Коэффициент мощность: Коэффициент мощности

Содержание

Коэффициент мощности | Электроснабжение, электрические сети | Архивы

Страница 23 из 52

ГЛАВА IX
КОЭФФИЦИЕНТ МОЩНОСТИ И СПОСОБЫ ЕГО ПОВЫШЕНИЯ

§ 9.1. Технико-экономическое значение коэффициента мощности

Как известно, в электрической цепи переменного тока, имеющей чисто активную нагрузку, ток совпадает по фазе с приложенным напряжением.
Если в цепь включены электроприемники, обладающие активным и индуктивным сопротивлениями (например, асинхронные электродвигатели, сварочные и силовые трансформаторы и т. п.), то ток будет отставать от напряжения на некоторый угол φ, называемый углом сдвига фаз. Косинус этого угла (cosφ) называется коэффициентом мощности. Величина коэффициента мощности характеризует степень использования активной мощности источника электроэнергии. Чем выше коэффициент мощности электроприемников, тем лучше используются генераторы электрических станций и их первичные двигатели (турбины и др.), трансформаторы подстанции и электрические сети.
Наоборот, чем ниже cosφ, тем хуже используется электрооборудование электростанций и всех других элементов электроснабжения. Низкие значения cosφ при тех же величинах активной мощности приводят к дополнительным затратам на сооружение более мощных станций, подстанций и сетей, а также к дополнительным эксплуатационным расходам.

Отсюда становится ясным большое народнохозяйственное значение повышения коэффициента мощности в электрических установках.
ПУЭ (1-2-47) установлена минимальная величина cosφ = 0,92—0,95, обязательная для предприятий.
Чтобы создать заинтересованность предприятий в увеличении коэффициента мощности, существует шкала скидок и надбавок к стоимости электроэнергии в зависимости от величины его среднего значения в электрохозяйстве предприятия.

§ 9.2. Определение коэффициента мощности

Действительная мощность электроприемников предприятия непрерывно изменяется с течением времени. Это объясняется тем, что работа отдельных участков или цехов предприятий не совпадает во времени. Кроме того, часть оборудования может работать с неполной загрузкой или даже находиться в состоянии холостого хода.

Изменение активной и реактивной мощностей электроприемников влечет за собой и соответствующие изменения cosφ. Различают следующие понятия коэффициента мощности.
Мгновенный коэффициент мощности — это величина cosφ в данный момент времени.
Значение мгновенного коэффициента мощности можно определить по фазометру или по одновременным указаниям измерительных приборов — амперметра, вольтметра и киловаттметра из выражения

На предприятиях принято средневзвешенный коэффициент мощности определять за месяц.
Энергоснабжающие организации при расчетах с абонентами различают два вида средневзвешенного коэффициента мощности: естественный и общий.
Естественный средневзвешенный коэффициент мощности характеризует электрическую установку без компенсирующих устройств.
Общий средневзвешенный коэффициент мощности определяется с учетом действия компенсирующих устройств.

§ 9.3. Причины, вызывающие снижение коэффициента мощности

Основными потребителями реактивной энергии являются асинхронные электродвигатели, трансформаторы и индуктивные печи, сварочные аппараты, газоразрядные лампы и т. д.
Асинхронный электродвигатель, работающий с нагрузкой, близкой к номинальной, имеет наибольшее значение cosφ. При снижении нагрузки электродвигателя коэффициент мощности уменьшается. Это объясняется тем, что активная мощность на зажимах электродвигателя изменяется пропорционально его загрузке, в то время как реактивная мощность вследствие незначительного изменения намагничивающего тока практически остается постоянной.
При холостом ходе cosφ имеет наименьшую величину, которая в зависимости от типа электродвигателя, мощности и скорости вращения находится в пределах 0,14-0,3.

Силовые трансформаторы, как и асинхронные электродвигатели, при загрузке меньше чем на 75% имеют пониженное значение коэффициента мощности.
Перегруженные асинхронные электродвигатели тоже имеют низкий cosφ, что объясняется увеличением по токов магнитного рассеяния.
Электродвигатели открытого типа, обладающие лучшими условиями охлаждения по сравнению с закрытыми электродвигателями, могут нести большую нагрузку (активную мощность) и будут иметь, следовательно, более высокий cosφ. Электродвигатели с короткозамкнутым ротором вследствие меньших значений индуктивного сопротивления рассеяния имеют cosφ выше, чем электродвигатели с фазным ротором. Значение cosφ у машин одного и того же типа возрастет с ростом номинальной мощности и скорости вращения ротора, так как при этом уменьшается относительная величина намагничивающего тока.
Увеличение напряжения на вторичной стороне силовых трансформаторов вследствие снижения нагрузки (например, во время ночных смен и в часы обеденных перерывов) ведет к повышению напряжения по сравнению с номинальным на зажимах работающих электродвигателей. Это в свою очередь приводит к увеличению намагничивающего тока и реактивной мощности электродвигателей, что влечет за собой уменьшив коэффициента мощности.
Обточка ротора, которую производят при износе подшипников, чтобы ротор не задевал статор, приводит к увеличению воздушного зазора между статором и ротором, что вызывает увеличение намагничивающего тока и понижение cosφ. Уменьшение числа проводников в пазу статора при перемотке вызывает увеличение намагничивающего тока и снижение cosφ асинхронного двигателя.

Применение газоразрядных ламп (ДРЛ и люминесцентных), имеющих в цепи индуктивное сопротивление (дроссель) при отсутствии компенсирующих устройств, также снижает коэффициент мощности электроустановок.

Коэффициент мощности, формула и примеры

Определение и формула коэффициента мощности

Средняя мощность переменного электрического тока , выражаемая через действующие значения силы тока (I) и напряжение (U) равна:

   

где — действующее (эффективное) значение силы тока, — амплитуда силы тока, — действующее (эффективное) значение напряжения, — амплитуда напряжения.

Коэффициент мощности используют для характеристики потребителя переменного тока как реактивную составляющую нагрузки. Величина этого коэффициента отражает сдвиг фазы () переменного тока, который течет через нагрузку, по отношению к приложенному к нагрузке напряжению. Из выражения (1) видно, что по величине коэффициент мощности равен косинусу от этого сдвига. Если сила тока отстает от напряжения, то сдвиг фаз считают большим нуля, если обгоняет, то

Практическое значение коэффициента мощности

На практике коэффициент мощности стараются сделать максимально большим. Так как при малом для выделения в цепи необходимой мощности надо пропускать ток большой силы, а это приводит к большим потерям в подводящих проводах (см. закон Джоуля — Ленца).

Коэффициент мощности учитывают при проектировании электрических сетей. Если коэффициент мощности является низким, это приводит к росту части потерь электрической энергии в общей сумме потерь. Для увеличения данного коэффициента применяют компенсирующие устройства.

Ошибки при расчетах коэффициента мощности ведут к повышенному потреблению электрической энергии и уменьшению коэффициента полезного действия оборудования.

Коэффициент мощности измеряют фазометром.

Способы расчета коэффициента мощности

Коэффициент мощности рассчитывают как отношение активной мощности (P) к полной мощности (S)

   

где — реактивная мощность.

Коэффициент мощности для трехфазного асинхронного двигателя вычисляют при помощи формулы:

   

Коэффициент мощности можно определить, используя, например треугольник сопротивлений (рис.1а) или треугольник мощностей (рис.1b).

Треугольники на рис. 1(a и b) подобны, так как из стороны пропорциональны.

Единицы измерения

Коэффициент мощности — безразмерная физическая величина.

Примеры решения задач

Коэффициент мощности — это… Что такое Коэффициент мощности?

Синусоидальное напряжение (красная линия) и ток (зелёная линия) синфазны — между ними нет фазового сдвига (, ) — нагрузка полностью активная, нет реактивной составляющей. Мгновенная мощность (синяя линия) и активная мощность (голубая линия) рассчитаны с коэффициентом мощности, равным 1. Как видно, синяя линия (график мгновенной мощности) находится полностью над осью абсцисс (в положительной полуплоскости), вся подводимая энергия преобразуется в работу: переходит в активную мощность, потребляемую нагрузкой. Синусоидальное напряжение (красная линия) и ток (зелёная линия) имеют фазовый сдвиг () — нагрузка полностью реактивная, нет активной составляющей. Мгновенная мощность (синяя линия) и активная мощность (голубая линия) рассчитаны с коэффициентом мощности, равным 0. Расположение синей линии (графика мгновенной мощности) на оси абсцисс показывает, что в течение первой четверти цикла вся подводимая мощность временно сохраняется в нагрузке, а во второй четверти цикла возвращается в сеть, и так далее, то есть никакой активной мощности не потребляется, полезной работы в нагрузке не совершается. Синусоидальное напряжение (красная линия) и ток (зелёная линия) имеют фазовый сдвиг () — нагрузка имеет и активную, и реактивную составляющие. Мгновенная мощность (синяя линия) и активная мощность (голубая линия) рассчитаны из переменного напряжения и тока с коэффициентом мощности, равным 0,71. Расположение синей линии (графика мгновенной мощности) под осью абсцисс показывает, что некоторая часть подводимой мощности всё же возвращается в сеть в течение части цикла, отмеченного
φ
.

Коэффицие́нт мо́щности — безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей. Коэффициент мощности показывает, насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения.

Численно коэффициент мощности равен косинусу этого фазового сдвига.

Можно показать, что если источник синусоидального тока (например, розетка ~220 В, 50 Гц) нагрузить на нагрузку, в которой ток опережает или отстаёт по фазе на некоторый угол от напряжения, то на внутреннем активном сопротивлении источника выделяется повышенная мощность. На практике это означает, что при работе на нагрузку со сдвинутыми напряжением и током от электростанции требуется больше энергии; избыток передаваемой энергии выделяется в виде тепла в проводах и может быть довольно значительным.

Равен отношению потребляемой электроприёмником активной мощности к полной мощности. Активная мощность расходуется на совершение работы. Полная мощность — геометрическая сумма активной и реактивной мощностей (в случае синусоидальных тока и напряжения). В общем случае полную мощность можно определить как произведение действующих (среднеквадратических) значений тока и напряжения в цепи. Полная мощность равна корню квадратному из суммы квадратов активной и неактивной мощностей. В качестве единицы измерения полной мощности принято использовать вольт-ампер (В∙А) вместо ватта (Вт).

Согласно неравенству Коши—Буняковского, активная мощность, равная среднему значению произведения тока и напряжения, всегда не превышает произведение соответствующих среднеквадратических значений. Поэтому коэффициент мощности принимает значения от нуля до единицы (то есть от 0 до 100 %).

Коэффициент мощности математически можно интерпретировать как косинус угла между векторами тока и напряжения. Поэтому в случае синусоидальных напряжения и тока величина коэффициента мощности совпадает с косинусом угла, на который отстают соответствующие фазы.

В электроэнергетике для коэффициента мощности приняты обозначения cos φ (где φ — сдвиг фаз между силой тока и напряжением) либо λ. Когда для обозначения коэффициента мощности используется λ, его величину обычно выражают в процентах.

При наличии реактивной составляющей в нагрузке кроме значения коэффициента мощности иногда также указывают характер нагрузки: активно-ёмкостный или активно-индуктивный. В этом случае коэффициент мощности соответственно называют опережающим или отстающим.

В случае синусоидального напряжения, если нагрузка не имеет реактивной составляющей, коэффициент мощности равен доле мощности первой гармоники тока в полной мощности, потребляемой нагрузкой, и равен коэффициенту искажений тока.

Математические расчёты

Треугольник мощностей

Коэффициент мощности необходимо учитывать при проектировании электросетей. Низкий коэффициент мощности ведёт к увеличению доли потерь электроэнергии в электрической сети в общих потерях. Чтобы увеличить коэффициент мощности, используют компенсирующие устройства. Неверно рассчитанный коэффициент мощности может привести к избыточному потреблению электроэнергии и снижению КПД электрооборудования, питающегося от данной сети.

Для расчётов в случае гармонических переменных U (напряжение) и I (сила тока) используются следующие математические формулы:

Здесь  — активная мощность,  — полная мощность,  — реактивная мощность.

Типовые оценки качества электропотребления

Коэффициент мощности позволяет судить о нелинейных искажениях, вносимых нагрузкой в электросеть. Чем он меньше, тем больше вносится нелинейных искажений. Кроме того, при одной и той же активной мощности нагрузки мощность, бесполезно рассеиваемая на проводах, обратно пропорциональна квадрату коэффициента мощности. Таким образом, чем меньше коэффициент мощности, тем ниже качество потребления электроэнергии. Для повышения качества электропотребления применяются различные способы коррекции коэффициента мощности, то есть его повышения до значения, близкого к единице.

Значение коэффициента мощности Высокое Хорошее Удовлетворительное Низкое Неудовлетворительное
cos φ 0,95…1 0,8…0,95 0,65…0,8 0,5…0,65 0…0,5
λ 95…100 % 80…95 % 65…80 % 50…65 % 0…50 %

Например, большинство компактных люминесцентных («энергосберегающих») ламп, имеющих ЭПРА, характеризуются высоким его значением.

Нелинейные искажения тока

Потребители электроэнергии с нелинейной вольт­амперной характеристикой (с коэффициентом мощности, меньшим единицы) создают ток, который меняется непропорционально мгновенному напряжению в сети (как правило, форма тока при этом отличается от синусоидальной). Соответственно искажается форма напряжения на данном участке электросети, что приводит к ухудшению качества электроэнергии. В зависимости от характера нагрузки можно выделить следующие основные виды нелинейных искажений тока: это фазовый сдвиг, вызванный реактивной составляющей в нагрузке, и несинусоидальность формы тока. Несинусоидальные искажения, в частности, имеют место, когда нагрузка несимметрична в разных полуволнах сетевого напряжения.

Несинусоидальность

Несинусоидальность — вид нелинейных искажений напряжения в электрической сети, который связан с появлением в составе напряжения гармоник с частотами, многократно превышающими основную частоту сети. Высшие гармоники напряжения оказывают отрицательное влияние на работу системы электроснабжения, вызывая дополнительные активные потери в трансформаторах, электрических машинах и сетях; повышенную аварийность в кабельных сетях; уменьшение коэффициента мощности за счёт мощности искажения, вызванной протеканием токов высших гармоник; а также ограниченное применение батарей конденсаторов для компенсации реактивной мощности.

Источниками высших гармоник тока и напряжения являются электроприёмники с нелинейными нагрузками. Например, мощные выпрямители переменного тока, применяемые в металлургической промышленности и на железнодорожном транспорте, газоразрядные лампы и др.

Ссылки

Номинальный коэффициент — мощность — Большая Энциклопедия Нефти и Газа, статья, страница 1

Номинальный коэффициент — мощность

Cтраница 1

Номинальный коэффициент мощности ( ваттметров, варметров) — значение коэффициента мощности ( cos ср — для ваттметров и sin ф — для варметров), указанное на приборе, являющееся множителем при определении предела измерения в единицах мощности.  [1]

Номинальный коэффициент мощности для большинства двигателей составляет cos фном 0 8 — ь 0 9 и зависит от мощности двигателя. С ростом мощности и номинальной угловой скорости двигателя повышается номинальный коэффициент мощности. Коэффициент мощности асинхронного двигателя в сильной степени зависит от нагрузки; при холостом ходе коэффициент мощности мал вследствие значительной реактивной мощности, затрачиваемой на создание потока, и малой активной мощности, связанной лишь с постоянными потерями. По мере роста нагрузки примерно до номинальной активная мощность растет быстрее реактивной и cos ф возрастает до номинального значения.  [2]

Номинальный коэффициент мощности ( cos p) представляет отношение номинального значения активной мощности на зажимах машины к номинальному значению кажущейся мощности.  [3]

Номинальный коэффициент мощности ( cos f) представляет отношение номинального значения активной мощности на зажимах машины к номинальному значению кажущейся мощности.  [4]

Номинальный коэффициент мощности ( ваттметров, варметров) — значение коэффициента мощности ( cos ср — для ваттметров и sin ф — для варметров), указанное на приборе, являющееся множителем при определении предела измерения в единицах мощности.  [5]

Номинальный коэффициент мощности равен значению cos рн при нагрузке, равной номинальной мощности электроприемника.  [7]

Номинальный коэффициент мощности для асинхронных электродвигателей составляет 0 75 — 0 90, в зависимости от типа и номинальной мощности двигателя.  [8]

Номинальный коэффициент мощности согласно ГОСТ принимается равным 0 8 для генераторов мощностью до 125 MB-А, 0 85 для турбогенераторов мощностью до 588 MB-А и гидрогенераторов до 360 MB-А, 0 9 для более мощных машин.  [9]

Номинальный коэффициент мощности согласно ГОСТ принимается равным 0 8 для генераторов мощностью 125 MB-А и ниже, 0 85 — для турбогенераторов мощностью до 588 MB — А и гидрогенераторов до 360 MB — A, 0 9 — для более мощных машин.  [10]

Номинальный коэффициент мощности приемника равен значению cos фном при нагрузке, равной номинальной мощности электроприемника.  [12]

Номинальный коэффициент мощности синхронных машин должен быть: 0 8 ( при отстающем токе) для синхронных генераторов; 0 9 ( при отстающем токе) для синхронных двигателей.  [14]

Чем выше номинальный коэффициент мощности coscpH электродвигателя, тем относительно меньшую реактивную мощность Qx он потребляет при холостом ходе.  [15]

Страницы:      1    2    3    4

Коэффициент мощности и способы его повышения. Экономия электрической энергии

Коэффициент мощности

Коэффициент мощности определяет, какая часть полной мощности потребления установки (S) преобразуется в ней в другие виды мощности, т. е. какая часть полной мощности потребления установки составляет активная мощность (Р):

cosφ=P/S

где S — полная мощность кВ*А.

Нагрузка отдельных электроприемников, как правило, изменяется во времени и как следствие этого коэффициент мощности также изменяет свою величину. В этой cвязи при определении коэффициента мощности необходимо ввести следующие понятия.

Мгновенный коэффициент мощности

Мгновенный коэффициент мощности — это величина cosφ в данный момент времени; его удобно определять по показаниям фазометра, а при отсутствии фазометра —по одновременному показанию измерительных приборов: амперметра вольтметра и ваттметра; по известному соотношению для трехфазной системы токов cosφ рассчитывается:

cosφ=P/√3UI.

Эта величина, которую часто называют текущим значением, характеризует угол сдвига по фазе между линейными током и напряжением в данной установке в каждый данный момент времени. Реактивная мощность характеризует колебания электрической энергии между источником и электроприемником, обусловленные переменными электрическими и магнитными полями. По мгновенному cosφ можно судить о том, стабильна ли величина реактивной мощности Q и когда можно ожидать ее резких изменений. Эти сведения бывают необходимы при проектировании и эксплуатации электросистемы.

В условиях практики более широкое применение получила условно усредненная величина средневзвешенного коэффициента мощности (cosφсв) электроустановки за какой-либо период времени (сутки, месяц, квартал, год). По величине cosφсв невозможно судить о фактических изменениях текущей величины cosφ. Однако, когда говорят о максимальной разрешенной для объекта реактивной мощности, имеют в виду средневзвешенный коэффициент мощности. Средневзвешенный коэффициент мощности определяется по показаниям счетчиков активной энергии W и реактивной энергии V за определенный период времени:

а затем по tgφсв находят cosφсв. В условиях строительного производства и предприятий стройиндустрии, как правило, cosφсв определяют за месяц.

Естественный коэффициент мощности — определяется без учета работы компенсирующих устройств; общий коэффициент мощности cosφобщ — с их учетом.


«Электроснабжение строительно-монтажных работ», Г.Н. Глушков

Тарификация электроэнергии

Максимальная нагрузка ТП определяется рассмотренными методами. Если эту нагрузку умножить на число часов работы приемников (или трансформаторов), то мы получим максимально возможный расход электрической энергии. Использованная электроэнергия оплачивается потребителем в…

U-образная кривая синхронного электродвигателя

На рисунке ниже приведена U-образная кривая синхронного электродвигателя I = f(Iв), которая показывает, что опережающий ток можно получить при увеличении тока возбуждения синхронного двигателя. U-образная кривая синхронного электродвигателя Увеличение тока…

Экономия электрической энергии

Современное строительство является энергоемким. Крупные стройки по потреблению электроэнергии не уступают промышленному городу, поэтому экономия электрической энергии является задачей первоначальной важности. Можно наметить схему рациональной экономии электроэнергии на строительстве и…

Энергосберегающая политика

Смотрите – Экономия электрической энергии Здесь были указаны рекомендации в основном для приемников электроэнергии. Однако одновременно наши государственные органы проводят энергосберегающую политику в народном хозяйстве, поскольку это является непременным условием…

Вращающийся момент электродвигателя

Вращающийся момент электродвигателя пропорционален квадрату приложенного напряжения, следовательно, при уменьшении напряжения в √3 пусковой и максимальный мо-менты уменьшаются в 3 раза. Поэтому при переключении обмотки статора с треугольника на звезду…

Конденсаторы, предназначенные для повышения cosφ

Конденсаторы, предназначенные для повышения cosφ (косинусные конденсаторы), выпускаются на различные номинальные напряжения. Каждый конденсатор имеет несколько параллельно включенных секций, помещенных в общий стальной кожух. Выводы от обкладок конденсатора осуществляются через…

Установка статических конденсаторов при групповой компенсации

При групповой компенсации статические конденсаторы могут устанавливаться на отдельных крупных питательных линиях, питающих приемники, разгружая от реактивной мощности подводящую сеть. При индивидуальной компенсации статические конденсаторы могут устанавливаться непосредственно вблизи электродвигателей,…

Выбор аппаратуры управления, защиты и измерения по полному току

Как видно из кривых n=f (cosφ), приведенных на рисунке ниже, с понижением cosφ уменьшается КПД основного приемника электрической энергии — асинхронного двигателя. Зависимость n =f (cosφ) асинхронного двигателя от степени…

Уменьшение числа проводников в пазах статора при перемотке

Уменьшение числа проводников в пазах статора при перемотке вызывает также увеличение намагничивающего тока и снижение cosφ асинхронного двигателя. Для более четкого понимания влияния низкого качества ремонта на cosφ можно воспользоваться…

Определение затраты энергии без учета потерь реактивной энергии

Когда потери в сети и трансформаторах при передаче реактивной энергии не учитываются (например, для конденсаторов), тогда приведенные затраты определяются по выражению, тыс. руб/год: З = З0i + З1iQa Если сравниваются…

Наивыгоднейший коэффициент мощности электроустановок

Наивыгоднейший коэффициент мощности электроустановок зависит от схемы питания объекта и параметров питающей сети; он определяется из условия достижения наибольшей годовой экономии за счет снижения потерь электроэнергии от реактивных нагрузок сети…

Дополнительные потери напряжения

Возникают дополнительные потери напряжения, которые особенно существенны в сетях районного значения. Например, при мощностях передачи Р и Q через элемент сети с активным сопротивлением R и реактивным X потери напряжения…

Коэффициент мощности — Энциклопедия по машиностроению XXL

Для повышения коэффициента мощности сварочный трансформатор ТСК-500 имеет в первичной цепи конденсатор 4 большой мощности.  [c.61]

Коэффициент мощности — косинус угла между векторами тока и векторами напряжения ( os q>).  [c.112]

Приведенная характеристика представляет собой зависимость коэффициентов мощности и момента от передаточного отношения или к. п. д. (рис. 14.6, в). Обычно она строится путем пересчета по уравнениям (14.22), (14.23) и эталонным величинам (D = 1 м,  [c.236]


Основываясь на техническом задании, выбирают рабочую жидкость определенной плотности и вязкости, типовую конструк-нию гидромуфты и приведенную характеристику для выбранной серии. Далее по приведенной характеристике для заданного значения скольжения (х =2н-5%) находят коэффициент мощности или момента и по уравнениям (14.22) или (14.23) определяют активный диаметр гидромуфты  [c.248]

Из кривых рис. 3-5 видно, что наименьшее значение [c.44]

Требуется определить напряжение на индукторе ток в индукторе / , коэффициент мощности индуктора os [c.94]

Коэффициент мощности индуктора  [c.96]

На печать выдаются исходные данные, токи, плотность токов и мощность элементов, полная мощность в загрузке и в индукторе, КПД и коэффициент мощности системы. Программа позволяет рассчитывать нагреватели сплошных и полых цилиндров с постоянной и переменной проводимостью, с секционированными одно- и многослойными обмотками, в том числе трехфазными.  [c.125]

Установки на частоту 50 Гц небольшой мощности проектируются обычно на стандартное напряжение 127, 220, 380 и 660 В и подключаются непосредственно к промышленной сети. Если коэффициент мощности ниже 0,8, то следует предварительно скомпенсировать реактивную мощность с помощью конденсаторов до значения соз вольтодобавочным трансформатором или тиристорным широтно-импульсным регулятором (ШИР). Если напряжение индуктора по условиям техники безопасности или изготовления меньше стандартного, используются понижающие трансформаторы — печные, сварочные и т. и.  [c.167]

Преобразователи ВПЧ имеют мощности 12 20 30 50 и 100 кВт при частотах 2400 и 8000 Гц. Конструкция преобразователей в основном аналогична конструкции машин ОПЧ. Напряжение средней частоты, зависящее от соединения обмоток генератора, равно 800/400/200 В при мощностях 50 и 100 кВт и 400/200 В для остальных преобразователей. Номинальный КПД не ниже 70—75% (верхний предел относится к преобразователям мощностью 100 кВт). Коэффициент мощности нагрузки 0,9 с емкостным характером цепи. Пуск двигателя прямой от сети 220/380 В. Разработаны преобразователи типа ВЭП с кольцевым ротором, в полости которого расположен статор инверсного асинхронного двигателя [41]. Мощность 60 и 100 кВт, частота 2400 и 8000 Гц. Совмещенное исполнение двигателя и генератора приводит к уменьшению массы и габаритов и росту КПД.  [c.168]


Индукторы для внешних цилиндрических поверхностей. Наружные индукторы для закалки цилиндрических тел имеют высокий КПД и коэффициент мощности даже без применения магнитопро-вода, так как нагреваемое изделие расположено в зоне сильного магнитного поля. Магнитопроводы иногда применяют для усиления нагрева в какой-либо части индуктора, например в зоне присоединения шин к индуктирующему проводу [35], или для экранирования соседних элементов от поля индуктора. При закалке шеек коленчатых валов и других деталей цилиндрические индукторы приходится делать разъемными (рис. 11-2). Съемная часть 4 присоединяется к неподвижной части 1 индуктора с помощью болтового соединения 2 или рычажного механизма. Индукторы стан ков-автоматов  [c.180]

Индукторы для нагрева плоских поверхностей можно разделить на два типа. В основе индукторов первого типа лежит петля, ПЛОСКОСТЬ которой параллельна нагреваемой поверхности (рис. 11-4, а). Индуктирующие провода 2 создают свои зоны нагрева, которые могут сомкнуться при большой глубине слоя и длительном нагреве. Для повышения КПД и коэффициента мощности индукторы снаб-  [c.181]

В тех случаях, когда необходимо знать пределы изменения активной и реактивной мощности на зажимах индуктора, что важно, например, при разработке системы для поддержания постоянным коэффициента мощности питающей линии, следует расчет индуктора проводить по этапам нагрева при постоянном подводимом напряжении. Такой расчет приведен в [35].  [c.196]

Скорость сварки может быть найдена по приведенной энергии Щц, которая при использовании внутреннего индуктора составляет 3,5—4 кВт-мнп/(м-мм) при скорости 40—60 м/мин и диаметрах до 530 мм и возрастает до 5—8 кВт-мин/(м мм) при увеличении диаметра трубы до 1620 мм и уменьшении скорости сварки до 10 м/мин. Расчет числа витков индуктора и других электрических параметров затруднен из-за сложности системы. Приблизительный расчет можно выполнить на основе схем замещения при вычислении их элементов по графикам [42]. Ориентировочное значение коэффициента мощности индуктора 0,2—0,3. Энергия, выделяющаяся в кромках, составляет 40—70% энергии, передаваемой в заготовку трубы. В индукторе теряется примерно 10% подводимой энергии.  [c.216]

Более высокие показатели имеют нагреватели трансформаторного типа. На магнитной системе трехфазного трансформатора с цилиндрическими первичными обмотками монтируются вторичные обмотки в виде змеевиков (по которым пропускается нагреваемая жидкость или газ), электрически замкнутых накоротко, желательно из немагнитного материала с высоким удельным сопротивлением (аустенитная сталь). Расчет установки проводится, как для обычного трансформатора с активной нагрузкой. Эти нагреватели более сложны в изготовлении, зато обеспечивают высокие КПД, коэффициент мощности (свыще 0,9) и большие удельные мощности, ограниченные лишь условиями теплоотвода от первичной и вторичной обмоток и насыщением магнитной системы. Мощность нагревателей составляет десятки и сотни киловатт. Благодаря высокому коэффициенту мощности они включаются в сеть без компенсации реактивной мощности.  [c.225]

Электрический КПД и коэффициент мощности индуктора будут  [c.256]

Электрический КПД и коэффициент мощности индуктора 1и = = 0-914 1,082 = 0,845 os = J n -0 2 9,83 = 0,11.  [c.259]

Блок регулирования коэффициента мощности, состоящий из трансформатора напряжения ТЯ, трансформатора тока ТТ, датчика фазы ДФ и переключающего устройства ЯУ, принципиально не отличается от соответствующего блока системы управления печью, работающей на частоте 50 Гц, но коммутация конденсаторов производится при отключенном питании.  [c.262]

В состав плавильной установки помимо собственно тигельной печи с механизмом наклона входят источник питания (преобразователь частоты или трансформатор) со своим вспомогательным оборудованием и аппаратурой, компенсирующая конденсаторная батарея (коэффициент мощности печи до компенсации составляет 0,1—0,2), токоподвод, аппаратура автоматики, защиты и сигнализации, измерительная и коммутационная аппаратура. Для печей с гидравлическим приводом механизмов и вакуумных печен добавляются соответственно маслонапорная установка и вакуумные насосы и приборы.  [c.262]


В отношении равномерности распределения температуры и однородности химического состава ванны, а также угара металла канальные печи не уступают тигельным, а по значениям КПД и коэффициента мощности значительно их превосходят, причем эти показатели не зависят от степени заполнения печи металлом. Увеличение емкости является более простой проблемой для канальных печей, чем для тигельных, поскольку энергетические задачи решаются простым наращиванием числа индукционных единиц. Условия работы подовых камней канальных печей значительно тяжелее, чем футеровки тигельных печей, с повышением температуры металла в каналах срок службы подовых камней прогрессивно сокращается. Наконец, для канальных печей характерен полунепрерывный или непрерывный режим работы.  [c.269]

Подовый камень является наиболее ответственной деталью печи, поскольку в течение эксплуатационной кампании он недоступен для осмотров и ремонта, условия же его работы чрезвычайно тяжелые. Толщина стенки подового камня, отделяющей ка-нал от проема, в котором находится индуктор, составляет лишь 5—12 см, так как при ее увеличении возрастает рассеяние и снижается коэффициент мощности печи. Температура металла в канале при плавке чугуна достигает 1650 С, температура же стенки проема не должна превышать 200 X. Поэтому градиент температуры в стенке подового камня составляет 150—250 К/см. Кроме того, стенки канала находятся под большим гидростатическим давлением столба металла и подвергаются, особенно вблизи устьев, размывающему действию циркулирующего металла.  [c.271]

Для плавки меди и ее сплавов применяются шахтные, а при загрузке более 3 т-—барабанные печи и миксеры. Максимальная емкость их — примерно 35 т, удельный расход электроэнергии при плавке меди — около 300 кВт-ч/т, при плавке медных сплавов— около 200 кВт-ч/т. Коэффициент мощности при плавке меди составляет примерно 0,5 при плавке бронз и латуней— примерно 0,7 при плавке медноникелевых сплавов — примерно 0,8.  [c.275]

Печи для плавки алюминия имеют емкость от 0,2 до 40 т, коэффициент мощности их из-за большого сечения канала низок он составляет 0,3—0,4, а у крупных и особенно двухкамерных печей, у которых вторичный виток на двух участках проходит через ванны, может быть даже ниже. Удельный расход энергии при плавке алюминия и его сплавов в канальных печах лежит в пределах 360— 500 кВт-ч/т.  [c.277]

Емкость печей для цинка достигает 150 т [38], коэффициент мощности их равен 0,5—0,6, удельный расход энергии — около 100 кВт ч/т.  [c.278]

Печи для плавки чугуна. Канальные печи используются при плавке чугуна в качестве миксеров в дуплекс-процессе с вагранками, дуговыми и индукционными тигельными печами, позволяя повысить температуру, осуществить легирование и обеспечить однородность чугуна перед разливкой. Емкость канальных миксеров лежит в пределах от 0,5 до 250 т. Коэффициент мощности печей для плавки чугуна составляет 0,6—0,8 срок службы футеровки ванны достигает года, а подового камня 4—6 мес допустимая удельная мощность в каналах из условия перегрева металла (40 — 50). 10 Вт/м  [c.278]

Расчет индукционных единиц производится в две стадии. Вначале, задаваясь коэффициентом мощности, выполняют предварительный расчет, в котором определяются основные геометрические размеры системы индуктор—канал. По данным предварительного расчета разрабатывается эскиз конструкции индукционной единицы. Вторая стадия представляет собой электрический расчет для разработанной конструкции. Полученные в нем значения тока и коэффициента мощности индуктора должны удовлетворительно совпадать с данными предварительного расчета. При значительных расхождениях весь расчет следует повторить, введя необходимые коррективы.  [c.280]

Для демонстрации широких возможиостей ППП Динамика ЭЭС представляются примеры моделирования ЭЭС, структурно-функциональная схема которой дана на рис. 7.11. На рис. 7.13, а приведены кривые переходных процессов по напряжению СГ для случая PH с широтно-импульсной модуляцией и импульсной активно-индуктивной нагрузкой. Параметры нагрузки характеризуются коэффициентом мощности 0,9 диапазоном относительного изменения 0,4—1,0 длительностью импульса 20 м-с длительностью паузы 5 м/с. Последовательность моделируемых режимов такова включение возбуждения СГ, наброс статической нагрузки мощностью 0,4 от номинальной мощности, включение импульсной нагрузки.  [c.230]

Примеры разработки алгоритмов будут даны в последующих разделах пособия, здесь же проиллюстрируем основные моменты построения алгоритма на примере определения рабочих характеристик асинхронного электродвигателя, т.е. зависимостей потребляемой мощности Pi и тока 1, КПД, коэффициента мощности osip и момента двигателя Л/д от скольжения s. Необходимо также определить номинальное скольжение Show и время разгона Гр.  [c.56]

По условиям пожарной безопасности рекомендуется выбирать водомасляную эмульсию с присадкой ВНИИНП-117 [7] с плотностью р 10 кг/м . Согласно ГОСТ 17172—71 номинальное скольжение для предохранительных гидромуфт. 45%. Для серийных гидромуфт этому 5 соответствует коэффициент мощности Хл = 0,37.  [c.249]

На средней частоте используются трансформаторы с замкнутой магнитной цепью броневого типа. Особенностью трансформаторов является высокая концентрация электромагнитной энергии и малые габариты, что позволяет встраивать их в закалочные станки и технологические линии. В некоторых многопозиционных станках, например в станках для закалки коленчатых валов, требование малых размеров трансформаторов является одним из основных. Трансформаторы универсальных закалочных установок и регулировочные автотрансформаторы кузнечных нагревателей должны иметь переменный коэффициент трансформации. Закалочные трансформаторы работают на нагрузку с коэффициентом мощности 0,2—0,4, часто в повторнократковременном режиме. Все трансформаторы имеют водяное охлаждение обмоток и магнитной цепи. Имеются три основные конструкции трансформаторов. Трансформаторы с цилиндрическими обмотками (ВТО-500, ВТО-1000) имеют одновитковую вторичную обмотку и помещенную внутрь нее много-витковую первичную. Магнитная система охлаждается радиаторными листами с припаяины.мп к ним трубками охлаждения. Трансформаторы просты II экономичны, но для изменения коэффициента трансформации ( гр) требуют смены перпичной обмотки. Серийно такие трансформаторы не выпускаются, но изготавливаются многими заводами для своих потребностей. Мощность трансформаторов 500 и 1000 кВ-А, частота 2,5 и 8 кГц. Трансформатор ТВД-3 имеет дисковые первичные и вторичные обмотки, что обеспечивает хорошее использование меди. Трансформатор имеет 44 ступени трансформации за счет переключения первичных и вторичных витков. Мощность 2000 кВ-Л, частота 2,5—8 кГц [41].  [c.170]


На радиочастотах используются воздушные трансфюрматоры, имеющие одновитковую вторичную обмотку из медного листа, а внутри нее — много-витковую первичную спираль. Трансфюрматоры просты по конструкции и поставляются сов.честно с генератором. Регулирование тр че предусмотрено (только смена обмотки), КПД зависит от сопротивления и коэффициента мощности нагрузки и при os (pj— 0,05 составляет 75—85%. Основной недостаток воздушных трансформаторов — большая собственная реактивная. мощность. Отношение реактивных мощностей на входе и в нагрузке равно 3—5, что приводит к завышению мощности конденсаторной батареи и к добавочным потеря.м в контурах. В. мощных установках высокочастотной сварки используются трансформаторы с неза.мкнутым магнитопроводом из ферритовых стержней [42]. Трансформаторы с ферритовым магнитопроводом более чувствительны к изменению сопротивления нагрузки и дают наилучший эффект при работе на примерно постоянную нагрузку, что и имеет место в установках непрерывной сварки.  [c.171]

При частоте 50 Гц конденсаторы имеют естественнное воздушное охлаждение. Выпускаются конденсаторы двух габаритов (КС и КС2), отличающиеся по высоте и по мощности в два раза. Напряжения 0,22 0,38 0,66 1,05 3,15 6,3 10,5 кВ. Конденсаторы могут быть трехфазными с соединением секций в треугольник (до 1,05 кВ) и однофазны.ми (при всех напряжениях). Мощность конденсаторов КС2 равна 50 квар при 0,38 и 0,66 кВ и всего 16 квар при 0,22 кВ. В связи с эти.м следует избегать проектирования установок значительной мощности на напряжение 0,22 кВ. Выпускаются конденсаторы повышенной мощности типа КСЭ-1,05-75 на 1,05 кВ и 75 квар и типа КСЭК-1,2-150 на 1,2/2,4 кВ и 150 квар. Разработаны конденсаторы с пленочным диэлектриком, имеющие tg б 0,001. На основе конденсаторов КС2 изготавливаются комплектные конденсаторные установки (ККУ) на 0,38 5 и 10 кВ. Они содержат конденсаторы, контакторы, аппаратуру защиты, сигнализации и автоматического регулирования коэффициента мощности. На напряжение 0,38 кВ выпускается 5 типоразмеров установок с мощностями от ПО до 540 квар. Конденсаторы КС и КС2 допускают длительную перегрузку на 10% по напряжению и на 30% по току [46].  [c.171]

Расчет режимов сварки на радиочастоте производится по кривым зависимости от скорости сварки, толщины и диаметра трубы, полученным экспериментально [41, 42], Для индукционного токо-подвода имеет минимум при диаметре трубы 20—35 мм, равный для стали 0,8— 1,0 кВт-мин/(ммм), а для алюминия 0,5— 0,6 кВт-мин/(м-мм). При диаметрах 133—203 мм значение возрастает до 1,6—2,0 и 1,0—1,2 кВт-мим/(м-мм) соответственно Окончательный режим сварки подбирается экспериментально С уменьшением скорости сварки качество шва снижается сущест вует минимальная скорость, при которой сварка еще возможна Для стали она составляет 1,5—2,0 м/мин. Ориентировочное значе иие коэффициента мощности при индукционной сварке на частоте 440 кГц составляет 0,05—0,1, а при контактном подводе—примерно в два раза выше. Напряжение на индукторе 1—1,5 кВ, на контактах 0,15—0,7 кВ.  [c.217]

Нагрев под посадку. Нагрев [юд горячую посадку колес н бандажей относится к низкотемпературному (до 150—400 С) нагреву стали, в связи с чем широко используется частота 50 Гц. Применяются обычные цилиндрические индукторы с магнитопроводом или без него, но чаще нагреватели с замкнутым магнитопроводом (трансформаторного тина). Последние обладают высоким КПД и коэффициентом мощности и позволяют нагревать на частоте 50 Гц даже сравнительно тонкостенные изделия. Трансформаторный нагреватель имеет магнитопровод стержневого, реже броневого типа, вторичным витком которого является нагреваемая деталь. Индуктирующая обмотка располагается обычно на другом стержне из конструктивных соображений, хотя для пов11Инения коэффициента мощности ее лучше располагать снаружи или внутри нагреваемого тела. Для нагрева больших колец (диаметр свыше 100 см) используется несколько трансформаторных нагревателей, располо>1(енных по окружности и подключенных к одной фазе согласно. Мощность установок составляет 10—150 кВт, время нагрева 5—30 мин в зависимости от размеров изделия. Коэффициент мощности достигает 0,6—0,65. При небольших мощностях обмотки многослойные с естественным охлаждением. В некоторых странах (например, ГДР) выпускаются серийные установки для нагрева колес и бандажей под посадку.  [c.223]

Печь, работающая на частоте 50 Гц, представляет собой однофазную нагрузку, которая при значительной мощности может вызвать недопустимую несимметрию токов и напряжений в питающей трехфазной сети. Это обстоятельство обусловливает необходимость применения специальных симметрирующих устройств, схемы- которых приведены на рис. 14-22. Наиболее распространенная схема Штейнметца (рис. 14-22, а) обеспечивает полное симметрирование при чисто акт ивной постоянной однофазной нагрузке, т. е. при неизменных параметрах печи ( п) и компенсации ее индуктивности емкостью С до коэффициента мощности, равного единице. Принцип действия схемы иллюстрирует векторная диаграмма на рис. 14-23. Если емкость Сс и индуктивность симметрирующего устройства подобраны так, чтобы токи в них /лв и вс отвечали условию  [c.251]

Индуктор канальной печи имеет принудительное воздушное или водяное охлаждение. При воздушном охлаждении индуктор изготовляется из медного обмоточного провода прямоугольного сечения, средняя плотность тока составляет 2,5—4 А/мм . При водяном охлаждении индуктор изготовляется из профилированной медной трубки, желательно неравностенной, с толщиной рабочей стенки (обращенной к каналу) 10—15 мм. Средняя плотность тока достигает 15 А/мм . Индуктор, как правило, выполняется однослойным, в редких случаях — двухслойным. Последний значительно сложнее конструктивно и имеет более низкий коэффициент мощности.  [c.272]


Формула расчета коэффициента использования производственных мощностей

Главная > Теория > Коэффициент использования производственной мощности

Около 70% всей вырабатываемой в нашей стране электрической энергии потребляется приемниками промышленных предприятий. Приемниками электрической энергии называются аппараты, агрегаты, механизмы, предназначенные для преобразования электрической энергии в другой вид энергии. Мощность, которую получает нагрузка, является продуктом напряжения и электрического тока, скорректированного на коэффициент использования производственной мощности. Последний, так или иначе, связан с количеством фаз.

Формула расчета коэффициента мощности

Для информации. Электрическая система переменного тока имеет характеристическое линейное или фазное напряжение. В служебных помещениях напряжение фазы составляет 220 В. В заводских цехах линейное напряжение (например, для запуска двигателя насоса) обычно составляет 460 В. Какая-то производственная мощность является «однофазной», какая-то –  «трехфазной».

В настоящее время электроснабжение промышленных предприятий ведется на переменном трехфазном напряжении. Линейное и фазное напряжения обычно отличаются друг от друга в любом случае.

Производственная мощность

Центральная аксиома теории цепей заключается в том, что мощность пропорциональна произведению напряжения и тока. Чем больше ток нагрузки, тем большую электрическую мощность она получает. В случае насоса, чем больше тока он потребляет, тем больше жидкости может перекачивать, тем самым повышаются технические показатели, в том числе и производственная мощность.

Проблема, однако, возникает из-за того, что потребителям электроэнергия передается переменным, а не постоянным током. Это приносит некоторые важные преимущества нескольким видам электрических машин, но и имеет некоторые недостатки.

Один из недостатков заключается в том, что ток должен оставаться в фазе с напряжением. Если он отстает от фазы, то мощность для нагрузки будет меньше, чем это следовало бы. Теоретически ток может чередоваться с фазой с аналогичной неэффективностью, но отстающий случай более типичен, поэтому чаще рассматривается случай отставания.

В системе переменного напряжения ток следует также волнообразно, как изменяется напряжение в течение определенного периода времени. Но если ток не достигнет своего пика одномоментно с напряжением, то мощность будет обеспечена в меньшей степени, чем это следовало бы. На картинке для примера показан график тока (красная синусоида) и напряжения (синяя синусоида) для индуктивной нагрузки.

Ток опережает напряжение

Действительно, если ток отстает от напряжения на четверть цикла (всего лишь 1/240 секунды), он не дает никакой реальной мощности вообще. Потребуется довольно интенсивный обзор тригонометрии, чтобы объяснить этот вопрос в тонкой аналитической детализации, но в целом его не так сложно понять, исходя из формул связи и соотношений физических величин.

Взаимосвязь параметров цепи

Мощность, которая фактически потребляется в цепи, называется активной или реальной. Она обозначается P. Ваттметры указывают на активную мощность схемы. Ток в фазе с напряжением создает истинную (активную) мощность. Следовательно, формула для вычисления выглядит так:

P = U* I *cos φ.

Активная мощность производит тепло в нагревателях, крутящий момент в двигателях, свет в лампах и выражается в ваттах или киловаттах. Реактивная составляющая тока (т. е. I*sin φ) при умножении на напряжение цепи приводит к реактивной мощности, которая обозначается Q. Следовательно, данная физическая величина равна:

Q = U* I* sin φ

и выражается она в VAR (реактивных вольт-амперах) или KVAR (реактивных киловольт-амперах). Реактивная мощность не делает никакой полезной работы в цепи: она подается источником в течение первого полупериода и возвращается к источнику в течение следующего полупериода. Именно этот параметр определяет cos φ.

Произведение среднеквадратических значений тока и напряжения называется полной мощностью S, которая измеряется в VA (вольт-амперах) или KVA (кило-вольтамперах) и вычисляется по формуле:

S = U*I.

Что такое cos φ

Коэффициент использования мощности

Данный параметр цепи переменного тока определяется всего лишь как косинус углового смещения между напряжением и током. А именно:

  1. В случае чистой резистивной цепи переменный ток находится в фазе с приложенным напряжением, т.е. φ = 0. Поэтому cos φ чистого резистивного контура равен 1;
  2. В случае чистой емкостной или чистой индуктивной схемы ток 90o не в фазе с напряжением цепи, т.е. φ = 90o. Следовательно, cos φ схемы равен нулю.

В случае индуктивных нагрузок (таких, как двигатели, трансформаторы …, все, что имеет обмотки) ток будет отставать от приложенного напряжения. Для емкостных нагрузок (конденсаторов) ток будет опережать приложенное напряжение.

Важно! Коэффициент мощности схемы RLC находится между 0 и 1 и никогда не может быть больше единицы. Практически cos φ всегда проявляется, потому что большая часть используемых нагрузок имеет индуктивный характер. В цепях переменного напряжения энергосистемы cos φ играет довольно значимую роль.

Поскольку мощность цепи определяется соотношением:

P = U* I *cos φ или I = P / (U*cos φ),

то при фиксированной мощности при постоянном напряжении ток увеличивается с уменьшением cos φ.

Важно! Cos φ является важным фактором для выработки электроэнергии, распределения и передачи. Это доля максимально возможной мощности, которую обеспечивает ток из-за задержки напряжения.

Проблемы низкого cos φ

Параметр cos φ очень важен для каждой энергосистемы или компании, поскольку он помогает поддерживать индуктивную нагрузку. При cos φ, меньшим единицы, увеличивается «недостающая» мощность, известная как реактивная. Последняя необходима для обеспечения поля намагничивания, требуемого для двигателей и других индуктивных нагрузок, выполняющих свои функции.

Плохой cos φ обычно является результатом значительной разности фаз между напряжением и током на клеммах нагрузки, или это может быть связано с высоким содержанием гармоник или искаженной формой тока.

Коэффициент мощности:

  • 100% является идеальным и имеет место, когда ток не отстаёт от напряжения;
  • 90% обычно считается приемлемым;
  • 80% применяется в зависимости от приложения;
  • менее 80% обычно накладывает затруднения.

Cos φ равен 80%, это означает, что 80% мощности действительно доставлено. Что происходит с другими 20%? Остальные 20% не теряются, остаются в системе. Это небольшая величина, но может повредить подшипникам электродвигателя и генератора. Если нужен cos φ =100%, то для исправления коэффициента набирают 125% требуемого тока, чтобы восполнить разницу.

Можно отметить основные недостатки низкого cos φ в цепи переменного напряжения:

  • проводники должны выдерживать больше тока при одинаковой мощности, поэтому они требуют большей площади поперечного сечения;
  • проводники должны выдерживать больше тока для той же мощности, что увеличивает потери и приводит к низкой эффективности системы;
  • падение напряжения увеличивается, что приводит к плохой регулировке системы.

Проблема с низким cos φ заключается в том, что это заставляет нагрузку натягивать дополнительный ток. Последний требует более тяжелых проводов, которые дорого стоят. Полная мощность увеличивается, это означает, что энергоснабжающая компания должна предоставить больше мощности. Поэтому энергоснабжающая компания выставляет дополнительный счет промышленным потребителям с плохим cos φ.

Кабельная линия с плохим cos φ имеет плохое влияние на проводники, которые становятся горячими, а тепловыделение высоким. Это заставляет энергоснабжающую компанию производить больше электроэнергии, чтобы компенсировать спрос потребителей. Себестоимость электроэнергии будет возрастать, стоимость оборудования также будет увеличиваться. Если есть возможность увеличить cos φ, тогда только можно избежать штрафа и всех этих проблем.

Важно! Некорректированный коэффициент мощности приводит к потерям энергосистемы в системе распределения. По мере увеличения потерь можно столкнуться с падением напряжения. Чрезмерное падение напряжения может вызвать перегрев и преждевременный отказ двигателей или другого индуктивного оборудования. Таким образом, путем повышения cos φ минимизируются падения напряжения. Это позволяет двигателям работать более эффективно, с небольшим увеличением мощности и пускового момента.

Cos φ по ГОСТу

Решение проблемы низкого cos φ

Понимание коэффициента мощности очень простое, если осознать природу индуктивности и конденсатора. Коэффициент мощности наблюдается только в индуктивных или емкостных схемах. Что касается производства, то для него обычно корректируется cos φ добавлением конденсаторов.

В интересах уменьшения потерь в распределительной системе добавляется коррекция коэффициента мощности для нейтрализации части тока намагничивания двигателя. Как правило, скорректированный коэффициент мощности будет 0,92-0,95.

Для информации. Для индуктивной нагрузки требуется магнитное поле для работы, и при создании такого магнитного поля ток будет несинфазным с напряжением. Коррекция коэффициента мощности – это процесс компенсации запаздывающего тока путем создания ведущего тока подключением конденсаторов к источнику питания.

Электрооборудование и машины, подключенные к энергосистеме, такие как трансформаторы, переключающие механизмы, генераторы переменного тока, обычно имеют более низкие значения cos φ. Для повышения данного показателя цепи переменного тока конденсатор подключается параллельно цепи. В случае цепи постоянного тока cos φ равен нулю, так как индуктивная и емкостная реактивность равны нулю из-за нулевой частоты.

Предпочтительно использовать коммутируемый конденсаторный блок в системе. Таким образом, коммутируемый конденсаторный блок обычно устанавливается в первичной сети силовой подстанции, что также помогает улучшить мощность всей системы. Банк конденсаторов может автоматически включаться и выключаться в зависимости от состояния различных системных параметров.

Когда коэффициент мощности системы находится ниже заданного значения, банк автоматически включается для улучшения коэффициента мощности. Функция конденсаторной батареи заключается в том, чтобы компенсировать или нейтрализовать реактивную мощность системы.

Производственная мощность

Коэффициент использования установленной мощности – важнейшая характеристика эффективности работы предприятий электроэнергетики. Любая система с cos φ, близким к 1, считается хорошей или превосходной системой, тогда как любая система с cos φ, близким к 0 (например, 0,2, 0,3, 0,4, 0,5, 0,6), считается плохой системой, за что организация должна заплатить что-то в качестве штрафа в пользу энергоснабжающей компании, потому что это накладывает серьезные издержки на сторону подачи питания.

Зависимость КПД от cos φ

Видео

Оцените статью:Коэффициент мощности

— обзор

2.1.28 Мощность и коэффициент мощности переменного тока схемы

Обозначив фазовый угол между напряжением и током как ϕ, можно показать 2 , что средняя мощность составляет

В единицах среднеквадратичного значения. значения:

, где cos (ϕ) называется «коэффициентом мощности».

Коэффициент мощности — важный параметр при работе с электрическими трансформаторами и генераторами. Все такие машины рассчитаны на киловольт-амперы (кВА), которые являются мерой допустимой нагрузки по току для данного приложенного напряжения.Потребляемая мощность зависит как от номинальной мощности в кВА, так и от коэффициента мощности нагрузки. На рисунке 2.17 показана взаимосвязь между кВА, киловаттами (кВт) и коэффициентом мощности, иногда называемая треугольником мощности. Нетрудно заметить, что

Рисунок 2.17. Треугольник мощности

и

, где кВА R — реактивная мощность. Таким образом, зная номинальную мощность в кВА и коэффициент мощности ряда различных нагрузок, можно определить требования к мощности от общего источника питания.

При указании коэффициента мощности в практических приложениях обычно указывается фаза тока относительно напряжения. Для индуктивной нагрузки ток отстает от напряжения, и говорят, что коэффициент мощности отстает. Для преимущественно емкостной нагрузки ток опережает напряжение, а коэффициент мощности опережает.

Если питание подается, скажем, от генератора переменного тока номиналом 400 В и 1000 А, то это максимальное напряжение и ток, которые машина может выдерживать без перегрева.Разность фаз между напряжением и током полностью зависит от нагрузки. Таким образом, если коэффициент мощности нагрузки равен единице, генератор переменного тока мощностью 400 кВА может обеспечить нагрузку мощностью 400 кВт. Пренебрегая потерями, первичный двигатель, приводящий в действие генератор, также должен обеспечивать мощность 400 кВт. Если же коэффициент мощности нагрузки равен 0,5, то подаваемая мощность будет только 200 кВт. Это означает, что хотя генератор будет работать на номинальной мощности в кВА, первичный двигатель, приводящий в действие генератор, будет работать только на половину своей мощности.

Альтернативный способ взглянуть на это явление — рассмотреть нагрузку, скажем, 100 кВт с запаздывающим коэффициентом мощности 0,75. Если напряжение питания составляет 50 В, то требуемый ток из уравнения (2.55) составляет 2,67 А. Если, однако, коэффициент мощности нагрузки должен быть увеличен до единицы, то требуемый ток будет уменьшен до 2 А. Это означает, что токопроводящие кабели при подаче пониженного тока могут иметь соответственно уменьшенную площадь поперечного сечения.

Как правило, размер электрической системы, включая линии передачи, распределительное устройство и трансформаторы, зависит от величины тока.Поэтому экономически целесообразно минимизировать ток. В качестве дополнительного стимула для промышленных потребителей органы электроснабжения обычно используют двухставочную систему тарифов. Он состоит из фиксированного тарифа, зависящего от номинальной мощности максимального потребления в кВА, и текущего заряда за единицу потребляемой киловатт в час.

По этим причинам полезно попытаться увеличить коэффициент мощности так, чтобы он был близок к единице (но не совсем). Фактически избегают единичного коэффициента мощности, поскольку он вызывает состояние резонанса (см. Раздел 2.1.29). На практике конденсаторы, соединенные параллельно, часто используются для улучшения коэффициента мощности преимущественно индуктивных нагрузок, таких как электродвигатели. Для крупномасштабных энергосистем используется отдельная установка с опережением фазы.

Понятие о коэффициенте мощности и его важности

Коэффициент мощности — это показатель того, насколько эффективно вы используете электроэнергию. Чтобы обеспечить нас электроэнергией, работают различные виды энергии. Вот что делает каждый.

Рабочая мощность — «истинная» или «реальная» мощность, используемая всеми электрическими приборами для выполнения работы по нагреванию, освещению, движению и т. Д.Мы выражаем это как кВт или киловатт. Распространенными видами резистивных нагрузок являются электрическое отопление и освещение.

Индуктивная нагрузка, такая как двигатель, компрессор или балласт, также требует реактивной мощности для создания и поддержания магнитного поля для работы. Мы называем эту нерабочую мощность кВАр или киловольт-ампер-реактивной.

В каждом доме и на предприятии есть как резистивные, так и индуктивные нагрузки. Соотношение между этими двумя типами нагрузок становится важным по мере добавления индуктивного оборудования.Рабочая мощность и реактивная мощность составляют полную мощность, которая называется кВА, киловольт-ампер. Мы определяем полную мощность по формуле, кВА2 = кВ * А.

Идя еще дальше, коэффициент мощности (PF) — это отношение рабочей мощности к полной мощности, или формула PF = кВт / кВА. Высокий коэффициент мощности приносит пользу как потребителю, так и коммунальному предприятию, в то время как низкий коэффициент мощности указывает на плохое использование электроэнергии.

Вот пример. Операция штамповки стали выполняется при 100 кВт (рабочая мощность), а счетчик кажущейся мощности регистрирует 125 кВА.Чтобы найти коэффициент мощности, разделите 100 кВт на 125 кВА, чтобы получить коэффициент мощности 80%. Это означает, что только 80% входящего тока выполняет полезную работу, а 20% теряется из-за нагрева проводов. Поскольку Edisto Electric должна обеспечивать потребности всех клиентов как в кВт, так и в кВА, чем выше коэффициент мощности, тем эффективнее становится наша распределительная система.

Улучшение PF может максимизировать допустимую нагрузку по току, повысить напряжение в оборудовании, снизить потери мощности и снизить счета за электроэнергию. Самый простой способ улучшить коэффициент мощности — добавить в электрическую систему конденсаторы коррекции коэффициента мощности.Конденсаторы коррекции коэффициента мощности действуют как генераторы реактивного тока. Они помогают компенсировать нерабочую мощность, используемую индуктивными нагрузками, тем самым улучшая коэффициент мощности. Взаимодействие между конденсаторами PF и специализированным оборудованием, таким как приводы с регулируемой скоростью, требует хорошо спроектированной системы.

Конденсаторы коррекции

PF могут включаться каждый день при запуске индуктивного оборудования. Включение конденсатора может вызвать очень кратковременное состояние «перенапряжения». Если у заказчика возникают проблемы с приводами с регулируемой скоростью, которые выключаются из-за «перенапряжения» примерно в одно и то же время каждый день, исследуйте последовательность управления переключением.Если клиент жалуется на перегорание предохранителей на некоторых, но не на всех, конденсаторах, проверьте наличие гармонических токов.

СЛЕДУЮЩИЙ

Понятие о коэффициенте мощности и его важности

Коррекция коэффициента мощности с помощью конденсаторов

Описание:
Коэффициент мощности — это соотношение (фазы) тока и напряжения в электрических распределительных сетях переменного тока. В идеальных условиях ток и напряжение «синфазны», а коэффициент мощности равен «100%». При наличии индуктивных нагрузок (двигателей) коэффициент мощности может составлять менее 100% (обычно от 80 до 90%).

Низкий коэффициент мощности, с точки зрения электричества, вызывает протекание более сильного тока в линиях распределения электроэнергии, чтобы передать заданное количество киловатт на электрическую нагрузку.

Эффекты?
Система распределения электроэнергии в здании или между зданиями может быть перегружена избыточным (бесполезным) током.
Мощность генерирующих и распределительных систем, принадлежащих Edisto Electric, измеряется в кВА (килоамперах).
кВА = ВОЛЬТЫ X АМПЕР X 1,73 (трехфазная система) / 1000.

При единичном коэффициенте мощности (100%) потребуется 2 000 кВА мощности генерирующей и распределительной сети для обеспечения 2 000 кВт. Однако если коэффициент мощности упадет до 85%, потребуется 2353 кВА мощности. Таким образом, мы видим, что более низкий коэффициент мощности отрицательно сказывается на генерирующей и распределительной мощности.

Перегрузка с низким коэффициентом мощности для генерирующих, распределительных и сетей с избыточной мощностью в кВА.

Если вы владеете большим зданием, вам следует подумать о корректировке низкого коэффициента мощности по одной или по обеим из следующих причин:
• Чтобы снизить вероятность дополнительных расходов на коэффициент мощности в случае, если Edisto Electric начнет выставление счетов за корректировку коэффициента мощности и
• Для восстановления мощность (кВА) перегруженных фидеров в здании или строительном комплексе.

Есть несколько методов коррекции более низкого коэффициента мощности. Обычно используются: конденсаторы.

Конденсаторные батареи
Самым практичным и экономичным устройством коррекции коэффициента мощности является конденсатор. Это улучшает коэффициент мощности, поскольку влияние емкости прямо противоположно влиянию индуктивности.

Вариант номинальной мощности конденсатора в кВАр показывает, сколько реактивной мощности будет выдавать конденсатор. Поскольку этот вид реактивной мощности нейтрализует реактивную мощность, вызванную индуктивностью, каждый киловар емкости снижает чистую потребляемую реактивную мощность на ту же величину.Конденсатор на 15 кВАр, например, нейтрализует 15 кВА индуктивной реактивной мощности.

Конденсаторы

могут быть установлены в любой точке электрической системы и улучшат коэффициент мощности между точкой приложения и источником питания. Однако коэффициент мощности между нагрузкой и конденсатором останется неизменным. Конденсаторы обычно добавляются в каждую часть неисправного оборудования, перед группами двигателей (перед центрами управления двигателями или распределительными щитами) или в основных службах.

СЛЕДУЮЩИЙ

Что означает коэффициент мощности для ИБП?

Коэффициент мощности (pf) — это разница между фактической потребляемой энергией (Вт) и полной мощностью (вольты, умноженные на амперы) в цепи переменного тока. Он рассчитывается как десятичная дробь или в процентах от 0-1 пФ до 0-100%, то есть 0,9 пФ = 90%.

Чем ближе коэффициент мощности к единице (1 пФ), тем ближе две формы сигнала совпадают по фазе друг с другом и устройство использует мощность более эффективно, поэтому коэффициент мощности связан с эффективностью ИБП.

Конвенция

предусматривает, что индуктивные нагрузки определяются как положительная реактивная мощность, а емкостные нагрузки — как отрицательная реактивная мощность. Но коэффициент мощности никогда не описывается как положительный или отрицательный, он либо отстающий, либо опережающий.

Коэффициент мощности с запаздыванием

Это нагрузки, в которых форма волны тока отстает от напряжения на коэффициент, равный реактивному сопротивлению нагрузки, обычно между 0.5 и 0,95.

На изображении ниже, нагрузка 2300 ВА с запаздыванием 0,766 пФ будет иметь реальное значение мощности 1762 Вт (1,76 кВт).

Коэффициент мощности Unity

Нагрузки с коэффициентом мощности Unity (1 пФ) имеют формы сигналов тока и напряжения, совпадающие по фазе друг с другом. В приведенном ниже примере нагрузка 2300 ВА с 1 пФ имеет значение реальной мощности 2300 Вт (2,3 кВт).

Опережающий коэффициент мощности

Нагрузки с опережающим коэффициентом мощности имеют форму волны тока, которая опережает напряжение с коэффициентом, равным реактивному сопротивлению нагрузки, обычно между 0.8 и 0,95.

Используя те же 2300 ВА, что и в предыдущих примерах, опережающий коэффициент мощности 0,766 дает значение реальной мощности 1762 Вт (1,76 кВт).

Как фактор мощности влияет на конструкцию системы ИБП?

Традиционно системы ИБП были разработаны для поддержки нагрузок с единичным или запаздывающим коэффициентом мощности.

Однако современные источники бесперебойного питания теперь также могут работать с ведущими факторами мощности. Однако это требует тщательного планирования во время установки, поскольку ведущие факторы мощности могут вызвать перегрузку ИБП, которую он может не распознать.

Блейд-серверы

— лучший пример нагрузки с ведущим коэффициентом мощности. Они обладают большей вычислительной мощностью при меньшем пространстве в стойке, чем традиционные файловые серверы, и получили широкое распространение в секторах телекоммуникаций и центров обработки данных благодаря таким преимуществам, как упрощенная прокладка кабелей и снижение энергопотребления.

Есть несколько способов уменьшить влияние ведущих факторов мощности, в том числе увеличить размер ИБП, но наиболее распространенным подходом является использование активных фильтров гармоник с коррекцией коэффициента мощности на выходе.

Это обеспечивает более приемлемую нагрузку на ИБП, но снижает эффективность, занимает больше места и увеличивает капитальные затраты.

Дополнительная литература:

КОРРЕКЦИЯ КОЭФФИЦИЕНТА МОЩНОСТИ

— Прикладное промышленное электричество

Рассмотрим схему для однофазной системы питания переменного тока, в которой источник переменного напряжения 120 В и 60 Гц подает питание на резистивную нагрузку: (рисунок ниже)

Источник переменного тока управляет чисто резистивной нагрузкой.

[латекс] Z = 60 + j0 \ Omega \ textbf {или} 60 \ Omega \ angle \ text {0 °} [/ latex]

[латекс] \ begin {align} I & = \ frac {E} {Z} \\ & = \ frac {120V} {60Ω} \\ & = \ mathbf {2A} \ end {align} [/ latex]

В этом примере ток нагрузки будет 2 ампера, среднеквадратичное значение. Мощность, рассеиваемая на нагрузке, составит 240 Вт. Поскольку эта нагрузка является чисто резистивной (без реактивного сопротивления), ток находится в фазе с напряжением, и расчеты выглядят аналогично расчетам в эквивалентной цепи постоянного тока.Если бы мы построили кривые напряжения, тока и мощности для этой схемы, это выглядело бы так, как показано на рисунке ниже.

Рисунок 7.1 Ток синфазен с напряжением в резистивной цепи.

Обратите внимание, что форма сигнала мощности всегда положительная, а не отрицательная для этой резистивной цепи. Это означает, что мощность всегда рассеивается резистивной нагрузкой и никогда не возвращается к источнику, как это происходит с реактивными нагрузками. Если бы источником был механический генератор, для вращения вала потребовалось бы 240 Вт механической энергии (около 1/3 лошадиных сил).

Также обратите внимание, что форма сигнала для мощности не соответствует частоте напряжения или тока! Скорее, его частота равна удвоенной частоте сигналов напряжения или тока. Эта другая частота запрещает нам выражать мощность в цепи переменного тока с использованием тех же сложных (прямоугольных или полярных) обозначений, которые используются для напряжения, тока и импеданса, потому что эта форма математической символики подразумевает неизменные фазовые отношения. Когда частоты не совпадают, фазовые отношения постоянно меняются.

Как ни странно это может показаться, лучший способ продолжить вычисления мощности переменного тока — это использовать скалярную нотацию и обрабатывать любые соответствующие фазовые отношения с помощью тригонометрии.

Цепь переменного тока с чисто реактивной нагрузкой

Для сравнения рассмотрим простую цепь переменного тока с чисто реактивной нагрузкой на рисунке ниже.

Цепь переменного тока с чисто реактивной (индуктивной) нагрузкой.

[латекс] X_L = 60,319 \ Omega [/ латекс]

[латекс] Z = 0 + j60.319 \ Omega \ text {или} 60,319 Ом \ angle \ text {90 °} [/ латекс]

[латекс] \ begin {align} I & = \ frac {E} {Z} \\ & = \ frac {120V} {60.319 \ Omega} \\ & \ mathbf {= 1.989A} \ end {align} [ / латекс]

Рисунок 7.2 Мощность не рассеивается в чисто реактивной нагрузке. Хотя он попеременно поглощается источником и возвращается обратно.

Обратите внимание, что мощность одинаково чередуется между положительными и отрицательными циклами. (Рисунок выше) Это означает, что мощность поочередно поглощается и возвращается к источнику.Если бы источником был механический генератор, для вращения вала не потребовалось бы (практически) никакой полезной механической энергии, потому что нагрузка не использовала бы никакой энергии. Вал генератора можно было бы легко вращать, а катушка индуктивности не нагревалась бы, как резистор.

Цепь переменного тока с резистивной и чисто реактивной нагрузкой

Теперь давайте рассмотрим цепь переменного тока с нагрузкой, состоящей из индуктивности и сопротивления, как показано на рисунке ниже.

цепь с реактивным сопротивлением и сопротивлением.

[латекс] X_L = 60,319 \ Omega [/ латекс]

[латекс] Z_L = 0 + j60.319 \ Omega [/ latex] или [латекс] 60.319 \ Omega \ угол 90 ° [/ латекс]

[латекс] Z_R = 60 + j0 \ Omega [/ латекс] или [латекс] 60 \ Omega \ угол 0 ° [/ латекс]

[латекс] Z _ {\ text {total}} = 60+ j60.319 \ Omega [/ latex] или [латекс] 85.078 \ Omega \ angle 45.152 ° [/ latex]

[латекс] \ text {I} = \ frac {E} {Z _ {\ text {total}}} = \ frac {120V} {85.078 \ Omega} = \ mathbf {1.410A} [/ латекс]

При частоте 60 Гц индуктивность 160 миллигенри дает нам 60.319 Ом индуктивного сопротивления. Это реактивное сопротивление в сочетании с сопротивлением 60 Ом образует полное сопротивление нагрузки 60 + j60,319 Ом, или 85,078 Ом 45,152 или . Если нас не интересуют фазовые углы (чего мы еще не достигли), мы можем рассчитать ток в цепи, взяв полярную величину источника напряжения (120 вольт) и разделив ее на полярную величину импеданса. (85,078 Ом). При напряжении источника питания 120 вольт RMS ток нагрузки составляет 1,410 ампер. Это цифра, которую покажет амперметр RMS, если он подключен последовательно с резистором и катушкой индуктивности.

Мы уже знаем, что реактивные компоненты рассеивают нулевую мощность, поскольку они в равной степени поглощают мощность и возвращают мощность в остальную часть схемы. Следовательно, любое индуктивное реактивное сопротивление в этой нагрузке также будет рассеивать нулевую мощность. Единственное, что здесь остается для рассеивания мощности, — это резистивная часть импеданса нагрузки. Если мы посмотрим на график формы волны напряжения, тока и полной мощности для этой схемы, мы увидим, как эта комбинация работает на рисунке ниже.

Рисунок 7.3 Комбинированная резистивная / реактивная цепь рассеивает больше мощности, чем возвращается к источнику.Реактивное сопротивление не рассеивает мощность; хотя резистор делает.

Как и в любой реактивной цепи, мощность с течением времени чередуется между положительными и отрицательными мгновенными значениями. В чисто реактивной схеме чередование положительной и отрицательной мощности делится поровну, в результате чего рассеиваемая полезная мощность равна нулю. Однако в схемах со смешанным сопротивлением и реактивным сопротивлением, подобных этой, форма волны мощности по-прежнему будет чередоваться между положительной и отрицательной, но количество положительной мощности будет превышать количество отрицательной мощности.Другими словами, комбинированная индуктивная / резистивная нагрузка потребляет больше энергии, чем возвращается к источнику.

Глядя на график формы волны для мощности, должно быть очевидно, что волна проводит больше времени на положительной стороне центральной линии, чем на отрицательной, что указывает на то, что нагрузка потребляет больше мощности, чем возвращается в цепь. Возврат мощности происходит из-за реактивного сопротивления; Несбалансированность положительной и отрицательной мощности происходит из-за сопротивления, поскольку она рассеивает энергию за пределами цепи (обычно в виде тепла).Если бы источником был механический генератор, количество механической энергии, необходимое для вращения вала, было бы суммой мощности, усредненной между положительным и отрицательным циклами мощности.

Математическое представление мощности в цепи переменного тока является сложной задачей, потому что волна мощности не имеет той же частоты, что и напряжение или ток. Кроме того, фазовый угол для мощности означает нечто совершенно иное, чем фазовый угол для напряжения или тока. В то время как угол для напряжения или тока представляет собой относительный сдвиг по времени между двумя волнами, фазовый угол для мощности представляет собой отношение между рассеиваемой мощностью и возвращаемой мощностью.Из-за того, что мощность переменного тока отличается от напряжения или тока переменного тока, на самом деле легче получить цифры для мощности, вычислив с помощью скаляра значений напряжения, тока, сопротивления и реактивного сопротивления , чем пытаться получить их из вектор или комплексные величины напряжения, тока и импеданса, с которыми мы работали до сих пор.

  • В чисто резистивной цепи вся мощность схемы рассеивается резисторами.Напряжение и ток синфазны.
  • В чисто реактивной цепи мощность цепи не рассеивается нагрузкой (ами). Напротив, мощность поочередно поглощается и возвращается к источнику переменного тока. Напряжение и ток сдвинуты по фазе на 90 °.
  • В цепи, состоящей из смешанного сопротивления и реактивного сопротивления, мощность, рассеиваемая нагрузкой (ами), будет больше, чем возвращаемая, но некоторая мощность определенно будет рассеиваться, а некоторая будет просто поглощаться и возвращаться.Напряжение и ток в такой цепи будут сдвинуты по фазе на величину где-то между 0 ° и 90 °.

Реактивная мощность

Мы знаем, что реактивные нагрузки, такие как катушки индуктивности и конденсаторы, рассеивают нулевую мощность, но тот факт, что они понижают напряжение и потребляют ток, создает обманчивое впечатление, что они на самом деле рассеивают мощность. Эта «фантомная мощность» называется реактивной мощностью , и она измеряется в единицах, называемых вольт-ампер-реактивная мощность (ВАР), а не в ваттах.Математическим обозначением реактивной мощности является (к сожалению) заглавная буква Q.

.

Истинная сила

Фактическая мощность, используемая или рассеиваемая в цепи, называется истинной мощностью и измеряется в ваттах (как всегда, обозначается заглавной буквой P).

Полная мощность

Комбинация реактивной мощности и истинной мощности называется кажущейся мощностью и представляет собой произведение напряжения и тока цепи без учета фазового угла.Полная мощность измеряется в единицах вольт-ампер, (ВА) и обозначается заглавной буквой S.

Расчет реактивной, истинной или полной мощности

Как правило, истинная мощность зависит от рассеивающих элементов схемы, обычно от сопротивления (R). Реактивная мощность зависит от реактивного сопротивления цепи (X). Полная мощность — это функция полного сопротивления цепи (Z). Поскольку для расчета мощности мы имеем дело со скалярными величинами, любые комплексные начальные величины, такие как напряжение, ток и импеданс, должны быть представлены их полярными величинами , а не действительными или мнимыми прямоугольными составляющими.Например, если я вычисляю истинную мощность по току и сопротивлению, я должен использовать полярную величину для тока, а не просто «реальную» или «мнимую» часть тока. Если я рассчитываю полную мощность по напряжению и импедансу, обе эти ранее комплексные величины должны быть уменьшены до их полярных величин для скалярной арифметики.

Уравнения, использующие скалярные величины

Существует несколько уравнений мощности, связывающих три типа мощности с сопротивлением, реактивным сопротивлением и импедансом (все с использованием скалярных величин):

Истинная мощность

[латекс] \ begin {align} \ tag {7.2} {Z} \ end {align} [/ latex]

Измеряется в единицах Вольт-Ампер (ВА)

Обратите внимание, что существует два уравнения для расчета истинной и реактивной мощности. Для расчета полной мощности доступны три уравнения, P = IE используется только для , для этой цели. Изучите следующие схемы и посмотрите, как эти три типа мощности взаимосвязаны: чисто резистивная нагрузка, чисто реактивная нагрузка и резистивная / реактивная нагрузка.2Z = 169,256ВА [/ латекс]

Истинная мощность, реактивная мощность и полная мощность для резистивной / реактивной нагрузки.

Треугольник власти

Эти три типа мощности — истинная, реактивная и полная — связаны друг с другом в тригонометрической форме. Мы называем это треугольником мощности : (рисунок ниже).

Рисунок 7.4 Треугольник мощности, связывающий кажущуюся мощность с реальной и реактивной мощностью.

Используя законы тригонометрии, мы можем найти длину любой стороны (количество любого типа мощности), учитывая длины двух других сторон или длину одной стороны и угол.

  • Мощность, рассеиваемая нагрузкой, обозначается как истинная мощность , . Истинная мощность обозначается буквой P и измеряется в ваттах (Вт).
  • Мощность, просто потребляемая и возвращаемая нагрузкой из-за ее реактивных свойств, называется реактивной мощностью . Реактивная мощность обозначается буквой Q и измеряется в вольт-амперных реактивных единицах (ВАР).
  • Полная мощность в цепи переменного тока, как рассеиваемая, так и поглощенная / возвращаемая, обозначается как полная мощность .Полная мощность обозначается буквой S и измеряется в вольт-амперах (ВА).
  • Эти три типа власти тригонометрически связаны друг с другом. В прямоугольном треугольнике P = смежная длина, Q = противоположная длина и S = ​​длина гипотенузы. Противоположный угол равен фазовому углу импеданса цепи (Z).

Как упоминалось ранее, угол этого «треугольника мощности» графически показывает соотношение между количеством рассеиваемой (или потребляемой ) мощности и количеством потребляемой / возвращаемой мощности.Кроме того, это тот же угол, что и импеданс цепи в полярной форме. Выраженное в виде дроби, это соотношение между истинной мощностью и полной мощностью называется коэффициентом мощности для этой схемы. Поскольку истинная мощность и полная мощность образуют смежные стороны прямоугольного треугольника и стороны гипотенузы, соответственно, коэффициент мощности также равен косинусу этого фазового угла. Используя значения из схемы последнего примера:

Коэффициент мощности

[латекс] \ tag {7.4} PF = \ frac {P} {S} = \ frac {IECosθ} {IE} = Cosθ [/ латекс]

[латекс] Коэффициент мощности = \ frac {119,365 Вт} {169,256 ВА} [/ латекс]

[латекс] Коэффициент мощности = 0,705 [/ латекс]

[латекс] \ mathbf {Cos 45,152 ° = 0,705} [/ латекс]

Следует отметить, что коэффициент мощности, как и все измерения коэффициента мощности, является безразмерной величиной .

Значения коэффициента мощности

Для чисто резистивной схемы коэффициент мощности равен 1 (идеальный), потому что реактивная мощность равна нулю.Здесь треугольник мощности будет выглядеть как горизонтальная линия, потому что противоположная сторона (реактивная мощность) будет иметь нулевую длину.

Для чисто индуктивной цепи коэффициент мощности равен нулю, потому что истинная мощность равна нулю. Здесь треугольник мощности будет выглядеть как вертикальная линия, потому что прилегающая сторона (истинная мощность) будет иметь нулевую длину.

То же самое можно сказать и о чисто емкостной цепи. Если в цепи нет диссипативных (резистивных) компонентов, то истинная мощность должна быть равна нулю, что делает любую мощность в цепи чисто реактивной.Треугольник мощности для чисто емкостной цепи снова будет вертикальной линией (направленной вниз, а не вверх, как это было для чисто индуктивной цепи).

Важность коэффициента мощности

Коэффициент мощности

может быть важным аспектом, который следует учитывать в цепи переменного тока, поскольку любой коэффициент мощности меньше 1 означает, что проводка схемы должна пропускать больший ток, чем это было бы необходимо при нулевом реактивном сопротивлении в цепи для обеспечения того же количества ( true) мощность резистивной нагрузки.Если бы наша последняя примерная схема была чисто резистивной, мы могли бы подавать на нагрузку полную мощность 169,256 Вт при том же токе 1,410 А, а не просто 119,365 Вт, которые она в настоящее время рассеивает с той же величиной тока. Низкий коэффициент мощности приводит к неэффективной системе подачи энергии.

Низкий коэффициент мощности

Низкий коэффициент мощности можно исправить, как это ни парадоксально, добавив в схему еще одну нагрузку, потребляющую равную и противоположную величину реактивной мощности, чтобы нейтрализовать влияние индуктивного реактивного сопротивления нагрузки.Индуктивное реактивное сопротивление можно нейтрализовать только емкостным реактивным сопротивлением, поэтому мы должны добавить конденсатор параллельно нашей примерной схеме в качестве дополнительной нагрузки. Влияние этих двух противоположных реактивных сопротивлений, включенных параллельно, состоит в том, чтобы довести полное сопротивление цепи до ее полного сопротивления (чтобы фазовый угол импеданса был равен нулю или, по крайней мере, ближе к нему).

Поскольку мы знаем, что (нескорректированная) реактивная мощность составляет 119,998 ВАР (индуктивная), нам необходимо рассчитать правильный размер конденсатора, чтобы получить такое же количество (емкостной) реактивной мощности.2} {119.998VAR} [/ латекс]

[латекс] X = 120,002 Ом [/ латекс]

[латекс] X_C = \ frac {1} {2πfC} [/ латекс]

Решение для C:

[латекс] C = \ frac {1} {2πfX_C} [/ латекс]

[латекс] C = \ frac {1} {2π (60 Гц) (120,002 Ом} [/ латекс]

[латекс] C = 22,105 мкФ [/ латекс]

Давайте возьмем округленное значение емкости конденсатора 22 мкФ и посмотрим, что произойдет с нашей схемой: (рисунок ниже)

[латекс] Z _ {\ text {total}} = Z_C // (Z_L — Z_R) [/ латекс]

[латекс] Z _ {\ text {total}} = (120.2Z = 119,366ВА [/ латекс]

Коэффициент мощности схемы в целом был существенно улучшен. Основной ток был уменьшен с 1,41 ампера до 994,7 миллиампера, в то время как мощность, рассеиваемая на нагрузочном резисторе, осталась неизменной и составила 119,365 Вт. Коэффициент мощности намного ближе к 1:

.

[латекс] PF = \ frac {P} {S} [/ латекс]

[латекс] PF = \ frac {119.365W} {119.366VA} [/ латекс]

[латекс] PF = 0,9999887 [/ латекс]

[латекс] \ text {Импендансный (полярный) угол} = 0.272 ° [/ латекс]

Поскольку угол импеданса по-прежнему является положительным числом, мы знаем, что схема в целом по-прежнему является более индуктивной, чем емкостной. Если бы наши усилия по коррекции коэффициента мощности были точно намечены, мы бы достигли угла импеданса, равного точно нулю, или чисто резистивного. Если бы мы добавили слишком большой конденсатор параллельно, мы бы получили отрицательный угол импеданса, что указывало на то, что цепь была более емкостной, чем индуктивной.

Следует отметить, что слишком большая емкость в цепи переменного тока приведет к низкому коэффициенту мощности, а также к слишком большой индуктивности.Вы должны быть осторожны, чтобы не чрезмерно скорректировать при добавлении емкости в цепь переменного тока. Вы также должны быть очень осторожны, , чтобы использовать подходящие конденсаторы для работы (рассчитанные на соответствующие напряжения в энергосистеме и случайные скачки напряжения от ударов молнии, для непрерывной работы переменного тока и способные выдерживать ожидаемые уровни тока).

Если схема является преимущественно индуктивной, мы говорим, что ее коэффициент мощности равен , отстает от (потому что волна тока для схемы отстает от волны приложенного напряжения).И наоборот, если схема преимущественно емкостная, мы говорим, что ее коэффициент мощности составляет перед . Таким образом, наша примерная схема была запущена с коэффициентом мощности 0,705 с запаздыванием и была скорректирована до коэффициента мощности с запаздыванием 0,999.

Низкий коэффициент мощности в цепи переменного тока может быть «скорректирован» или восстановлен до значения, близкого к 1, путем добавления параллельного реактивного сопротивления, противоположного влиянию реактивного сопротивления нагрузки. Если реактивное сопротивление нагрузки является индуктивным по своей природе (что почти всегда будет), параллельная емкость — это то, что необходимо для корректировки низкого коэффициента мощности.

Когда возникает необходимость исправить низкий коэффициент мощности в системе питания переменного тока, у вас, вероятно, не будет роскоши знать точную индуктивность нагрузки в генри, чтобы использовать ее для своих расчетов. Возможно, вам повезло иметь прибор, называемый измерителем коэффициента мощности, который сообщит вам, каков коэффициент мощности (число от 0 до 1) и полную мощность (которую можно вычислить, сняв показания вольтметра в вольтах и ​​умножив их на показание амперметра в амперах). В менее благоприятных обстоятельствах вам, возможно, придется использовать осциллограф для сравнения форм сигналов напряжения и тока, измерения фазового сдвига в градусах и вычисления коэффициента мощности по косинусу этого фазового сдвига.Скорее всего, у вас будет доступ к ваттметру для измерения истинной мощности, показания которого вы можете сравнить с расчетом полной мощности (умножением общего напряжения на измерения общего тока). По значениям истинной и полной мощности вы можете определить реактивную мощность и коэффициент мощности.

Давайте рассмотрим пример задачи, чтобы увидеть, как это работает: (Рисунок ниже)

Как рассчитать полную мощность в кВА

Во-первых, нам нужно рассчитать полную мощность в кВА.Мы можем сделать это, умножив напряжение нагрузки на ток нагрузки:

[латекс] S = IE [/ латекс]

[латекс] S = (9,615A) (240 В) [/ латекс]

[латекс] S = 2,308 кВА [/ латекс]

Как мы видим, 2,308 кВА — это намного больше, чем 1,5 кВт, что говорит нам о том, что коэффициент мощности в этой цепи довольно низкий (существенно меньше 1). Теперь рассчитаем коэффициент мощности этой нагрузки, разделив истинную мощность на полную:

[латекс] PF = \ frac {P} {S} [/ латекс]

[латекс] PF = \ frac {1.5кВт} {2,308кВА} [/ латекс]

[латекс] PF = 0,65 [/ латекс]

Используя это значение для коэффициента мощности, мы можем нарисовать треугольник мощности и по нему определить реактивную мощность этой нагрузки: (Рисунок ниже) Реактивная мощность может быть рассчитана на основе истинной мощности и полной мощности. 2} {1.754kVAR} [/ латекс]

[латекс] X = 32,845 Ом [/ латекс]

[латекс] X_C = \ frac {1} {2πfC} [/ латекс]

Решение для C:

[латекс] C = \ frac {1} {2πfX_C} [/ латекс]

[латекс] C = \ frac {1} {2π (60 Гц) (32,845 Ом} [/ латекс]

[латекс] C = 80,761 мкФ [/ латекс]

Округляя этот ответ до 80 мкФ, мы можем поместить конденсатор этого размера в схему и вычислить результаты: (рисунок ниже)

Конденсатор 80 мкФ будет иметь емкостное реактивное сопротивление 33.157 Ом, что дает ток 7,238 ампер и соответствующую реактивную мощность 1,737 кВАр (для конденсатора только ). Поскольку ток конденсатора на 180 o не совпадает по фазе с индуктивным вкладом нагрузки в потребляемый ток, реактивная мощность конденсатора будет напрямую вычитаться из реактивной мощности нагрузки, в результате получится:

[латекс] X_L — X_C = X [/ латекс]

[латекс] 1,754 кВАр — 1,737 кВАр = 16,519 вар [/ латекс]

Эта коррекция, конечно, не изменит количество истинной мощности, потребляемой нагрузкой, но приведет к существенному снижению кажущейся мощности и общего тока, потребляемого от источника 240 В: (рисунок ниже)

Новая полная мощность может быть найдена из истинных и новых значений реактивной мощности, используя стандартную форму теоремы Пифагора:

[латекс] S = √Q ^ 2 + P ^ 2 [/ латекс]

[латекс] S = 1.50009кВА [/ латекс]

3 причины обратить внимание на низкий коэффициент мощности

Когда кто-то впервые упомянул «фактор силы» на собрании, которое я посещал, я сделал то, что сделал бы любой уважающий себя человек, слишком смущающийся, чтобы признать, что он не знал, что это такое: я погуглил. Если вы когда-либо делали это, скорее всего, если вы еще не были экспертом в области энергетики, вы были разочарованы результатами.

Нравится doozy:

Составляющими тока двигателя являются ток нагрузки и ток намагничивания (сложение этих мгновенных значений дает общий ток двигателя).Кроме того, поскольку ток нагрузки находится в фазе с напряжением, а ток намагничивания отстает от напряжения на 90 градусов, их сумма будет синусоидальной волной с запаздыванием где-то между 0 и 90 градусами, что является смещением тока двигателя от напряжения. Есть отрицательные эффекты, связанные с увеличенным смещением, и это часть объяснения коэффициента мощности. В любом случае коэффициент мощности представляет собой смещение во времени или задержку между напряжением и подаваемым током и определяется как косинус этого смещения.

В конце концов, один из моих коллег объяснил это понятным мне языком: пиво.

Когда вы идете в бар и заказываете пинту пива, бармен опрокидывает стакан и наливает пиво до этой волшебной линии. У хорошего бармена напор будет минимальным, а у плохого — и вы получите дюйм пены. Вы платите одинаковую сумму за любое пиво. Больше пива = хорошо. Больше пены = плохо.

Итак, объединив определение супер-компьютерщика с чрезмерно упрощенной аналогией с пивом, коэффициент мощности — это способ измерить разницу между «кажущейся мощностью», мощностью, которая теряется в процессе индукции (пиво И пена), и «реальная сила», которую можно использовать для работы (пиво). Что-то вроде лампы накаливания имеет идеальный коэффициент мощности, преобразуя практически каждый бит электричества, который в нее течет, без магнитных потерь (потеря преобразования в тепло — это совсем другое дело!). Реактивные нагрузки, как и двигатели, немного сложнее. Они используют катушку или обмотки, подключенные к источнику питания переменного тока, и катушка должна быть намагничена, прежде чем она сможет начать полезную работу по вращению двигателя за счет индукции, что создает неэффективное использование электроэнергии.

Почему все это имеет значение?

Неидеальный коэффициент мощности может быть проблематичным по нескольким причинам, которые инженеры, особенно на промышленных или производственных объектах, где много двигателей работает с тяжелым оборудованием, должны учитывать:

1. Низкий коэффициент мощности может дорого стоить. Поскольку реактивная мощность по-прежнему требует мощности системы, даже если она не выполняет какой-либо полезной работы, некоторые коммунальные предприятия взимают за нее больше (особенно, если коммунальное предприятие обслуживает регион с большой промышленной нагрузкой).Как мы всегда напоминаем, понимание того, как вам выставляется счет за энергию, — это самый первый шаг к эффективному управлению ею. Презентация Мишеля Стака на Fluke India хорошо продемонстрировала финансовые результаты:

Предположим, коммунальное предприятие добавляет 1% платы за потребление на каждые 0,01 ниже коэффициента мощности 0,97. Предположим, что ваш средний коэффициент мощности составляет 0,86 каждый месяц, а ваша плата за потребление составляет 7000 долларов. (0,97 — 0,86) * 100% = 11%.

(11% x 7000 долларов США) x 12 месяцев = 9240 долларов США в виде затрат, которых можно избежать.

2. Низкий коэффициент мощности является признаком неэффективности, что может привести к дополнительным расходам, связанным с обслуживанием оборудования. Когда машины выходят из строя, возникают дорогостоящие простои, а продукты, которые вы производите, или системы, в которых вы работаете, также подвергаются риску.

3. В крайних случаях, если вы заметите действительно низкий коэффициент мощности, , у вас может быть так называемый трехфазный дисбаланс мощности , который может быть вызван неправильным подключением. Если у вас действительно есть дисбаланс, ваше очень дорогое оборудование работает против самого себя, вызывая большой износ двигателей, сокращая срок их службы и выделяя много тепла, что может быть угрозой безопасности.

Хорошие новости: это поправимо.

Во-первых, вы должны понять, какое оборудование вызывает низкий коэффициент мощности. Если ваш счетчик коммунальных услуг основан на KVAR, вы можете использовать свой счет, чтобы определить, что у вас возникла проблема, но вы не всегда можете определить, какая нагрузка вызывает проблему.

Измерение в реальном времени может помочь вам определить источник проблемы. После того, как вы определили источник проблемы, на отдельные части оборудования можно добавить конденсаторы или кондиционеры, которые, по сути, действуют как усилитель, компенсируя неидеальный коэффициент мощности.Или вы можете обнаружить, что двигатель или даже весь центр управления двигателем был неправильно подключен.

Добро пожаловать на портал myTNB — коэффициент мощности

Коэффициент мощности

Мы предоставляем информацию о коэффициенте мощности, его влиянии и методах управления состоянием с низким коэффициентом мощности.

Условия низкого коэффициента мощности имеют два негативных воздействия — техническое и коммерческое.

Что такое коэффициент мощности

Коэффициент мощности — это соотношение между реальной мощностью (кВт) и полной мощностью (кВА), потребляемой электрической нагрузкой.

Это мера того, насколько эффективно электрический ток преобразуется в полезную работу, и, в частности, является хорошим индикатором влияния тока нагрузки на эффективность системы электроснабжения.

Соотношение между активной мощностью (Ватт), реактивной мощностью (VAr), полной мощностью (VA) и коэффициентом мощности показано на рисунке 1. Коэффициент мощности также определяется как cos Ф. Типичный измеритель коэффициента мощности показан на рисунке 2.

Диапазон значений коэффициента мощности — 1.От 0 до 1.0. 1.0 означает активную мощность без какой-либо реактивной мощности. 0,0 означает, что реальная потребляемая мощность отсутствует, есть только реактивная мощность. Коэффициент мощности может быть индуктивным (IND) или емкостным (CAP).

Воздействие низкого коэффициента мощности

Чем ниже коэффициент мощности на линии, тем выше ток, протекающий по ней. Ниже приведены несколько технических недостатков что:

  • Более высокий ток приводит к большему падению напряжения на линии, особенно если кабель небольшой или очень длинный.Это приводит к потере энергии из-за рассеивания тепла (I2R).
  • Более высокий ток может подтолкнуть оборудование к его номинальной мощности. Кабели рассчитаны на основе их допустимой нагрузки по току. Трансформаторы и генераторы рассчитаны на ВА (вольт-амперы), что означает допустимую нагрузку по току при определенном напряжении.

Коммерческие, коммерческие и промышленные потребители с низким средним коэффициентом мощности будут налагать штрафы на коэффициент мощности.

Для потребителей, получающих напряжение 33 кВ или ниже, значение коэффициента мощности должно поддерживаться ≥ 0.85. Коэффициент мощности

Для потребителей, использующих напряжение 132 кВ или выше, значение коэффициента мощности должно поддерживаться ≥ 0,90. Фактор силы

Шаги по улучшению низкого коэффициента мощности

Как правило, с помощью этих устройств можно решить проблемы с низким коэффициентом мощности.

  1. Конденсаторы являются крупнейшим источником компенсирующей реактивной мощности и обычно используются в энергосистеме.
  2. Синхронные конденсаторы — это разновидность вращающейся машины, подобной генератору, но они вырабатывают не реальную мощность, а только реактивную мощность.Существуют также другие устройства, в которых используется электроника большой мощности для быстрого управления реактивной мощностью от больших батарей конденсаторов.
  3. Обычные генераторы, помимо подачи реальной мощности, являются важным источником реактивной мощности. Рис. 3. Сравнение потока реактивной мощности до и после компенсации конденсатором.

Другие шаги для улучшения низкого коэффициента мощности:

  • Избегайте эксплуатации электроприборов на базе электродвигателей без нагрузки или с нагрузкой ниже рекомендованной производителями.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *