы выполняют свою основную функцию — удержание или накопление заряда.

Обозначение конденсаторов

Поскольку конденсаторы имеют две параллельные металлические пластины, как обсуждалось выше, их символ обозначает то же самое.По крайней мере,

легко нарисовать

Capacitor Symbols

На практике конденсаторы больше не представляют собой просто две пластины с зазором между ними. В случае алюминиевых электролитов эти две пластины имеют форму металлической фольги, свернутой с прокладкой между ними в трубке.

Второй набор символов обозначает поляризованные конденсаторы, то есть конденсаторы, у которых внутренняя конструкция определяет положительные и отрицательные клеммы. Случайное переключение этих клемм почти наверняка приведет к серьезному отказу (особенно для более крупных образцов), выбросу кусочков фольги и бумажных счетчиков из места отказа, и в большинстве случаев с очень неприятным запахом.

Номинальная емкость и напряжение конденсатора

Конденсаторы измеряются в фарадах ; он назван в честь известного британского электрохимика Майкла Фарадея. Единица емкости, заменяющая кулон на вольт. Кулон (произносится как «кулон») — это единица измерения заряда, а вольт, как мы знаем, — это единица измерения напряжения или разности потенциалов. Это делает Фарад количеством заряда, хранящегося на вольт разности потенциалов.Этот простой способ математического рассмотрения конденсатора поддается широкому диапазону интерпретаций, что проявляется во множестве смертельно сложных математических уравнений, таких как интегралы, показатели и векторы, которые мы, инженеры, будем использовать при работе с конденсаторами, что выходит за рамки простого Объем этой статьи. Тем не менее, мы рассмотрим небольшую интересную математику, которая поможет нам разрабатывать схемы с конденсаторами позже, в статье

.

Конечно, Фарад (один кулон на вольт) — очень большая единица для большинства практических целей (поскольку кулон сам по себе представляет собой довольно большой заряд, как вы, возможно, уже знаете), поэтому большинство конденсаторов (за исключением очень больших) ) измеряются в микрофарадах, или одной миллионной (0.000001) Фарада. Предположим, у вас есть конденсатор с показателем 25 В 10 мкФ (префикс «u» означает «микро», это искажение греческого символа «μ», означающего «микро») на пластиковой внешней крышке. Поскольку колпачок (короткий в мире электроники для конденсаторов) рассчитан на 10 мкФ, он может удерживать заряд в десять микрокулонов (то есть десять миллионных долей Кулона, 0,000010 C) на вольт напряжения на его выводах. Это означает, что при максимальном напряжении 25 В конденсатор может удерживать заряд 25 В x 10 мкФ, что составляет 0.000250 Кулонов.

Помните, я сказал «максимальное» напряжение. Максимальное напряжение, вероятно, является наиболее важным показателем для конденсатора. Он сообщает вам, какое напряжение конденсатор может выдержать на своих выводах, прежде чем он выйдет из строя ………!

Работа конденсатора

В основном то, что происходит внутри конденсатора, заключается в том, что изолятор между этими пластинами подвергается процессу, называемому «диэлектрическим пробоем», что означает, что изолятор больше не может изолировать, поскольку напряжение на изоляторе слишком велико, чтобы он мог оставаться изолятором. .Физика, лежащая в основе, несколько выходит за рамки, но все, что вам нужно знать, чтобы понять, почему это происходит, — это то, что ни один изолятор не является идеальным, то есть до определенного момента. Даже самый прочный мост разрушается при перегрузке. Здесь происходит то же самое. Чтобы уменьшить пробой, вы можете увеличить зазор между двумя пластинами, но это имеет компромисс — уменьшенную емкость, поскольку пластины расположены дальше друг от друга, и заряды не притягиваются так сильно, как при сближении — во многом как как ведут себя магниты.

Хорошее практическое правило — использовать колпачки, рассчитанные на напряжение на 50% выше, чем то, что может ожидать ваша схема. Это оставляет большой запас прочности. Например, если вам нужен конденсатор для развязки (не беспокойтесь, развязка будет объяснена позже в статье) шины питания 12 В, вы можете обойтись без конденсатора 16 В, но рекомендуется использовать конденсатор 25 В, поскольку он дает вам широкий запас прочности. Хорошо, вы узнали это !! Да, 25 В, конечно, не на 25% больше, чем 12 В, но 18 В не является стандартной емкостью конденсатора — вы не найдете конденсатора с таким номинальным напряжением.Ближайший — 25В.

Различные типы конденсаторов

Причина диапазонов напряжения пробоя связана с материалом, используемым в качестве диэлектрика, который также является основой классификации конденсаторов:

Алюминиевые электролитические конденсаторы

Это, наверное, самые узнаваемые конденсаторов типа . Они поставляются в характерных металлических банках с пластиковой оболочкой, с четко указанными значениями напряжения и емкости и белой полосой, обозначающей катод.Название происходит от того факта, что, как упоминалось выше, «пластины» изготовлены из алюминиевой фольги с химическим травлением. Процесс травления делает алюминий пористым (как губка) и значительно увеличивает площадь его поверхности, а значит, увеличивает емкость. Диэлектрик представляет собой тонкий слой оксида алюминия. Эти конденсаторы заполнены маслом, которое действует как электролит, отсюда и название. Электролитические конденсаторы поляризованы из-за их внутренней конструкции. Они имеют большую емкость по сравнению с другими членами семейства конденсаторов, но при гораздо более низком напряжении.Вы можете ожидать увидеть электролиты от 0,1 мкФ до таких монстров, как 100 мФ, и с номинальным напряжением от нескольких вольт до примерно 500 В. Однако их внутреннее сопротивление обычно велико.

БОКОВОЕ ПРИМЕЧАНИЕ: Внутреннее сопротивление в конденсаторах обусловлено материалами, из которых изготовлен колпачок, например сопротивлением алюминиевой фольги или сопротивлением выводов.

Конденсаторы керамические

Это колпачки с керамическим диэлектриком.Поскольку предел пробоя для керамического диэлектрика довольно высок, вы можете ожидать увидеть керамические колпачки с сумасшедшими пробивными напряжениями, такими как 10 кВ. Однако емкость обычно бывает низкой, в диапазоне от пикофарад (0,000000000001F) до нескольких десятков микрофарад. Как правило, они намного меньше конденсаторов других типов , как показано на рисунке. У них также очень маленькое внутреннее сопротивление.

Ceramic Capacitors

Идентификация керамических конденсаторов

Значение керамической емкости на керамическом конденсаторе не указывается напрямую.0 равно 0.

Номинальное напряжение конденсатора можно найти, используя строку под этим кодом. Если линия есть, то значение напряжения составляет 50/100 В, если линии нет, то это 500 В.

Наиболее часто используемые емкости конденсаторов вместе с их преобразованием в Пико Фарад, Нано Фарад и микрофарады приведены ниже.

Код

Пикофарад (пФ)

Нанофарад (нФ)

Микрофарад (мкФ)

100

10

0.01

0,00001

150

15

0,015

0,000015

220

22

0,022

0,000022

330

33

0.033

0,000033

470

47

0,047

0,000047

331

330

0,33

0,00033

821

820

0.82

0,00082

102

1000

1,0

0,001

152

1500

1,5

0,0015

202

2000

2.0

0,002

502

5000

5,0

0,005

103

10000

10

0,01

683

68000

68

0.068

104

100000

100

0,1

154

150000

150

0,15

334

330000

330

0.33

684

680000

680

0,68

105

1000000

1000

1,0

335

3300000

3300

3.3

Пленочные конденсаторы

Как следует из названия, диэлектрик в этих конденсаторах представляет собой пластиковую пленку, часто знакомую пластику, такую ​​как майлар и полиэстер. Они имеют те же свойства, что и керамические колпачки, имеют высокое напряжение пробоя (из-за свойств пластичных полимеров) и низкую емкость. Единственная разница в том, что они, как правило, немного больше, хотя внешне выглядят как керамические колпачки. Внутреннее сопротивление сопоставимо с керамическими колпачками.

Film Capacitors

Танталовые и ниобиевые конденсаторы

Эти конденсаторы технически подпадают под категорию электролитических конденсаторов. Здесь электролит представляет собой твердый материал из оксидов тантала или ниобия. У них очень низкое внутреннее сопротивление для данной емкости, однако они менее устойчивы к перенапряжению по сравнению с другими типами (керамика лучше всего) и, как правило, капут без особого предупреждения и с большим количеством неприятного черного дыма.

Конденсаторы специального назначения

Сюда входят серебристо-слюдяные колпачки, колпачки с рейтингом X и Y и т. Д.Конденсаторы с номиналами X и Y, например, созданы для фильтрации линии — более прочная конструкция и более высокие номиналы напряжения, а также низкие емкости, чтобы уменьшить ток, проходящий через них, если применяется переменное напряжение, и ограничить энергию, запасенную в конденсаторе, если постоянный подается напряжение.

Суперконденсаторы и ультраконденсаторы

Они выводят конденсаторы на совершенно новый уровень, значительно увеличивая их емкость, иногда до сотен фарад! Это возможно благодаря какой-то умной химии.Суперконденсаторы и ультраконденсаторы устраняют разрыв между конденсаторами и химическими батареями. Однако они бывают с очень низким напряжением.

И это почти все распространенных типов конденсаторов , которые вы обычно можете встретить в мире электроники.

Принцип работы конденсаторов в цепях

Первой полезной задачей было бы научиться рассчитывать запасы энергии в конденсаторе, которые задаются формулой

E = 1 / 2CV 2

Где E — запасенная энергия в джоулях, C — емкость в фарадах, а V — напряжение в вольтах.Обратите внимание, что это уравнение принимает форму многих других ньютоновских уравнений для энергии, аккуратное пасхальное яйцо!

Предположим, у вас есть конденсатор, рассчитанный на напряжение 50 В и емкость 1000 мкФ, запасенная энергия при полных 50 В будет:

1/2 * 0,001000F * 50 В * 50 В

Что составляет жалкие 1,25Дж накопленной энергии.

Это показывает главный недостаток конденсаторов как устройств накопления энергии — запасенная энергия для данного размера очень мала, батарея того же размера будет иметь как минимум в тысячу раз больше накопленной энергии! Однако у крышек внутреннее сопротивление намного ниже, чем у химических батарей, что позволяет им быстро сбрасывать всю накопленную энергию.Замыкание батареи приведет к ее нагреву только из-за мощности, рассеиваемой внутренним сопротивлением, но короткое замыкание конденсатора вызовет лишь несколько искр, поскольку весь заряд сбрасывается сразу без повреждения конденсатора.

Во-вторых, есть еще одна аккуратная формула, которая связывает напряжение, ток и емкость:

I / C = dV / dt

Где I — ток, подаваемый на конденсатор в амперах, C — емкость в фарадах, а dV / dt — скорость изменения напряжения на выводах конденсатора.Подумайте об этом с точки зрения единицы измерения — вольт в секунду для заданного тока и емкости. Не беспокойтесь о маленькой букве «d», это просто математический способ сказать «до предельного нуля».

Допустим, у вас есть источник питания, который выдает постоянное напряжение 5 В при постоянном токе 1 мА, а затем, изменив уравнение, мы можем найти время, необходимое для зарядки конденсатора 100 мкФ до 5 В:

дт = CdV / I

dt = (0,000100F * 5 В) / 0,001A

dt = 0,5 секунды

Значит, конденсатор будет заряжаться до 5 В в 0.5 секунд. (Помните, что конденсатор может заряжаться только до максимального напряжения, подаваемого на него, и никогда больше, они не могут волшебным образом «создать» напряжение.)

Такое предсказуемое поведение конденсатора делает его очень полезным для создания временных задержек, например, с помощью небольшой дополнительной схемы. Вы можете изменить уравнение, чтобы получить время.

А теперь о хорошем — схемах конденсаторов!

Поведение конденсатора в цепях

Давайте начнем с простого — разные способы соединения конденсаторов.Это почти то же самое, что соединение двух резисторов — вы можете подключить их последовательно или параллельно.

Параллельные конденсаторы

На рисунке ниже показаны три конденсатора, подключенные параллельно, со всеми соответствующими положительными и отрицательными клеммами, соединенными вместе (при условии, что колпачки поляризованы). Общая емкость этого устройства — это просто сумма всех емкостей всех конденсаторов в цепи. Это имеет смысл, поскольку параллельное соединение пластин конденсатора увеличивает площадь поверхности, увеличивая емкость.

Максимальное напряжение, которое может выдержать такая схема, — это напряжение наименьшего конденсатора, поскольку напряжение является общим для всех конденсаторов.

Пример должен прояснить это. Предположим, у вас есть два конденсатора, один с номиналом 25 В 470 мкФ, а другой 35 В 1000 мкФ. Общая емкость будет 470 мкФ + 1000 мкФ = 1470 мкФ. Однако максимальное напряжение, которое вы можете подать на эту батарею (связку соединенных вместе конденсаторов, можно назвать «батареей» конденсаторов), будет всего 25 В.Если вы поместите что-то большее, чем это, на этом берегу, будут летать искры, так как вы превысите максимальное значение. напряжение конденсатора 25В.

Конденсаторы последовательно

Параллельное подключение конденсаторов особенно полезно, если вам нужна большая емкость, а у вас только небольшие значения. Параллельное соединение этих меньших значений значений в конечном итоге даст вам большее значение и выполнит свою работу, если вы помните о напряжении.

Последовательное соединение конденсаторов несколько сложнее.Емкость определяется по формуле:

1 / Cобщ. = 1 / C1 + 1 / C2 +… + 1 / Cn

Где C1, C2… Cn — емкости каждого конденсатора, используемого в цепи.

Напряжение, которое теперь может выдержать банк, представляет собой сумму всех номинальных напряжений.

Если у вас есть конденсатор, рассчитанный на 10 В 1 мкФ, и конденсатор на 50 В 10 мкФ, то напряжение, которое банк может выдерживать последовательно, составит 10 В + 50 В = 60 В. Емкость составляет 0,9091 мкФ.

Зависимость напряжения конденсатора от времени

Что, если мы хотим зарядить конденсатор? Мы могли бы просто подключить его к источнику напряжения, как показано на рисунке ниже.Здесь может произойти следующее: в момент подключения источника напряжения, если предположить, что крышка полностью разряжена, заряды стремятся накапливаться на пластинах, что приводит к очень большому (теоретически бесконечному!) Всплеску тока, ограниченному только внутренним сопротивлением конденсатора. конденсатор. Это, конечно, нежелательно, если ваш источник питания представляет собой что-то вроде батареи. Разумной идеей было бы добавить резистор последовательно с конденсатором и источником напряжения для ограничения тока, как показано на рисунке, и вуаля! У вас есть что-то, что инженеры называют RC-цепью, «R» для резистора и «C» для конденсатора!

Эта схема демонстрирует интересное поведение.Когда напряжение подается на сторону резистора, обозначенную «I», напряжение на конденсаторе медленно растет, поскольку ток ограничен. График выглядит примерно так:

Более склонные к математике из моих зрителей распознают форму наклона — она ​​напоминает форму экспоненциальной функции!

Помните, как я сказал, что заглавные буквы можно использовать для создания задержек по времени? Это один из способов сделать это без источника постоянного тока (который требует дополнительных схем).Поскольку время, необходимое для достижения определенного напряжения, предсказуемо, если мы знаем емкость, напряжение и сопротивление, мы можем создавать схемы с временной задержкой.

Произведение сопротивления и емкости, RC, известно как постоянная времени цепи. Этот параметр становится полезным для точного определения времени достижения заданного напряжения, как показано на графике ниже.

На графике видно, что конденсатор достигает 63% приложенного напряжения за одну постоянную времени и так далее.

Это принцип, который использует всесезонный таймер 555, хотя расчетные уравнения немного отличаются.

Еще одно интересное применение RC-цепей — фильтрация сигналов, то есть удаление из схемы электрического сигнала нежелательной частоты. RC-цепи требуется определенное время для зарядки и разрядки от источника. Если мы применим периодическую волну с периодом времени больше, чем RC, то такой же сигнал появится на выходе с очень небольшими искажениями.Однако при увеличении частоты сигнал продолжает менять полярность быстрее, чем цепь может заряжаться и разряжаться, и в конечном итоге после определенного момента сигнал исчезает, и все, что у вас остается, это чистый постоянный ток! Это называется ослаблением сигнала. Как вы можете видеть, RC-схема действует как фильтр, который блокирует сигналы переменного тока (даже те, которые наложены на постоянный ток, то есть имеют смещение постоянного тока) за пределами определенной частоты. Такой фильтр называется фильтром нижних частот, то есть он пропускает низкие частоты, но не пропускает высокие частоты.

Конденсаторы в цепях переменного тока

Конденсаторы

интересным образом ведут себя при подключении к цепям переменного тока. С точки зрения сигнала, их можно рассматривать как частотно-зависимые резисторы. Как видно выше, RC-схема блокирует весь переменный ток от сигнала, но что происходит, когда конденсатор соединен последовательно с источником переменного напряжения? С точностью до наоборот!

Capacitor in AC Circuits

Поскольку конденсатор представляет собой всего лишь две металлические пластины, разделенные изолятором, он не пропускает через себя постоянный ток.Однако сигнал переменного тока имеет постоянно меняющееся напряжение, поэтому одна пластина видит изменяющееся напряжение и индуцирует противоположный заряд на другой пластине, как показано на рисунке:

CURRENT ‘PASSES’ THROUGH CAPACITORS IN AC CIRCUITS

В целом это позволяет току «проходить» через конденсатор на относительно высоких частотах. Добавление резистора параллельно выходу создает фильтр высоких частот, то есть фильтр, который пропускает только высокие частоты и блокирует все сигналы постоянного тока.

«Сопротивление переменному току» или полное сопротивление конденсатора определяется по формуле:

XC = 1 / (2 * π * f * C)

Где XC — емкостное реактивное сопротивление или импеданс, f — частота, а C — емкость.Вы можете использовать эту формулу для расчета виртуального «сопротивления» конденсатора в цепи переменного тока.

Где можно найти конденсаторы

Ладно, теории хватило. Давайте рассмотрим множество вариантов использования конденсаторов .

Первое место, где вы могли бы ожидать увидеть конденсаторы, — это всевозможные источники питания в качестве фильтров и для развязки. Они действуют как зарядные резервуары, обеспечивая быстрый ток, когда он нужен нагрузке.

Вот два снимка осциллографа, которые показывают эффект отсутствия конденсатора на выводах источника питания.Как видите, наличие конденсаторов значительно снижает «шум» на шинах источника питания, тем самым защищая хрупкие детали от внезапных скачков напряжения.

DECOUPLING CAPACITORS ACROSS A POWER SUPPLY

Их также называют «развязывающими» конденсаторами , поскольку они «развязывают» участки цепи, в которой они установлены, от источника питания. Иногда провода питания на печатной плате могут быть довольно длинными и иметь высокую индуктивность и сопротивление. Это может привести к тому, что они будут обеспечивать меньший ток, чем обычно.Наличие конденсатора на конце линии питания похоже на временную «батарею» меньшего размера на устройстве, обеспечивающую всплески тока, когда это необходимо, и зарядку, когда устройство потребляет малую мощность.

Вы можете использовать формулу I / C = dV / dt для расчета емкости, необходимой для устранения «пульсаций» напряжения с клемм источника питания.

Предположим, у вас есть источник питания , напряжение которого изменяется от 11,5 В до 12 В (пульсации) каждые 10 мс, что является обычным для устройств с питанием от сети из-за частоты 50 Гц, и вам необходимо установить крышку на клеммы, чтобы сгладить напряжение.Если ток нагрузки в этом случае составляет 1А, то мы можем переписать формулу таким образом, чтобы узнать емкость:

(I * dt) / dV

Где I — ток нагрузки, dt — период шума, а dV — напряжение пульсации. Подставляя значения, мы находим, что нам нужна емкость 20000 мкФ. Может показаться, что это много, но вам может сойти с рук гораздо меньше. Полученное значение служит только ориентировочным.

В реальной жизни вы можете встретить конденсаторы разных типов и номиналов на трассах питания, это необходимо для уменьшения содержания шума на многих частотах и ​​получения максимально плавного напряжения.

Еще одно применение конденсаторов — в таких сложных фильтрах, как этот:

Но более простым фильтром был бы RC-фильтр , здесь описан один интересный фильтр.

Плата микроконтроллера Arduino известна всем. Универсальный инструмент, но вы никогда не задумывались, почему аналоговые выходы выдают цифровой сигнал ШИМ? Это потому, что они были разработаны для использования с внешней сетью фильтрации для сглаживания напряжения ШИМ до действительно аналогового напряжения.Это можно сделать с помощью таких простых деталей, как резистор 1 кОм и конденсатор 10 мкФ. Попытайся!

Другое использование, как упомянуто выше, — это время. Простой генератор может быть построен с использованием логического элемента И-НЕ (попробуйте выяснить, почему логический элемент И не работает), резистора и конденсатора.

Предполагая, что изначально на конденсаторе нет напряжения, входы И-НЕ (которые связаны вместе) видят на них напряжение, близкое к 0 В, и включают выход. Теперь крышка заряжается через резистор.Когда он достигает «высокого» порога затвора, выходной сигнал переключается на низкий уровень, и теперь колпачок разряжается. Этот цикл продолжает формировать выходной сигнал прямоугольной формы с частотой, зависящей от значений R и C.

Наконец, еще одно интересное применение конденсаторов — накопление энергии. Конечно, конденсаторы не подходят для аккумуляторов, но для некоторых приложений, которые быстро нуждаются в энергии, лучше всего подходят конденсаторы.

Устройства, такие как койлганы (больше можно найти в Интернете), нуждаются в большом импульсе тока для ускорения снаряда, поэтому для таких целей используются высоковольтные конденсаторы, часто с такими номиналами, как 450 В, 1500 мкФ, которые могут хранить значительные количества энергии.

Заключение

Вот и все! Теперь вы знаете о конденсаторах значительно больше, чем то, с чего начинали. Теперь вы можете создавать простые конденсаторные схемы. Помните, что есть еще много чего узнать, и не переключайте клеммы источника питания!

.Конденсаторы

— learn.sparkfun.com

Добавлено в избранное Любимый 70

Введение

Конденсатор — это двухконтактный электрический компонент. Наряду с резисторами и катушками индуктивности, они являются одними из самых фундаментальных пассивных компонентов , которые мы используем. Вам придется очень внимательно поискать схему, в которой не имеет конденсатора в .

Особенностью конденсаторов является их способность накапливать энергию ; они похожи на полностью заряженную электрическую батарею. Колпачки , как мы их обычно называем, имеют множество критических применений в схемах. Общие приложения включают локальное накопление энергии, подавление скачков напряжения и комплексную фильтрацию сигналов.

Рассмотрено в этом учебном пособии

В этом руководстве мы рассмотрим всевозможные темы, связанные с конденсаторами, в том числе:

  • Как делается конденсатор
  • Как работает конденсатор
  • Емкость
  • Типы конденсаторов
  • Как распознать конденсаторы
  • Как емкость сочетается последовательно и параллельно
  • Применение конденсаторов общего назначения

Рекомендуемая литература

Некоторые концепции в этом руководстве основаны на предыдущих знаниях в области электроники.Прежде чем переходить к этому руководству, подумайте о том, чтобы сначала прочитать (хотя бы бегло просмотр) эти:


Обозначения и единицы измерения

Условные обозначения цепей

Есть два распространенных способа нарисовать конденсатор на схеме. У них всегда есть две клеммы, которые подключаются к остальной цепи. Символ конденсаторов состоит из двух параллельных линий, которые могут быть плоскими или изогнутыми; обе линии должны быть параллельны друг другу, близко друг к другу, но не касаться друг друга (это фактически показывает, как сделан конденсатор.Сложно описать, проще просто показать:

(1) и (2) — стандартные обозначения цепи конденсатора. (3) — пример символов конденсаторов в действии в цепи регулятора напряжения.

Символ с изогнутой линией (№2 на фото выше) указывает, что конденсатор поляризован, что означает, что это, вероятно, электролитический конденсатор. Подробнее об этом в разделе о типах конденсаторов этого руководства.

Каждый конденсатор должен сопровождаться названием — C1, C2 и т. Д.. — и стоимость. Значение должно указывать на емкость конденсатора; сколько там фарадов. Кстати о фарадах …

Емкость

Не все конденсаторы одинаковы. Каждый конденсатор имеет определенную емкость. Емкость конденсатора говорит вам, сколько заряда он может хранить , большая емкость означает большую емкость для хранения заряда. Стандартная единица измерения емкости называется фарад , сокращенно F .

Получается, что фарад — это лот емкости, даже 0,001 Ф (1 миллифарад — 1 мФ) — это большой конденсатор. Обычно вы видите конденсаторы с номиналом от пико- (10 -12 ) до микрофарад (10 -6 ).

Имя префикса Сокращение Вес Эквивалентные фарады
Пикофарад пФ 10 -12 0,000000000001 F
Нанофарад нФ 10 -9 0.000000001 Ф
Микрофарад мкФ 10 -6 0,000001 F
Милифарад мФ 10 -3 0,001 F
Килофарад кФ 10 3 1000 F

Когда вы переходите к диапазону емкости от фарада до килофарада, вы начинаете говорить о специальных конденсаторах, которые называются конденсаторами super или ultra .


Теория конденсаторов

Примечание : Материал на этой странице не совсем критичен для понимания новичками в электронике … и к концу все становится немного сложнее. Мы рекомендуем прочитать раздел Как делается конденсатор , остальные, вероятно, можно было бы пропустить, если они вызывают у вас головную боль.

Как делается конденсатор

Схема обозначения конденсатора на самом деле очень похожа на то, как он сделан.Конденсатор состоит из двух металлических пластин и изоляционного материала, называемого диэлектриком . Металлические пластины расположены очень близко друг к другу, параллельно, но диэлектрик находится между ними, чтобы они не соприкасались.

Ваш стандартный конденсаторный сэндвич: две металлические пластины, разделенные изолирующим диэлектриком.

Диэлектрик может быть изготовлен из любых изоляционных материалов: бумаги, стекла, резины, керамики, пластика или всего, что препятствует прохождению тока.

Пластины изготовлены из проводящего материала: алюминия, тантала, серебра или других металлов. Каждый из них подключен к клеммному проводу, который в конечном итоге подключается к остальной цепи.

Емкость конденсатора — сколько в нем фарад — зависит от его конструкции. Для большей емкости требуется конденсатор большего размера. Пластины с большей площадью перекрытия поверхности обеспечивают большую емкость, в то время как большее расстояние между пластинами означает меньшую емкость. Материал диэлектрика даже влияет на то, сколько фарад имеет колпачок.Полная емкость конденсатора может быть рассчитана по формуле:

Где ε r — относительная диэлектрическая проницаемость диэлектрика (постоянное значение, определяемое материалом диэлектрика), A — площадь перекрытия пластин друг с другом, а d — расстояние между пластинами.

Как работает конденсатор

Электрический ток — это поток электрического заряда, который электрические компоненты используют для зажигания, вращения или выполнения любых действий.Когда ток течет в конденсатор, заряды «застревают» на пластинах, потому что не могут пройти через изолирующий диэлектрик. Электроны — отрицательно заряженные частицы — засасываются одной из пластин, и она становится в целом отрицательно заряженной. Большая масса отрицательных зарядов на одной пластине отталкивает, как заряды, на другой пластине, делая ее положительно заряженной.

Положительный и отрицательный заряды на каждой из этих пластин притягиваются друг к другу, потому что это то, что делают противоположные заряды.Но с диэлектриком, сидящим между ними, как бы они ни хотели соединиться, заряды навсегда останутся на пластине (до тех пор, пока им не будет куда-то идти). Стационарные заряды на этих пластинах создают электрическое поле, которое влияет на электрическую потенциальную энергию и напряжение. Когда заряды группируются на конденсаторе, как этот, конденсатор накапливает электрическую энергию так же, как батарея может накапливать химическую энергию.

Зарядка и разрядка

Когда на пластинах конденсатора сливаются положительный и отрицательный заряды, конденсатор становится заряженным .Конденсатор может сохранять свое электрическое поле — удерживать свой заряд — потому что положительный и отрицательный заряды на каждой из пластин притягиваются друг к другу, но никогда не достигают друг друга.

В какой-то момент обкладки конденсатора будут настолько заряжены, что просто не смогут больше их принимать. На одной пластине достаточно отрицательных зарядов, чтобы они могли отразить любые другие, пытающиеся присоединиться. Здесь вступает в игру емкость конденсатора ( фарад), которая говорит вам о максимальном количестве заряда, которое может хранить конденсатор.

Если в цепи создается путь, который позволяет зарядам найти другой путь друг к другу, они покинут конденсатор, и разрядит .

Например, в схеме ниже можно использовать батарею для создания электрического потенциала на конденсаторе. Это вызовет нарастание одинаковых, но противоположных зарядов на каждой из пластин, пока они не станут настолько полными, что оттолкнут ток от протекания. Светодиод, расположенный последовательно с крышкой, может обеспечивать путь для тока, а энергия, запасенная в конденсаторе, может использоваться для кратковременного освещения светодиода.

Расчет заряда, напряжения и тока

Емкость конденсатора — сколько в нем фарад — говорит вам, сколько заряда он может хранить. Сколько заряда хранит конденсатор в настоящее время, зависит от разности потенциалов (напряжения) между его пластинами. Эта взаимосвязь между зарядом, емкостью и напряжением может быть смоделирована следующим уравнением:

Заряд (Q), накопленный в конденсаторе, является произведением его емкости (C) и приложенного к нему напряжения (V).

Емкость конденсатора всегда должна быть постоянной известной величиной. Таким образом, мы можем регулировать напряжение, чтобы увеличить или уменьшить заряд крышки. Больше напряжения означает больше заряда, меньше напряжения … меньше заряда.

Это уравнение также дает нам хороший способ определить значение одного фарада. Один фарад (F) — это способность хранить одну единицу энергии (кулоны) на каждый вольт.

Расчет тока

Мы можем пойти дальше по уравнению заряда / напряжения / емкости, чтобы выяснить, как емкость и напряжение влияют на ток, потому что ток — это скорость потока заряда.Суть отношения конденсатора к напряжению и току такова: величина тока , протекающего через конденсатор , зависит как от емкости, так и от того, как быстро напряжение растет или падает . Если напряжение на конденсаторе быстро возрастает, через конденсатор будет индуцироваться большой положительный ток. Более медленный рост напряжения на конденсаторе означает меньший ток через него. Если напряжение на конденсаторе стабильное и неизменное, через него не будет проходить ток.

(Это некрасиво, и это касается вычислений. В этом нет необходимости, пока вы не перейдете к анализу во временной области, разработке фильтров и прочим грубым вещам, так что переходите к следующей странице, если вам не нравится это уравнение .) Уравнение для расчета тока через конденсатор:

Часть dV / dt этого уравнения представляет собой производную (причудливый способ сказать мгновенная скорость ) напряжения во времени, это эквивалентно тому, «насколько быстро напряжение растет или падает в этот самый момент».Большой вывод из этого уравнения заключается в том, что если напряжение стабильно , производная равна нулю, что означает, что ток также равен нулю . Вот почему ток не может течь через конденсатор, поддерживающий постоянное постоянное напряжение.


Типы конденсаторов

Существуют всевозможные типы конденсаторов, каждый из которых имеет определенные особенности и недостатки, которые делают его лучше для одних приложений, чем для других.

При выборе типа конденсатора необходимо учитывать несколько факторов:

  • Размер — Размер как по физическому объему, так и по емкости.Конденсатор нередко является самым большим компонентом в цепи. Также они могут быть очень маленькими. Для большей емкости обычно требуется конденсатор большего размера.
  • Максимальное напряжение — Каждый конденсатор рассчитан на максимальное падение напряжения на нем. Некоторые конденсаторы могут быть рассчитаны на 1,5 В, другие — на 100 В. Превышение максимального напряжения обычно приводит к разрушению конденсатора.
  • Ток утечки — Конденсаторы не идеальны.Каждая крышка склонна пропускать небольшое количество тока через диэлектрик от одного вывода к другому. Эта крошечная потеря тока (обычно наноампер или меньше) называется утечкой. Утечка заставляет энергию, накопленную в конденсаторе, медленно, но верно уходить.
  • Эквивалентное последовательное сопротивление (ESR) — Выводы конденсатора не на 100% проводящие, у них всегда будет небольшое сопротивление (обычно меньше 0,01 Ом). Это сопротивление становится проблемой, когда через колпачок проходит большой ток, вызывая потери тепла и мощности.
  • Допуск — Конденсаторы также не могут иметь точную, точную емкость. Каждая крышка будет рассчитана на свою номинальную емкость, но, в зависимости от типа, точное значение может варьироваться от ± 1% до ± 20% от желаемого значения.

Конденсаторы керамические

Наиболее часто используемый и производимый конденсатор — керамический конденсатор. Название происходит от материала, из которого сделан их диэлектрик.

Керамические конденсаторы обычно бывают физически и емкостными малыми .Трудно найти керамический конденсатор больше 10 мкФ. Керамический колпачок для поверхностного монтажа обычно находится в крошечном корпусе 0402 (0,4 мм x 0,2 мм), 0603 (0,6 мм x 0,3 мм) или 0805. Керамические колпачки со сквозными отверстиями обычно выглядят как маленькие (обычно желтые или красные) лампочки с двумя выступающими клеммами.

Две крышки в радиальном корпусе со сквозным отверстием; конденсатор 22 пФ слева и 0,1 мкФ справа. Посередине — крошечный колпачок 0603 0,1 мкФ для поверхностного монтажа.

По сравнению с не менее популярными электролитическими крышками, керамические конденсаторы являются более близкими к идеальным (гораздо более низкими значениями ESR и токов утечки), но их небольшая емкость может быть ограничивающей.Обычно они также являются наименее дорогим вариантом. Эти колпачки хорошо подходят для высокочастотной связи и развязки.

Электролитический алюминий и тантал

Электролитики

хороши тем, что они могут упаковать много емкости в относительно небольшой объем. Если вам нужен конденсатор в диапазоне от 1 мкФ до 1 мФ, вы, скорее всего, найдете его в электролитической форме. Они особенно хорошо подходят для высоковольтных приложений из-за их относительно высокого максимального номинального напряжения.

Алюминиевые электролитические конденсаторы, самые популярные из семейства электролитических, обычно выглядят как маленькие жестяные банки с обоими выводами, выходящими снизу.

Ассортимент электролитических конденсаторов для сквозных отверстий и поверхностного монтажа. Обратите внимание, что у каждого из них есть метод маркировки катода (отрицательный вывод).

К сожалению, электролитические крышки обычно поляризованы . У них есть положительный вывод — анод — и отрицательный вывод, называемый катодом.Когда напряжение подается на электролитический колпачок, анод должен иметь более высокое напряжение, чем катод. Катод электролитического конденсатора обычно обозначается знаком «-» и цветной полосой на корпусе. Ножка анода также может быть немного длиннее, как еще один признак. Если на электролитический колпачок подать обратное напряжение, они выйдут из строя ( выскочит из и разорвется) и навсегда. После лопания электролитик будет вести себя как короткое замыкание.

Эти колпачки также известны своей утечкой — позволяя небольшим токам (порядка нА) проходить через диэлектрик от одного вывода к другому. Это делает электролитические колпачки менее чем идеальными для хранения энергии, что, к сожалению, с учетом их высокой емкости и номинального напряжения.

Суперконденсаторы

Если вы ищете конденсатор, предназначенный для хранения энергии, не ищите ничего, кроме суперконденсаторов. Эти колпачки имеют уникальную конструкцию, обеспечивающую высоких емкостей в диапазоне фарад.

Суперконденсатор 1Ф (!). Высокая емкость, но рассчитана только на 2,5 В. Обратите внимание, что они тоже поляризованы.

Несмотря на то, что они могут хранить огромное количество заряда, суперкаперы не могут работать с очень высокими напряжениями. Этот суперконденсатор 10F рассчитан только на максимальное напряжение 2,5 В. Любое большее, чем это, уничтожит его. Суперэлементы обычно устанавливаются последовательно для достижения более высокого номинального напряжения (при уменьшении общей емкости).

Основное применение суперконденсаторов в — накопление и выделение энергии , как батареи, которые являются их основным конкурентом.Хотя суперконденсаторы не могут удерживать столько энергии, сколько батарея такого же размера, они могут высвобождать ее намного быстрее и обычно имеют гораздо больший срок службы.

Другое

Электролитические и керамические крышки покрывают около 80% типов конденсаторов (а суперкапсы только около 2%, но они супер!). Другим распространенным типом конденсаторов является пленочный конденсатор , который отличается очень низкими паразитными потерями (ESR), что делает их идеальными для работы с очень высокими токами.

Есть много других менее распространенных конденсаторов. Конденсаторы переменной емкости могут производить различные емкости, что делает их хорошей альтернативой переменным резисторам в схемах настройки. Скрученные провода или печатные платы могут создавать емкость (иногда нежелательную), потому что каждый состоит из двух проводников, разделенных изолятором. Лейденские банки — стеклянная банка, наполненная проводниками и окруженная ими, — это О. семейства конденсаторов. Наконец, конечно, конденсаторы потока (странная комбинация катушки индуктивности и конденсатора) имеют решающее значение, если вы когда-нибудь планируете вернуться в дни славы.


Конденсаторы последовательно / параллельно

Как и резисторы, несколько конденсаторов можно объединить последовательно или параллельно для создания комбинированной эквивалентной емкости. Конденсаторы, однако, складываются таким образом, что полностью противоположны резисторам.

Конденсаторы параллельно

Когда конденсаторы размещаются параллельно друг другу, общая емкость равна сумме всех емкостей .Это аналогично тому, как резисторы добавляются последовательно.

Так, например, если у вас есть три конденсатора номиналом 10 мкФ, 1 мкФ и 0,1 мкФ, подключенные параллельно, общая емкость будет 11,1 мкФ (10 + 1 + 0,1).

Конденсаторы серии

Подобно тому, как резисторы сложно добавить параллельно, конденсаторы становятся неприятными при установке в серии . Общая емкость последовательно соединенных конденсаторов Н и является обратной суммой всех обратных емкостей.

Если у вас есть только двух конденсаторов , соединенных последовательно, вы можете использовать метод «произведение над суммой» для расчета общей емкости:

Если продолжить это уравнение, если у вас есть двух одинаковых конденсаторов, соединенных последовательно , общая емкость составляет половину их значения.Например, два суперконденсатора по 10 Ф, соединенные последовательно, дадут общую емкость 5 Ф (это также позволит удвоить номинальное напряжение всего конденсатора с 2,5 В до 5 В).


Примеры применения

Существует множество приложений для этого изящного маленького (на самом деле, обычно они довольно большие) пассивного компонента. Чтобы дать вам представление об их широком спектре использования, вот несколько примеров:

Развязные (байпасные) конденсаторы

Многие конденсаторы, которые вы видите в схемах, особенно те, которые имеют интегральную схему, развязаны.Работа развязывающего конденсатора заключается в подавлении высокочастотного шума в сигналах источника питания. Они снимают с источника напряжения крошечные колебания напряжения, которые в противном случае могут нанести вред чувствительным микросхемам.

В каком-то смысле развязывающие конденсаторы действуют как очень маленький локальный источник питания для ИС (почти как источник бесперебойного питания для компьютеров). Если в источнике питания очень быстро падает напряжение (что на самом деле довольно распространено, особенно когда цепь, которую он питает, постоянно переключает требования к нагрузке), разделительный конденсатор может кратковременно подавать питание с правильным напряжением.Вот почему эти конденсаторы также называются байпасными конденсаторами; они могут временно действовать как источник питания , минуя источник питания.

Разделительные конденсаторы подключаются между источником питания (5 В, 3,3 В и т. Д.) И землей. Нередко использование двух или более конденсаторов разного номинала, даже разных типов, для обхода источника питания, потому что некоторые номиналы конденсаторов будут лучше, чем другие, при фильтрации определенных частот шума.

На этой схеме три развязывающих конденсатора используются для уменьшения шума в источнике напряжения акселерометра.Два керамических 0,1 мкФ и один танталовый электролитический 10 мкФ разделенные функции развязки.

Хотя кажется, что это может привести к короткому замыканию между питанием и землей, только высокочастотные сигналы могут проходить через конденсатор на землю. Сигнал постоянного тока поступит на микросхему, как и нужно. Другая причина, по которой они называются шунтирующими конденсаторами, заключается в том, что высокие частоты (в диапазоне кГц-МГц) обходят ИС, а не проходят через конденсатор, чтобы добраться до земли.

При физическом размещении развязывающих конденсаторов их всегда следует располагать как можно ближе к ИС.Чем дальше они находятся, тем менее эффективны.

Вот схема физической схемы из схемы выше. Крошечная черная ИС окружена двумя конденсаторами емкостью 0,1 мкФ (коричневые крышки) и одним электролитическим танталовым конденсатором 10 мкФ (высокая прямоугольная крышка черного / серого цвета).

Чтобы следовать хорошей инженерной практике, всегда добавляйте хотя бы один развязывающий конденсатор к каждой ИС. Обычно хорошим выбором является 0,1 мкФ или даже дополнительные конденсаторы на 1 мкФ или 10 мкФ. Это дешевое дополнение, и они помогают убедиться, что микросхема не подвергается сильным провалам или скачкам напряжения.

Фильтр источника питания

Диодные выпрямители

могут использоваться для преобразования переменного напряжения, выходящего из вашей стены, в постоянное напряжение, необходимое для большинства электронных устройств. Но сами по себе диоды не могут превратить сигнал переменного тока в чистый сигнал постоянного тока, им нужна помощь конденсаторов! При добавлении параллельного конденсатора к мостовому выпрямителю выпрямленный сигнал выглядит следующим образом:

Может быть преобразован в сигнал постоянного тока близкого к уровню, например:

Конденсаторы — упрямые компоненты, они всегда будут пытаться противостоять резким перепадам напряжения.Конденсатор фильтра будет заряжаться по мере увеличения выпрямленного напряжения. Когда выпрямленное напряжение, поступающее в конденсатор, начинает быстро снижаться, конденсатор получит доступ к своему банку накопленной энергии, и он будет очень медленно разряжаться, передавая энергию нагрузке. Конденсатор не должен полностью разрядиться, прежде чем входной выпрямленный сигнал снова начнет увеличиваться, заряжая конденсатор. Этот танец разыгрывается много раз в секунду, многократно, пока используется источник питания.

Цепь питания переменного тока в постоянный.Крышка фильтра (C1) имеет решающее значение для сглаживания сигнала постоянного тока, посылаемого в цепь нагрузки.

Если вы разорвите какой-либо блок питания переменного тока в постоянный, вы обязательно найдете хотя бы один довольно большой конденсатор. Ниже показаны внутренности настенного адаптера постоянного тока на 9 В. Заметили там конденсаторы?

Конденсаторов может быть больше, чем вы думаете! Имеется четыре электролитических крышки, похожие на консервные банки, в диапазоне от 47 мкФ до 1000 мкФ. Большой желтый прямоугольник на переднем плане — это высоковольтный 0.Крышка из полипропиленовой пленки 1 мкФ. И синяя дискообразная крышка, и маленькая зеленая посередине — керамические.

Хранение и поставка энергии

Кажется очевидным, что если конденсатор накапливает энергию, одно из множества его применений — подача этой энергии в цепь, как аккумулятор. Проблема в том, что конденсаторы имеют гораздо более низкую плотность энергии , чем батареи; они просто не могут вместить столько энергии, сколько химическая батарея такого же размера (но этот разрыв сокращается!).

Положительным моментом конденсаторов является то, что они обычно служат дольше, чем батареи, что делает их лучшим выбором с экологической точки зрения. Они также способны выдавать энергию намного быстрее, чем аккумулятор, что делает их подходящими для приложений, которым требуется короткий, но большой всплеск мощности. Вспышка камеры может получать питание от конденсатора (который, в свою очередь, вероятно, заряжался от аккумулятора).

Батарея или конденсатор?
Аккумулятор Конденсатор
Вместимость
Плотность энергии
Скорость заряда / разряда
Срок службы

Фильтрация сигналов

Конденсаторы

обладают уникальной реакцией на сигналы различной частоты.Они могут блокировать низкочастотные компоненты или компоненты сигнала постоянного тока, позволяя при этом проходить более высоким частотам. Они похожи на вышибалу в очень эксклюзивном клубе только для высоких частот.

Фильтрация сигналов может быть полезна во всех видах приложений обработки сигналов. Радиоприемники могут использовать конденсатор (среди других компонентов) для отстройки от нежелательных частот.

Другой пример фильтрации сигнала конденсатора — это пассивные схемы кроссовера внутри динамиков, которые разделяют один аудиосигнал на множество.Последовательный конденсатор блокирует низкие частоты, поэтому оставшиеся высокочастотные части сигнала могут идти на твитер динамика. При прохождении низких частот в цепи сабвуфера высокие частоты в основном могут быть шунтированы на землю через параллельный конденсатор.

Очень простой пример схемы кроссовера аудио. Конденсатор блокирует низкие частоты, а катушка индуктивности блокирует высокие частоты. Каждый из них может использоваться для доставки нужного сигнала настроенным аудиодрайверам.

Снижение рейтинга

При работе с конденсаторами важно проектировать свои схемы с конденсаторами, которые имеют гораздо более высокий допуск, чем потенциально самый высокий скачок напряжения в вашей системе.

Вот отличное видео от инженера SparkFun Шона о том, что происходит с различными типами конденсаторов, когда вы не можете снизить номинальные параметры конденсаторов и превысить их максимальное напряжение. Вы можете прочитать больше о его экспериментах здесь.


Закупка конденсаторов

Храните на этих маленьких компонентах накопителя энергии или используйте их в качестве начального блока питания.

Наши рекомендации:

Комплект конденсаторов SparkFun

В наличии КОМПЛЕКТ-13698

Это комплект, который предоставляет вам базовый ассортимент конденсаторов, чтобы начать или продолжить возиться с электроникой. Нет мес…

9

Конденсатор керамический 0.1 мкФ

В наличии COM-08375

Это очень распространенный конденсатор емкостью 0,1 мкФ. Используется во всевозможных приложениях для отключения микросхем от источников питания. 0,1 дюйма с интервалом…

1

Суперконденсатор — 10Ф / 2.5В

В наличии COM-00746

Да, вы правильно прочитали — конденсатор 10 Фарад. Этот маленький колпачок можно зарядить, а затем медленно рассеять на протяжении всего…

3

Ресурсы и движение вперед

Уф.Почувствуйте себя экспертом по конденсаторам ?! Хотите узнать больше об основах электроники? Если вы еще этого не сделали, подумайте о прочтении некоторых других распространенных электронных компонентов:

Или, может быть, некоторые из этих руководств привлекут ваше внимание?


.Конденсаторы

: все, что вам нужно знать | ОРЕЛ

Нет, мы не говорим здесь о Grand Theft Auto! Открывать крышку в мире электроники — это плохо, если вам не нравится смотреть, как ваш электролитический конденсатор горит в огне. Конденсаторы играют важную роль в семействе пассивных электронных компонентов, и их можно использовать повсюду.

Помните вспышку в вашей цифровой камере? Конденсаторы делают это возможным. Или возможность переключать канал на телевизоре? Опять конденсаторы.Эти ребята — маленькие батарейки, которые «могут», и вам нужно знать все, что о них известно, прежде чем вы начнете работать над своим первым проектом в области электроники.

Это как сэндвич с мороженым

Для простоты — конденсатор хранит электрический заряд , очень похоже на батарею. Также называемые caps , вы найдете этих парней в приложениях, где требуется накопление энергии, подавление напряжения и даже фильтрация сигналов. А как они выглядят? Ну бутерброд с мороженым!

mrsfields-ice-cream-sandwich

Что бы вы сделали с баром «Клондайк»? Сравните это, конечно, с конденсатором! (Источник изображения)

Подумайте о том восхитительном бутерброде с мороженым, который вам понравился в тот душный летний день.У вас есть восхитительная корочка с двух сторон и кремовая тарелка ванильного мороженого посередине. Эта композиция из двух внешних слоев и одного внутреннего слоя — это то, как выглядит конденсатор. Вот из чего они сделаны:

  • Начиная снаружи. Сверху и снизу конденсатора вы найдете набор металлических пластин, также называемых проводниками. Электрический заряд находит эти металлические пластины очень привлекательными.
  • Сидит посередине. Посреди этих двух металлических пластин вы найдете изолятор или материал, к которому не притягивается электричество. Этот изолятор обычно называют диэлектриком и может быть изготовлен из бумаги, стекла, резины, пластика и т. Д.
  • Соединяем вместе. Две металлические пластины сверху и снизу крышки соединены двумя электрическими клеммами, которые соединяют ее с остальной частью цепи. Один конец конденсатора подключается к источнику питания, а другой — к земле.
parallel-plate-capacitor

Внутренняя структура конденсатора, у нас есть две металлические пластины, внутренний диэлектрик и соединительные клеммы.

Конденсаторы всех форм и размеров

Конденсаторы

бывают разных форм и размеров, каждый из которых определяет, насколько хорошо они могут удерживать заряд. Три наиболее распространенных типа конденсаторов, с которыми вы столкнетесь, включают керамический конденсатор, электролитический конденсатор и суперконденсатор:

Конденсаторы керамические

Это конденсаторы, с которыми вы, вероятно, будете работать в своем первом электронном проекте с использованием макета.В отличие от своих электролитических аналогов, керамические конденсаторы удерживают меньший заряд, но и меньше пропускают ток. Они также оказываются самыми дешевыми конденсаторами из всей группы, так что запасайтесь! Вы можете быстро определить керамический конденсатор со сквозным отверстием, посмотрев на маленькие желтые или красные лампочки с двумя торчащими из них выводами.

ceramic-capacitors

Три типа керамических конденсаторов, которые вы будете использовать на макетных платах. (Источник изображения)

Конденсаторы электролитические

Эти ребята выглядят как маленькие консервные банки, которые вы найдете на печатной плате, и в их крошечном следе могут удерживаться огромные электрические разряды.Они также являются единственным типом конденсаторов, которые поляризованы, а это означает, что они будут работать только при подключении с определенной ориентацией. На этих электролитических конденсаторах есть положительный вывод, называемый анодом, и отрицательный вывод, называемый катодом. Анод всегда нужно подключать к более высокому напряжению. Если вы подключите его наоборот, когда на катоде будет более высокое напряжение, приготовьтесь к взрыву крышки!

electrolytic-capacitor

Электролитический конденсатор, обратите внимание на положительный вывод и более длинный (анод) и более короткий отрицательный вывод (катод).(Источник изображения)

Несмотря на то, что электролитические колпачки способны удерживать большое количество электрического заряда, они также хорошо известны тем, что пропускают ток быстрее, чем керамические колпачки. Из-за этого они не лучший выбор, когда вам нужно хранить энергию.

Суперконденсаторы

Supercaps — супергерои семейства конденсаторных, они могут хранить большое количество энергии! К сожалению, суперкапс плохо справляется с повышенным напряжением, и вы окажетесь без колпачка, если превысите максимальное напряжение, указанное в таблице данных.ПОП!

В отличие от электролитических конденсаторов, вы обнаружите, что суперконденсаторы используются для хранения и разряда энергии, как и батареи. Но в отличие от батареи, суперкапсы высвобождают свой заряд сразу, и вы никогда не получите такой же срок службы, как обычный аккумулятор.

supercapacitor

Посмотрите на этот мощный supercap ! Он имеет огромную емкость 3000F. (Источник изображения)

Обозначения конденсаторов

Идентифицировать конденсатор на первой схеме очень просто, поскольку они бывают только двух типов: стандартные и поляризованные.Обратите внимание на символ стандартного конденсатора ниже. Вы заметите, что это всего лишь две простые линии с пробелом между ними. Это две металлические пластины, которые вы найдете наверху и внизу физического конденсатора.

Поляризованный конденсатор выглядит немного иначе и имеет дугообразную линию в нижней части, а также положительный вывод наверху. Этот положительный вывод очень важен и указывает, как этот поляризованный конденсатор должен быть подключен. Положительная сторона всегда подключается к источнику питания, а сторона дуги подключается к земле.

standard-polarized-capacitors

Два наиболее распространенных типа конденсаторов, которые вы увидите на схеме для США, стандартные и поляризованные.

Кто изобрел эти вещи?

Хотя многие считают английского химика Майкла Фарадея пионером сегодняшнего конденсатора, он не был первым, кто его изобрел. То, что сделал Фарадей, было важно — он продемонстрировал первые практические примеры конденсатора и способы его использования для хранения электрического заряда в своих экспериментах. И благодаря Фарадею у нас также есть способ измерить заряд, который может удерживать конденсатор, известный как емкость, который измеряется в Фарадах!

michael-faraday

Гениальный английский химик Майкл Фарадей, пионер конденсаторов, которые мы используем сегодня.(Источник изображения)

До Майкла Фарадея некоторые записи указывают на то, что покойный немецкий ученый Эвальд Георг фон Клейст изобрел первый конденсатор в 1745 году. Несколько месяцев спустя голландский профессор по имени Питер ван Мушенбрук придумал похожий дизайн, теперь известный как Лейденская банка. Странное время, правда? Однако все это было просто совпадением, и оба ученых в равной степени получили признание за их первоначальные изобретения конденсатора.

leyden-jar

Самый ранний образец конденсатора, лейденская банка.(Источник изображения)

Знаменитая модель Benjamin Franklin позже стала усовершенствованной конструкцией лейденской банки, созданной Musschenbroek. Франклин также смог обнаружить, что использование плоского куска стекла было отличной альтернативой целой банке. Так родился первый плоский конденсатор, получивший название площади Франклина.

Крышки в действии — как они работают

Давайте подробно рассмотрим, как работают эти мощные конденсаторы, на практическом примере. Вы ведь раньше пользовались цифровой камерой? Тогда вы знаете, что между нажатием кнопки, чтобы сделать снимок, и моментом срабатывания вспышки есть несколько коротких моментов.

Что здесь происходит? К вспышке прикреплен конденсатор, который заряжается после того, как вы нажмете кнопку, чтобы сделать снимок. Как только этот конденсатор полностью заряжен аккумулятором камеры, вся эта энергия взрывается наружу в ослепительной вспышке света!

flash-capacitor

Обратите внимание, конденсатор, который делает возможной вспышку в этой камере. (Источник изображения)

Так как же все это произошло? Заглянем изнутри в загадочный мир конденсатора:

  1. Начинается с зарядки. Электрический ток от источника питания сначала течет в конденсатор и застревает на первой пластине. Почему застревает? Потому что есть изолятор, который не пропускает отрицательно заряженную электронику.
  2. Накопление сборов. По мере того, как все больше и больше электронов прилипают к этой первой пластине, она становится отрицательно заряженной и в конечном итоге отталкивает все лишние электроны, с которыми она не может справиться, к другой пластине. Затем эта вторая пластина становится положительно заряженной.
  3. Заряд сохраняется. По мере того, как две пластины конденсатора продолжают заряжаться, отрицательные и положительные электроны отчаянно пытаются соединиться, но этот надоедливый изолятор посередине не позволяет им, создавая электрическое поле. Вот почему колпачок продолжает удерживать и накапливать заряд, потому что существует бесконечный источник напряжения между отрицательной и положительной сторонами двух пластин, которые не разрешены.
  4. Заряд освобождается. Рано или поздно две пластины в нашем конденсаторе не смогут удерживать заряд, так как они на пределе емкости.Но что происходит сейчас? Если в вашей цепи есть путь для электрического заряда, протекающего в другом месте, то все электроны в вашей крышке будут разрядиться, и , наконец, прекратят свое напряжение, поскольку они будут искать другой путь друг к другу.

Измерение заряда

Как можно измерить, сколько заряда хранится в конденсаторе? Каждый колпачок рассчитан на определенную емкость. Он измеряется в фарадах по английскому химику Майклу Фарадею. Поскольку в одном фараде содержится тонна электрического заряда, вы обычно видите конденсаторы, измеряемые в пикофарадах или микрофарадах.Вот полезная таблица, которая показывает, как разбиваются эти измерения:

Имя Аббревиатура Фарады
Пикофарад пФ 0,000000000001 Факс
нанофарад нФ 0,000000001 Факс
Микрофарад мкФ 0,000001 Ф
Милифарад мФ 0.001 F
Килофарад кФ 1000 F

Теперь, чтобы выяснить, сколько заряда в настоящее время хранит конденсатор, вам понадобится следующее уравнение:

В этом уравнении общий заряд представлен как (Q) , и отношение этого заряда можно найти, умножив емкость конденсатора ( C ) на приложенное к нему напряжение ( В ). Следует отметить, что емкость конденсатора напрямую зависит от его напряжения.Таким образом, чем больше вы увеличиваете или уменьшаете источник напряжения в цепи, тем больший или меньший заряд будет у вашего конденсатора.

Емкость в параллельных и последовательных цепях

Когда вы размещаете конденсаторы в цепи параллельно, вы можете найти общую емкость, сложив вместе все отдельные емкости.

capacitance-parallel-circuit

Получить общую емкость в параллельной цепи так же просто, как 1 + 1, просто сложите их все вместе! (Источник изображения)

При последовательном размещении конденсаторов общая емкость вашей цепи является обратной величиной всех ваших суммированных емкостей.Вот быстрый пример: если у вас есть два конденсатора по 10 Ф, соединенные последовательно, то общая емкость будет равна 5 Ф.

capacitance-series-circuit

Получение полной емкости в последовательной цепи немного сложнее. Емкость уменьшается вдвое. (Источник изображения)

Начало работы

Теперь, когда у нас есть четкое представление о том, что такое конденсаторы, как они работают и как измеряются, давайте рассмотрим три распространенных применения конденсаторов. Сюда входят такие приложения, как развязывающие конденсаторы, накопители энергии и емкостные сенсорные датчики.

Конденсатор развязки

В наши дни вам будет трудно найти схему, в которой нет интегральной схемы или ИС. В этих типах схем конденсаторы должны выполнять важную работу, удаляя весь высокочастотный шум, обнаруживаемый в сигналах источника питания, питающих ИС.

Почему это необходимая работа для нашего конденсатора? Любые колебания напряжения могут быть фатальными для ИС и даже привести к неожиданному отключению питания микросхемы. Помещая конденсаторы между ИС и источником питания, они успокаивают колебания напряжения, а также действуют как второй источник питания, если первичная мощность падает до уровня, достаточного для выключения ИС.

decoupling-capacitor

Разделительный конденсатор для контроля колебаний напряжения.

Накопитель энергии

Конденсаторы

имеют много общих характеристик с батареями, включая их способность накапливать энергию. Однако, в отличие от батареи, конденсаторы не выдерживают такой большой мощности. Но хотя они и не успевают по количеству, они стараются разрядиться как можно быстрее! Конденсаторы могут поставлять энергию намного быстрее, чем аккумулятор, что делает их идеальными для питания вспышки в камере, настройки радиостанции или переключения каналов на телевизоре.

Емкостные сенсорные датчики

Одно из последних достижений в области применения конденсаторов связано с бурным развитием сенсорных экранов. Стеклянные экраны, из которых состоят эти сенсорные датчики, имеют очень тонкое прозрачное металлическое покрытие. Когда ваш палец касается экрана, это вызывает падение напряжения, определяющее точное местоположение вашего пальца!

capacitive-touch

Емкостные сенсорные датчики в действии с защитной накладкой и печатной платой. (Источник изображения)

Практика — выбор конденсатора

Давайте перейдем к сфере практичности и поговорим о том, на что обращать внимание при выборе следующего конденсатора.Необходимо учитывать пять переменных, в том числе:

  • Размер — сюда входит как физический размер вашего конденсатора, так и его общая емкость. Не удивляйтесь, если выбранный вами конденсатор будет самой большой частью вашей печатной платы, так как чем больше вам потребуется емкости, тем больше они станут.
  • Допуск — Конденсаторы, как и их аналоги с резисторами, имеют переменный допуск. Вы найдете допуск для конденсаторов в пределах от ± 1% до ± 20% от заявленного значения.
  • Максимальное напряжение — Каждый конденсатор имеет максимальное напряжение, с которым он может работать. В противном случае он взорвется! Вы найдете максимальное напряжение от 1,5 до 100 В.
  • Эквивалентное последовательное сопротивление (ESR) — Как и любой другой физический материал, клеммы конденсатора имеют очень маленькое сопротивление. Это может стать проблемой, если вам нужно помнить о потерях тепла и мощности.
  • Ток утечки — В отличие от наших батарей, в конденсаторах происходит утечка накопленного заряда.И пока он истощается медленно, вы должны обратить внимание на то, насколько утечки в вашем конденсаторе, если это основная функция, заключается в хранении энергии.

Все заряжены

Вот и все, что вам нужно знать о конденсаторах, чтобы полностью зарядиться для вашего следующего электронного проекта! Конденсаторы — это очаровательная небольшая группа, способная накапливать электрический заряд для множества применений, и они даже могут выступать в качестве вторичного источника питания для этих чувствительных интегральных схем.При работе с конденсаторами внимательно следите за максимально возможным напряжением. В противном случае вы получите несколько взрывающихся крышек, как вы увидите на видео:

Знаете ли вы, что Autodesk EAGLE бесплатно включает в себя массу библиотек конденсаторов? Начните со своего следующего проекта в области электроники и забудьте о создании собственных деталей! Попробуйте Autodesk EAGLE бесплатно сегодня.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *