Конденсатор в цепи переменного тока кратко: Конденсатор в цепи переменного тока

Содержание

Конденсатор в цепи переменного тока

Господа, в сегодняшней статье я хотел бы рассмотреть такой интересный вопрос, как конденсатор в цепи переменного тока. Эта тема весьма важна в электричестве, поскольку на практике конденсаторы повсеместно присутствуют в цепях с переменным током и, в связи с этим, весьма полезно иметь четкое представление, по каким законам изменяются в этом случае сигналы. Эти законы мы сегодня и рассмотрим, а в конце решим одну практическую задачу определения тока через конденсатор.

Господа, сейчас для нас наиболее интересным моментом является то, как связаны между собой напряжение на конденсаторе и ток через конденсатор для случая, когда конденсатор находится в цепи переменного сигнала.

Почему сразу переменного? Да просто потому, что конденсатор в цепи постоянного тока ничем не примечателен. Через него течет ток только в первый момент, пока конденсатор разряжен. Потом конденсатор заряжается и все, тока нет (да-да, слышу, уже начали кричать, что заряд конденсатора теоретически длится бесконечно долгое время, да еще у него может быть сопротивление утечки, но пока что мы этим пренебрегаем). Заряженный конденсатор для

постоянного тока – это как разрыв цепи. Когда же у нас случай переменного тока – тут все намного интереснее. Оказывается, в этом случае через конденсатор может протекать ток и конденсатор в этом случае как бы эквивалентен резистору с некоторым вполне определенным сопротивлением (если пока забить забыть про всякие там сдвиги фазы, об этом ниже). Нам надо каким-нибудь образом получить связь между током и напряжением на конденсаторе.

Пока мы будем исходить из того, что в цепи переменного тока находится только конденсатор и все. Без каких-либо других компонентов типа резисторов или индуктивностей. Напомню, что в случае, когда у нас в цепи находится исключительно одни только резисторы, подобная задача решается очень просто: ток и напряжения оказываются связанными между собой через закон Ома. Мы про это уже не один раз говорили. Там все очень просто: делим напряжение на сопротивление и получаем ток. А как же быть в случае конденсатора? Ведь конденсатор-то это не резистор. Там совсем иная физика протекания процессов, поэтому вот так вот с наскока не получится просто связать между собой ток и напряжение. Тем не менее, сделать это надо, поэтому давайте попробуем порассуждать.

Сперва давайте вернемся назад. Далеко назад. Даже очень далеко. К самой-самой первой моей статье на этом сайте. Старожилы должно быть помнят, что это была статья про силу тока. Вот в этой самой статье было одно интересное выражение, которое связывало между собой силу тока и заряд, протекающий через сечение проводника. Вот это самое выражение

Кто-нибудь может возразить, что в той статье про силу тока запись была через Δq и Δt – некоторые весьма малые величины заряда и времени, за которое этот заряд проходит через сечение проводника. Однако здесь мы будем применять запись через

dq и dt – через дифференциалы. Такое представление нам потребуется в дальнейшем. Если не лезть глубоко в дебри матана, то по сути dq и dt здесь особо ничем не отличаются от Δq и Δt. Безусловно, глубоко сведущие в высшей математике люди могут поспорить с этим утверждением, но да сейчас я не хочу концентрировать внимание на данных вещах.

Итак, выражение для силы тока мы вспомнили. Давайте теперь вспомним, как связаны между собой емкость конденсатора С, заряд q, который он в себе накопил, и напряжение U на конденсаторе, которое при этом образовалось. Ну, мы же помним, что если конденсатор накопил в себе какой-то заряд, то на его обкладках неизбежно возникнет напряжение. Про это все мы тоже говорили раньше, вот в этой вот статье. Нам будет нужна вот эта формула, которая как раз и связывает заряд с напряжением

Давайте-ка выразим из этой формулы заряд конденсатора:

А теперь есть очень большой соблазн подставить это выражение для заряда конденсатора в предыдущую формулу для силы тока. Приглядитесь-ка повнимательнее – у нас ведь тогда окажутся связанными между собой сила тока, емкость конденсатора и напряжение на конденсаторе! Сделаем эту подстановку без промедлений:

Емкость конденсатора у нас является величиной постоянной. Она определяется исключительно самим конденсатором, его внутренним устройством, типом диэлектрика и всем таким прочим. Про все это подробно мы говорили в одной из прошлых статей. Следовательно, емкость С конденсатора, поскольку это константа, можно смело вынести за знак дифференциала (такие вот правила работы с этими самыми дифференциалами). А вот с напряжением

U нельзя так поступить! Напряжение на конденсаторе будет изменяться со временем. Почему это происходит? Ответ элементарный: по мере протекания тока на обкладках конденсатора, очевидно, заряд будет изменяться. А изменение заряда непременно приведет к изменению напряжения на конденсаторе. Поэтому напряжение можно рассматривать как некоторую функцию времени и его нельзя выносить из-под дифференциала. Итак, проведя оговоренные выше преобразования, получаем вот такую вот запись:

Господа, спешу вас поздравить – только что мы получили полезнейшее выражение, которое связывает между собой напряжение, приложенное к конденсатору, и ток, который течет через него. Таким образом, если мы знаем закон изменения напряжения, мы легко сможем найти закон изменения тока через конденсатор путем простого нахождения производной.

А как быть в обратном случае? Допустим, нам известен закон изменения тока через конденсатор и мы хотим найти закон изменения напряжения на нем. Читатели, сведущие в математике, наверняка уже догадались, что для решения этой задачи достаточно просто проинтегрировать написанное выше выражение. То есть, результат будет выглядеть как-то так:

По сути оба этих выражений про одно и тоже. Просто первое применяется в случае, когда нам известен закон изменения напряжения на конденсаторе и мы хотим найти закон изменения тока через него, а второе – когда нам известно, каким образом меняется ток через конденсатор и мы хотим найти закон изменения напряжения. Для лучшего запоминания всего этого дела, господа, я приготовил для вас поясняющую картинку. Она изображена на рисунке 1.

Рисунок 1 – Поясняющая картинка

На ней, по сути, в сжатой форме изображены выводы, которые хорошо бы запомнить.

Господа, обратите внимание – полученные выражения справедливы для любого закона изменения тока и напряжения. Здесь не обязательно должен быть синус, косинус, меандр или что-то другое. Если у вас есть какой-то совершенно произвольный, пусть даже совершенно дикий, не описанный ни в какой литературе, закон изменения напряжения U(t), поданного на конденсатор, вы, путем его дифференцирования можете определить закон изменения тока через конденсатор. И аналогично если вы знаете закон изменения тока через конденсатор I(t) то, найдя интеграл, сможете найти, каким же образом будет меняться напряжение.

Итак, мы выяснили как связать между собой ток и напряжение для абсолютно любых, даже самых безумных вариантов их изменения. Но не менее интересны и некоторые частные случаи. Например, случай успевшего уже нам всем полюбиться синусоидального тока. Давайте теперь разбираться с ним.

Пусть напряжение на конденсаторе емкостью C изменяется по закону синуса вот таким вот образом

Какая физическая величина стоит за каждой буковкой в этом выражении мы подробно разбирали чуть раньше. Как же в таком случае будет меняться ток? Используя уже полученные знания, давайте просто тупо подставим это выражение в нашу общую формулу и найдем производную

Или можно записать вот так

Господа, хочу вам напомнить, что синус ведь только тем и отличается от косинуса, что один сдвинут относительно другого по фазе на 90 градусов. Ну, или, если выражаться на языке математики, то . Не понятно, откуда взялось это выражение? Погуглите формулы приведения . Штука полезная, знать не помешает. А еще лучше, если вы хорошо знакомы с

тригонометрическим кругом, на нем все это видно очень наглядно.

Господа, отмечу сразу один момент. В своих статьях я не буду рассказывать про правила нахождения производных и взятия интегралов. Надеюсь, хотя бы общее понимание этих моментов у вас есть. Однако даже если вы не знаете, как это делать, я буду стараться излагать материал таким образом, чтобы суть вещей была понятна и без этих промежуточных выкладок. Итак, сейчас мы получили немаловажный вывод – если напряжение на конденсаторе изменяется по закону синуса, то ток через него будет изменяться по закону косинуса. То есть ток и напряжение на конденсаторе сдвинуты друг относительно друга по фазе на 90 градусов. Кроме того, мы можем относительно легко найти и амплитудное значение тока (это множители, которые стоят перед синусом). Ну то есть тот пик, тот максимум, которого ток достигает. Как видим, оно зависит от емкости

C конденсатора, амплитуды приложенного к нему напряжения Um и частоты ω. То есть чем больше приложенное напряжение, чем больше емкость конденсатора и чем больше частота изменения напряжения, тем большей амплитуды достигает ток через конденсатор. Давайте построим график, изобразив на одном поле ток через конденсатор и напряжение на конденсаторе. Пока без конкретных цифр, просто покажем качественный характер. Этот график представлен на рисунке 2 (картинка кликабельна).

Рисунок 2 – Ток через конденсатор и напряжение на конденсаторе

На рисунке 2 синий график – это синусоидальный ток через конденсатор, а красный – синусоидальное напряжение на конденсаторе. По этому рисунку как раз очень хорошо видно, что ток опережает напряжение (пики синусоиды тока находятся левее соответствующих пиков синусоиды напряжения, то есть наступают

раньше).

Давайте теперь проделаем работу наоборот. Пусть нам известен закон изменения тока I(t) через конденсатор емкостью C. И закон этот пусть тоже будет синусоидальным

Давайте определим, как в таком случае будет меняться напряжение на конденсаторе. Воспользуемся нашей общей формулой с интегральчиком:

По абсолютнейшей аналогии с уже написанными выкладками, напряжение можно представить вот таким вот образом

Здесь мы снова воспользовались интересными сведениями из тригонометрии, что . И снова формулы приведения придут вам на помощь, если не понятно, почему получилось именно так.

Какой же вывод мы можем сделать из данных расчетов? А вывод все тот же самый, какой уже был сделан: ток через конденсатор и напряжение на конденсаторе сдвинуты по фазе друг относительно друга на 90 градусов. Более того, они не просто так сдвинуты. Ток

опережает напряжение. Почему это так? Какая за этим стоит физика процесса? Давайте разберемся.

Представим, что незаряженный конденсатор мы подсоединили к источнику напряжения. В первый момент никаких зарядов в конденсаторе вообще нет: он же разряжен. А раз нет зарядов, то нет и напряжения. Зато ток есть, он возникает сразу при подсоединении конденсатора к источнику. Замечаете, господа? Напряжения еще нет (оно не успело нарасти), а ток уже есть. И кроме того, в этот самый момент подключения ток в цепи максимален (разряженный конденсатор ведь по сути эквивалентен короткому замыканию цепи). Вот вам и отставание напряжения от тока. По мере протекания тока, на обкладках конденсатора начинает накапливаться заряд, то есть напряжение начинает расти а ток постепенно уменьшаться. И через некоторое время накопится столько заряда на обкладках, что напряжение на конденсаторе сравняется с напряжением источника и ток в цепи совсем прекратится.

Теперь давайте этот самый заряженный конденсатор отцепим от источника и закоротим накоротко. Что получим? А практически то же самое. В самый первый момент ток будет максимален, а напряжение на конденсаторе останется таким же, какое оно и было без изменений. То есть снова ток впереди, а напряжение изменяется вслед за ним. По мере протекания тока напряжение начнет постепенно уменьшаться и когда ток совсем прекратится, оно тоже станет равным нулю.

Для лучшего понимания физики протекающих процессов можно в который раз уже использовать водопроводную аналогию. Представим себе, что заряженный конденсатор – это некоторый бачок, полный воды. У этого бачка есть внизу краник, через который можно спустить воду. Давайте этот краник откроем. Как только мы его откроем, вода потечет сразу же. А давление в бачке будет падать постепенно, по мере того, как вода будет вытекать. То есть, грубо говоря, ручеек воды из краника опережает изменение давления, подобно тому, как ток в конденсаторе опережает изменение напряжения на нем. 

Подобные рассуждения можно провести и для синусоидального сигнала, когда ток и напряжения меняются по закону синуса, да и вообще для любого. Суть, надеюсь, понятна.

Давайте проведем небольшой практический расчет переменного тока через конденсатор и построим графики.

Пусть у нас имеется источник синусоидального напряжения, действующее значение равно 220 В, а частота 50 Гц. Ну, то есть все ровно так же, как у нас в розетках. К этому напряжению подключают конденсатор емкостью 1 мкФ. Например, пленочный конденсатор К73-17, рассчитанный на максимальное напряжение 400 В (а на меньшее напряжение конденсаторы ни в коем случае нельзя подключать в сети 220 В), выпускается с емкостью 1 мкФ. Чтобы вы имели представление, с чем мы имеем дело, на рисунке 3 я разместил фотографию этого зверька (спасибо Diamond за фото )

Рисунок 3 – Ищем ток через этот конденсатор

Требуется определить, какая амплитуда тока будет протекать через этот конденсатор и построить графики тока и напряжения.

Сперва нам надо записать закон изменения напряжения в розетке. Если вы помните, амплитудное значение напряжения в этом случае равно около 311 В. Почему это так, откуда получилось, и как записать закон изменения напряжения в розетке, можно прочитать вот в этой статье. Мы же сразу приведем результат. Итак, напряжение в розетке будет изменяться по закону

Теперь мы можем воспользоваться полученной ранее формулой, которая свяжет напряжение в розетке с током через конденсатор. Выглядеть результат будет так

Мы просто подставили в общую формулу емкость конденсатора, заданную в условии, амплитудное значение напряжения и круговую частоту напряжения сети. В результате после перемножения всех множителей имеем вот такой вот закон изменения тока

Вот так вот, господа. Получается, что амплитудное значение тока через конденсатор чуть меньше 100 мА. Много это или мало? Вопрос нельзя назвать корректным. По меркам промышленной техники, где фигурируют сотни ампер тока, очень мало. Да и для бытовых приборов, где десятки ампер не редкость – тоже. Однако для человека даже такой ток представляет большую опасность! Отсюда следует вывод, что хвататься за такой конденсатор, подключенный к сети 220 В не следует . Однако на этом принципе возможно изготовление так называемых источников питания с гасящим конденсатором. Ну да это тема для отдельной статьи и здесь мы не будем ее затрагивать.

Все это хорошо, но мы чуть не забыли про графики, которые должны построить. Надо срочно исправляться! Итак, они представлены на рисунке 4 и рисунке 5. На рисунке 4 вы можете наблюдать график напряжения в розетке, а на рисунке 5 – закон изменения тока через конденсатор, включенный в такую розетку.

Рисунок 4 – График напряжения в розетке

Рисунок 5 – График тока через конденсатор

Как мы можем видеть из этих рисунков, ток и напряжение сдвинуты на 90 градусов, как и должно быть. И, возможно, у читателя возникла мысль – если через конденсатор течет ток и на нем падает какое-то напряжение, вероятно, на нем должна выделяться и некоторая мощность. Однако спешу предупредить вас – для конденсатора дело обстоит совершенно не так. Если рассматривать идеальный конденсатор, то мощность на нем не будет вообще выделяться, даже при протекании тока и падении на нем напряжения. Почему? Как же так? Об этом – в будущих статьях. А на сегодня все. Спасибо что читали, удачи, и до новых встреч!

Вступайте в нашу группу Вконтакте

Вопросы и предложения админу: This email address is being protected from spambots. You need JavaScript enabled to view it.


Конденсатор в цепи переменного тока

Конденсатор в цепи переменного тока

Подробности
Просмотров: 361

«Физика — 11 класс»

Постоянный ток не может идти по цепи, содержащей конденсатор, так как обкладки конденсатора разделены диэлектриком.
Переменный же ток может идти по цепи, содержащей конденсатор.

Есть источники постоянного и переменного напряжений, в которых постоянное напряжение на зажимах источника равно действующему значению переменного напряжения.
Цепь состоит из конденсатора и лампы накаливания, соединенных последовательно.
При включении постоянного напряжения (переключатель влево) лампа не светится.
При включении переменного напряжения (переключатель вправо) лампа загорается, если емкость конденсатора достаточно велика.

Под действием переменного напряжения происходит периодическая зарядка и разрядка конденсатора.
Ток, идущий в цепи при перезарядке конденсатора, нагревает нить лампы.


Если сопротивлением проводов и обкладок конденсатора можно пренебречь,

то напряжение на конденсаторе равно напряжению на концах цепи.

Следовательно,

Заряд конденсатора меняется по гармоническому закону:

q = CUm cos ωt

Сила тока, представляющая собой производную заряда по времени, равна:

Колебания силы тока опережают по фазе колебания напряжения на конденсаторе на .

Амплитуда силы тока равна:

Im = Um

Если ввести обозначение

и вместо амплитуд силы тока и напряжения использовать их действующие значения, то получим

Величину Хс, обратную произведению ωС циклической частоты на электрическую емкость конденсатора, называют емкостным сопротивлением.
Роль этой величины аналогична роли активного сопротивления R в законе Ома.
Действующее значение силы тока связано с действующим значением напряжения на конденсаторе точно так же, как связаны согласно закону Ома сила тока и напряжение для участка цепи постоянного тока.
Это и позволяет рассматривать величину Хс как сопротивление конденсатора переменному току (емкостное сопротивление).

Чем больше емкость конденсатора, тем больше ток перезарядки.
Это легко обнаружить по увеличению накала лампы при увеличении емкости конденсатора.
В то время как сопротивление конденсатора постоянному току бесконечно велико, его сопротивление переменному току имеет конечное значение Хс.
С увеличением емкости оно уменьшается.
Уменьшается оно и с увеличением частоты ω.

На протяжении четверти периода, когда конденсатор заряжается до максимального напряжения, энергия поступает в цепь и запасается в конденсаторе в форме энергии электрического поля.
В следующую четверть периода, при разрядке конденсатора, эта энергия возвращается в сеть.

Итак,
сопротивление цепи с конденсатором обратно пропорционально произведению циклической частоты на электроемкость. Колебания силы тока опережают по фазе колебания напряжения на .

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин



Электромагнитные колебания. Физика, учебник для 11 класса — Класс!ная физика

Свободные и вынужденные электромагнитные колебания. Колебательный контур. Превращение энергии при электромагнитных колебаниях — Аналогия между механическими и электромагнитными колебаниями — Уравнение, описывающее процессы в колебательном контуре. Период свободных электрических колебаний — Переменный электрический ток — Активное сопротивление. Действующие значения силы тока и напряжения — Конденсатор в цепи переменного тока — Катушка индуктивности в цепи переменного тока — Резонанс в электрической цепи — Генератор на транзисторе. Автоколебания — Краткие итоги главы

Конденсатор в цепи переменного тока

Если конденсатор включить в цепь постоянного тока, то такая цепь будет разомкнутой, так как обкладки конденсатора разделяет диэлектрик, и ток в цепи идти не будет. Иначе происходит в цепи переменного тока. Переменный ток способен течь в цепи, если она содержит конденсатор. Это происходит не из-за того, что заряды вдруг получили возможность перемещаться между пластинами конденсатора. В цепи переменного тока происходит периодическая зарядка и разрядка конденсатора, который в нее включен благодаря действию переменного напряжения.

Рассмотрим цепь на рис.1, которая включает конденсатор. Будем считать, что сопротивление проводов и обкладок конденсатора не существенно, напряжение переменного тока изменяется по гармоническому закону:

   

По определению емкость на конденсаторе равна:

   

Следовательно, напряжение на конденсаторе:

   

Из выражения (3), очевидно, что заряд на конденсаторе будет изменяться по гармоническому закону:

   

Сила тока равна:

   

Сравнивая законы колебаний напряжения на конденсаторе и силы тока, видим, что колебания тока опережают напряжение на . Этот факт отражает то, что в момент начала зарядки конденсатора сила тока в цепи является максимальной при равенстве нулю напряжения. В момент времени, когда напряжение достигает максимума, сила тока падает до нуля.

В течение периода, при зарядке конденсатора до максимального напряжения, энергия, поступающая в цепь, запасается на конденсаторе, в виде энергии электрического поля. За следующую четверть периода данная энергия возвращается обратно в цепь, когда конденсатор разряжается.

Амплитуда силы тока (), исходя из выражения (5), равна:

   

Емкостное сопротивление конденсатора

Физическую величину, равную обратному произведению циклической частоты на емкость конденсатора называют его емкостным сопротивлением ():

   

Роль емкостного сопротивления уподобляют роли активного сопротивления (R) в законе Ома:

   

где – амплитудное значение силы тока; – амплитуда напряжения. Для емкостного сопротивления действующая величина силы тока имеет связь с действующим значением напряжения аналогичную выражению (8) (как сила тока и напряжение для постоянного тока):

   

На основании (9) говорят, что сопротивление конденсатора переменному току.

При увеличении емкости конденсатора растет ток перезарядки. Тогда как сопротивление конденсатора постоянному току является бесконечно большим (в идеальном случае), ёмкостное сопротивление конечно. С увеличением емкости и (или) частоты уменьшается.

Примеры решения задач

Урок 9. конденсатор и катушка индуктивности в цепи переменного электрического тока — Физика — 11 класс

Физика, 11 класс

Урок 9. Конденсатор и катушка индуктивности в цепи переменного электрического тока

Перечень вопросов, рассматриваемых на уроке:

Процессы, происходящие в цепи переменного электрического тока при наличии конденсатора и катушки индуктивности;

Устройство и принцип действия генератора переменного тока и трансформатора;

Автоколебания;

Проблемы передачи электроэнергии и способы повышения эффективности её использования.

Глоссарий по теме

Автоколебания – незатухающие колебания в системе, поддерживаемые за счет постоянного источника энергии.

Электрические машины преобразующие механическую энергию в электрическую называются генераторами.

Трансформатор – устройство, применяемое для повышения или понижения переменного напряжения.

Коэффициент трансформации – величина равная отношению напряжений в первичной и вторичной обмотках трансформатора.

Основная и дополнительная литература по теме урока:

Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. Физика.11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2014. – С. 86 – 95.

Рымкевич А.П. Сборник задач по физике. 10-11 класс. — М.: Дрофа, 2014. – С. 128 – 132.

Степанова. Г.Н. Сборник задач по физике. 10-11 класс. М., Просвещение 1999 г.

Е.А. Марон, А.Е. Марон. Контрольные работы по физике. М., Просвещение, 2004

Основное содержание урока

Переменный ток, которым мы пользуемся, вырабатывается с помощью генераторов переменного тока на электростанциях. Для передачи произведенной электроэнергии строятся линии электропередачи. В каждом населенном пункте имеются трансформаторы. Какую роль играют трансформаторы при передаче электроэнергии? Об этом мы поговорим на данном уроке.

В июле 1832 года Фарадей получил анонимное письмо, в котором автор описывал устройство созданного им генератора постоянного тока. Ознакомившись с содержанием письма Фарадей тут же отослал его в редакцию научного журнала. Автор этого письма не назвал себя, его фамилия осталась неизвестной.

Электрические машины преобразующие механическую энергию в электрическую называются генераторами. Впоследствии генераторы постоянного тока непрерывно совершенствовались. Потом, когда начали использовать переменный ток они уступили место генераторам переменного тока. Переменный ток в основном вырабатывается генераторами переменного тока. Простой моделью генератора может служить прямоугольная рамка, вращающаяся в магнитном поле. При вращении рамки, магнитный поток пронизывающий площадь поверхности, ограниченную рамкой, меняется по гармоническому закону:

N- число витков.

Возникает ЭДС индукции который меняется по гармоническому закону.

ЭДС индукции в рамке равна:

Если с помощью контактных колец и скользящих по ним щёток соединить концы рамки с электрической цепью, то в цепи возникнет переменный ток.

В современной энергетике для производства электроэнергии используются электромеханические индукционные генераторы. Принцип действия таких генераторов основан на явлении электромагнитной индукции. Основными частями генератора являются статор и ротор. Неподвижная часть генератора называется статором, а вращающаяся – ротором.

Постоянный ток не может идти по цепи содержащей конденсатор, т. к. цепь оказывается разомкнутой. При включении конденсатора в цепь переменного тока конденсатор будет периодически заряжаться и разряжаться с частотой равной частоте приложенного напряжения. В результате периодически меняющихся процессов зарядки и разрядки конденсатора в цепи течет переменный ток. Лампа накаливания, включенная в цепь переменного тока последовательно с конденсатором кажется горящей непрерывно, т.к. при высокой частоте колебаний силы тока человеческий глаз не способен заметить периодического ослабления нити накала. Конденсатор оказывает сопротивление прохождению тока. Это сопротивление называют ёмкостным.

Величину ХC, обратную произведению циклической частоты на электрическую ёмкость конденсатора называют ёмкостным сопротивлением.

Ёмкостное сопротивление не является постоянной величиной. Мы видим, что конденсатор оказывает бесконечно большое сопротивление постоянному току. Чем больше ёмкость конденсатора и частота колебаний, тем больше ток перезарядки. При наличии в цепи переменного тока конденсатора колебания силы тока опережают по фазе колебания напряжения конденсаторе на 90º. Сдвиг фазы колебаний силы тока на 90º относительно фазы колебания напряжения на конденсаторе приводит к тому, что мощность переменного тока в течение одной четверти периода имеет положительный знак, а в течение второй четверти – отрицательный. Поэтому среднее значение мощности за период равно нулю.

Индуктивность в цепи, так же, как и ёмкость, влияет на силу переменного тока. Объясняется это явлением самоиндукции. В любом проводнике, по которому протекает переменный ток, возникает ЭДС самоиндукции. При подключении катушки к источнику постоянного напряжения сила тока в цепи нарастает постепенно. Возникающее при этом вихревое электрическое поле тормозит движение электронов. Лишь спустя некоторое время сила тока достигает максимального значения, соответствующего данному постоянному напряжению. Если напряжение быстро меняется, то сила тока не будет успевать достигать тех значений, которые она приобрела бы при постоянном напряжении. Следовательно, максимальное значение силы переменного тока ограничивается индуктивностью цепи и его частотой колебаний.

Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.

Если частота равна нулю, то индуктивное сопротивление тоже равно нулю. Поэтому постоянный ток как бы не «замечает» катушку индуктивности в цепи.

Колебания напряжения на катушке опережают по фазе колебания силы тока на 90º.

Сдвиг фазы колебаний приводит к тому, что средняя мощность за период колебаний равна нулю.

Генератор на транзисторе используется для создания высокочастотных электромагнитных колебаний.

Для потребления электрической энергии нужно доставить его от источника к потребителю. Для этого строят линии электропередачи. При передаче электроэнергии на расстояние возникают потери энергии вследствие нагревания проводов. Тепловые потери можно определить используя закон Джоуля – Ленца:

Из этой формулы следует, что для уменьшения потерь энергиинужно уменьшить сопротивление или повысить напряжение. Уменьшения сопротивления проводов ЛЭП требует увеличения их площади поперечного сечения, что приведет к увеличению массы проводов. Увеличение массы проводов связано с большими расходами на укрепление столбов линии электропередачи, для их удержания и на производство металла для них. Наиболее эффективным является увеличение напряжения.

Для изменения напряжения в сети используют трансформаторы. Трансформатор был изобретен в 1876 году Яблочковым и в 1882 году усовершенствован Усагиным. Простейший трансформатор состоит из двух катушек, надетых на общий замкнутый стальной сердечник. Эти катушки называются обмотками трансформатора. Обмотка трансформатора, подключаемая к источнику переменного напряжения, называют первичной, а другая к которой присоединяют нагрузку – вторичной. Действие трансформатора основано на явлении электромагнитной индукции. При прохождении переменного тока по первичной обмотке в трансформаторе возникает переменное магнитное поле. Это поле пронизывает обе обмотки и в них возникает вихревое электрическое поле, которое действуя на заряженные частицы во вторичной обмотке способствует возникновению в ней переменного напряжения.

Величина равная отношению напряжений в первичной и вторичной обмотках трансформатора называют коэффициентом трансформации. Его обозначают буквой «k».

k– коэффициент трансформации.

U1 и U2 – напряжения на первичной и на вторичной обмотке.

N1 и N2— число витков на первичной и на вторичной обмотке.

Если k < 1 — трансформатор повышающий,

k > 1 — трансформатор понижающий.

КПД трансформатора равен отношению мощности в нагрузке к мощности, подаваемой из сети на первичную обмотку:

Для передачи электроэнергии на расстояние напряжение повышают с помощью трансформатора, а для потребления — понижают. В массивных проводниках при изменении магнитного поля возникают индукционные токи (токи Фуко), которые нагревают проводник. Чтобы эти индукционные токи не нагревали сердечник трансформатора его делают не сплошным, а из отдельных пластин, скрепленных вместе.

Закон Ома гласит: значение тока в цепи переменного тока прямо пропорционально напряжению в цепи и обратно пропорционально полному сопротивлению цепи.

Из формулы закона Ома для переменного тока мы видим, что при постоянной амплитуде напряжения, амплитуда силы тока зависит от частоты. Амплитуда силы тока будет максимальной, если полное сопротивление минимально. Полное сопротивление цепи минимально при равенстве индуктивного и ёмкостного сопротивления. В этом заключается условие возникновения резонанса в электрической цепи.

Резонанс в электрической цепи – это явление резкого возрастания амплитуды колебаний силы тока в контуре при совпадении частоты вынужденных колебаний с частотой собственных колебаний контура.

 Явление резонанса широко используется в радиотехнике, в схемах настройки радиоприемников. Меняя электроемкость конденсатора в колебательном контуре можно настроить его на нужную волну, т.е. выделить частоту на которой работает передающая станция

Разбор тренировочных заданий

1. Каково амплитудное значение ЭДС, возникающей в рамке из 50 витков, если она вращается с циклической частотой 180 рад/с в магнитном поле индукцией 0,4 Тл? Площадь рамки 0,02 м2.

Дано:

N=50

ω=180 рад/с

B=0,4 Тл

S=0,02 м2

_________

Ԑm=?

Решение:

Ответ: 72 В.

2. Катушка с индуктивностью 0,08 Гн присоединена к источнику переменного тока частотой 1000 Гц. При этом вольтметр показывает 100 В. Определить амплитуду тока в цепи. Ответ округлить до десятых.

Дано:

L=0,08 Гн

ν= 1000 Гц

U=100 В

__________

Im=?

Решение:

Напишем закон Ома для переменного тока

Т.к. ХC и R равны нулю, то

Учитывая, что , получаем:

Найдем амплитудное значение напряжения:

Подставим числовые данные в формулу для расчета амплитуды силы тока:

Ответ: Im = 0,3 А.

Цепь переменного тока с конденсатором

ads

При переменном напряжении на реальном конденсаторе кроме тока смещения имеются небольшие токи проводимости, через толщу диэлектрика (объемный ток) и по поверхности (поверхностный ток).Токи проводимости и поляризацию диэлектрика сопровождают потери энергии.

Таким образом, в реальном конденсаторе наряду с изменением энергии электрического поля (это характеризует реактивная мощность Q) из-за несовершенства диэлектрика идет необратимый процесс преобразования электрической энергии в тепло, скорость которого выражается активной мощностью Р. Поэтому в схеме замещения реальный конденсатор должен быть представлен активным и реактивным элементами.

Деление реального конденсатора на два элемента — это расчетный прием, так как конструктивно их выделить нельзя. Однако такую же схему замещения имеет реальная цепь из двух элементов, один из которых характеризуется только активной мощностью Р (Q = 0), другой — реактивной (емкостной) мощностью Q(P = 0).

Схема замещения конденсатора с параллельным соединением элементов

Реальный конденсатор (с потерями) можно представить эквивалентной схемой параллельного соединения активной G и емкостной Bс проводимостей (рис. 13.15), причем активная проводимость определяется мощностью потерь в конденсаторе G = Р/Uc2, а емкость — конструкцией конденсатора. Предположим, что проводимости G и Вс для такой цепи известны, а напряжение имеет уравнение

u = Umsinωt.

Требуется определить токи в цепи и мощность. 10 Исследование цепи с активным сопротивлением и цепи с емкостью показало, что при синусоидальном напряжении токи в них так же синусоидальны. При параллельном соединении ветвей G и Вс , согласно первому закону Кирхгофа, общий ток i равен сумме токов в ветвях с активной и емкостной проводимостями:

i = iG + ic,                                                      (13.30)

Учитывая, что ток iG совпадает по фазе с напряжением, а ток iопережает напряжение на четверть периода, уравнение общего тока можно записать в следующем виде:

11

 

Векторная диаграмма токов в цепи с конденсатором

Для определения действующей величины общего тока I методом векторного сложения построим векторную диаграмму согласно уравнению

I = IG + IC

 

Действующие величины составляющих тока:

 

IG = GU                                                       (13.31)

 

IC = BCU                                                      (13.32)

Первым на векторной диаграмме изображается вектор напряжения U (рис. 13.16, а), его направление совпадает с положительным направлением оси, от которой отсчитываются фазовые углы (начальная фаза напряжения φa =0). Вектор IG совпадает по направлению с вектором U, а вектор Iнаправлен перпендикулярно вектору U с положительным углом. Из векторной диаграммы видно, что вектор общего напряжения отстает от вектора общего тока на угол φ, величина которого больше нуля, но меньше 90º. Вектор I является гипотенузой прямоугольного треугольника, катеты которого — составляющие его векторы IG и IC :12 При напряжении u = Umsinωt соответствии с векторной диаграммой уравнение тока

i = Imsin(ωt + φ)

 

Треугольник проводимостей для конденсатора

Стороны треугольников токов, выраженные в единицах тока, разделим на напряжение U. Получим подобный треугольник проводимостей (рис. 13.16, б), катетами которого являются активная G = IG/U и емкостная Вс = Iс/U проводимости, а гипотенузой — полная проводимость цепи Y = I/U. Из треугольника проводимостей

13

Связь между действующими величинами напряжения и тока выражается формулами

I = UY

 

U = I/Y                                                        (13.35)

 

Из треугольников токов и проводимостей определяют величины

 

cosφ = IG/I = G/Y;                sinφ = Ic/I = Bc/Y;              tgφ = IC/IG = Bc/G.               (13.36)

 

Мощность цепи с конденсатором

Выражение мгновенной мощности реального конденсатора

p = ui = Umsinωt * Imsin(ωt+φ)

совпадает с выражением мгновенной мощности катушки. Рассуждения, аналогичные тем, которые сделаны при рассмотрении графика мгновенной мощности катушки (см. рис.13. 11), можно провести и для реального конденсатора на основе графика рис. 13.17. Величины активной, реактивной и полной мощностей выражаются теми же формулами, какие были получены для катушки [см. (13.19) — (13.22)]. Это нетрудно показать, если стороны треугольника токов, выраженные в единицах тока, умножить на напряжение U. В результате умножения получится подобный треугольник мощностей (рис. 13.16, в), катетами которого являются мощности; активная

 P = UIG = UIcosφ

реактивная

Q = UIC = UIsinφ

полнаяформула

 

Схема замещения конденсатора с последовательным соединением элементов

Реальный конденсатор, так же как и катушка, на расчетной схеме может быть представлен последовательным соединением двух участков: с активным R и емкостным Хс сопротивлениями. На рис. 13.18, а такая схема показана в сравнении со схемой параллельного 14соединения активной и емкостной проводимостей (рис.13. 18,6). Все выводы и формулы, полученные для катушки, остаются в силе и для конденсатора при условии замены индуктивного сопротивления емкостным. Конденсаторы, применяемые на практике, имеют относительно малые потери энергии. Поэтому в схемах замещения они представлены чаще всего только реактивной частью, т. е. емкостью С[BC = ωC, Xc = 1/(ωC)] Участки цепи, где последовательно соединены отдельные элементы — резистор R и конденсатор С, имеют такую схему замещения, как показано на рис. 13.18, а. Если вам интересно прочитайте статью о настоящих конденсаторах которые применяются в промышленности.

Цепь переменного тока с ёмкостью

Поскольку после того, как конденсатор зарядился полностью, он не пропускает через себя электрический ток, и поэтому идеальный конденсатор (ёмкость), установленный в цепи постоянного тока, обладает бесконечно большим сопротивлением.

Цепь переменного тока с ёмкостью

 

 

Если же произвести подключение конденсатора к источнику переменного тока, то процесс его заряда и разряда будет осуществляться непрерывно. Это означает, что через ёмкость будет проходить переменный электрический ток.

Ток i при условии включения в цепь переменного тока некоторой ёмкости будет определяется количеством электричества q, протекающего по этой цепи в единицу времени. Из этого следует, что:

где Δq – это изменение заряда q (то есть количества электричества) в течение времени Δt.

Что касается заряда q, который накоплен при изменениях напряжения u в конденсаторе, то он также подвержен непрерывному изменению, которое выражается формулой:

где Δu – это изменение напряжения u в течение промежутка времени Δt.

Та скорость, с которой изменяется напряжение (она выражается отношением Δu/Δt) будет иметь свои наибольшие значения тогда, когда угол ωt равняется 360°, 180° и . Из этого следует, что значение тока i принимает свои наибольшие величины именно в эти моменты времени. Если же угол ωt равняется 270° и 90°, то i = 0, поскольку скорость изменения напряжения Δu/Δt = 0.

Ток и напряжение в цепи переменного тока с ёмкостью

Ток заряда, который принято считать положительным, в цепи течет тогда, когда происходит заряд конденсатора, то есть на протяжение первой четверти периода. По мере того, как разница потенциалов на электродах ёмкости растет вследствие накопления ею электрического заряда, значение тока i падает. Когда ωt = 90°, наступает полный заряд емкости, значение i = 0, а разность потенциалов между электродами конденсатора обретает то же самое значение, что и напряжение источника тока.

Значение тока i становится отрицательным тогда, когда он меняет свое направление. Это происходит тогда, когда ёмкость начинает разряжаться, то есть во второй четверти периода. Тогда, когда u = 0 а ωt = 180°, значение тока i становится максимальным. В этот же самый момент ток i начинает течь в обратном направлении (его принято считать отрицательным), начинается процесс перезарядки емкости, а полярность напряжения u источника также меняется на противоположную. Когда ωt = 270° значение тока i становится равным нулю, и поэтому процесс заряда прекращается. После чего начинается разряд при первоначальном (то есть положительном) направлении тока.

Получается, что ёмкость и заряжается, и разряжается два раза на протяжении одного периода изменения напряжения. Из этого следует, что переменный ток i протекает в цепи непрерывно. Когда ёмкость включается в цепь переменного тока, то ток i опережает напряжение u по фазе на угол, равный 90°. Можно также сказать, что напряжение u отстает по фазе от тока i на угол, равный 90°.

Емкостное сопротивление

Сопротивление, которое проявляет ёмкость к переменному току, носит название емкостного. Единицей измерения этой величины является Ом, а обозначается оно Хс. Физическая природа емкостного сопротивления заключается в том, что оно обусловлено возникающей в конденсаторе ЭДС ес. Направление этой электродвижущей силы противоположно приложенному напряжению u, поскольку заряженная ёмкость рассматривается в качестве источника, у которого между пластинами действует некоторая ЭДС ес. Именно она препятствует тому, чтобы под действием напряжения u происходило изменение тока, то есть оказывает определенное сопротивление его прохождению.

Какова роль конденсатора в цепях переменного и постоянного тока? Электрические технологии

Какова роль конденсатора в цепях переменного и постоянного тока?

Роль конденсатора в цепях переменного тока:

В цепи переменного тока конденсатор меняет свои заряды на противоположные по мере того, как ток меняется и создает запаздывающее напряжение (другими словами, конденсатор обеспечивает опережающий ток в цепях и сетях переменного тока)

Роль конденсатора в цепях постоянного тока:

В цепи постоянного тока конденсатор, заряженный приложенным напряжением, действует как размыкающий переключатель.

What is the Role of Capacitor in AC and DC Circuits What is the Role of Capacitor in AC and DC Circuits Роль конденсатора в системах переменного и постоянного тока

Давайте объясним подробно, но сначала мы вернемся к основам конденсатора, чтобы обсудить этот вопрос.

Что такое конденсатор?

Конденсатор представляет собой электрическое устройство с двумя выводами, используемое для хранения электрической энергии в виде электрического поля между двумя пластинами. Он также известен как конденсатор, и единица измерения его емкости в системе СИ — Фарад «Ф», где Фарад — это большая единица емкости, поэтому в настоящее время используются микрофарады (мкФ) или нанофарады (нФ).

Конденсатор похож на батарею, поскольку оба хранят электрическую энергию. Конденсатор — гораздо более простое устройство, которое не может производить новые электроны, но накапливает их. Внутри конденсатора клеммы соединены с двумя металлическими пластинами, разделенными диэлектрическим материалом (например, вощеной бумагой, слюдой и керамикой), которые разделяют пластины и позволяют им удерживать противоположные электрические заряды, поддерживая электрическое поле.

Конденсаторы

могут пригодиться для накопления заряда и быстрой разрядки в нагрузку.Проще говоря, конденсатор также работает как небольшая перезаряжаемая батарея. Символ электрического эквивалента для различных типов конденсатора приведен ниже: symbol of different types of capacitor symbol of different types of capacitor

Теперь мы знаем концепцию зарядки конденсатора и его структуру, но знаете ли вы, что такое емкость? емкость — это способность конденсатора накапливать в нем заряд. Есть несколько факторов, которые влияют на емкость.

  • Площадь пластины
  • Зазор между пластинами
  • Проницаемость изоляционного материала

Соответствующий пост: Конденсатор и типы конденсаторов | Фиксированный, переменный, полярный и неполярный

Конденсатор имеет широкий спектр применений в электронике , таких как накопление энергии, регулирование мощности, коррекция коэффициента мощности, генераторы и фильтрация.

В этом руководстве мы объясним вам, как можно использовать конденсатор в электронной схеме. Существует три способа подключения конденсатора в электронной схеме:

  • Последовательный конденсатор
  • Параллельный конденсатор
  • Конденсатор в цепях переменного тока
  • Конденсатор в цепях постоянного тока

Связанный пост: Конденсаторы MCQ с пояснительными ответами

Как работает конденсатор?
Работа и конструкция конденсатора

Всякий раз, когда на его клеммы подается напряжение (также известный как зарядка конденсатора), начинает течь ток и продолжается до тех пор, пока напряжение не появится как на отрицательном, так и на положительном (анодном и положительном) контактах. Катод) пластины становятся равными напряжению источника (Applied Voltage).Эти две пластины разделены диэлектрическим материалом (таким как слюда, бумага, стекло и т. Д., Которые являются изоляторами), который используется для увеличения емкости конденсатора.

Когда мы подключаем заряженный конденсатор к небольшой нагрузке, он начинает подавать напряжение (накопленную энергию) на эту нагрузку, пока конденсатор полностью не разрядится.

Конденсаторы бывают разных форм, и их значение измеряется в фарадах (Ф). Конденсаторы используются как в системах переменного, так и постоянного тока (мы обсудим это ниже).

Емкость (C):

Емкость — это количество электрического заряда, перемещаемого в конденсаторе (конденсаторе), когда к его клемме подключен источник питания на один вольт.

Математически,

Уравнение емкости:

C = Q / V

Где,

  • C = Емкость в фарадах (F)
  • Q = электрический заряд
  • в кулонах V = напряжение в вольтах

Мы не будем вдаваться в подробности, потому что наша основная цель этого обсуждения — объяснить роль и применение / использование конденсаторов в системах переменного и постоянного тока.Чтобы понять эту базовую концепцию, мы должны понимать основные типы конденсаторов, относящиеся к нашей теме (поскольку существует много типов конденсаторов, и мы обсудим типы конденсаторов позже в другом посте, потому что это не связано с вопросом).

Похожие сообщения:

Серийные конденсаторы

Как последовательно соединить конденсаторы?

Последовательно ни один конденсатор не подключен напрямую к источнику. Чтобы соединить их последовательно, вам необходимо соединить их встык, как показано на рисунке ниже: Capacitors in Series Capacitors in Series

При последовательном подключении конденсаторов общая емкость уменьшается.Следовательно, соединение выполняется последовательно, поэтому ток через конденсаторы будет одинаковым. Кроме того, заряд, накопленный пластиной конденсатора, будет таким же, потому что он исходит от пластины соседнего конденсатора.

Следовательно,

I T = I 1 + I 2 + I 3 +… + I n

и

Q T + Q 2 + Q 3 +… + Q n

Теперь, чтобы найти значение емкости вышеуказанной схемы, мы применим закон Кирхгофа по напряжению (KVL), тогда у нас будет

V T = V C1 + V C2 + V C3

Как мы знаем, Q = CV

И V = Q / C

Итак,

(Q / C T ) = (Q / C 1 ) + (Q / C 2 ) + (Q / C 3 )

Следовательно,

1 / C T = (1 / C 1 ) + (1 / C 2 ) + (1 / C 3 )

Для n th no.конденсатора, соединенного последовательно,

Capacitance in Series - Capacitors in Series Capacitance in Series - Capacitors in Series

Для двух последовательно соединенных конденсаторов формула будет

C T = (C1 x C2) / (C1 + C2)

Теперь вы можете найти емкость приведенной выше схемы, используя формулу,

Здесь C1 = 10 мкФ и C2 = 4,7 мкФ

Итак, C T = (10 x 4,7) / (10 + 4,7)

C T = 47 / 14,7

C T = 3,19 мкФ

Параллельные конденсаторы

Как подключить конденсаторы параллельно?

Параллельно каждый конденсатор напрямую подключается к источнику, как вы можете видеть на рисунке ниже, Capacitors in Parallel Capacitors in Parallel

При параллельном подключении конденсаторов общая емкость равна сумме всех емкостей конденсаторов.Поскольку верхняя и нижняя пластины всех конденсаторов соединены вместе, из-за этого площадь пластины также увеличивается.

Общий ток в параллельной цепи будет равен току на каждом конденсаторе.

Применяя закон Кирхгофа,

I T = I 1 + I 2 + I 3

Теперь ток через конденсатор выражается как,

I = C (dV / dt)

Итак, Capacitors in Parallel Capacitors in Parallel

Решив приведенное выше уравнение

C T = C 1 + C 2 + C 3

And, для n th no.конденсатора, соединенного последовательно,

C T = C 1 + C 2 + C 3 +… + C n

Теперь вы можете определить емкость цепи, используя приведенную выше формулу,

Здесь C 1 = 10 мкФ и C 2 = 1 мкФ

Итак, C T = 10 мкФ + 1 мкФ

C T = 11 мкФ

Связанные сообщения:

Полярный и неполярный конденсатор

Неполярный конденсатор: (Используется в системах переменного и постоянного тока)

Неполярные конденсаторы могут использоваться как в системах переменного, так и постоянного тока.Их можно подключать к источнику питания в любом направлении, и их емкость не зависит от смены полярности.

Полярный конденсатор: (используется только в цепях и системах постоянного тока)

Конденсаторы этого типа чувствительны к их полярности и могут использоваться только в системах и сетях постоянного тока. Конденсаторы Polar не работают в системе переменного тока из-за смены полярности после каждого полупериода питания переменного тока.

Types of Capacitors: Polar and Non Polar Capacitors with Symbols Types of Capacitors: Polar and Non Polar Capacitors with Symbols Типы конденсаторов: полярные и неполярные конденсаторы с символами

Роль конденсаторов в цепях переменного тока

Конденсатор имеет множество применений в системах переменного тока, и ниже мы обсудим несколько вариантов использования конденсаторов в сетях переменного тока.

Бестрансформаторный источник питания:

Конденсаторы используются в бестрансформаторных источниках питания. В таких схемах конденсатор включен последовательно с нагрузкой, потому что мы знаем, что конденсатор и катушка индуктивности в чистом виде не потребляют мощность. Они просто берут мощность в одном цикле и возвращают ее в другом цикле на нагрузку. В этом случае он используется для снижения напряжения с меньшими потерями мощности.

Асинхронные двигатели с расщепленной фазой:

Конденсаторы также используются в асинхронных двигателях для разделения однофазного источника питания на двухфазный источник питания для создания вращающегося магнитного поля в роторе для улавливания этого поля.Этот тип конденсатора в основном используется в бытовых водяных насосах, вентиляторах, кондиционерах и многих устройствах, которым для работы требуется как минимум две фазы.

Коррекция и улучшение коэффициента мощности:

Есть много преимуществ улучшения коэффициента мощности. В трехфазных энергосистемах конденсаторная батарея используется для подачи реактивной мощности на нагрузку и, следовательно, повышения коэффициента мощности системы. Конденсаторная батарея устанавливается после точного расчета. По сути, он вырабатывает реактивную мощность, которая ранее передавалась из энергосистемы, поэтому снижает потери и повышает эффективность системы.

Конденсаторы в цепи переменного тока

Как подключить конденсатор в цепи переменного тока?

В цепи постоянного тока конденсатор заряжается медленно, пока напряжение зарядки конденсатора не сравняется с напряжением питания. Кроме того, в этом состоянии конденсатор не позволяет току проходить через него после полной зарядки. How to Connect a Capacitor in AC Circuit? How to Connect a Capacitor in AC Circuit?

И, когда вы подключаете конденсатор к источнику переменного тока, он непрерывно заряжается и разряжается из-за непрерывного изменения уровней напряжения.Емкость в цепях переменного тока зависит от частоты подаваемого входного напряжения. Кроме того, если вы видите векторную диаграмму идеальной цепи конденсатора переменного тока, вы можете заметить, что ток опережает напряжение на 90 °. Capacitors in AC Circuits Capacitors in AC Circuits

В цепи конденсатора переменного тока ток прямо пропорционален скорости изменения подаваемого входного напряжения, которая может быть выражена как

I = dQ / dt

I = C (dV / dt)

Теперь мы рассчитаем емкостное реактивное сопротивление в цепи переменного тока .

Как мы знаем, I = dQ / dt и Q = CV

И входное напряжение переменного тока в приведенной выше схеме будет выражено как,

V = V m Sin wt

Итак, I m = d (CV m Sin wt ) / dt

I m = C * V m Cos wt * w (после дифференцирования)

I m = wC V m Sin (wt + π / 2)

At, w = 0, Sin (wt + π / 2) = 1

Следовательно,

I m = wCV m

V m / I m = 1 / wC (где w = 2πf и V m / I m = X c )

Емкостное реактивное сопротивление (X c ) = Capacitive Reactance (Xc) Capacitive Reactance (Xc)

Теперь, чтобы рассчитать емкостное реактивное сопротивление указанной выше цепи,

Xc = 1 / 2π (50) (10)

Xc = 3183.09 Ом

Связанный пост: В чем разница между батареей и конденсатором?

Роль конденсаторов в цепях постоянного тока

Кондиционирование питания:

В системах постоянного тока конденсатор используется в качестве фильтра (в основном). Его наиболее распространенное использование — преобразование источника переменного тока в постоянный при выпрямлении (например, в мостовом выпрямителе). Когда мощность переменного тока преобразуется в колеблющуюся (с пульсациями, то есть не в устойчивом состоянии с помощью схем выпрямителя) мощность постоянного тока (пульсирующая мощность постоянного тока) для сглаживания и фильтрации этих пульсаций и флуктуаций используется полярный конденсатор постоянного тока.Его значение рассчитывается точно и зависит от напряжения в системе и потребляемого тока нагрузки.

Конденсатор развязки:

Конденсатор развязки используется, где мы должны развязать две электронные схемы. Другими словами, шум, создаваемый одной схемой, заземлен разделительным конденсатором и не влияет на работу другой схемы.

Конденсатор связи:

Поскольку мы знаем, что Конденсатор блокирует постоянный ток и позволяет переменному току проходить через него (мы обсудим это в следующем сеансе, как это происходит).Таким образом, он используется для разделения сигналов переменного и постоянного тока (также используется в схемах фильтров для той же цели). Его значение рассчитывается таким образом, что его реактивное сопротивление минимизируется на основе частоты, которую мы хотим передать через него. Конденсатор связи также используется в фильтрах (схемах устранения пульсаций, таких как RC-фильтры) для разделения сигналов переменного и постоянного тока и удаления пульсаций из пульсирующего напряжения питания постоянного тока для преобразования его в чистое переменное напряжение после выпрямления.

Вы также можете прочитать:

.Пусковые конденсаторы

— Конденсаторы — Руководства по продукции

Пусковые и рабочие конденсаторы

Пусковые конденсаторы дают большое значение емкости, необходимое для пуска двигателя в течение очень короткого (секунд) периода времени. Они предназначены только для прерывистой работы и катастрофически выйдут из строя, если подавать слишком долго. Рабочие конденсаторы используются для непрерывного управления напряжением и током обмоток двигателя и поэтому работают в непрерывном режиме.Как правило, они имеют гораздо меньшее значение емкости.



Взаимозаменяемы ли пусковой и рабочий конденсаторы?

Да и нет. В необычных обстоятельствах рабочий конденсатор может использоваться в качестве пускового конденсатора, но доступные значения намного ниже, чем значения, обычно доступные для специальных пусковых конденсаторов. Номинальные значения емкости и напряжения должны соответствовать оригинальной спецификации пускового конденсатора.Пусковой конденсатор нельзя использовать в качестве рабочего конденсатора, потому что он не может выдерживать ток непрерывно (всего пару секунд).

Посмотрите видеоинструкцию ниже, чтобы узнать о различиях между пусковыми и рабочими конденсаторами.



Что такое резистор и нужен ли он?

Большинство заменяемых пусковых конденсаторов не имеют резистора.Вы можете проверить состояние старого, проверив значение сопротивления, или просто заменить его новым. Это должно быть где-то около 10-20 кОм и около 2 Вт. Резисторы обычно либо припаяны, либо обжаты на выводах. Назначение резистора — сбросить остаточное напряжение в конденсаторе после того, как он был отключен от цепи после запуска двигателя. Не все пусковые конденсаторы будут использовать один, поскольку есть другие способы добиться этого. Важная часть заключается в том, что если в вашем оригинальном конденсаторе он был, вам необходимо заменить его на новый.

Узнайте, как установить спускной резистор на пусковой конденсатор.



.Конденсатор

в последовательной, параллельной и цепи переменного тока

Конденсатор — один из наиболее часто используемых электронных компонентов. Он имеет способность накапливать энергию внутри себя в виде электрического заряда, создающего статическое напряжение (разность потенциалов) на его пластинах. Проще говоря, конденсатор похож на небольшую перезаряжаемую батарею. Конденсатор представляет собой комбинацию двух параллельных проводящих или металлических пластин, которые электрически разделены хорошим изолирующим слоем (также называемым диэлектриком ) , состоящим из вощеной бумаги, слюды, керамики, пластика и т. Д.

Существует множество применений конденсатора в электронике, некоторые из них перечислены ниже:

  • Накопитель энергии
  • Кондиционирование питания
  • Коррекция коэффициента мощности
  • Фильтрация
  • Осцилляторы

Теперь дело в , как конденсатор работает ? Когда вы подключаете источник питания к конденсатору, он блокирует постоянный ток из-за изолирующего слоя и позволяет напряжению присутствовать на пластинах в виде электрического заряда.Итак, вы знаете, как работает конденсатор и каково его использование или применение, но вы должны научиться этому, как использовать конденсатор в электронных схемах.

Как подключить конденсатор в электронную схему?

Здесь мы собираемся продемонстрировать вам подключение конденсатора и связанный с ним эффект на примерах.

  • Конденсатор серии
  • Параллельный конденсатор
  • Конденсатор в цепи переменного тока

Конденсатор в последовательной цепи

Capacitor in Series circuit

В схеме, когда вы соединяете конденсаторы последовательно, как показано на изображении выше, общая емкость уменьшается.Ток, проходящий через последовательно соединенные конденсаторы, равен (т.е. i T = i 1 = i 2 = i 3 = i n ). Следовательно, заряд, накопленный конденсаторами, также одинаков (то есть Q T = Q 1 = Q 2 = Q 3 ), потому что заряд, накопленный пластиной любого конденсатора, исходит от пластины соседнего конденсатор в цепи.

Применяя Закон Кирхгофа (KVL) по напряжению в цепи, мы получаем

  V  T  = V  C1  + V  C2  + V  C3 … уравнение (1)  

Как известно,

  Q =  CV
  Итак, V = Q / C  

Где, V C1 = Q / C 1 ; V C2 = Q / C 2 ; V C3 = Q / C 3

Теперь, подставив вышеуказанные значения в уравнение (1)

   (1 / C  T ) = (1 / C  1 ) + (1 / C  2 ) + (1 / C  3 )  

Для n последовательно подключенных конденсаторов уравнение будет

.
  (1 / C  T ) = (1 / C  1 ) + (1 / C  2 ) + (1 / C  3 ) +….+ (1 / Cn)  

Следовательно, приведенное выше уравнение является уравнением конденсаторов серии .

Где, C T = Общая емкость цепи

C 1 … n = емкость конденсаторов

Уравнение емкости для двух особых случаев определено ниже:

Случай I: , если два конденсатора соединены последовательно, с разными значениями емкость будет выражена как:

  (1 / C  T ) = (C  1  + C  2 ) / (C  1  * C  2 ) 
  Или, C  T  = (C  1  * C  2 ) / (C  1  + C  2 )… уравнение (2)  

Случай II: , если два конденсатора включены последовательно, с одинаковым значением емкость будет выражаться как:

  (1 / C  T ) = 2 / C  2  = 2 / C 
  Или, C  T  = C / 2  

Пример цепи последовательного конденсатора:

Теперь в приведенном ниже примере мы покажем вам, как рассчитать общую емкость и индивидуальное среднеквадратичное падение напряжения на каждом конденсаторе.

Series Capacitor Circuit Example

Как и на приведенной выше принципиальной схеме, есть два конденсатора , соединенных последовательно с разными номиналами. Значит, падение напряжения на конденсаторах также неодинаково. Если мы подключим два конденсатора с одинаковым значением, падение напряжения также будет одинаковым.

Теперь для определения общего значения емкости воспользуемся формулой из уравнения (2)

  Итак, C  T  = (C  1  * C  2 ) / (C  1  + C  2 ) 
  Здесь C  1  = 4.7 мкФ и C  2  = 1 мкФ 
  C  T  = (4,7 мкФ * 1 мкФ) / (4,7 мкФ + 1 мкФ) 
  C  T  = 4,7 мкФ / 5,7 мкФ 
  C  T  = 0,824 мкФ  

Теперь падение напряжения на конденсаторе C 1 составляет:

  VC  1  = (C  T  / C  1 ) * V  T  
  VC  1  = (0,824 мкФ / 4,7 мкФ) * 12 
  VC  1  = 2,103V  

Теперь падение напряжения на конденсаторе C 2 составляет:

  VC  2  = (C  T  / C  2 ) * V  T  
  VC  2  = (0.824 мкФ / 1 мкФ) * 12 
  VC  2  = 9,88 В  

Конденсатор в параллельной цепи

Capacitor in Parallel Circuit

При параллельном подключении конденсаторов общая емкость будет равна сумме емкостей всех конденсаторов. Потому что верхняя пластина всех конденсаторов соединена вместе, как и нижняя пластина. Таким образом, при соприкосновении друг с другом полезная площадь пластины также увеличивается. Следовательно, емкость пропорциональна отношению площади и расстояния.

Применяя Текущий закон Кирхгофа (KCL) в вышеуказанной схеме,

  i  T  = i  1  + i  2  + i  3   

Как известно, ток через конденсатор выражается как;

  i = C (dV /   dt  ) 
  So, i  T  = C  1  (dV /   dt  ) + C  2  (dV /   dt  ) + C  3  (dV /   dt  ) 
  А,
   i    T     = (C  1  + C  2  + C  3 ) * (dV /   dt  ) 
  i  T  = C  T  (dV /   dt  )… уравнение (3)  

Из уравнения (3) уравнение параллельной емкости:

  C  T  = C  1  + C  2  + C  3   

Для числа n конденсаторов, подключенных параллельно, уравнение выше выражается как:

  C  T  = C  1  + C  2  + C  3  +… + Cn  

Пример параллельной цепи конденсатора

На приведенной ниже принципиальной схеме три конденсатора подключены параллельно .Поскольку эти конденсаторы подключены параллельно, эквивалентная или общая емкость будет равна сумме индивидуальных емкостей.

Parallel Capacitor Circuit Example

  C  T  = C  1  + C  2  + C  3  
  Где, C  1  = 4,7 мкФ; C  2  = 1 мкФ и C  3  = 0,1 мкФ 
  Так, C  T  = (4,7 +1 + 0,1) мкФ 
  C  T  = 5,8 мкФ  

Конденсатор в цепях переменного тока

Когда конденсатор подключен к источнику постоянного тока, конденсатор начинает медленно заряжаться.И когда напряжение зарядного тока конденсатора равно напряжению питания, это считается полностью заряженным. Здесь в этом состоянии конденсатор работает как источник энергии, пока подается напряжение. Кроме того, конденсаторы не позволяют току проходить через него после полной зарядки.

Capacitor in AC Circuit

Когда на конденсатор подается переменное напряжение, как показано на чисто емкостной схеме выше. Затем конденсатор непрерывно заряжается и разряжается до каждого нового уровня напряжения (заряжается при положительном уровне напряжения и разряжается при отрицательном уровне напряжения).Емкость конденсатора в цепях переменного тока зависит от частоты входного напряжения, подаваемого в цепь. Сила тока прямо пропорциональна скорости изменения напряжения, приложенного к цепи.

  i = dQ /   dt   = C (dV /   dt  )  

Векторная диаграмма конденсатора в цепи переменного тока

AC Capacitor Phasor Diagram

Как вы видите на векторной диаграмме конденсатора переменного тока на изображении ниже, ток и напряжение представлены в виде синусоидальной волны.При наблюдении при 0 ° зарядный ток достигает своего пикового значения из-за постоянного увеличения напряжения в положительном направлении.

Теперь при 90 ° ток через конденсатор не протекает, поскольку напряжение питания достигает максимального значения. При 180 ° напряжение начинает медленно снижаться до нуля, а ток достигает максимального значения в отрицательном направлении. И снова заряд достигает своего пикового значения на 360 °, потому что напряжение питания находится на минимальном значении.

Таким образом, из приведенного выше сигнала мы можем видеть, что ток опережает напряжение на 90 °.Итак, мы можем сказать, что напряжение переменного тока отстает от тока на 90⁰ в идеальной конденсаторной цепи .

Реактивное сопротивление конденсатора (Xc) в цепи переменного тока

Рассмотрим приведенную выше принципиальную схему, поскольку мы знаем, что входное напряжение переменного тока выражается как

  V = V  м  Sin  wt   

А, заряд конденсатора Q = CV,

Итак, Q = CV м Sin wt

А, ток через конденсатор, i = dQ / dt

Итак,

  i = d (CV  м  Sin  wt ) / dt 
  i = C * d (V  м  Sin  wt ) / dt 
  i = C * V  м  Cos  wt  * w 
  i = w * C * V  м  Sin (wt + π / 2) 
  ат, wt = 0 
  sin (вес + π / 2) = 1 
 , следовательно, i  м  = wCV  м  
  V  м  / i  м  = 1 / туалет  

Как известно, w = 2πf

Итак,

  Емкостное реактивное сопротивление (Xc) = V  м  / i  м  = 1 / 2πfC  

Пример емкостного реактивного сопротивления в цепи переменного тока

диаграмма

Рассмотрим значение C = 2.2uf и напряжение питания V = 230 В, 50 Гц

  Теперь емкостное реактивное сопротивление (Xc) = V  м  / i  м  = 1 / 2πfC 
  Здесь C = 2,2 мкФ и f = 50 Гц 
  Итак, Xc = 1/2 * 3,1414 * 50 * 2,2 * 10 -6  
  Xc = 1446,86 Ом  
.

Отправить ответ

avatar
  Подписаться  
Уведомление о