Минимальное напряжение в сети 10 кв: Какое минимальное напряжение должно быть в сети. Инструкция по регулированию напряжения в сети предприятия

Содержание

Допустимое отклонение напряжения по ГОСТ: допустимые значения

При проектировании электроприборов, в том числе и бытовой техники, учитываются номинальные характеристики сети, от которой они будут работать. Но в системах электроснабжения могут происходить процессы, вызывающие отклонения от номинальных параметров. Допустимое отклонение напряжения в сети, частоты, а также других характеристик, регулируется требованиями ГОСТ 13109-97 (международный стандарт, принятый в России, Республике Беларусь, Украине и в большинстве других стран СНГ). Приведем информацию о допустимых нормах отклонений и вызывающих их причинах.

Нормы напряжения в электросети по ГОСТу

В нормативном документе определено несколько показателей, позволяющих характеризовать качество электроэнергии в точках присоединения (ввод в сети потребителей). Перечислим наиболее значимые параметры и приведем допустимые диапазоны отклонений для каждого из них:

  • Для установившегося отклонения напряжения не более 5,0% от номинала (допустимая норма) при длительном временном промежутке и до 10% для краткосрочной аномалии (предельно допустимая норма). Заметим, что данные показатели должны быть прописаны в договоре о предоставлении услуг, при этом указанные нормы должны отвечать действующим нормам. Например, для бытовых сетей (220 В) быть в пределах 198,0-220,0 В, а для трехфазных (0,40 кВ) – не менее 360,0 В и не более 440 Вольт.
  • Перепады напряжения, такие отклонения характеризуются амплитудой, длительностью и частотой интервалов. Нормально допустимый размах амплитуды не должен превышать 10,0% от нормы. К перепадам также относят дозу фликера (мерцание света в следствии перепадов напряжения, вызывают усталость), это параметр измеряется специальным прибором (фликометром). Допустимая краткосрочная доза – 1,38, длительная – 1. Пример устоявшегося отклонения и колебания напряжения
  • Броски и провалы. К первым относятся краткосрочные увеличения амплитуды напряжения, превышающие 1,10 номинала. Под вторым явлением подразумевается уменьшение амплитуды на величину более 0,9 от нормы, с последующим возвращением к нормальным параметрам. Ввиду особенностей природы процессов данные отклонения не нормируются. При частом проявлении рекомендуется установить ограничитель напряжения (для защиты от бросков) и ИБП (при частых провалах).
  • Перенапряжение электрической сети, под данным определением подразумевается превышение номинала на величину более 10% длящееся свыше 10-ти миллисекунд. Примеры перенапряжения и провала (А), бросков (В)
  • Несимметрия напряжения. Допустимое отклонение коэффициента несимметрии от нормы – 2,0%, предельное – 4,0%.
  • Несинусоидальность напряжения. Определяется путем расчета коэффициента искажения, после чего полученное значение сравнивают с нормативными значениями. Пример нарушения синусоидальности напряжения
  • Отклонения частоты. Согласно действующим требованиям нормально допустимое отклонение этого параметра 0,20 Гц, предельно допустимое – 0,40 Гц.

Основные причины возникновения отклонения напряжения в сети

Теперь рассмотрим, что могло вызвать изменение характеристик сети:

  • Установившиеся отклонения напряжения связывают со следующими причинами:
  1. Увеличение величины нагрузки из-за подключения одного или нескольких мощных потребителей. Характерный пример – сезонное увеличение нагрузки на энергосистемы ввиду подключения обогревательного оборудования, а также суточные пики.
  2. Увеличение числа потребителей без модернизации энергосистемы.
  3. Обрыв или недостаточное качество контакта нулевого кабеля в трехфазных системах.

При ситуациях, описанных в первом пункте, поставщик нормализует напряжение, используя специальные средства регулирования. В остальных случаях производятся ремонтные работы.

  • Причина перепадов напряжения связана с потребителями электрической энергии, с резко изменяющейся нагрузкой (как правило, при этом изменяется и реактивная мощность). В качестве примера можно привести металлургические предприятия, оборудованные дуговыми печами. Подобный эффект можно наблюдать при работе сварочного электрооборудования или поршневых компрессорных установок.
  • Причины минимального напряжения (провалы) в большинстве случаев связаны с КЗ, которые могут возникнуть в сети дома, на линиях ввода или ЛЭП. Длительность провалов варьируется от миллисекунд до секунд, при этом напряжение может уменьшаться до 90% от нормы. Наиболее чувствительна к таким изменениям электроника, нормализовать ее работу можно при помощи ИБП.
  • Возникновение импульсных напряжений может быть вызвано коммутационными процессами, ударом молнии в ВЛ, а также другими причинами. При этом величина импульса может многократно превышать стандартное напряжение в квартире по ГОСТу. Естественно, что существенное увеличение максимальных значений этого параметра приведет к выходу из строя подключенного к сети оборудования, чтобы не допустить этого, следует использовать ограничитель перенапряжения. Принцип работы этого защитного устройства и схему установки можно найти на нашем сайте. Конструкция ограничителя перенапряжения (ОПН)
  • При кратковременных перенапряжениях уровень отклонений значительно ниже, чем при бросках, но, тем не менее, это может стать причиной выхода из строя оборудования, включенного в розетки. ОПН в этом случае не спасет, но поможет реле напряжения, которое произведет защитное отключение и после нормализации ситуации восстановит подключение. Пределы изменения срабатывания (диапазон регулирования) можно задать самостоятельно или использовать настройки по умолчанию. Что касается причин, вызывающих перенапряжение, то они связаны с коммутационными процессами и КЗ.
  • Несимметрия происходит вследствие перекоса нагрузки между фазами. Ситуация исправляется путем транспозиции питающих линий.
  • Нарушение синусоидальности возникает в тех случаях, когда к энергосистеме подключается мощное оборудование, для которого характерна нелинейная ВАХ. В качестве такового можно привести промышленные преобразователи напряжения с тиристорными элементами.
  • Частота сети напрямую связана с равновесием активных мощностей источника и потребителя. Если происходит дисбаланс, связанный с недостаточной мощностью генераторов, наблюдается снижение частоты в энергосистеме до тех пор, пока не будет установлено новое равновесие. Соответственно, при избыточных мощностях, происходит обратный процесс, вызывающий повышение частоты.

Последствия отклонения от стандартов

Отклонение от номинальных напряжений может вызвать много нежелательных последствий, начиная от сбоев в работе бытовой техники и заканчивая нарушениями производственных техпроцессов и созданием аварийных ситуаций. Приведем несколько примеров:

  • Долгосрочные отклонения напряжения сверх установленной нормы приводят к снижению срока эксплуатации электрооборудования.
  • Броски с большой вероятностью могут вывести из строя электронные приборы и другую технику, подключенную к сети.
  • При провалах происходят сбои в работе вычислительных мощностей, что увеличивает риски потери информации.
  • Перекос фаз приводит к критическому повышению напряжения, что вызовет, в лучшем случае, срабатывание защиты в оборудовании, а в худшем – полностью выведет его из строя.
  • Изменение частоты моментально отразится на скорости вращения асинхронных двигателей, а также приведет к снижению активной мощности. Помимо отклонения приведут к изменению ЭДС генераторов, что вызовет лавинный процесс.

Мы привели только несколько примеров, но и их вполне достаточно, чтобы стало понятно насколько важно придерживаться норм, указанных в настоящих стандартах и ПУЭ.

Список использованной литературы

  • Сибикин Ю.Д. «Основы электроснабжения объектов» 2015
  • Сафонов Д. Г., Лютаревич А.Г., Долингер С. Ю., Бирюков С. В. «Влияние отклонения напряжения на потери мощности в электрооборудовании электрических сетей и потребителей» 2013
  • Ананичева С.С., Алексеев А.А., Мызин А.Л. «Качество электроэнергии регулирование напряжения и частоты в энергосистемах» 2012

Регулирование напряжения в сетях

1. Наибольшее отклонение напряжения на шинах ЦП при режиме максимальных нагрузок ограничивается условием, что отклонение напряжения на зажимах ближайшего к ЦП электроприемника не превосходит допустимого (рис. 11-3):

где — потеря напряжения в сети 6-20 кв от ЦП до ближайшей ТП, %;
— потеря напряжения в трансформаторе, %;
— потеря напряжения от вторичной стороны распределительного трансформатора до ближайшего электроприемника, %;
-добавка напряжения для ответвления +5%.

2.Из диаграммы напряжений на рис. 11-2 видно, что наиболее низкое напряжение в режиме максимальных нагрузок будет на зажимах приемника В2, получающего питание от трансформатора 2, присоединенного к сети 6-20 кв в конце зоны ответвления +5%. Напряжение на этом приемнике будет оставаться в пределах допустимого при выполнении условия (см. рис. 11-1 и 11-3)


где — добавка напряжения при ответвлении обмотки трансформатора +2,5, %.

Отсюда определяется величина допустимой потери напряжения в сети до 1000 в:

3.Наименьшее отклонение напряжения на шинах ЦП в режиме минимальных нагрузок ограничивается условием, что отклонение напряжения на зажимах электроприемника В2 не выходит из допустимых пределов (см. рис. 11-2 и 11-3):

В последней формуле в скобках указана суммарная потеря напряжения от ЦП до электроприемника В2 при режиме максимальных нагрузок, а коэффициент К, определяемый по формуле (11-2), учитывает уменьшение указанной потери напряжения при режиме минимальных нагрузок.

4.Номер ответвления х последней зоны определяется из условия, что отклонение напряжения на зажимах электроприемника Ах
в режиме минимальных нагрузок не превышает допустимого (рис. 11-2 и 11-3):

где — добавка напряжения для ответвления х обмотки трансформатора, %.
Отсюда

По табл. 11-2 подбирается номер ответвления, для которого добавка не превышает величины, полученной по формуле (11-8).
Подставив уточненное значение добавки в формулу (11-7), получим верхний предел допустимых отклонений напряжения на шинах ЦП в режиме минимальных нагрузок . Нижний предел этого отклонения был определен выше по формуле (11 -6).
Таким образом, в режиме минимальных нагрузок отклонения напряжения на шинах ЦП должны удовлетворять условию

5.Величина допустимой потери напряжения в сети 6-20 кв определяется концом зоны ответвления х обмотки трансформатора
(рис. 11-3):

6.Средние величины напряжений в режимах максимальных и минимальных нагрузок могут быть определены соответственно по формулам (см. рис. 11-1):

Пример 11-1.
Определить диапазон регулирования напряжения в ЦП и величины допустимых потерь напряжения в городских распределительных сетях 380/220 в и 6-20 кв при следующих условиях:
1.Нагрузка сети однородна и графики ее изменений во времени для всех присоединенных к сети 6-20 кв трансформаторов практически одинаковы.
2.Отношение минимального суммарного тока трансформатора в ЦП к максимальному К=0,2.
3.Зона нечувствительности устройства РПН(регулирование напряжения под нагрузкой) в ЦП
4.Допустимые отклонения на зажимах приемников

5.Потери напряжения в трансформаторе для режима максимальных нагрузок
6.Потеря напряжения от шин ЦП до ближайшей ТП
7.Потеря напряжения от шин распределительного щита в ТП до ближайшего электроприемника
Решение.
Последовательно определяются по формулам (11-4), (11-5), (11-6) и (11-8):

По табл. 11-2 выбираем ответвление обмотки трансформатора -2,5%, для которого добавка напряжения удовлетворяет условию
7,96<8,05%.
Верхний предел допустимых отклонений напряжения на шинах ЦП определяем по формуле (11-7):

Принимаем в соответствие с формулой (11-9)
По формулам (11-10), (11-11) и (11-12) определяем

Пример 11-2.
Найти решение для данных примера 11-1, но при условии, что распределительная сеть города получает питание через шины РП и ближайшая к ЦП трансформаторная подстанция присоединена в точке сети, потеря напряжения до которой от шин ЦП составляет:

Решение:

Выбор напряжения | Электрические сети энергоемких предприятий

Страница 5 из 30

1-6. ВЫБОР НАПРЯЖЕНИЯ ПИТАЮЩИХ И РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЕЙ ЭНЕРГОЕМКИХ ПРЕДПРИЯТИЙ

Принятые в СССР номинальные напряжения трехфазного тока электрических сетей, генераторов, трансформаторов и приемников электрической энергии приведены в табл. 1-2.
Таблица 1-2
Номинальные напряжения трехфазного тока, принятые в СССР (кВ)


Сети и приемники электрической энергии

Генераторы

Трансформаторы

Напряжения, длительно допустимые по условиям работы изоляции

Первичные
обмотки

Вторичные
обмотки

0,127

0,133

0,127

0,133

 

0,22

0,23

0,22

 0,23

0,38

0,40

0,38

0,40

0,66

0,69

0,66

0,69

3

3,15

3 и 3,15

3,15 и 3,3

3,5

6

6,3

6 и 6,3

6,3 и 6,6

6,9

10

10,5

10 и 10,5

10,5 и 11

11,5

20

21

20 и 21

21 и 22

23

35

35

38,5

40,5

110

110

121

126

150

150

165

172

220

220

242

252

330

330

347

363

500

500

525

525

750

750

787

787

Выбор напряжения производится одновременно с выбором схемы электроснабжения с учетом напряжений принятого электрооборудования, в частности электродвигателей. Намечаются целесообразные варианты схем электроснабжения при разных сочетаниях напряжений отдельных звеньев, и вопрос выбора напряжения решается комплексно путем технико-экономических сравнений вариантов. Эти сравнения необходимы при проектировании крупных предприятий с большой потребляемой мощностью, когда требуется сооружение новых или значительное расширение существующих районных подстанций, электростанций и сетей; в этих случаях вопрос о выборе напряжения решается совместно или по согласованию с энергетической системой.
Сравнение вариантов производится также, когда представляется возможным получать от источника питания энергию на двух или более напряжениях или же при проектировании связей заводских электростанций с районными сетями.
При выборе напряжения необходимо стремиться к минимуму ступеней промежуточной трансформации электроэнергии. Существенное влияние на выбор напряжения внутризаводских распределительных сетей оказывает напряжение питающих сетей или линий. Для питания крупных энергоемких предприятий теперь уже начинают применяться напряжения 330 и 500 кВ, а в дальнейшем возможно применение и напряжения 750 кВ при наличии близко расположенных районных сетей этого напряжения. Эти напряжения в глубь предприятия не вводятся и трансформируются на напряжение 110 иногда 220 кВ. Если же питающие линии имеют напряжение 35—220 кВ, то они вводятся непосредственно на предприятие без промежуточной трансформации в виде глубоких магистральных вводов или через УРП (см. § 1-4).
При напряжении питания до 10—20 кВ это напряжение целесообразно принимать я для распределительных внутризаводских сетей в следующих случаях:
при близости источника питания;
при наличии собственной ТЭЦ, от которой питается часть нагрузок крупного предприятия на генераторном напряжении 6—10 кВ.
Для внутризаводских сетей крупных энергоемких предприятий можно дать следующие общие рекомендации по выбору напряжения.
На первой ступени следует применять 110 (220) кВ с глубокими вводами или 10 (6) кВ с мощными токопроводами. Иногда применяется целесообразное сочетание этих двух систем при технико-экономическом обосновании его. Напряжение 220 кВ применяется реже, чем 110 кВ, так как линии 220 кВ требуют больше места и их труднее разместить на обычно стесненной площадке. На первой ступени это напряжение может оказаться целесообразным в тех случаях, когда оно подается непосредственно от энергосистемы. В тех же случаях, когда питающие линии имеют напряжение 330 кВ и более и у границы предприятия неизбежна трансформация, для первой ступени распределения энергии на предприятии следует применять 110 кВ, так как это напряжение обычно является достаточным для питания относительно не очень крупных электронагрузок разукрупненных подстанций при относительно коротких линиях глубоких вводов.
На второй ступени, как правило, применяется напряжение 10 или 6 кВ. Выбор между этими двумя напряжениями зависит от многих факторов. Основным фактором являются число и мощность электродвигателей средней мощности, которые пока еще не изготовляются на напряжение 10 кВ или изготовляются не во всех  нужных исполнениях, и следовательно, приходится применять двигатели на напряжение 6 кВ (табл. 1-3).
Таблица 1-3
Напряжения и мощности изготовляемых электродвигателей


Мощности электродвигателей, кет

Напряжения электродвигателей, кВ

0,38

0,63

3

6

10

0,1 — 1

+

 

 

 

 

1—100

+

+

100—200

+

+

+

200—350

+

+

+

+

350—600 (700)

 

+

+

+

600—1 000

+

+

800—1 000 и более

 

+

4-

Примечание. +— изготовляются,— не изготовляются.
Ограниченный пока диапазон электродвигателей, изготовляемых на напряжение 10 кВ, препятствует внедрению их в сетях промышленных предприятий. Многолетняя практика проектирования показала, что напряжение 10 кВ, несмотря на его принципиальные преимущества, в ряде случаев получается неэкономичным по сравнению с напряжением 6 кВ на тех предприятиях, на которых имеется большое количество электродвигателей мощностью в пределах от 200 до 1 000 кет. При наличии на предприятии ТЭЦ при выборе напряжения сетей второй ступени приходится в какой-то мере учитывать напряжение генераторов или оказывать влияние на выбор этого напряжения при проектировании ТЭЦ. Если напряжение 6 кВ для электродвигателей предопределено упомянутыми выше условиями или же поставкой их совместно с производственным оборудованием и механизмами, то вопрос о выборе основного напряжения всей распределительной сети (10 или 6 кВ) решается технико-экономическим сравнением трех вариантов.

  1. Распределение энергии производится при напряжении 6 кВ.
  2. В качестве основного напряжения распределительной сети принимается напряжение 10 кВ, а для питания электродвигателей предусматриваются локальные подстанции с понижающими трансформаторами 10/6 кВ или же при малом числе двигателей 6 кВ применяется схема блока «линия 10 кВ — трансформатор 10/6 кВ — электродвигатель 6 кВ».
  3. Применяются трансформаторы с расщепленными обмотками 10 и 6 кВ. Этот вариант в принципе экономичен, но он подходит в тех случаях, когда удается относительно равномерно распределить нагрузку между ветвями 10 и 6 кВ расщепленного трансформатора.

Выбор одного из указанных вариантов производится на основании технико-экономических расчетов. Если варианты получаются равноценными, то нужно, как правило, применять напряжение 10 кВ как более перспективное, даже если этот вариант немного дороже. Приведенные рассуждения о применении напряжений 6 и 10 кВ справедливы при напряжении вторичных цеховых сетей 380 в. При напряжении 660 в положение меняется, так как соотношения между мощностями двигателей 10 кВ и 660 в другие, чем между 10 кВ и 380 в (табл. 1-3), более благоприятные для напряжения 10 кВ. Нижний предел мощности двигателей на напряжение 10       кВ составляет 800—1 000 кет, а верхний предел мощности двигателей на напряжение 660 в 600—700 кет, т. е. мощности электродвигателей на напряжения 10 кВ и 660 в смыкаются. Это позволяет во многих случаях отказаться от напряжения 6 кВ и шире применять более экономичные напряжения 10 кВ и 660 в. Это обстоятельство особенно нужно иметь в виду при (проектировании электроснабжения предприятий,, на которых устанавливается большое количество электродвигателей средней мощности, например химических и нефтеперерабатывающих заводов.
Необходимо отметить, что при выборе между напряжениями 10 и 6 кВ сетевые факторы (потери, расход кабелей) теперь не играют такой существенной роли, как раньше, потому что дробление (Подстанций 110—220 кВ, приближение их к нагрузкам и применение токопроводов резко снизили протяженность .кабельных сетей 6—10 кВ.
Напряжение 3 кВ в распределительных сетях на новых предприятиях не применяется; при реконструкции и расширении предприятий существующие распределительные сети 3 кВ, как правило, целесообразно переводить на более высокое напряжение. При распределении энергии на напряжении 10 кВ напряжение 3 кВ иногда применялось для питания электродвигателей мощностью от 100 до 200—350 кет (при значительном их числе) с (промежуточной трансформацией 10/3 кВ. Напряжение 3 кВ в этом случае являлось не сетевым, а вспомогательным промежуточным напряжением для подвода питания к отдельным электродвигателям или группе их. Но даже и эта ограниченная область применения напряжения 3 кВ постепенно сужается, так как более рационально сочетание напряжений 10/6 кВ с применением трансформаторов с расщепленными обмотками 10 и 6 кВ или же схемы блока «трансформатор 10/6 кВ— двигатель» при наличии двигателей средней мощности, не рассчитанных на  напряжение 10 кВ. По мере внедрения напряжения 0,66 кВ и расширения диапазона мощностей двигателей, изготовляемых на напряжение 6 кВ, область применения напряжения 3 кВ еще более уменьшается, и в дальнейшем его совсем можно будет изъять из стандарта, сохранив только для действующих электроустановок до их реконструкции. В новом стандарте напряжение 3 кВ заключено в скобки, как нерекомендуемое. Напряжение 20 кВ не имеет значительных перспектив на крупных энергоемких промышленных предприятиях, так как оно является недостаточным в качестве единого напряжения для всего предприятия и на первых ступенях электроснабжения неизбежно придется применять более высокие напряжения. Следовательно, появятся две ступени трансформации: 110—220/20 кВ для распределительной сети и 20/6— 10 кВ для электродвигателей. Так как сетевые факторы на вторичном напряжении при дроблении подстанций 110—220 кВ ,не имеют существенного значения, то система двух трансформаций: 110—220/20 и 20/6—10 кВ является неконкурентоспособной с существующей апробированной системой 110— 220/6—10 кВ при глубоких вводах. Для связи между заводской станцией и ГПП придется применять промежуточную трансформацию 6—10/20 кВ. а для питания электродвигателей крупной и средней мощности нужна будет вторая промежуточная трансформация с напряжения 20 кВ на 6 кВ, что явно нерационально. Применение намечающихся к изготовлению мощных генераторов ТЭЦ на напряжение 20 кВ принципиально не изменит положение, так как собственные ТЭЦ, за редкими исключениями, покрывают очень незначительную часть потребности в электроэнергии. К тому же применение таких мощных генераторов целесообразно только на очень крупных заводских ТЭЦ. Очень существенным препятствием к внедрению напряжения 20 кВ в настоящее время является также необеспеченность его электрооборудованием в нужных количестве и ассортименте.
Напряжение 35 кВ на крупных предприятиях также имеет очень ограниченное применение, так как оно неэкономично при передаче большой мощности в питающих сетях и распределительных сетях первой ступени на этих предприятиях. Основная область применения этого напряжения — предприятия средней мощности: металло- и деревообрабатывающие и др. в тех случаях, когда питание от энергосистемы осуществляется на этом напряжении. На крупных предприятиях напряжение 35 кВ иногда применяется для питания крупных электроприемников (сталеплавильные печи, ртутно-выпрямительные установки) или же при наличии удаленных нагрузок и других условий, требующих повышенного напряжения питания. Теперь и эти области постепенно отпадают, так как намечается выпуск электропечных и ртутно-выпрямительных трансформаторов на напряжение 110—154 кВ. В то же время минимальная мощность трансформаторов на напряжение 110 кВ снизилась до 2 500 кВА, что позволяет питать небольшие удаленные нагрузки крупных предприятий на этом более экономичном напряжении с простейшей защитой этих небольших трансформаторов стреляющими предохранителями.
Технико-экономическое сравнение напряжений 35 и 110 кВ на первой ступени электроснабжения крупных предприятий в большинстве случаев подтверждает преимущество 110 кВ, так как при нем отпадает одна ступень трансформации электроэнергии (35/6—10 кВ) на предприятии и не требуется дополнительная мощность трансформаторов 110/35 кВ на источниках питания. Удорожание же подстанций 110 кВ по сравнению с подстанциями 35 кВ при современных простых схемах коммутации и конструктивных исполнениях незначительно (в общем комплексе затрат).
Технико-экономические исследования показали целесообразность восстановления напряжения 66—69 кВ, применявшегося ранее в сетях некоторых районных энергоуправлений, так как в нашей шкале получается очень большой разрыв между напряжениями 35 и 110 кВ. Такое напряжение довольно широко применяется за рубежом, и применение его может оказаться целесообразным на больших энергоемких предприятиях черной и цветной металлургии с крупными сосредоточенными нагрузками, расположенными на расстоянии 2—5 км одна от другой и питаемых по простейшим схемам без выключателей и сборных шин. Напряжение 35 кВ в этих случаях недостаточно и вызывает большие потери напряжения и энергии и значительный перерасход проводникового материала; напряжение же 110 кВ удорожает всю систему и может привести к недоиспользованию пропускной способности линий, аппаратов и трансформаторов, если, в частности, сечение проводов при напряжении 110 кВ определяется потерями на корону. Экономия капитальных затрат при сравнении 66 кВ с напряжением 35 кВ составляет примерно 10—15%.
Весьма существенными преимуществами напряжения 66—69 кВ по сравнению со 110 кВ являются:
меньшие габариты воздушных линий;
возможность применения кабелей с вязкой пропиткой, а не маслонаполненных.
В цеховых сетях до 1 000 в основным пока является напряжение 380/220 в при совместном питании силовых и осветительных нагрузок. Введенное в стандарт напряжение 660 в до сего времени еще недостаточно освоено ни электропромышленностью, ни потребителями. Внедрение напряжения 660 в задерживается из-за отсутствия полного ассортимента электрооборудования на это напряжение. Факторами, стимулирующими применение напряжения 660 в вместо 380 в, являются:
уменьшение капитальных затрат и ежегодных расходов в сети и электродвигателях за счет уменьшения сечения, рационального укрупнения подстанций и трансформаторов, снижения потерь электроэнергии, уменьшения стоимости и повышения к. п. д. электродвигателей 660 в по сравнению с электродвигателями 3 и 6 кВ;
резкое увеличение удельной плотности нагрузки и удельных расходов энергии, а также концентрация мощностей электроприемников на крупных предприятиях, требующая применения трансформаторов 1 600 кВА, при которых токи короткого замыкания при вторичном напряжения 380 в возрастают до величин, недопустимых для аппаратов.

Противоположными факторами являются: повышенная стоимость электродвигателей (а также защитных и пускорегулирующих аппаратов) 660 в по сравнению с электродвигателями 380 в;
необходимость сохранения напряжения 380/220 в для мелких электродвигателей, освещения, аппаратов и приборов управления и измерения; это вызывает увеличение капитальных затрат и усложняет эксплуатацию.
Наиболее экономично применение напряжения 660 в в сочетании с первичным напряжением 10 кВ (вариант 1). При этом мощность трансформаторов при 660 в будет примерно равна суммарной мощности трансформаторов при 0,4 кВ, которая складывается из мощностей основных трансформаторов 10/0,4 кВ и дополнительных трансформаторов 10/6 или 10/3 кВ, необходимых для питания двигателей, которые не изготовляются на напряжение 0,4 кВ. Следовательно, вся экономия, получаемая за счет удешевления двигателей 660 кВ и увеличения их к. п. д., а также уменьшения потерь в сети 660 в по сравнению с сетью 380 в, полностью реализуется. При первичном же напряжении 6 кВ (вариант 2) значительная часть крупных двигателей может быть включена непосредственно на это напряжение, и поэтому суммарная мощность трансформаторов будет меньше. Если же все двигатели принять на напряжение 660 в, то потребуется дополнительная трансформация, расходы на которую снижают экономию от применения напряжения 660 в, получаемую за счет упомянутых выше факторов, и поэтому эффект от внедрения напряжения 660 в при первичном напряжении 6 кВ получится меньшим.
Подсчеты показали, что при варианте 1 потери энергии получаются больше (на 5—6%), чем при вторичном напряжении 380 в в сочетании с первичным напряжением 6 кВ. Это является следствием худшего к. п. д. электродвигателей 10 кВ, примененных в варианте 1, по сравнению с к. п. д. электродвигателей 6 кВ (при варианте 2), а также того, что при варианте 6 кВ часть электродвигателей принята на это напряжение и суммарная мощность трансформаторов уменьшается. Применение напряжения 660 в целесообразно в тех случаях, когда по условиям технологии и окружающей среды нельзя в достаточной степени осуществить дробление цеховых подстанций и приближение их к нагрузкам, когда, следовательно, получаются протяженные и разветвленные кабельные сети напряжением до 1 000 в большого сечения. Напряжение 660 в целесообразно также на предприятиях с очень большой удельной плотностью электрических нагрузок.
Ориентировочные расчеты по каменноугольной, нефтеперерабатывающей и азотной отраслям промышленности показали выгодность и целесообразность применения напряжения 660 в. На предприятиях металлургической, железорудной, машиностроительной, цементной отраслей промышленности применение напряжения 660 в пока еще не дает должного экономического эффекта. При применении напряжения 660 в возникает вопрос о наиболее целесообразном режиме нейтрали сети: изолированной или заземленной. Ниже приведено сопоставление этих режимов (табл. 1-4). Из приведенного сравнения видно, что изолированная нейтраль в сетях 660 в предпочтительнее заземленной в отношении техники безопасности и удобств эксплуатации, особенно в помещениях особо сырых. Такой режим нейтрали проверен опытом эксплуатации сетей 500 в. Преимущества заземления нейтрали в сетях 660 в в отношении самоликвидации замыкания на землю и отсутствия необходимости в автоматическом контроле изоляции сказываются меньше, чем при напряжении 380 в, так как сети 660 в менее разветвлены, а подстанции более крупны, и поэтому потребуется меньшее число точек контроля изоляции.
Следовательно, нужно сохранить рекомендации ПУЭ о       режиме нейтрали (см. § 1-7-21), согласно которым в электроустановках трехфазного тока при номинальных напряжении 500 и 660 в нейтраль должна быть изолирована.

Способы и средства регулирования напряжения в электрических сетях.

Способы и средства регулирования напряжения в электрических сетях.

[Разделы] [Оглавление раздела] [Главная страница СПЭТ] [Назад] [Дальше]


Способы и средства регулирования напряжения в электрических сетях.

Способы и средства регулирования напряжения в электрических сетях

Регулирование напряжения в электрических сетях сложно осуществлять, изменяя:

а) напряжение генераторов электростанций;

б) коэффициент трансформации трансформаторов и автотрансформаторов;

в) параметры питающей сети;

г) величину реактивной мощности, протекающей по сети. Применением перечисленных способов обеспечивается централизованное регулирование напряжения, однако последние три из них могут быть применены и для местного регулирования.

Рассмотрим, подробнее способы регулирования напряжения, применяемые в электрических сетях.

Регулирование напряжений в сетях генераторами эл. станций.

Генераторы электростанций энергетических систем работают на общую электрическую сеть и поэтому режим их работы подчинен общим требованиям, предъявляемым к электрическим системам. Так, например, исходя из условия обеспечения расчетного уровня напряжения в узловых точках электрических сетей, электростанциям наряду с заданием по выработке активной мощности задаются также графики генерации реактивной мощности: максимальной — в утренний и вечерний максимумы активной нагрузки и минимальной—в ночное время.

Генераторы, работающие в блоках с повышающими трансформаторами, не имеют непосредственной связи с распределительными сетями генераторного напряжения, а нагрузка собственных нужд, как правило, питается через трансформаторы с регулированием напряжения под нагрузкой. Поэтому широкое изменение генерации реактивной мощности ими и связанное с этим значительное изменение напряжения на зажимах генераторов не вызывают особых затруднений. Обычно на блочных генераторах используют полный возможный предел изменения напряжения в соответствии с ПТЭ:от —5% до +10% UН.

На генераторах, работающих на шины генераторного напряжения с присоединенной к ним распределительной сетью, напряжение регулируется в меньших пределах, так как глубокое изменение напряжения оказалось бы неприемлемым для потребителей. При регулировании реактивной мощности на этих генераторах по заданному графику нагрузки системы уровень напряжения на шинах, необходимый для нормальной работы потребителей, достигается изменением коэффициента трансформации трансформаторов с РПН, связывающих генераторы с сетью ВН.

В тех случаях, когда трансформаторы связи генераторов с сетью ВН не имеют РПН, регулирование напряжения на шинах генераторного напряжения производится изменением возбуждения генераторов, с одновременным (автоматическим) изменением их реактивной мощности. Регулирование — встречное и осуществляется по суточному графику напряжения, задаваемому диспетчером электрических сетей.

Регулирование напряжения изменением коэффициента трансформации трансформаторов, изменением параметров сети, изменением величины реактивной мощности.

Рис. 10-1. Схема регулирования напряжения трансформатора с РПН (для одной фазы)

Городские и сельские распределительные сети напряжением б—10 кВ, как правило, оборудованы трансформаторами небольшой мощности (до 400—630 кВ А), у которых коэффициент трансформации в пределах ±5% изменяется переключением ответвлений обмотки ВН при отключенном от сети трансформаторе, т. е. без возбуждения трансформатора (ПБВ). Поэтому коэффициент трансформации этих трансформаторов изменяют только либо при изменении схемы электроснабжения, либо при переходе от сезонных максимальных нагрузок к минимальным и наоборот, т. е. осуществляется сезонное регулирование. Суточное регулирование напряжения в этих сетях возлагается на ЦП. Надлежащий коэффициент трансформации на длительный сезонный период выбирают, исходя из уровня напряжения на шинах ЦП и потери напряжения в распределительной сети.

Для обеспечения централизованного суточного регулирования напряжения на подстанциях, питающих распределительные сети, устанавливают трансформаторы с РПН, переключение ответвлений у которых производится без перерыва электроснабжения потребителей. Трансформаторы снабжаются аппаратурой автоматического регулирования — регуляторами напряжения, которые входят в комплектную поставку.

Встроенные регулировочные устройства в трансформаторах напряжением 35—330 кВ размещаются в нейтрали обмоток ВН. Диапазон регулирования напряжения ± 12% или ±16% номинального напряжения, ступенями по 1,5 или 1,78%. Трехобмоточные трансформаторы 110 и 220 кВ изготовляются с РПН только на обмотке ВН, а обмотка СН имеет ответвления для изменения коэффициента трансформации ±2 — 2,5%, переключаемые без возбуждения трансформатора (ПБВ

В качестве примера на рис. 10-1 приведена схема регулирования напряжения для трансформатора 110 кВ с диапазоном регулирования ±16% номинального напряжения.

Обмотка ВН трансформатора состоит из нерегулируемой части обмотки Аb, ступени грубой регулировки и регулировочной обмотки de из 9 ступеней. Каждая ступень регулировочной обмотки содержит 1,78% витков общего числа витков обмотки Ас. Ступень грубого регулирования по числу витков равноценна регулировочной обмотке

В положении, изображенном на схеме (рис. 10-1), трансформатор работает на втором ответвлении, т е. с высоким коэффициентом трансформации: кроме нерегулируемой части обмотки, включены ступень грубой регулировки и 8 ступеней регулировочной обмотки. Избиратель нечетных ступеней находится в положении 1, током не обтекается и готов к переходу на новую ступень. При получении команды снизить коэффициент трансформации (движение избирателей по стрелкам) избиратель начинает переход со ступени 1 на ступень 3. Одновременно контактор получает импульс на подготовку к переключению с К2 на К1, аккумулируя энергию в пружине. После перехода избирателя в положение 3 пружина почти мгновенно (?0,15 с) перебрасывает контактор с К2 на К1. Ток нагрузки в процессе переключения контактора проходит через активное сопротивление R2, а витки 2—3 регулируемой обмотки замыкаются через R2 + R1.

В новом положении избиратель четных ступеней без тока и готов к переходу на другую ступень, а контактор к переходу на К2.

При дальнейшем снижении коэффициента трансформации процесс протекает аналогично описанному, пока избиратели не достигнут положений 9 и 10. В этом состоянии трансформатор будет работать с основным коэффициентом трансформации (т.е. на ответвлении ± 0%). Затем в процессе дальнейшего снижения коэффициента трансформации избиратель нечетных ступеней с 9 перейдет в положение 1, контактор в положение К1, а переключатель замкнет контакты 11—12. Ступень грубого регулирования из работы будет исключена, а вся регулировочная обмотка de будет подключена непосредственно к нерегулируемой части Аb. После этого следует новое прохождение каждого избирателя в означенном на рисунке направлении до полного исключения из работы витков регулировочной обмотки (ответвление —16%).

При увеличении коэффициента трансформации переключения будут идти в обратном порядке.

Трехобмоточные автотрансформаторы 220—330 кВ выпускаются со встроенными устройствами РПН для регулирования напряжения на стороне СН в линии. Диапазон регулирования ±12% ступенями не более 2% UН.

На рис. 10-2 приведена схема регулирования для одной фазы трехфазного автотрансформатора 330/110 кВ.

Переключение ответвлений происходит в следующем порядке. При переходе со ступени а на ступень b сначала размыкается рабочий контакт 1, затем вспомогательный контакт 2 (ток нагрузки протекает через левое сопротивление R), далее замыкается дугогасительный контакт 3?, образуя мост (уравнительный ток протекает через оба сопротивления R и R’), и вслед за этим размыкается дугогасительный контакт 3, переводя ток нагрузки на правое плечо; после замыкаются последовательно контакты 2′ и /’, чем и создается новое рабочее положение. Переход с ответвления b на ответвление а происходит в аналогичном порядке.

Рис. 10-2. Схемы регулирования напряжения автотрансформаторов 220— 330/110 кВ
ПА —переключатель ответвлений с активными сопротивлениями R, R’; И1, И2 избиратели ступеней.

Изменение коэффициента трансформации между ВН и СН переключением ответвлений в линии СН не изменяет соотношения напряжений между обмотками ВН и НН. Поэтому автотрансформаторы такой конструкции имеют большие эксплуатационные преимущества перед автотрансформаторами с регулированием напряжения в нейтрали общей обмотки. В последнем случае, как известно, при переключении ответвлений происходит одновременное изменение числа витков обмоток ВН и СН, что приводит к изменению соотношения напряжений между обмотками ВН и НН: при увеличении напряжения на обмотке СН напряжение на обмотке НН уменьшается и, наоборот, при снижении напряжения обмотки СН напряжение обмотки НН увеличивается. Это приводит к невозможности присоединения нагрузки к обмотке НН без установки последовательно с ней линейного регулировочного автотрансформатора даже при совпадении графиков нагрузок на обмотках СН и НН.

Линейные регулировочные автотрансформаторы мощностью 16—100 MB -А напряжением 6—35 кВ, а также 63—125 MB-A 110 кВ предназначаются для установки последовательно с нерегулируемыми обмотками трансформаторов, а также непосредственно в линиях электропередачи.

На рис. 10-3 дана схема одной фазы линейного трехфазного регулировочного автотрансформатора 10—35 кВ типа ЛТДН с реверсированием регулировочной обмотки. Диапазон регулирования линейных автотрансформаторов ±15% UН.

От регулировочной автотрансформаторной обмотки AT через Избиратели ступеней И1 и И2 питается обмотка возбуждения В последовательного трансформатора ПТр. В последовательной обмотке этого трансформатора, включенной в рассечку линии, наводится добавочная э д с , величина которой зависит от положения избирателей на регулировочной обмотке, а направление —от положения переключателя ее реверсирования ПР.

В положении, данном на рис. 10-3, отрегулированное напряжение выше подведенного. Ток, питающий обмотку возбуждения последовательного трансформатора, проходит через ветви реактора Р в противоположных направлениях, вследствие чего результирующий магнитный потока реакторе очень мал и его сопротивление незначительно.

Рис. 10-3. Схема одной фазы линейного регулировочного автотрансформатора типа ЛТДН

При снижении напряжения в линии контактор К1 кратковременно прерывает цепь избирателя И1 и последний переходит на одну ступень в направлении контакта 9. Вслед за этим аналогично происходит переход избирателя И2 на тот же контакт. В процессе перехода избирателей обмотка возбуждения питается через одну ветвь реактора Р, а витки между соседними ступенями регулировочной обмотки замыкаются через последовательно включенные обе ветви реактора Р.

После достижения последней ступени 9 (что соответствует регулированию ± 0% UН) переключатель реверса ПР переходит в положение 3, а избиратели, вращаясь по кругу, в положение 1. Направление э. д. с. в последовательной обмотке изменится на обратное, и процесс дальнейшего снижения напряжения будет протекать, как описано выше, с переходом избирателей от контакта 1 к контакту 9.

Л1— линия регулируемого напряжения, Л2 линия отрегулированного напряжения

Повышение напряжения в линии идет обратным порядком.

Установка линейных регулировочных автотрансформаторов (РТ) 35—110 кВ непосредственно в линиях передачи позволяет обеспечить дополнительно к местному централизованное регулирование напряжения для групп потребителей, присоединенных к этим линиям. Установка РТ целесообразна в начале линий, так как в этих случаях будет обеспечена передача энергии при более высоком уровне напряжения.

Регулирование напряжения в сетях изменением параметров сети. В некоторых пределах напряжение можно регулировать, изменяя сопротивление питающей сети. Так, если питающая сеть или ее участок состоит из нескольких параллельных линий, то, отключая в часы минимальных нагрузок одну из таких линий, можно увеличить потерю напряжения в питающей сети и тем понизить напряжение у потребителя.

Снижения реактивного сопротивления цепи и, следовательно, увеличения напряжения при максимальных нагрузках можно добиться, применяя продольную компенсацию индуктивности линии.

Напряжение на приемном конце звена линии при наличии продольной компенсации с сопротивлением Хс выражается формулой:

Из формулы видно, что изменением величины Хс (например, шунтированием конденсаторов при сниженных нагрузках) можно осуществлять ступенчатое регулирование напряжения сети.

В линиях дальних передач продольную компенсацию используют для повышения их пропускной способности. Число конденсаторов в батарее для продольной компенсации определяется требуемым уровнем напряжения на приемной подстанции и максимальной нагрузкой линии. В электропередачах высокого напряжения обычно компенсируют не свыше 40—50% индуктивности линии, так как большая степень компенсации может привести к ложным действиям релейной защиты, а при известных условиях и к колебательному режиму (самораскачиванию) синхронных генераторов.

Регулирование напряжения в сетях изменением величины реактивной мощности в них.

Рис 10-4. Векторная диаграмма изменения напряжения в конце линии в зависимости от изменения передаваемой реактивной мощности.

Эффективно регулировать напряжение путем изменения реактивной мощности в сети можно с помощью синхронных компенсаторов или батарей конденсаторов при включении их параллельно нагрузке.

Синхронный компенсатор (СК) устанавливают на приемной подстанции и присоединяют к шинам НН подстанции или к обмотке НН автотрансформатора. Такой компенсатор представляет собой синхронный электродвигатель и при перевозбуждении является емкостной нагрузкой для сети или, что все равно, генератором реактивной индуктивной мощности, а при недовозбуждении становится потребителем реактивной мощности. Таким образом, изменяя возбуждение синхронного компенсатора, непосредственно влияют на величину реактивной мощности, протекающей по сети, и следовательно, на

напряжение у потребителя. Покажем это на простом примере передачи мощности по радиальной линии с нагрузкой на конце и с синхронным компенсатором СК, включенным параллельно нагрузке (рис. 10-4).

Положим, для простоты, что электропередачу, изображенную на рис. 10-4,а, можно представить одним звеном с сопротивлением R+jX. Тогда напряжения в конце ее при передаче мощности Р+jQ будет:

Построенная по этой формуле векторная диаграмма (рис. 13-7, б) с разделением падения напряжения в сопротивлениях звена от активной мощности (треугольник аbс) и реактивной (cde) показывает изменение U2 в зависимости от изменения реактивной мощности в линии при постоянной активной нагрузке. Как видно из диаграммы, при передаче по линии максимальной реактивной мощности jQ напряжение на приемном конце U2 будет минимальным (точка е). При генерировании реактивной мощности СК на месте ее потребления и соответствующем уменьшении передаваемой реактивной мощности по линии напряжение в конце передачи будет увеличиваться (конец вектора U2 скользит по прямой еc). При Q = 0, т. е. при передаче только активной мощности (точка с), имеем: U2 > U2. Наконец, если генерируемая на месте мощность будет больше потребляемой и ее избыток будет поступать в линию, то напряжение в конце электропередачи окажется еще больше (точка е’).

Регулирование напряжения при помощи СК происходит плавно. Диапазон регулирования зависит от мощности СК и величины реактивной нагрузки линии.

Номинальной мощностью синхронного компенсатора считается мощность при генерировании им реактивной (индуктивной) мощности, т. е. при работе с перевозбуждением. При работе компенсатора с недовозбуждением или без возбуждения, т. е. в режиме потребления реактивной мощности (что требуется при минимальных нагрузках), его максимальная мощность составляет 40—60% от номинальной. Это объясняется тем, что ток возбуждения СК уменьшается, приближаясь по мере увеличения потребления реактивной мощности к нулю. Для увеличения мощности СК в режиме потребления реактивной мощности прибегают к применению на нем отрицательного возбуждения. В этом случае его мощность гарантируется не ниже 0,65 номинальной.

Синхронные компенсаторы изготовляются на мощность 10 и 16 MB А напряжением 6,3—10,5 кВ и 25—100 MB А напряжением 10,5 кВ. СК мощностью свыше 25 MB А изготовляются с водородным охлаждением. Крупные СК обычно используются по графику генерации реактивной мощности в системе и поэтому служат для централизованного регулирования напряжения.

В тех случаях, когда расчетная мощность компенсирующей установки меньше минимальной мощности СК или когда не требуется ее работа в режиме потребления реактивной мощности, устанавливают управляемые батареи конденсаторов (УБК), разделенные на ряд секций. Наибольшая мощность секций определяется допустимой величиной отклонения напряжения на вторичных шинах приемной подстанции. УБК обладают большей экономичностью, чем СК, и поэтому получают распространение.

УБК большой мощности (100 и более MBА) устанавливают также и на крупных районных подстанциях энергосистем, имеющих достаточное количество СК для работы в режиме потребления реактивной мощности в ночное время. УБК большой мощности включаются непосредственно на шины высокого напряжения — 110 кВ.

Для местного регулирования напряжения на крупных промышленных предприятиях, особенно в тех случаях, когда их электроснабжение производится по линиям с большим реактивным сопротивлением, эффективно используются синхронные электродвигатели мощностью 1000—10 000 кВА. При обычном коэффициенте загрузки двигателей (0,7 РН) располагаемая реактивная мощность их при напряжении на зажимах 0,9 — 1,0 UН составляет от 1,3 до 1,5 QН. Регулирование, как и синхронными компенсаторами, происходит плавно, и этот процесс может быть автоматизирован.

На тех промышленных предприятиях, где имеются УБК, установленные для компенсации реактивной мощности, они могут использоваться и как средства для регулирования напряжения, не вступая при этом в противоречие с их основным назначением.

Выбор мощности синхронных компенсаторов, по условиям регулирования напряжения.

Рис. 10-8. Электропередача с синхронным компенсатором на шинах НН и ее схемы замещения.

Мощность СК и конденсаторов подсчитывают по одним и тем же формулам, но с учетом того обстоятельства, что формулы, определяющие мощность компенсирующей установки в режиме потребления реактивной мощности, для конденсаторов не имеют смысла. Расчет ведут для максимального и минимального режимов нагрузки электропередачи, причем в преобладающем числе случаев заданным является напряжение на шинах питающей подстанции. Искомым напряжением обычно является напряжение на шинах вторичного напряжения приемной подстанции, желательная величина которого и определяет мощность СК. Для электропередачи, изображенной на рис. 10-8, а и представленной в виде одного звена с суммарным сопротивлением RS + jXS , отнесенным к расчетному

напряжению (рис. 10-8, б), связь между напряжениями в начале и в конце ее при нагрузке Р2 + jQ2 напишется в виде:

где U2ж — желательное напряжение на шинах вторичного напряжения подстанции, приведенное к расчетному напряжению; QСК— искомая мощность синхронного компенсатора.

Решая это уравнение относительно QСК, можно определить мощность СК, необходимую для поддержания на шинах напряжения U2ж при заданной нагрузке.

Однако, учитывая, что шкала мощностей СК по ГОСТ дана с очень большими промежутками, можно пользоваться более простыми формулами, например, не учитывающими поперечной составляющей падения напряжения. Получающаяся при этом погрешность ликвидируется выбором стандартной мощности СК.

Пренебрегая поперечной составляющей падения напряжения, для электропередачи, представленной в виде одного звена, будем иметь:

При отсутствии СК и неизменном напряжении U1 в начале линии напряжение на приемном конце электропередачи U2 при той же нагрузке должно удовлетворять равенству:

Приравнивая правые части уравнений (13-1) и (13-2), получаем

Разность последних двух членов в правой части этого равенства представляет собой очень небольшую величину (на порядок меньше разности первых двух членов) и при расчетах ею можно пренебречь. Принимая это упрощение, получаем выражение для мощности компенсатора:

Если U2ж и U2,— кВ, XS Ом, то мощность компенсатора QСК — Мвар.

Разность (U2жU2) в выражении (13-3) представляет собой величину, на которую необходимо изменить напряжение на шинах вторичного напряжения подстанции. В режиме максимальных нагрузок эта разность положительна (U2ж > U2), что соответствует работе СК с перевозбуждением. В режиме минимальных нагрузок эта разность может быть отрицательна (U2ж < U2). что будет соответствовать работе СК с недовозбуждением.

Сопротивление XS (представляющее собой сумму индуктивных сопротивлений линий и трансформатора) и напряжения U2ж и U2 в формуле (13-3), приведены к расчетному напряжению.

Если при определении мощности СК по формуле (13-3). пользоваться не приведенными, а полученными в результате расчета электропередачи действительными величинами напряжений на шинах НН, к которым присоединен СК, то и сопротивление XS , входящее в эту формулу, должно быть пересчитано на эти условия. В соответствии с формулами (12-10) получим:

Или

где X? S сопротивление электропередачи, отнесенное к действительному вторичному напряжению U. ; UБ расчетное (базисное) напряжение электропередачи; kТР — коэффициент трансформации трансформатора приемной подстанции.

При определении мощности СК по формуле (13-3) предполагается, что расчет электропередачи был произведен с учетом емкости линии (рис. 13-8, б). В том случае, если емкость не была учтена, то мощность СК, подсчитанная по формуле (13-3) для максимального режима нагрузок, можно уменьшить на величину

где D Q представляет собой часть емкости приемного конца линии, перенесенной на шины вторичного напряжения трансформатора по правилу переноса нагрузок.


[Разделы] [Оглавление раздела] [Главная страница СПЭТ] [Назад] [Дальше]


Сети напряжением 6 10 и 35 кВ

    Принцип действия защитного заземления — снижение до безопасных значений напряжений прикосновения и шага, обусловленных замыканием на корпус . Это достигается уменьшением потенциала заземленного оборудования, при однофазном замыкании на него, а также выравниванием разности потенциалов между основанием, на котором стоит человек, и корпусом заземленного оборудования. Область применения защитного заземления — трехфазные трехпроводные сети напряжением до 1000 В с изолированной нейтралью и выше 1000 В с любым режимом нейтрали (рис. 12.5), [c.160]
    Ввод в здания электрических сетей напряжением до 1000 в, сетей Телефона, радио, сигнализации и т. п. должен осуществляться только кабелем или подземной кабельной вставкой длиной не менее 50 м. Металлическая броня и оболочка кабелей должны быть присоединены у ввода в сооружение к защитному заземлителю электрооборудования здания. [c.361]

    Один из основных вопросов, решаемых при проектировании электроснабжения НПЗ и НХЗ,— выбор напряжения. Для высоковольтных распределительных сетей следует применять напряжение 6 или 10 кВ. Преимущества напряжения 10 кВ перед напряжением 6 кВ уменьшение сечений проводов и кабелей, а также относительных величин потерь напряжения и мощности в сетях уменьшение токов нагрузки и токов короткого замыкания упрощение решения вопросов увеличения мощности при расширении. Однако двигатели 10 кВ выпускаются в ограниченной номенклатуре, двигатели с единичной мощностью 250—630 кВт на напряжение 10 кВ практически отсутствуют, стоимость двигателей 10 кВ выше, чем двигателей 6 кВ. В связи с этим высоковольтные сети напряжением 10 кВ следует предусматривать только для тех предприятий, где источник электроэнергии имеет напряжение 10 кВ и где отсутствуют или имеются в незначительном ко- [c.182]

    Указанное на приборе напряжение тока должно обязательно соответствовать напряжению в сети. Обычно электронагревательные приборы изготовляются для какого-либо одного напряжения тока (127 или 220 в), поэтому перед включением прибора в сеть нужно обязательно обращать внимание на напряжение, указанное на маркировочной таблице, которая прикреплена к прибору. Если электронагревательный прибор, рассчитанный на напряжение 127 в, включить в сеть напряжением 220 в, то прибор быстро выйдет из строя, так как перегорит накаливающаяся проволока сопротивления. В обратном случае сила тока почти вдвое уменьшится и прибор не даст требуемой температуры нагрева. [c.106]

    Последовательность выполнения работы. 1. Включить водородную лампу, для чего проверить, находятся ли выключатели электронного стабилизатора ЭПС-86 накал и высокое напряжение в положениях выключено , повернуть рукоятку в центре по стрелке влево до упора, включить стабилизатор в сеть напряжением 127 в и поставить выключатель накал в положение включено . Через 2 мин повернуть выключатель высокое напряжение в положение включено . 2. Заполнить кюветы одну исследуемым веществом, другую — растворителем. [c.35]

    В ходе строительства и эксплуатации трубопроводов безопасность будет обеспечена, если при длительных режимах работы (нормальных и вынужденных), а также при коротком замыкании на тяговой сети напряжение прикосновения не превысит допустимых значений. Эти значения, приведенные ниже, согласуются с правилами технической эксплуатации предприятий при эксплуатации линий электропередачи напряжением более 1000 Б. [c.184]


    Отсутствует ли ввод в здания и сооружения проводов воздушных линий (силовой и осветительной сети напряжением до 1000 в, телефонных, радио, сигнализации и т. п.) ( 2.13 СН 305—69). [c.360]

    Механизмы крана приводятся от индивидуальных электродвигателей трехфазного переменного тока, питание которых производится от дизель-электрической станции, установленной на кране, а также от внешней сети напряжением 380 В. Независимый электропривод механизмов позволяет производить совмещение рабочих движений крана. Краны имеют две скорости движения груза максимальную и минимальную (посадочную), необходимую при монтаже оборудования. [c.77]

    Безопасность при строительстве и эксплуатации магистральных трубопроводов будет обеспечена, если при длительных режимах работы (нормальных и вынужденных), а также при коротких замыканиях на тяговой сети напряжение прикосновения и шага не превышает допустимых величин  [c.251]

    В соответствии ли с требованиями правил безопасности произведен выбор и прокладка силовых и осветительных сетей напряжением до 1000 s ( VII—3—70 ПУЭ). [c.352]

    В силовых сетях напряжением до 1000 В для заземления (зануления) необходимо применять специальную четвертую жилу кабеля или провода. [c.518]

    Низкая сторона трансформатора питается от сети напряжением 220 б через ЛАТР 7. [c.79]

    Для осмотра и ремонта оборудования предусматриваются переносные средства освещения — переносные фонари (в соответствующем исполнении) с лампами на напряжение 12 в и питанием от стационарной сети напряжением 12 в. Во всех производственных помещениях, а таклклетках вспомогательных помещений должно быть аварийное освещение. Аварийное освещение наружных производственных установок (площадок) может производиться при псмтщи переносных аккумуляторных фонарей в соответствующем исполнении. [c.127]

    Осветительные щитки. Предназначены для распределения электрической энергии и защиты осветительных сетей напряжением 380/220 В. Основные технические данные взрывозащищенных осветительных щитков приведены в табл. 5.20. [c.514]

    Практика проектирования показала, что применить для большинства НПЗ и НХЗ высоковольтные распределительные сети напряжением 10 кВ не удается. [c.183]

    Прибор смонтирован для присоединения к сети напряжением 220 в. Для присоединения к сети напряжением ИО й один из концов обмотки бокового обогрева отсоединяют от реостата и присоединяют к другому концу, а к реостату присоединяют средний отвод. [c.218]

    Последовательность выполнения работы. 1. Включить водородную лампу, для чего проверить, находятся ли выключатели электронного стабилизатора ЭПС-86 накал и высокое напряжение в положениях выключено , повернуть рукоятку в центре по стрелке влево до упора, включить стабилизатор в сеть напряжением 127 в и поставить выключатель накал в положение включено . Через 2 мин повернуть выключатель высокое напряжение в положение включено . 2. Заполнить кюветы одну исследуемым веществом, другую — растворителем. 3. Установить кюветы в кюветную часть спектрофотометра. Для этого следует открыть крышку 9 (рис. 22), отжать прижимные пружины и установить на левую часть каретки кювету с исследуемым веществом, а на правую — кювету с растворителем или пустую. 4. Включить переключатель / (см. рис. 22) в положение включено . 5. Поставить потенциометр чувствительности 2 в среднее положение (четыре оборота от крайнего положения). 6. Установить 220 нм рукояткой длин волн 3 ПО шкале 4. [c.35]

    Известно, что на самых крупных предприятиях в сетях напряжением 380 или 220 В с незаземленной нейтралью трансформаторов наибольшее значение силы тока однофазного замыкания на землю может быть / 10 А. Тогда для самого неблагоприятного случая при /з= 10 А [c.38]

    Правила охраны электрических сетей напряжением до 1000 В. М, Энергия, 1973. 15 с. [c.159]

    Для многозонной печи, если мощности зон различны, электрический расчет проводится отдельно для каждой зоны. Нагревательные элементы могут получать питание непосредственно от цеховой сети напряжением 220, 380 или 660 В или от понижающих электропечных трансформаторов, специально разработанных для электрических печей сопротивления. [c.65]

    Лампу микрофотометра питают от сети переменного тока через феррорезонансный стабилизатор напряжения, который дает на выходе стабилизированное напряжение 12 в. При постоянной частоте сети напряжение на выходе стабилизатора остается достаточно стабильным даже при значительном изменении напряжения на его входе. Постоянный режим горения лампы устанавливается примерно через 15 мин после ее включения. Затем можно приступать к измерению. [c.173]

    Подача тока на спираль накаливания осуществляется от сети напряжением 220 В. После воспламенения АДС геофизический кабель должен быть отсоединен от источника тока и смотан на лебедку подъемника. [c.137]

    Эксплуатация таких сетей может оказаться опасной, так кг. с в сетях напряжением до 1000 В с изолированной нейтралью утрачивается защитная роль изоляции проводов и усиливается угроза поражения человека током в случае прикосновения к пройоду сети (или какому-либо предмету, оказавшемуся под фазным напряжением). [c.159]

    Питание подстанций на 35 и 110 кВ в основном осуществляется по воздушным линиям в двухцепном исполнении. Электроснабжение объектов нефтедобычи и бурения скважин выполнено с помощью распределительных сетей напряжением 6 —10 кВ. Общая длина высоковольтных линий напряжением 6 —10 кВ в 1980 г. составила 7580 км. Кроме того, имеется около 310 км кабельных линий напряжением 6 кВ и 5570 км кабельных линий напряжением до 1000 В. [c.89]

    В качественном флуоресцентном анализе применяется прибор иной конструкции. Он представляет собой светонепроницаемую камеру, разделенную на две части. В одной части камеры укреплена ртутно-кварцевая лампа ПРК-4, в другой помещено исследуемое вещество. Обе части разделены светонепроницаемой перегородкой с отверстием. В отверстие вставлен никелевый черный светофильтр УФС-3. Ртутно-кварцевую лампу ПРК-4 включают за 10—15 мин до начала измерений, чтобы обеспечить устойчивый режим ее работы. Лампу включают в электроосветительную сеть напряжением 127 или 220 в. [c.484]


    Если на такую сдвоенную пластинку подать электрическое напряжение, то одна половинка начинает сокращаться, а другая удлиняться, вследствие чего весь элемент изгибается. При включении в сеть напряжением 220 В элемент длиной 50, шириной 5 [c.509]

    В средней школе № 33 Днепропетровска много лет успешно демонстрируется установка для коксования с электрическим нагревом (от сети напряжением 220 в) с фарфоровой рабочей трубкой и электрическим зажиганием коксового газа при помощи небольшой нихромовой спирали. Зажигающая спиралька из 4 витков тонкой никелиновой проволоки включена последовательно с нагревающим трубку сопротивлением и замкнута накоротко обыкновенным выключателем. Когда коксовый газ начинает выделяться из носика газоотводной трубки, выключатель перекидывается в такое положение, при котором ток быстро накаливает спиральку и газ тотчас зажигается. После этого выключатель опять включается и нагрев спиральки током прекращается газ продолжает спокойно гореть. В установке получается не только подсмольная вода, аммиачная вода и коксовый газ, но также нафталин (оседает на стенках второй интенсивно охлаждаемой U-образной трубки). Выходящий газ предварительно проходит колонку, заполненную стеклянной ватой для предохранения взрыва. [c.71]

    На всех установках защиты, питающихся от Сети напряжением до 1 кв с глухозаземленной нейтралью, все нетоковедущие металлические части выпрямителей, трансформаторов должны иметь защитное заземление, соответствующее требованиям Правил устройства электроустановок МЭС СССР, и содержаться в исправном состоянии. Сопротивление защитного заземления при питании сетей с напряжением до 1 кв должно быть не более 4 ом. Исправность защитного заземления установок защиты должна проверяться внешним осмотром и измерением сопротивления. [c.217]

    Двухфазное включение — прикосновение одновременно к двум фазам, как правило, более опасно, поскольку к телу человека прикладывается наибольшее в данной сети напряжение ( поражающий ток) —линейное, которое зависит лишь от напряжения сети и сопротивления тела человека и не зависит от ре-5кима нейтрали трансформатора, питающего сеть [c.152]

    Источник света — угольная дуга переменного тока, питаемая от сети напряжением 220 в. Ток — 10 а. Дугу зажигают соприкосновением электродов во время горения дуги промежуток между электродами поддерживают равным 2 мм. Фотографируют центральную часть разряда. [c.278]

    Для предотвращения чрезмерного повышения температуры проводников при переходе электрической энергии в тепловую необходимо следующее тщательный контроль рабочих параметров в электрической сети (напряжения, силы тока) нормальные условия теплоотдачи проводов правильный выбор расстояния между проводами, их сечения и материала изоляции плотное присоединение проводов в местах контактов пропайка соединений надежность изоляции, сопротивления сети, всех соединений и контактов устройство автоматических блокировок на распределительном щите, отключающих участки электросети, на которых произошло короткое замыкание, и др. [c.207]

    К помещению должны быть подведены электрические сети напряжением 380 В. Следует предусмотреть возможность заезда автотранспорта для завоза материалов и вывоза готовых блоков. [c.166]

    Во взрывоопасных зонах В-1, В-1а, В-И и В-Па проводники силовых, осветительных и вторичных цепей в сетях напряжением до 1000 В должны быть защищены от перегрузок, и коротких замыканий, а проводники ответвлений к электродвигателям с короткозамкнутым ротором напряжением до 1000 В во взрывоопасных зонах классов В-1, В-1а, В-П и В-Па должны быть защищены от перегрузок и их сечения (кроме кабелей марок ВБВ и АВБВ) должны допускать длительную токовую нагрузку не менее 125% номинального тока электродвигателя. [c.519]

    Сварочные дуговые агрегаты могут присоединяться непосредственно к распределительным электрическим сетям напряжением не свыше 500 в. Однофазные сварочные трансформаторы должны быть равномерно распределены между отдельными фазами трехфазной сети. [c.209]

    Во взрывоопасных помещениях всех классов для силовых и осветительных сетей напряжением до. 1000 в, а также для вторичных цепей управления, измерения, защиты, автоматики и сигнализации могут применяться кабел.ч с бумажной изоляцией, кабели и провода с резиновой и полихлорвиннловой изоляцией. Провода и небронированные кабели в помещениях классов В—I, В—П, а также в помещениях класса В—1а кроме осветительных сетей, должны прокладываться в стальных трубах и их конструкция должна соответствовать способу прокладки. [c.352]

    Получение кривых охлаждения расплавов индивидуальных веществ для градуировки термопары. В кипящую водную баню поочередно опускают ячейки 2 специальной конструкции (рис. 6.2) или сосуды Степанова (рис. 6.3), заполненные двумя чистыми индивидуальными веществами. Выводы ячейки подключают по дифференциальной схеме к регистрирующему прибору (милливольтметру типа М-195), строго соблюдая полярность. Прибор включают в сеть напряжением 220 В таким образом, чтобы провода не нагревались от плитки. Следят за изменением положения светового зайчика милливольтметра. Когда его положение не будет изменяться, температура расплава станет равной температуре кипящей воды. Устанавливают положение светового зайчика на значение 5 мВ (100 делений шкалы). Это значение является первой точкой на кривой охлаждения всех составов. Включают секундомер или Рис. 6.2. Схема установки с таймер и одновременно вынимают герметичной ячейкой для из- ячейку из водяной бани, переносят ее мерения температуры кристал- в сосуд с холодной водой, перемеши-лизации ваемой магнитной мешалкой. Записы- [c.42]

    Для низковольтной силовой сети может использоваться напряжение 660 или 380 В. Нормы технологического проектирования рекомендуют в качестве пр,едпочтительного напряжения 660 В. Применение этого напряжения позволяет добиться уменьшения расхода металла и снижения затрат на сооружение, ремонт и обслуживание сетей, поскольку уменьшаются сечения проводов и кабелей. Верхний предел единичной мощности выпускаемых низкавольтных двигателей напряжением- 660 В (630— 800 кВт) выше, чем для двигателей напряжением 380 В (320 кВт), что позволяет расширить пределы применения низковольтных двигателей. Используя для низковольтных сетей напряжение 660 В, можно применить более мощные трансформаторы, упростить схемы распределительных устройств. Однако в номенклатуре выпускаемых двигателей 660 В отсутствуют двигатели ряда специальных исполнений, необходимых для НПЗ и НХЗ, весьма дефицитна и электроаппаратура напряжением 660 В. Впредь до выпуска в достаточном количестве электрооборудования—а электроаппаратуры на 660 В при проектировании НПЗ н НХЗ следует принимать напряжение низковольтной распределительной сети завода равным 380/220 В с глухозаземленной нейтралью. Для сети освещения во всех случаях нужно применять напряжение 380/220 В. [c.183]

    В соответствии с требованиями ПУЭ в сетя. напряжением до 1000 В с глухозаземленной нейтралью силу тока однофазного замыкания на землю (корпус) в цепи фаза — нуль можно определить по приближенной формуле [c.53]

    Последовательность выполнения работы. Включить прибор в электро сеть напряжением 220 В. Включить водородную лампу или лампу накаливания, как это описано на с. 38. Заполнить кюветы одинаковой длины растворителем и раствором и, открыв крышку кюветного отделения спектрофотометра, установить обе кюветы на подвижную аретку. Отметить положения штока каретки, три ко- [c.41]


Нормы напряжения в сети в квартире

Автор Евгения На чтение 22 мин. Опубликовано

Нормы напряжения в сети в квартире

Какое напряжение в бытовой сети оптимальное для работы электроприборов

Уровень напряжения – одни из критериев качества электроснабжения. Каждый из бытовых электроприборов рассчитан на продолжительную нормальную работу при условии питания его от напряжения, находящегося в пределах допустимых значений. В данной статье рассмотрим вопрос о том, какое напряжение в бытовой сети является оптимальным для работы электроприборов.

Уровень напряжения в электрической сети

Прежде всего, следует отметить, что на уровень напряжения в электрической сети влияет множество различных факторов. Электричество от источника – электростанции к конечному потребителю, в частности в жилые дома, приходит, пройдя несколько этапов преобразования. На первом этапе напряжение повышается для передачи его на большие расстояния, по энергосистеме. По мере приближения к конечному потребителю, электричество проходит несколько этапов преобразования напряжения до значений, используемых в быту.

Фиксированное значения напряжения в различных участках энергосистемы невозможно обеспечить, так как в энергетической системе постоянно происходят различные процессы: увеличивается или снижается нагрузка, соответственно изменяется и количество вырабатываемой электроэнергии на электростанциях, возникают аварийные ситуации на различных участках электрической сети, которые в той или иной мере влияют на уровни напряжения. Поэтому на каждом этапе преобразования электроэнергии осуществляется регулировка уровня напряжения, как в сторону увеличения, так и в сторону уменьшения.

Основной задачей регулировки напряжения обеспечить уровень напряжения на тех или иных участках электрической сети в пределах допустимых значений. То же самое касается конечного этапа, который обеспечивает понижение напряжения величины, используемой в быту – 220/380 В.

В наиболее часто используемой для электроснабжения потребителей однофазной электрической сети напряжением 220 В нормально допустимые отклонения напряжения находятся в пределах +/- 5 %. То есть диапазон напряжения 209-231 В является нормальным, может быть постоянным, соблюдение напряжения сети в пределах данных значений является одним из критериев качественного электроснабжения.

Но, как и упоминалось выше, в электрической сети могут возникать аварийные режимы работы, которые могут влиять на уровни напряжения в электрической сети. В связи с этим существует еще одна норма – предельно допустимые отклонения напряжения, которые составляют +/- 10 % или 198-242 В.

Данные отклонения напряжения допускаются на незначительное время, как правило, на время ликвидации аварийной ситуации в электрической сети или на время оперативных переключений, в процессе которых происходит временное изменение значений напряжения электросети.

Какое напряжение в бытовой сети оптимальное для работы электроприборов?

Выше приведены общие нормы напряжения электрической сети. Что касается бытовых электроприборов, то в большинстве случаев они проектируются для нормальной работы в диапазоне предельно допустимых отклонений напряжения, то есть 198-242 В. При этом электроприборы не должны выходить из строя в случае непродолжительного превышения напряжения выше 242 В.

Если рассматривать диапазоны допустимых напряжений в паспортах бытовых электроприборов, то можно выделить две группы электроприборов. К первой группе можно отнести те электроприборы, которые меньше всего подвержены перепадам напряжения – это электрический чайник, электропечь, бойлер, электрический обогреватель и другие электроприборы, в которых основным конструктивным элементом является тепловой нагревательный элемент.

Ко второй группе можно отнести электроприборы, которые наиболее подвержены перепадам напряжения – это, прежде всего, компьютерная техника, блоки питания различной техники, аудио- и видеотехника и различные дорогостоящие электроприборы, конструктивно имеющие электронные схемы, преобразователи.

В паспорте электроприборов первой группы в большинстве случаев можно увидеть рекомендуемое рабочее напряжение 230 В. По сути данные электроприборы будут работать и при более низком напряжении, но при этом они будут работать менее эффективно.

Электроприборы второй группы, как более подверженные к перепадам напряжений, проектируется с учетом работы в широких диапазонах. Часто диапазоны рабочих напряжений выходят ниже предельно допустимых. Например, блок питания аудио- видеоаппаратуры, зарядное устройство мобильного телефона рассчитано для работы в пределах 100-240 В.

Отдельно следует выделить бытовые приборы, конструктивно имеющие электродвигатель, насос или компрессор. Перечисленные элементы рассчитаны для работы при номинальном напряжении, как правило, это 220-230 В.

В случае понижения напряжения в электрической сети увеличивается ток нагрузки в электродвигателе (насосе, компрессоре), что в свою очередь приводит к перегреву его обмоток и снижению срока службы изоляции. В данном случае, чем ниже напряжение в электрической сети, тем меньше срок службы данных электроприборов, в частности их конструктивных элементов – электродвигателей (насосов, компрессоров).

Учитывая диапазоны допустимого напряжения всех электроприборов, используемых в быту, можно сделать вывод, что наиболее оптимальным напряжением в электрической сети является напряжение величиной 230 В. При таком значении напряжения будут нормально работать электроприборы с электродвигателями, нагревательными элементами, а также электроприборы, конструктивно имеющие электронные схемы и преобразователи.

Рассматривая вопрос о том, какое напряжение в бытовой сети оптимальное для работы электроприборов, следует учитывать, что важен не только уровень напряжения, но и его стабильность.

Под стабильностью подразумевается отсутствие скачков напряжения, как в сторону увеличения, так и в сторону уменьшения. Перепады напряжения негативно влияют на работу электроприборов и, в конечном счете, могут привести к выходу их из строя.

Искусственный интеллект нашего сайта решил, что эти статьи вам будут особенно полезны:

Что делать, если напряжение электропитания в сети выше или ниже нормы

Отношения по предоставлению коммунальных услуг собственникам и пользователям помещений в многоквартирных домах, собственникам и пользователям жилых домов, в том числе отношения между исполнителями и потребителями коммунальных услуг регулируются «Правилами предоставления коммунальных услуг собственникам и пользователям помещений в многоквартирных домах и жилых домов» (утв. постановлением Правительства РФ от 06.05.2011 № 354) (далее Правила). Указанные Правила устанавливают порядок контроля качества предоставления коммунальных услуг, порядок изменения размера платы за коммунальные услуги при предоставлении коммунальных услуг ненадлежащего качества, а также регламентируют вопросы, связанные с наступлением ответственности исполнителей и потребителей коммунальных услуг.

Коммунальные услуги – это осуществление деятельности исполнителя по подаче потребителям любого коммунального ресурса в отдельности или 2 и более из них в любом сочетании с целью обеспечения благоприятных и безопасных условий использования жилых, нежилых помещений, общего имущества в многоквартирном доме.

Электрическая энергия является одним из видов коммунальных ресурсов.

В соответствии с пп. «д» п. 3 Правил качество предоставляемых коммунальных услуг должно соответствовать требованиям, приведенным в приложении № 1 Правилам.

В п. 10 приложения №1 к Правилам указано, что одним из требований к качеству энергоснабжения является постоянное соответствие напряжения и частоты электрического тока требованиям законодательства РФ о техническом регулировании.

В соответствии с п. 4.2.2 ГОСТ 32144-2013 в электрических сетях низкого напряжения стандартное номинальное напряжение электропитания равно 220 В. При этом положительные и отрицательные отклонения напряжения в точке передачи электрической энергии не должны превышать 10% номинального или согласованного значения напряжения в течение 100% времени интервала в одну неделю.

Таким образом, предельное отклонение (как положительное, так и отрицательное) в России не должно превышать отметку в 10% от номинального. Итого получаем такие значения: для сети 220 В – от 198 до 242 В.

В случае, если напряжение в сети потребителя отличается от данных значений, можно говорить о том, что качество коммунальной услуги по электроснабжению является ненадлежащим.

В Правилах прописан порядок установления факта предоставления коммунальной услуги ненадлежащего качества. Если вы обнаружили, что предоставляемая коммунальная услуга имеет ненадлежащее качество, то об этом нужно сообщить в аварийно-диспетчерскую службу исполнителя (письменно или устно, в том числе по телефону). Запишите номер заявки. Если причины нарушения качества коммунальной услуги неизвестны, то с потребителем должна быть согласована дата и время проведения проверки факта нарушения качества коммунальной услуги. Если с потребителем не согласовано иное время, то проверка назначается не позднее 2 часов с момента подачи заявки потребителем. По окончании проверки составляется акт, один экземпляр которого должен быть выдан потребителю. Если факт нарушения качества коммунальной услуги в ходе проведенной проверки подтвердился, то дата и время обращения потребителя в аварийную службу исполнителя будет считаться началом периода, в течение которого считается, что коммунальная услуга предоставляется с нарушениями качества. Период нарушения качества коммунальной услуги считается оконченным, например, с момента установления исполнителем факта возобновления предоставления коммунальной услуги надлежащего качества всем потребителям либо с момента сообщения потребителем исполнителю о возобновлении предоставления ему коммунальной услуги надлежащего качества. Если установлено, что качество предоставляемой электрической энергии было ненадлежащим, то размер платы за каждый час снабжения электрической энергией ненадлежащего качества суммарно в течение расчетного периода (месяца) снижается на 0,15 процента размера платы, определенного за такой расчетный период.

Следует знать, что исполнитель обязан выполнить требование об устранении недостатков в разумный срок, назначенный потребителем (ст. 30 Закона о защите прав потребителей). Для этого потребителю лучше оформить свое требование в виде письменного заявления, подать это заявление исполнителю. Второй экземпляр такого заявления с распиской в получении и датой нужно оставить у себя.

В соответствии с положениями ст. 13 Закона РФ «О защите прав потребителей» за нарушение прав потребителей исполнитель несет ответственность, предусмотренную законом или договором. Если иное не установлено законом, убытки, причиненные потребителю, подлежат возмещению в полной сумме сверх неустойки (пени), установленной законом или договором. Уплата неустойки (пени) и возмещение убытков не освобождают исполнителя от исполнения возложенных на него обязательств в натуре перед потребителем.

В соответствии с пп. «е» п. 33 Правил потребитель вправе требовать от исполнителя возмещения убытков и вреда, причиненного жизни, здоровью или имуществу потребителя вследствие предоставления коммунальных услуг ненадлежащего качества, а также компенсации морального вреда в соответствии с законодательством Российской Федерации.

Если в результате предоставления электрической энергии вышла из строя бытовая техника, потребитель вправе требовать возмещения причиненных убытков (стоимость восстановительного ремонта или стоимость бытовой техники).

С требованиями о предоставлении электрической энергии надлежащего качества и возмещении убытков следует обращаться к той организации, которая поставила ему электроэнергию нестандартного качества и кому он платит за потребленную энергию, т.е. на чей счет поступают денежные средства. Обращение лучше всего составить в письменном виде в виде претензии.

При отсутствии реакции на претензию и требование добровольного возмещения убытков пострадавшим потребителям следует обращаться в суд, приложив к иску все имеющие доказательства (например, акт проверки качества электроэнергии, заключение специализированной сервисной службы или экспертной организации о причинах выхода из строя техники).

В соответствии с п. 2 ст. 17 Закона РФ «О защите прав потребителей» иски о защите прав потребителей могут быть предъявлены по выбору истца в суд по месту:

нахождения организации, а если ответчиком является индивидуальный предприниматель, – его жительства;

жительства или пребывания истца;

заключения или исполнения договора.

Если иск к организации вытекает из деятельности ее филиала или представительства, он может быть предъявлен в суд по месту нахождения ее филиала или представительства.

Потребители, иные истцы по искам, связанным с нарушением прав потребителей, освобождаются от уплаты государственной пошлины в соответствии с законодательством Российской Федерации о налогах и сборах.

Важно знать, что при удовлетворении судом требований потребителя, установленных законом, суд взыскивает с исполнителя в пользу потребителя за несоблюдение в добровольном порядке удовлетворения требований потребителя штраф в размере пятьдесят процентов от суммы, присужденной судом в пользу потребителя (п. 6 ст. 13 Закона РФ «О защите прав потребителей»).

Нормы напряжения в квартире

Фотографии на тему: Нормы напряжения в квартире

Читайте также

Кто наследует квартиру после смерти собственника? Квартирный вопрос всегда был и остается одним из самых важных для всех людей. Рассмотрим ниже более подробно действующие виды наследства – наследование по закону и по завещанию.

Так как дарение недвижимости достаточно частое явление, возникает вопрос можно ли продать дарственную долю в квартире? Ввиду того, что речь идет только о части, а не едином целом объекте, решение зависит от нескольких нюансов, которые являются неотъемлемыми в подобных сделках.

Имущественный вычет при покупке квартиры в ипотеку существует для получения от государства части подоходного налога, уплаченного рабочим человеком ранее, для покупки жилища.

Часто бывает, что в напряжение в квартире “скачет”. Чтобы понять, нужно ли обращаться в обслуживающую компанию, необходимо знать нормы напряжения в квартире. В стандартном многоквартирном доме норма напряжения составляет 220В. Частота сети в норме составляет 50 Гц. Существует допустимые отклонения в 5%, то есть от 209 до 231В, также есть предельно допустимые нормы в 10% (198 – 242В).

Определить есть ли отклонение от нормы достаточно просто.

При пониженном напряжении электроприборы перестанут включаться или будут работать с перебоями. При повышенном напряжении приборы могут вовсе выйти из строя и “сгореть”. Если в квартире напряжение превышает или недотягивает до указанных предельных норм, владелец имеет право обратиться в управляющую компанию. Порядок действий:

  • Собственник обращается с жалобой в компанию, обслуживающую дом.
  • Электрик замеряет напряжение, составляет акт выполненных работ, фиксирует отклонения от нормы.
  • Владелец предоставляет акт в УК для устранения причин отклонений от нормы.
  • В случае если УК отказывает исправлять ситуацию, владелец вправе обратиться в суд.

Причин отклонения от нормы может быть много:

  • Нехватка напряжения трансформатора. Сейчас во многих домах стоят еще советские трансформаторы, их мощности не хватает для обеспечения многоквартирного дома из-за увеличившегося потребления. С появлением микроволновых печей, электрических чайников, компьютеров, пылесосов и т.д. расход электроэнергии значительно увеличился. А мощность трансформатора осталась на прежнем уровне. Компания, обслуживающая дом, должна решить эту проблему заменой трансформатора на более мощный, либо установкой дополнительного трансформатора.
  • Если проблема наблюдается у части жильцов, то причина может быть в тумблере. Часто на трансформаторах ставят специальный тумблер, с помощью которого можно регулировать напряжение. Этот тумблер может выйти из строя, за счет чего специалисты не могут отрегулировать мощность. Решается – заменой тумблера.
  • Еще одной частой причиной отклонения от нормы является перегруженность определенной фазы. При подключении электрик может допустить ошибку и подключить к одной фазе слишком много квартир. Тогда напряжение будет недостаточным.
  • Также причиной недостаточного напряжения может быть сгоревший провод. Если система электроснабжения давно не менялась, нелишним будет “прозвонить” все провода на наличие тока.

В любом случае при нестабильном напряжении тока, необходимо выяснить причину отклонения от нормы напряжения в квартире. Затем обратиться в УК для устранения проблем.

Какое отклонение напряжения в сети считается предельно допустимым

Несоответствие параметров электрической сети требуемым параметрам качества электроэнергии, установленных ГОСТ 32144-2013 «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения», негативно влияет на работу электрооборудования. В быту чаще всего это отражается на сроке службы лампочек (быстрее перегорают), а также работе бытовой техники, в частности, холодильников, телевизоров, микроволновых печей. В этой статье мы рассмотрим допустимое и предельное отклонение напряжения в сети по ГОСТ, а также причины возникновения такой проблемы.

Нормы в соответствии с ГОСТом

Итак, руководствоваться мы будем, ГОСТ 32144-2013, согласно которому предельное отклонение (как положительное, так и отрицательное) в России не должно превышать отметку в 10% от номинального. Итого получаем такие значения:

  • для сети 230в – от 207 до 253 Вольта;
  • для сети 400в – от 360 до 440 Вольт.

Что касается допустимого отклонения напряжения у потребителей, в ГОСТе указано, что данную величину в точках общего подключения устанавливает непосредственно сетевая организация, которая в свою очередь должна удовлетворять нормы, указанные в настоящих стандартах.

Помимо этого хотелось бы отметить, что при нормальном режиме работы сети допустимое отклонение напряжения на зажимах электрических двигателей находится в диапазоне от -5 до +10%, а других аппаратов не больше, чем 5%. В то же время после возникновения аварийного режима допускается понизить нагрузку не больше, чем на 5%.

Кстати, хотелось бы дополнительно отметить, что на источнике питания в электросетях 0,4 кВ согласно нормам отклонение не должно превышать отметку в 5%, собственно, как и у самих потребителей. Итого, 5% на источнике + 5% у потребителей, имеем 10% предельно допустимого.

Немаловажно знать о причинах возникновения отклонения напряжений. Так вот основной причиной считается сезонное или суточное изменение электрической нагрузки самих потребителей. К примеру, в зимнее время все резко включают обогреватели, в результате чего параметры электросети заметно падают. О том, что делать, если низкое напряжение в сети, мы рассказывали в соответствующей статье!

Негативное влияние отклонения параметров

Чтобы вы понимали всю опасность отклонения напряжения в сети, предоставляем к прочтению следующие факты:

  1. Когда значение понижается ниже нормы, значительно снижается срок службы используемого электрооборудования и в то же время повышается вероятность возникновения аварии. Помимо этого, в технологических установках увеличивается длительность самого производственного процесса, что влечет за собой увеличение показателей себестоимости продукции.
  2. В бытовой сети, как мы уже говорили, отклонения напряжения сокращает срок службы лампочек. При повышении напряжения на 10% срок эксплуатации обычных лампочек сокращается в 4 раза. В свою очередь энергосберегающие лампы при снижении напряжения на 10% начинают мерцать, что также негативно влияет на продолжительность их работы. Об остальных причинах мерцания люминесцентных ламп вы можете узнать из нашей статьи.
  3. Что касается электрических приводов, то из-за снижения напряжения увеличивается потребляемый двигателем тока. В свою очередь это уменьшает срок службы двигателя. Если же напряжение будет даже на незначительных казалось бы 1% выше нормы, реактивная мощность, которую потребляет электродвигатель, может увеличиться до 7%.

Подведя итог, хотелось бы отметить, что существует несколько современных способов решения проблемы: снижение потерь напряжения в электрической сети, о чем мы писали в соответствующей статье, а также регулирование нагрузки на отходящих линиях и шинах подстанций.

Вот мы и рассмотрели нормы отклонения напряжение в сети по ГОСТ. Теперь вы знаете, насколько низкого или же высокого значения может достигать этот параметр в трехфазной и однофазной сети переменного тока!

Рекомендуем также прочитать:

Каково допустимое напряжение в сети 220 В по ГОСТу: 4 причины введения стандарта

Допустимое напряжение в сети в большинстве сооружений составляет 220 В До совсем недавнего времени в России, как и близлежащих странах СНГ действовали технические нормативно-правовые акты в сфере подачи и обслуживания электроэнергии времени существования СССР. Так, известными в этой области являются ГОСТ 29322-92 и ГОСТ 21128-83 в новой редакции 2014 года. Каждый из них закреплял известное нам всем и привычное до боли значение среднего параметра подаваемого напряжения – 220 В. Однако с недавнего времени, а именно, 2015 года, было принято решение о введении нового стандарта, который соответствует общеевропейским запросам и потребностям. О том, какое на сегодняшний день допустимое напряжение на кабеле электросети и какое наибольшее и минимальное значение должны выдавать счетчики – узнавайте в данной публикации.

Полные нормы напряжение в электросети: ГОСТ

Несмотря на то, что большинство обывателей и людей, не относящихся к категории осведомленных в области напряжения в их электросети, утвердительно скажет о том, что стандартным напряжением является показатель в 220 В. К их удивлению, даже несмотря на старые и привычные всем наклейки, на котором указан общепринятый стандарт, уже не актуальны.

С 2015 года в РФ действует новый стандарт – уровни 230 В и 400 В, что соответствует европейским стандартам.

Такие акты приняты также в Украине и странах Балтии, в том числе Беларуси.

К чему привело изменение стандарта:

  • Изменилось рабочее напряжение на кабеле электросети;
  • Колебания стали чуть более значимыми, нежели ранее, но все также в допустимых нормах 5% и максимальных – 10%;
  • Потенциальная оплата услуг поставки электроэнергии выросла не совершенно символическую сумму;
  • Частота подачи напряжения – 50 Гц.

Нормы напряжения в электросети зависят от типа назначения постройки

Таким образом, напряжение в сети должно считаться несколько возросшим в бытовой практике. Но на деле же все иначе и это сулит наличие подводных камней в сфере поставки организациями электроэнергии. Несмотря на общепринятый стандарт, организации, поставляющие напряжение в квартиры домов, подают все по тем же меркам, принятым еще в советское время и равным 220 В. Все это происходит официально по ГОСТу 32144-2013, которым и руководствуются поставщики.

Стандартные параметры электрической сети

Нормы общепринятых стандартов регламентируют также основные параметры, присущие для электроэнергии, поставляемой в дома. С учетом того, что технический ГОСТ – это десятки и десятки страниц сложной терминологии и расчетов, здесь будут приведены общая оценка приводимых категорий. Как общепринято считать, основными параметрами, определяющими нашу бытовую электроэнергию, считаются частота и сила переменного тока и напряжение. Однако есть и ряд других, которые стоит учитывать.

Стандартные параметры электрической сети включают в себя:

  • Коэффициент временного напряжения;
  • Импульсное напряжение;
  • Отклонение частоты напряжения на кабеле электросети;
  • Диапазон изменения напряжения;
  • Длительность потери напряжения и прочие.

Все перечисленные показатели так или иначе оказывают влияние на потерю или превышение установленных норм подачи энергии в сети.

Максимальное отклонение напряжения в электросети

Ток в сети по естественным причинам непостоянен и изменяется в определенных показателях. В рамках нового стандарта 230 В/400 В номинальное отклонение допустимо в пределах 5% и максимально должны отмечаться в кратковременных промежутках не более 10%. Таким образом, такое теоретические отклонение допускается в пределах 198 В и до 242 В. Такой размах может считаться актуальным для большинства нынешних квартир.

Что влияет на сетевое колебание поставки энергии и потери напряжения:

  • Одним из самых распространенных причин является устаревание оборудования, в том числе счетчиков, электрощитов, кабелей проводки и так далее;
  • Значительные погрешности отмечаются и в плохо обслуживаемой сети;
  • Ошибки при планировке и выполнении прокладочных работ в доме;
  • Значительный рост показателей энергопотребления, превышающих установленный стандарт.

Как уже отмечалось, приемлемы перепады в сети на +-5%. Так, например, по поставляемому показателю в 220 вольт, допустимо отклонение в сети, равное 209 В и наибольшее превышение, равное 231 В.

Посадка напряжения в домашней сети

Так называемая посадка напряжения может быть чревато многими нежелательными последствиями. Причем нежелательными как самими жителями, так и организацией-поставщиком, ведь именно она будет восполнять все непредвиденные расходы. По объективным причинам, описанным ранее, посадка электроэнергии может достигать рекордных показателей.

При проблемах с напряжением в домашней сети следует вызвать электрика

При обнаружении таких колебаний, максимальная просадка фиксируется и с этими показателями, ссылаясь на общепринятый стандарт и качество поставляемой энергии, нужно обращаться в органы-поставщики электроэнергии.

При отсутствии желания исправлять неисправности это является основанием для подачи искового заявления в суд.

Чем чревато превышение или значительное снижение установленных норм поставки напряжения в доме:

  • Быстрее перегорают лампочки;
  • Особенно это пагубно для холодильника, стиральной машинки и прочих электробытовых приборов, требующих мощное и постоянное напряжение;
  • Срок службы любой электротехнической техники, в том числе микроволновки, тостера, телевизора, компьютеров и так далее.

Таким образом становится очевидно, что все классы электротехники страдают от сильных перепадов напряжения. Особенно это влияние деструктивно сказывается, если в сети именно низкое напряжение. И обязанность обеспечить бесперебойным, стабильным и качественным током принадлежит именно организации, которая занимается поставкой и согласно договору, должна обеспечивать ее качественное обслуживание.

Величина допустимого падения напряжения: ПУЭ

Согласно принятым правилам устройства электроустановок (ПУЭ) еще в бывшем СССР, падением напряжения признается разность показателей напряжения на разных точках сети. Как правило, это точки начала и конца цепи. В установленных нормах по закону полагается различать понятия отклонение напряжения от ее потери. Если первый случай в общепринятом масштабе рассматривается на примере лампы накаливания, показатель отклонения которого признается номинальным и обязательным к исполнению, то в случае с потерей, рассматриваемой на шинах станции, – это признается рекомендуемым показателем.

Нормальное падение работы напряжения в сети:

  • В так называемых воздушных линиях – до 8%;
  • В кабельных линиях электроснабжения – до 6%;
  • В сетях на 220 В – 380 В – в районе 4-6%.

При этом падением в рамках аварийного режима признается падение до 12% в сети – это установленный предел. Падение более установленной нормы сулит включение системы защитной автоматики, которая должна срабатывать при достижении пониженной нормы на протяжении не менее 30 секунд.

Также в некоторых источниках можно найти стандарты напряжения, превышающие даже новые показатели в 230 В и 400 В. Не стоит путать примеры бытового использования с заводом или фабрикой, на которых показатели естественно значительно превышают бытовую среду.

Обязательное регулирование напряжения в электрических сетях

Осуществить собственное регулирование напряжения не только трудозатратно, но и потребует финансовых вложений. Еще более трудным вариантом является добиваться стабилизации тока в сети от организации-поставщика. Это можно сделать путем подачи жалоб, личных обращений, исков в суд, однако, результат далеко не всегда достигается даже этими методами.

Для регулировки напряжения в электрической сети используют специальные приборы

Если вы все-таки решили самостоятельно исправить картину, то это возможно следующим образом:

  1. Метод централизованного регулирования напряжения. Этот подход предполагает подсчет того, сколько изменений потребуется для стабилизации ситуации и соответствующее регулирование в центральном блоке питания.
  2. Метод линейного воздействия. Осуществляется с помощью так называемого линейного регулятора, который изменяет фазы с помощью вторичной обмотки на цепи.
  3. Использование конденсаторных батарей в сети. Этот способ в теоретической части называется компенсацией реактивной мощности.
  4. Также предельно нестабильную сеть можно подправить с помощью продольной компенсации. Она подразумевает последовательное подключение к сети конденсаторов.

Также актуальным вариантом, при не слишком выраженным отклонении от установленной нормы, является установка одного крупного или нескольких мелких стабилизаторов в сети. Это потребует некоторых финансовых вложений, специальные навыки монтажа, а также не подходит для максимально колеблющихся систем электроснабжения, ведь просто не смогут делать большой объем работы и регулировать большое количество напряжения.

Итак, как уже было определено, новым общепринятым стандартом считается напряжение в сети в квартире от 230 В до 400 В. Для примера, шкала напряжения бывает и 240 В, 250 В, с учетом максимально допустимой погрешности. Однако для привычной нам розетки э1ф рабочее напряжение – это все тот же уровень 220в, который привычен для нас всех еще с советского периода.

Допустимое напряжение в сети 220 В по ГОСТу (видео)

На счетчиках пишется показатель сетевого напряжения, который должен учитывать каждый житель дома. Следите за своими электроприборами правильно и вовремя обращайтесь в нужные инстанции.

Главная

        Получение потребителем электроэнергии надлежащего качества является залогом бесперебойной и долгосрочной эксплуатации электрооборудования и электроприборов.

       СКЭ-Электро предлагает комплексный подход к решению проблем электроснабжения протяженными ЛЭП установкой Пунктов регулирования напряжения 6-10 кВ и вольтодобавочных трансформаторов ТВМГ 0,4 кВ.

Не секрет, что реконструкция электрических сетей  часто запаздывает за растущим потреблением электроэнергии.  Падение напряжения в таких сетях превышает допустимые и в результате потребители получают электрическую энергию не соответствующего качества. Кроме этого существует проблема «старых», не эффективных сетей, спроектированных в 70-х гг. прошлого века без учета существующего сегодня роста нагрузок. Особенно остро эти проблемы проявляются в сельских районах, где протяженность ЛЭП велика, а реконструкция сетей традиционно планируется не в первую очередь. Эти проблемы необходимо решать уже сегодня, не накапливая жалоб потребителей, что в конечном итоге может негативно сказаться на работе всей энергосистемы.  Для владельцев сетей проблемы низкого напряжения в конце протяженных ЛЭП традиционно решаются разукрупнением питающей сети, установкой новых ТП и реконструкцией ЛЭП. ООО «СКЭ-Электро» предлагает немедленно решить накопившиеся проблемы электроснабжения. Быстро и эффективно решить на длительный срок вопрос качественного электроснабжения потребителей, поможет ПРН в сети 6-10 кВ, и вольтодобавочный трансформатор типа ТВМГ (бустер) в сети 0,4 кВ.

Для электроснабжающей компании установка ПРН 6-10 кВ. или вольтодобавочного трансформатора ТВМГ 0,4 кВ позволит значительно увеличить планируемость затрат на реконструкцию сетей:

·        Вольтодобавочные устройства – оборудование многократного использования. После проведения реконструкции в данной ЛЭП он устанавливается на другой проблемный участок, снимая срочность решения.

·        Увеличение оперативности реагирования на жалобы потребителей. Монтаж бустера занимает не более 4 часов при минимальных затратах.

·        Установка ПРН 6-10 кВ. и бустера 0,4 кВ позволит уйти от «авральной» практики решения вопросов качества электроснабжения.

Пункт регулирования напряжения 6 и 10 кВ предназначен для регулирования напряжения электрических сетей с любым способом заземления нейтрали трехфазного переменного тока частоты 50 Гц с номинальным напряжением 6 и 10 кВ,  номинальным током до 400 А.

ПРН выполняют функции:

—             автоматического повышения или понижения уровня напряжения на линии электропередачи в критических точках падения или подъема напряжения,

—             автоматического поддерживания уровня напряжения в заданных пределах при прямом и обратном направлении потока мощности (реверсивный режим)

Вольтодобавочный трансформатор ТВМГ – устройство, позволяющее увеличить напряжение в сети без строительства дополнительных подстанций.

ТВМГ-устройство не требующего сложного технического обслуживания (визуальные осмотры 2 раза в год). Повышение и стабилизация происходит автоматически без привлечения персонала.

ТВМГ – надежное оборудование. Принцип действия основан на регулировке индуктивности, что позволило отказаться от движущихся частей, сложных коммутационных схем и силовых полупроводников. В конструкции трансформатора применены только медь и электротехническая сталь.

ООО «СКЭ-Электро» обладает эксклюзивным правом на изготовление вольтодобавочных трансформаторов, описанных в евразийском патенте на изобретение «Системы стабилизации напряжения линий электропередач». Лицензионное соглашение с Норвежской фирмой Magtech, занимающейся разработкой и внедрением ноу-хау в электроэнергетике, было подписано в 2007г.

Производство  вольтодобавочных трансформаторов  организованно в г.Белгороде в 2008г. При производстве бустеров используется уникальное оборудование. При участии Норвежской стороны, подготовлен квалифицированный персонал. В соответствии с лицензионным соглашением, все комплектующие проходят тщательный входной контроль. Осуществляемый технический контроль в процессе производства и приемо-сдаточные испытания исключает попадание не качественной продукции заказчику. Все эти меры направлены на обеспечение высочайшего качества продукции соответствующего европейским нормам. Качество продукции подтверждено гарантией производителя и установленным сроком эксплуатации – 30 лет.


 

Основные преимущества вольтодобавочных трансформаторов ТВМГ:

— Отсутствие движущихся узлов и механизмов переключения отводов и полупроводников в силовой цепи — только медь и железо — позволяет добиться высокой надежности устройства и свести до минимума техническое обслуживания*. 
— Повышение напряжения до 20% (заданное фазное напряжение, как правило, 230 В) 
— Автономное регулирование по каждой фазе — возможность компенсации несимметричности напряжения при 100%-ой асимметрии нагрузки.
— Асимметрия устраняется обычно за 1-2 периода, напряжение повышается за 200 мс.
— Установка на опоре или на земле. Степень защиты обеспечиваемой оболочкой — IP54
— Функция байпас обеспечивает непрерывность электроснабжения в аварийных режимах.
— Простая установка (в среднем за 4 часа).
— Полный установленный срок службы 20 лет, соответствует требованиям надежности по ГОСТ 27.003.
— Предусмотрена защита от перенапряжения, как в устройстве, так и при установке в линии. 

Установка вольтодобавочных трансформаторов эффективна в местах, где проблему недопустимого снижения напряжения у конечных потребителей нельзя решить другими методами (невозможно смонтировать провод большого сечения, изменить конфигурацию сети 0,4 кВ либо 6-10 кВ.

Актуально применение вольтодобавочных трансформаторов на объектах с переменной, сезонной нагрузкой (промышленные фуникулеры на горнодобывающем производстве, летние животноводческие фермы, зерноуборочные площадки и пр.)

Интерес это оборудование может представлять для владельцев туристических и оздоровительных центров (горнолыжных баз с освещенными трассами и подъемниками, санаторно0курортных комплексов, расположенных в экологически чистой, удаленной от населенных пунктов местности).

* Требования к техническому обслуживанию изложены в техническом описании.

Main Voltage — обзор

10.1.6.4 Источник питания

Источник питания, необходимый для поддержания дуги TIG, имеет падающую вольт-амперную характеристику, которая обеспечивает практически постоянный выходной ток даже при изменении длины дуги на несколько миллиметров. Следовательно, естественные колебания длины дуги, возникающие при ручной сварке, мало влияют на сварочный ток. Способность ограничивать ток до установленного значения не менее важна, когда электрод случайно замыкается накоротко на заготовке.В противном случае могут возникнуть чрезмерно высокие токи, которые повредят электрод и даже оплавят его на заготовку.

На практике источник питания необходим для снижения напряжения сети высокого напряжения (240 или 440 В переменного тока) до источника относительно низкого напряжения (60–80 В переменного или постоянного тока). В своей основной форме источник питания состоит из трансформатора для снижения напряжения сети и увеличения тока и выпрямителя, расположенного на вторичной стороне трансформатора, для обеспечения d.c. поставлять. В традиционных источниках питания используются регулируемый реактор, трансформаторы с подвижной катушкой или подвижным железом или магнитный усилитель для управления сварочным током. Такое оборудование отличается простотой эксплуатации и надежностью, что делает его идеально подходящим для использования в агрессивных промышленных средах. К недостаткам можно отнести относительно высокую стоимость материала, большие размеры, ограниченную точность и медленную реакцию. Появились электронные источники питания (описанные ранее), лишенные этих недостатков:

(1)

тиристорный (SCR) фазовый регулятор;

(2)

транзистор, последовательный стабилизатор;

(3)

транзистор переключаемый; и

(4)

а.c. линейный выпрямитель плюс инвертор.

Основные рабочие характеристики этих систем описаны в разделе 10.1.1, а преимущества / недостатки по сравнению с обычными источниками питания приведены в Таблица 10.1 . Из вышеперечисленных источников питания системы управления на основе транзисторов обеспечивают более высокую точность и воспроизводимость параметров сварки, но, как правило, расходуют электроэнергию. Переменный ток Линейный выпрямитель плюс инверторный тип предлагает сочетание высокого электрического КПД и небольших размеров.

Из-за выходных характеристик постоянного тока дугу можно зажечь либо прикосновением электрода к заготовке, либо в контактной системе серией высокочастотных искр высокого напряжения. Эффект высокой частоты заключается в ионизации газа между электродом и деталью. Поскольку напряжение и частота составляют примерно 10–20 кВ при 100 МГц, необходимо принять меры для предотвращения пробоя изоляции системы управления сваркой. Высокие частоты, передаваемые по линии и по воздуху, могут вызвать проблемы в контрольно-измерительной аппаратуре и электрическом оборудовании в непосредственной близости от дуги и линий электропередач сварочной системы.Высокочастотная обратная связь с источником питания может быть устранена путем размещения индуктора с воздушным сердечником между высокочастотным генератором и трансформаторным выпрямителем; изолятор может быть встроен в высокочастотный трансформатор, как показано на Рис. 10.36 . Необходимо следить за тем, чтобы все оборудование было должным образом заземлено, а все сварочные провода были как можно короче.

Рисунок 10.36. Установка высокочастотного зажигания дуги для сварки TIG. ВЧ, высокая частота; h.v., высокое напряжение

Синусоидальная волна a.с . Цикличность течения вносит определенные трудности. Когда вольфрамовый электрод меняет полярность с положительной на отрицательную, происходит плавный переход, потому что вольфрамовый электрод (являющийся термоэлектронным эмиттером) имеет электронное облако, доступное для повторного зажигания в качестве дугового катода. Когда полярность электрода меняется с отрицательной на положительную, на пластине должен образоваться катодный корень или группа из нескольких катодных корней. Эта функция требует высокого напряжения повторного зажигания для повторного зажигания дуги, которое при сварке алюминия превышает 150 В.

При обычном индуктивном питании формы кривой напряжения и тока дуги ( Рисунок 10.37 ) значительно отстают от напряжения холостого хода. В результате доступно высокое напряжение перезапуска ( Рисунок 10.37 ( a )). Если дуга не зажигается повторно из-за недостаточного напряжения повторного зажигания, может возникнуть выпрямляющая дуга, при которой ток протекает преимущественно в отрицательных полупериодах. В условиях низкого напряжения можно обеспечить положительный полупериодный ток с помощью вспомогательного оборудования, например, для повторного зажигания искры.Искры должны быть правильно рассчитаны по времени, иначе произойдет некоторая степень исправления.

Рисунок 10.37. Осциллограммы напряжения и тока для сварки TIG переменным током сварка

Более точным методом получения полупериода положительного электрода является использование метода импульсной инжекции. При добавлении импульсного инжектора к сварочному трансформатору напряжение холостого хода может быть снижено до 50 В. Базовая схема импульсного инжектора вместе с высокочастотным устройством зажигания дуги показана в связи со сварочной схемой на рис. 10 .38 .

Рисунок 10.38. Блок форсунки перенапряжения и сварочная цепь. ВЧ, высокая частота; h.v., высокое напряжение

Схема работы пусковой цепи выглядит следующим образом. Когда в систему подается полное напряжение холостого хода, контакт реле размыкается, и расцепитель приводит в действие переключатель для разряда конденсатора импульсных перенапряжений в первичной обмотке повышающего трансформатора. Напряжение, индуцированное во вторичной обмотке, нарастает до тех пор, пока не будет достигнуто напряжение пробоя искрового промежутка в горелке.Когда дуга установилась, напряжение, приложенное к реле, падает до уровня напряжения дуги, и контакт реле замыкается, а конденсатор импульсных перенапряжений разряжается непосредственно в дугу. Момент разряда регулируется расцепителем и рассчитывается таким образом, чтобы он происходил при гашении дуги, когда полярность меняется на положительный полупериод электрода. Затем импульсный конденсатор, который заряжается до напряжения достаточной амплитуды, используется для создания искусственного напряжения повторного пробоя.

Прямоугольная волна a.с . Альтернативная конструкция источника питания, которая становится все более популярной, — это источник питания прямоугольной формы. Принципиальной особенностью таких конструкций является то, что выходной ток принимает более прямоугольную форму волны по сравнению с обычной синусоидой (, рис. 10.10, ). Доступны два типа источников питания, различающиеся способом получения прямоугольной волны. В то время как «квадратная» синусоида генерируется с использованием инвертированного переменного тока, более истинная прямоугольная форма волны создается переключенным d.c. питания (см. Рисунок 10.11 ). В любом случае для сварки TIG важно то, что ток до нуля поддерживается на относительно высоком уровне, а затем быстро переключается на противоположную полярность. Для сравнения, ток, вырабатываемый источниками питания синусоидальной волны, уменьшается медленнее до нуля, и точно так же ток, возникающий после повторного зажигания, имеет гораздо меньшую скорость.

Как показано на Рис. 10.39 ( a ), если прямоугольная волна переменного тока полученный из коммутируемого d.c. питание используется при 75 В разомкнутой цепи и 160 А. сварочный ток, напряжение 50 В и ток цепи около 160 А достигаются в пределах 0,02 мс от нуля. С прямоугольной синусоидой напряжение на зазоре выше 50 В достигается за 0,02 мс, а ток цепи в 110 А достигается за 0,1 мс от нуля ( Рисунок 10.39 ( b )). Для сравнения, эквивалентное время нарастания для обычного источника синусоидальной волны составляет 0,15 мс для достижения 5 В в дуговом промежутке и относительно долгое время примерно 3 мс для достижения 110 А от нуля.

Рисунок 10.39. Типичные формы сигналов напряжения и тока при повторном зажигании при сварке со среднеквадратичным значением 160 А. (а) Электропитание прямоугольной формы при напряжении холостого хода 75 В. (b) Прямоугольная синусоида при напряжении холостого хода 79 В. (c) Подача синусоидальной волны при напряжении холостого хода 75 В

Преимущество прямоугольной волны переменного тока заключается в том, что благодаря присущему ему высокому импульсному напряжению, связанному с быстрым изменением направления тока, переменный ток В некоторых случаях TIG можно практиковать при 75 В среднеквадратичном значении. без необходимости наложения высокочастотной искры для повторного зажигания дуги.

Дополнительная функция прямоугольной волны переменного тока. Источники питания — это способность разбалансировать форму волны тока, то есть изменять соотношение полярности положительного и отрицательного электрода. На практике процент положительной полярности электрода можно изменять от 30 до 70% при фиксированной частоте повторения 50 Гц. Работая с большей долей отрицательного электрода, нагрев электрода может быть существенно уменьшен по сравнению с тем, который испытывается при сбалансированной форме волны. Хотя очистки от оксида на поверхности материала обычно достаточно с 30% положительного электрода, степень очистки дуги может быть увеличена за счет работы с более высокой долей положительной полярности электрода (до предела приблизительно 70%). .

Сколько электроэнергии мне нужно для дома? — Энергид

  • При нормальном энергопотреблении мощности, поставляемой вашим счетчиком ( 9,2 кВА в среднем ), должно хватить. Теоретически это позволяет одновременно питать устройства максимальной мощностью 9,2 кВт или 9200 Вт. Поскольку вы никогда не используете все свои электроприборы одновременно, для вашей базовой установки на практике должно хватить более чем достаточно .
  • Если у вас есть специальные установки, потребляющие много энергии, такие как сауна, гончарная печь или электромобиль, то мощности может быть недостаточно для .

Как рассчитать максимальную мощность, которую может обеспечить моя электрическая установка?

Чтобы рассчитать максимальную мощность, которую может выдавать ваш счетчик (выраженная в вольтамперах), умножьте напряжение (U) на интенсивность (I) тока, который подается в ваш дом.

  • Большинство домов снабжается однофазным напряжением 230 В (В) с силой тока 40 ампер (А). Таким образом, максимальная мощность составляет: 230 В x 40 А = 9 200 вольт-ампер (9 200 ВА) или 9.2 кВА
  • Формула, используемая для определения емкости для трехфазного соединения на 230 В или 400 В, идентична, то есть: √3 x U x I. Так, например, если у вас установлен дозатор на 25 А, максимальная мощность рассчитывается следующим образом *:
    3 x 230: √3 x 230 В x 25 A = 9947,5 ВА
    3 x 400 + N (нейтральный провод): √3 x 400 В x 25 A = 17 300 ВА

(*) Для быстрых вычислений или для удобства √3 часто заменяется приблизительным значением 1.73. Мы использовали тот же номер и здесь. Интересный факт: разница между обоими исходами — фактор … 1,73! И это объясняется тем, что напряжение 400 В также бывает на 1,73 больше, чем 230 В.

Как мне узнать, достаточно ли электроснабжения моего счетчика?

Если вам требуется больше электроэнергии, чем может обеспечить ваш счетчик, выключатель питания срабатывает для защиты вашей установки.

Если ваш выключатель питания регулярно отключает , это означает, что в вашей установке недостаточно мощности для ваших требований.

Какая мощность измерителя (в кВА) для какой силы (в амперах)?

Чем больше напряжение и интенсивность, тем больше энергии потребуется вашему счетчику. В таблице ниже показана мощность, необходимая для обеспечения необходимой интенсивности.

Ампер

Мощность в
230 В одинарный hase
(в кВА)

Мощность в
230 В трехфазный
(в кВА)

Мощность в
400 В, трехфазный

(кВА)

16 3,7 6,4 11,1
20 4,6 8 13,9
25 5,8 10 17,3
32 7,4 12,7 22,2
40 9,2 15,9 27,7
50 11,5 19,9 34,6
63 14,5 25,1 43,6

Как я могу увеличить электрическую мощность моей установки?

Хотите увеличить электрическую мощность вашей установки? Пожалуйста, сначала посоветуйтесь со своим электриком .Он может предоставить вам дополнительную информацию о наиболее подходящем решении для ваших нужд. Есть 2 возможности :

  • увеличение мощности счетчика (если ваша электрическая установка может с этим справиться) и сохранение однофазного тока.
  • переключение на трехфазное питание и возможное увеличение мощности.

Для таких модификаций необходимо всегда связываться с Sibelga, оператором системы распределения природного газа и электроэнергии в Брюссельском столичном регионе.«Сибелга» отвечает за подключение к электросети независимо от поставщиков энергии.

Хотя вам будет выставлен счет за установку, это не повлияет на ваш ежемесячный счет, который не будет увеличиваться.

Консультации — Специалист по спецификациям | Проектирование электрических систем среднего напряжения

Цели обучения

  • Проанализируйте, как и почему выбрана определенная система среднего напряжения (СН) для данной конструкции.
  • Оцените применимые нормы и стандарты и их влияние на проектирование электрических систем.
  • Напомним, что следует учитывать при проектировании систем распределения мощности среднего напряжения.

Мы привыкли рассматривать электрическую мощность так же, как и любые другие коммунальные услуги, поставляемые в наш дом или бизнес. И это правильный взгляд на это. Так же, как вода и природный газ, электроэнергия передается и распределяется для общего пользования. Подобно тому, как давление (или разница давлений между двумя точками) перемещает воду и газ, напряжение «перемещает» электрический ток.Чтобы электроэнергия была доставлена ​​конечным пользователям, она должна пройти несколько итераций.

Источники, распределение электроэнергии

Электроэнергия вырабатывается с использованием магнитной и кинетической энергии. Когда магнитное поле, создаваемое постоянными магнитами, прерывается движущейся катушкой, в эту катушку индуцируется электрический ток. Именно так сегодня производится большая часть электроэнергии. Например, атомная станция использует ядерную энергию для производства пара высокого давления, который приводит в движение лопатки турбины.Затем это движение передается на ротор турбины. Магнитное поле генератора, соединенного с валом турбины, используется движущимся ротором для создания электрического тока в обмотке якоря. Угольные электростанции также используют тепло горящего угля для создания пара и выработки энергии с помощью паровой турбины, но с гораздо меньшей эффективностью, чем атомные станции. Гидроэлектростанция использует потенциальную энергию падающей воды для перемещения лопастей турбины. Точно так же ветряная турбина использует кинетическую энергию ветра для вращения лопастей.Установки на солнечных элементах не используют турбину, но они используют энергию солнца для стимуляции электронов специально изготовленных фотоэлектрических модулей, тем самым создавая постоянный ток (dc). Этот постоянный ток затем преобразуется в переменный ток (ac) через инверторы.

Несмотря на то, что существует так много источников энергии, которые можно преобразовать в электрическую, строительство электростанции везде, где требуется электроэнергия, непрактично и часто неосуществимо. Чтобы преодолеть эту проблему, электроэнергия передается от источника туда, где она необходима.Для перехода от инженерных сетей к конечному потребителю коммунальные предприятия используют подстанции. Эти подстанции снижают напряжение на уровне передачи до напряжения на уровне распределения. С этих подстанций, называемых коммунальными подстанциями, энергия передается (распределяется) жилым, коммерческим и промышленным пользователям.

Виды тока

Электроэнергия может передаваться через постоянный или переменный ток. Первой электростанцией была станция Перл-Стрит (построенная Edison Illuminating Co., который возглавил Томас Эдисон) в Нью-Йорке. Эта станция поставляла электроэнергию постоянного тока потребителям, находящимся поблизости от станции. Однако проблема с постоянным током заключается в том, что его нельзя транспортировать на большие расстояния, потому что он не может быть преобразован в более высокие напряжения. Никола Тесла был убежден, что способ преодолеть дистанционный барьер — это чередовать, а затем передавать мощность более высокого напряжения с помощью трансформаторов. Westinghouse запатентовал идею Теслы и построил первую линию электропередачи переменного тока в штате Нью-Йорк, по которой энергия передается от Ниагарского водопада в Буффало.Сегодняшние технологические достижения позволяют экономично передавать постоянный ток высокого напряжения — и это вполне может стать перспективой в будущем.

Первая линия электропередачи переменного тока была построена в 1886 году в Черки, Италия, которая передавала на 17 миль при 2000 В. Чтобы избежать высокой стоимости проводников, необходимых для передачи высокого тока, и потерь, связанных с протеканием большого тока, передача более высокого напряжения линии были развиты. В 1936 году в У. была введена в действие ЛЭП 287 кВ.С .: От плотины Гувера до Лос-Анджелеса. В настоящее время в Соединенных Штатах для передачи мощности обычно используется напряжение до 345 кВ. Возможно использование более высоких напряжений, но проводится тщательный анализ экономики, поскольку цена оборудования существенно возрастает при переходе на более высокий уровень напряжения.

Уровни напряжения

Есть несколько причин для выбора одного уровня напряжения вместо другого для передачи электроэнергии. Основная причина — стоимость.Чем выше напряжение, тем меньше меди для проводки, но больше денег на электрооборудование — это баланс. Еще одна причина — длина линий. Для более длинных линий электропередач имеет смысл использовать более высокое напряжение, но это требует большего расстояния между проводами. Часто на решение влияют существующие линии электропередачи в конкретном районе. Использование одной и той же системы напряжения облегчает объединение различных линий в сеть, и это может сделать определенный уровень напряжения очень привлекательным, даже если непосредственные затраты выше.

Уровни напряжения

стандартизированы, чтобы производители могли сконцентрироваться на разработке определенных типов оборудования. ANSI C84.1 определяет среднее напряжение (MV) как «класс номинальных системных напряжений от 1000 В до 100 кВ». IEEE 141 (Красная книга) ссылается на ANSI C84.1 в распознавании тех же уровней напряжения, связанных с диапазоном MV. Из всех возможных уровней напряжения от 1 кВ до 100 кВ стандартные напряжения, наиболее часто используемые в Соединенных Штатах, составляют 4160 В, 12 470 В, 13 200 В, 13 800 В, 24 940 В и 34 500 В для четырехпроводных систем и 69 000 V для трехпроводных систем.Также используются другие системы напряжения, такие как 2400 В, 4800 В, 6900 В, 8320 В, 12 000 В, 20 780 В, 22 860 В, 23 000 В и 46 000 В. Определенные напряжения, такие как 4,1 кВ, 6,9 кВ и 13,8. кВ, совпадают со стандартными напряжениями двигателя, поэтому они предпочтительны.

В зависимости от размера кампуса конечный пользователь должен будет выбрать, какой уровень напряжения будет распределять мощность. При выборе уровня напряжения необходимо принять несколько решений. Помимо стоимости проекта, одним из важнейших аспектов является безопасность.Много лет назад электрики обычно работали с оборудованием, находящимся под напряжением, и не только с оборудованием низкого напряжения (LV; 1000 В или меньше), но и с оборудованием среднего напряжения. Эта практика очень ограничена, потому что она очень опасна. В тех случаях, когда работы по техническому обслуживанию оборудования под напряжением все еще выполняются, безопасность является первоочередной задачей. В целях обеспечения безопасности NFPA: Статья 110 Национального электротехнического кодекса (NEC) «Требования к электроустановкам» требует наличия определенных зазоров в рабочем пространстве вокруг электрического оборудования — чем выше номинальное напряжение, тем больше требуемый зазор.Техническое обслуживание оборудования — еще один фактор при принятии решения об уровне напряжения электрической системы. Если группа технического обслуживания уже обучена работе с определенным оборудованием, работающим под напряжением, имеет смысл продолжать использовать тот же уровень напряжения. В противном случае потребуется дополнительное обучение.

Использование системы распределения среднего напряжения имеет несколько преимуществ по сравнению с распределением низкого напряжения. Напряжение и ток имеют обратную зависимость. При определенной потребности в мощности, чем выше напряжение, тем ниже ток, согласно уравнению:

P = V x I

Где P = мощность, V = напряжение и I = ток.

Иногда проблема не в расстоянии, а в количестве распределяемой мощности. Жилые дома не имеют большой потребности в электроэнергии, поэтому использование НН им хорошо подходит. Но коммерческие клиенты обычно требуют большого количества энергии. Предположим, что определенному клиенту требуется мощность 10 МВт (или 12 МВА). При распределении этой мощности на НН (например, 480 В) объекту потребуется почти 14 450 ампер. Это огромный ток, который требует огромного количества проводов.Для сравнения, те же 12 МВА будут производить только около 500 ампер при 13,8 кВ. Это решение с низким потреблением тока дает владельцу гибкость в подаче электроэнергии через здание как можно ближе к нагрузке, а затем понижает мощность до низкого уровня для потребления. Выбор распределения электроэнергии через MV также помогает минимизировать потери мощности, что увеличивает экономию на эксплуатации. Верно и обратное: чем ниже напряжение, тем выше ток. Система среднего напряжения обеспечивает то же количество мощности за счет меньшего количества тока по сравнению с системой низкого напряжения.Меньшая сила тока дает меньшие проводники и / или меньшее количество наборов проводов для распределения мощности, что приводит к значительной экономии. Более низкие уровни тока также приводят к меньшим потерям мощности и, как следствие, меньшему падению напряжения. Меньшее падение напряжения делает возможным распределение мощности на большие расстояния. Очень часто в кампусе имеется распределительная система на 13,8 кВ с понижением напряжения до 480 В в здании и 4160 В и 480 В в центральном хозяйственном здании.Если расстояния от основной подстанции кампуса до отдельных зданий велики, можно использовать более высокие напряжения, но распределительная система на 13,8 кВ очень распространена. Другие распространенные напряжения составляют 12,47 кВ, 24 кВ и 24,9 кВ (номинально 25 кВ).

Проектирование системы распределения

При проектировании распределительной системы среднего напряжения особое внимание следует уделять размерам оборудования, номинальным характеристикам и свободным зазорам. Размеры оборудования для систем среднего напряжения больше, чем для систем низкого напряжения.Поэтому пространство, отведенное под оборудование, становится очень важным, и его следует выделять на ранних этапах процесса проектирования. В таблице 1 показано сравнение электрооборудования для двух очень распространенных систем напряжения 480 В и 13,8 кВ с использованием одного и того же производителя оборудования.

Рабочие зазоры вокруг оборудования среднего напряжения также больше, чем зазоры оборудования низкого напряжения. Статья 110 NEC описывает минимальные рабочие расстояния вокруг электрического оборудования. В таблице 2 сравниваются рабочие зазоры для тех же двух распределительных систем, которые перечислены в таблице 1.

Условие 1 выполняется, если на одной стороне есть открытая токоведущая часть, но нет токоведущих или заземленных частей на противоположной стороне рабочего пространства. Если с обеих сторон находятся токоведущие части, Условие 1 выполняется только в том случае, если части защищены изоляционными материалами. Условие 2 применяется, когда есть открытые токоведущие части с одной стороны рабочего пространства и заземленные части с другой, причем бетон, кирпич и плитка считаются заземленными. Условие 3 — это наихудший сценарий с открытыми токоведущими частями по обе стороны рабочего пространства.

Если оборудование среднего напряжения находится на открытом воздухе, оно должно быть как минимум ограничено забором, который, в зависимости от уровня напряжения, должен находиться на расстоянии не менее 10 футов от токоведущих частей или корпуса. Для системы с номинальным напряжением 13,8 кВ зазор должен составлять 15 футов. См. Статью 110.31 NEC для получения более подробной информации.

Оборудование

MV не обладает такой гибкостью, как оборудование низкого напряжения. Для низковольтных систем существуют автоматические выключатели всех размеров, а более крупные выключатели оснащены легко регулируемыми расцепителями.В простых системах среднего напряжения для защиты могут использоваться предохранители, и эти предохранители также бывают разных размеров. Однако в сложных системах распределения среднего напряжения, таких как критически важные объекты, использование выключателей среднего напряжения становится необходимостью. Самый маленький автоматический выключатель для номинальной системы 13,8 кВ (распределительное устройство 15 кВ) рассчитан на 1200 ампер. Следующий размер — 2000 ампер, затем 3000 ампер. Как упоминалось ранее, большим преимуществом систем среднего напряжения является низкий ток, но в настоящее время нет выключателя, достаточно маленького для этих систем.Однако для систем Международной электротехнической комиссии (МЭК) доступны автоматические выключатели на 630 ампер. Этот автоматический выключатель мы называем «тупым» выключателем. Его называют тупым, потому что он не обладает никаким интеллектом и не знает, когда устранить ошибку. По этой причине используются реле. Реле предлагают отличные возможности и схемы защиты, но это не отменяет того факта, что самый маленький автоматический выключатель среднего напряжения на 1200 ампер очень часто оказывается слишком большим для протекающего тока.Это отсутствие гибкости имеет финансовые последствия, которые необходимо учитывать.

Защита от сбоев для систем среднего напряжения становится важной из-за последствий отказа защиты. Автоматический выключатель на 1200 ампер, рассчитанный на 480 В, может выдерживать мощность около 1 МВА (при номинальном токе 100 и нагрузке). Для сравнения: автоматический выключатель на 1200 А при 13,8 кВ может выдерживать более 28 МВА. Как мы видим, выключатель среднего напряжения обеспечивает гораздо большую нагрузку, поэтому очень важно обеспечить защиту. Из-за большого воздействия на систему распределения единственного отказа надежность системы становится важной частью проектных усилий.IEEE 493-2007: Industrial Power Systems Design (Золотая книга) — хороший ресурс для анализа надежности. На основе этого анализа и потребностей владельца в систему может быть встроено резервирование. Избыточность может быть N + x (где x может быть 1, 2 или любым числом) или 2N. Система 2N требует двух источников питания для каждой единицы оборудования, каждый из которых полностью способен выдержать всю нагрузку (см. Рисунок 1). В случае неисправности на стороне «A», питание по-прежнему доступно через сторону «B».Когда сторона A недоступна, система не будет иметь 2N до тех пор, пока сторона A не будет снова введена в эксплуатацию. Резервирование важно учитывать на любом уровне напряжения, но оно становится особенно важным в системах среднего напряжения, поскольку обеспечивается большое количество энергии, которое может быть потеряно. Используя тот же пример, выключатель на 1200 ампер при 480 В может выдерживать около 1 МВА, а при 13,8 кВ может выдерживать более 28 МВА. Потеря 28 МВА может иметь гораздо больший эффект, чем потеря 1 МВА мощности.

Для больших и сложных электрических систем защиту для системы среднего напряжения можно легко спроектировать с помощью реле, но она может стать сложной и ее необходимо тщательно продумать.Существует много видов схем защиты, и обычно в надежной системе задействовано много различных типов реле и функций. Каждому типу реле присвоен номер, как и каждому устройству защиты, описанному в ANSI / IEEE C37.2, что упрощает проектирование и понимание конструкций других людей. Реле дифференциальной защиты (87) суммирует входящие токи и сравнивает их с суммой выходящих токов. Этот вид защиты является одним из самых распространенных, поскольку он быстродействующий.Дифференциальная защита применяется к главной шине оборудования и зоне, которая охватывает все выключатели. Дифференциальная защита также может быть предусмотрена для трансформаторов среднего напряжения и фидеров значительной длины. Другие распространенные типы защиты — это максимальная токовая защита (51), мгновенная защита (50), защита от перенапряжения (59), минимальное напряжение (27), защита от обратной мощности (32) и многие другие. Отличным источником по защите электрических систем является IEEE 242-2001: Защита и координация промышленных и коммерческих энергосистем.

В последнее десятилетие предпринимались попытки централизовать защиту оборудования среднего напряжения. Отдельные реле отправляют сигналы на центральное устройство, которое затем обрабатывает информацию и решает, какое действие, если оно есть, должно быть выполнено, чтобы избежать ложного срабатывания. Сигнал может передаваться туда и обратно по оптоволоконной сети или по беспроводной связи. Эта технология была впервые разработана в Европе, и ее стандартом является IEC 61850: Power Utility Automation. Эта технология многообещающая, но пока не получила широкого распространения.

Распределительные трансформаторы

MV также имеют тенденцию быть больше и дороже, чем трансформаторы низкого напряжения. Из-за воздействия, которое неисправность трансформатора может оказать на всю систему, больше внимания уделяется защите трансформаторов среднего напряжения. В дополнение к обычной защите от перегрузки по току, которую могут получить трансформаторы низкого напряжения, трансформаторы среднего напряжения оснащены тепловым реле (49) для контроля температуры масла, реле давления (63) для контроля давления в масляном баке и реле уровня жидкости (71). для контроля уровня масла (см. рисунок 2).Все эти реле отключают выключатель при заданном значении соответствующих параметров, выходящих за пределы допустимых диапазонов. Для пояснения, некоторые трансформаторы низкого напряжения могут иметь все эти уровни защиты, но для трансформаторов среднего напряжения такая защита является обычным делом.

Резервное питание

Системы распределения

MV предлагают те же преимущества, что и сторона энергоснабжения, на стороне резервного (или резервного) питания. Например, систему на 13,8 кВ можно подкрепить генераторами на 13,8 кВ. Резервная мощность, вырабатываемая генераторами, может быть так же легко распределена как можно ближе к нагрузке, например, со стороны электросети.В зависимости от типа конструкции распределительной системы часто возникает необходимость в параллельном подключении этих генераторов среднего напряжения для резервного копирования всей системы.

При параллельном подключении генераторов среднего напряжения необходимо учитывать несколько моментов. Один из них — надежность. Например, если для поддержки энергосистемы в случае полного отказа энергосистемы требуется четыре генератора, следующим решением будет масштаб резервирования. Если требуется N + 1, нам нужно будет задействовать пять генераторов, причем четыре из пяти необходимы в любой момент времени.Надежность (доступность) такой системы составляет 0,999. Если допустима меньшая надежность, можно использовать только четыре генератора для доступности 0,96. Для получения подробной информации о том, как рассчитать надежность энергосистем, см. Золотую книгу IEEE.

Еще одно решение — как система резервного копирования взаимодействует с утилитой. Во многих случаях достаточно открытого перехода, когда резервная система отключается от нагрузки до того, как к ней снова подключено электроснабжение. Открытые переходы проще и проще реализовать.В некоторых случаях требуется закрытый переход — когда система резервного питания и система электроснабжения подключены параллельно в течение очень короткого периода времени, обычно несколько циклов.

Примеры систем с закрытым переходом можно найти в больницах и центрах обработки данных. Закрытый переход усложняет систему распределения, потому что элементы управления и ретрансляции должны включать больше зон контроля.

Кроме того, из-за параллельного подключения энергоснабжения к электросети и к резервному источнику, наличие тока короткого замыкания увеличивает наихудший сценарий отказа, происходящего во время замкнутого перехода.Это увеличение аварийной нагрузки может подтолкнуть КРУ к следующему более высокому стандартному рейтингу, что может значительно повлиять на затраты (см. Рисунок 3).

Система среднего напряжения, поддерживаемая резервными генераторами, также требует пристального внимания к заземлению и защите от замыканий на землю. Заземление электрических систем — это обширная тема, которая здесь не рассматривается, за исключением того, чтобы направить читателя к двум полезным ресурсам: IEEE 142-1991: Заземление промышленных и коммерческих систем питания и IEEE C37.101: Руководство по защите заземления генераторов.

MV за и против

Распределительные системы

MV имеют много преимуществ по сравнению с распределителями низкого напряжения, но у них есть и некоторые недостатки. Выбор должен быть результатом тщательного анализа, в котором преобладающими факторами являются стоимость и безопасность. Преимущества систем среднего напряжения включают использование гораздо меньшего количества меди в форме проводов меньшего размера и меньшего количества наборов проводов, меньшие потери мощности, меньшее падение напряжения и, как следствие, распределение гораздо большей мощности на нагрузку.К недостаткам систем среднего напряжения относятся большие размеры оборудования, большие рабочие зазоры, необходимые для электрического оборудования, большие инвестиции в обучение и более длительные периоды технического обслуживания для ремонта оборудования.

Несмотря на эти преимущества и недостатки, иногда распределение на НН невозможно, и в этом случае используется распределение СН (см. Рисунок 4). В таких случаях следует тщательно продумать вопросы безопасности рабочих, разработав подробные процедуры обслуживания оборудования среднего напряжения.Также следует внимательно относиться к безопасности обслуживающего персонала. Самый эффективный способ обеспечить безопасность — запереть двери помещений, где размещается оборудование среднего напряжения, и не допускать проникновения посторонних лиц.


Эдуард Пакуку — старший инженер-электрик в Concord Engineering. Он тратит большую часть своего времени на проектирование электрических систем для университетов, медицинских учреждений, критически важных объектов и высотных коммерческих зданий.

Объяснение трехфазного питания

| Объяснение трехфазного питания

В этом видео подробно рассматривается трехфазное питание и объясняется, как оно работает.Трехфазную мощность можно определить как общий метод производства, передачи и распределения электроэнергии переменного тока. Это разновидность многофазной системы, которая является наиболее распространенным методом передачи электроэнергии в электрических сетях по всему миру.

Дополнительные ресурсы Raritan


Расшифровка стенограммы:
Добро пожаловать в это анимированное видео, в котором быстро объясняется трехфазное питание. Я также объясню загадку того, почему 3 линии электропередачи разнесены на 120 градусов, потому что это важный момент для понимания трехфазного питания.

Питание, которое поступает в центр обработки данных, обычно представляет собой трехфазное питание переменного тока, что означает трехфазное питание переменного тока.

Давайте посмотрим на упрощенный пример того, как генерируется трехфазная мощность.

Этот пример отличается от того, что я использовал бы для описания того, как трехфазный двигатель использует мощность. В видео с переменным током мы показали, как вращение магнита мимо одного провода заставляет ток течь вперед и назад. Теперь мы собираемся повернуть магнит мимо трех проводов и посмотреть, как он влияет на ток в каждом проводе.

В этом трехфазном примере северный положительный конец магнита направлен прямо вверх по линии один.

Чтобы облегчить объяснение концепции, давайте воспользуемся циферблатом и скажем, что первая линия находится в позиции двенадцати часов. Электроны в строке 1 будут течь к северному полюсу магнита. Что происходит, когда магнит теперь поворачивается на 90 градусов?

Как мы видели на видео с переменным током, поскольку магнит перпендикулярен линии 1, электроны в линии 1 перестанут двигаться.Затем, когда магнит поворачивается более чем на 90 градусов, южный полюс магнита приближается к линии один, и электроны меняют направление, что означает, что направление тока изменится. Это было подробно описано в видео по переменному току. Если вы нажали на это видео, не понимая, что такое переменный ток, сначала просмотрите это видео.

Глядя на график, вы можете понять, почему я выбрал аналоговый циферблат. Круг составляет 360 градусов, и часы делят круг на 12 частей, так что каждый час покрывает 30 градусов круга.Переход от 12 к 3 составляет 90 градусов, а переход от 12 к 4 — 120 градусов.

При генерации трехфазного питания медные провода расположены на расстоянии 120 градусов друг от друга. Итак, когда вы находитесь в позиции «четыре часа» в нашем примере, это 120 градусов от первой линии. А в положении «восемь часов» он находится на 120 градусах от обоих положений: «4 часа» и «12 часов». Три линии равномерно расположены по кругу.

Если северный полюс находится ближе к одному из трех проводов, электроны движутся в этом направлении.Чем ближе южный полюс подходит к каждому проводу, тем больше электроны удаляются от южного полюса. В каждой из трех линий электроны движутся вперед и назад, но не всегда в том же направлении или с той же скоростью, что и две другие линии.

Давайте еще раз посмотрим на пример. Когда магнит вращается, когда северный полюс находится в положении 1 часа, он становится перпендикулярным линии 2, поэтому, конечно, электроны перестают двигаться по линии 2. Но они все еще движутся по линии 1, привлеченные более близким северным полюсом, и они движутся по линии 3, которую отталкивает южный полюс.Когда северный полюс магнита смотрит на 2 часа, тогда на линии 1 и [линию] 2 воздействует северный полюс, но южный полюс находится прямо напротив линии 3, так что теперь у него пиковый ток. В 3 часа магнит перпендикулярен линии 1, поэтому электроны перестают двигаться, но на линию 2 влияет северный полюс, а на линию 3 — южный полюс, поэтому ток течет по линиям 2 и 3.

Надеюсь , этот пример показывает вам, как в любое время ток всегда течет как минимум по 2 линиям. Он также показывает взаимосвязь между 3 линиями при вращении магнита по кругу.Когда магнит вращается вокруг циферблата, на каждую из 3 линий будет воздействовать либо северный, либо южный полюс, за исключением случаев, когда магнит перпендикулярен линии.

Давайте сосредоточимся на линии 1. Она находится на пике тока, когда северный полюс указывает на 12 и 6 часов. Это при нулевом токе, когда северный полюс указывает на 3 и 9 часов. Только 1 из 3 линий всегда находится на пике, но поскольку есть 3 линии, есть 3 положительных пика и 3 отрицательных пика для каждого цикла.В 6 различных положениях на циферблате одна из линий находится на пике. Позиции 12 и 6 — это чередующиеся пики линии 1, позиции 2 и 8 — чередующиеся пики линии 3, а 4 и 10 — чередующиеся пики линии 2.

Теперь давайте объясним те запутанные формы сигналов, которые часто используются для изображения трех фаз. Если вы посмотрите на пример формы сигнала, вы увидите первую строку синего цвета, которая начинается с нуля. Это означает, что магнит перпендикулярен этой линии. По мере движения магнита вы можете видеть, как ток достигает своего пика.Затем, когда положительный полюс вращается мимо этого провода, ток начинает ослабевать, пока магнит снова не станет перпендикулярным, что приводит к нулевому току. Когда отрицательный полюс начинает приближаться, ток меняет направление и движется в другом направлении к другому пику, прежде чем вернуться к нулевому току. Это завершает 1 полный цикл для этой линии.

Для того, чтобы двухмерная диаграмма показывала взаимосвязь между линиями, теперь на ней отображается зазор, обозначающий время, за которое магнит вращается на 120 градусов.Это когда красная линия имеет нулевой ток. По мере того как магнит продолжает вращаться, красная линия будет двигаться к пиковому положительному току, затем вернется к нулю, после чего ток изменит направление. График также показывает, что третья линия начнется при нулевом токе через 120 градусов после второй строки. Итак, если вы посмотрите на эти 3 линии, вы увидите, что, когда одна линия находится на пике, другие 2 линии все еще генерируют ток, но они не на полную мощность, то есть они не на пике. Таким образом, когда электроны перетекают от положительного пика к отрицательному, ток отображается как переходящий от положительного значения к отрицательному.Помните, что положительные и отрицательные стороны не отменяют друг друга. Положительная и отрицательная коннотации используются только для описания того, как меняется ток.

В трехфазной цепи вы обычно берете одну из трех токоведущих линий и подключаете ее к другой из трех токоведущих линий. Одно исключение из этого описано в видео «Дельта-звезда».

В качестве примера возьмем трехфазную линию на 208 В. Каждая из 3 линий будет передавать 120 вольт. Если вы посмотрите на диаграмму, вы легко увидите выходную мощность любых двух линий.Если одна линия на пике, другая линия не на пике. Вот почему в трехфазной цепи неправильно умножать 120 вольт на 2, чтобы получить 240 вольт.

Итак, если вам интересно, почему у вас дома есть 110/120 вольт для обычных розеток, но у вас также есть приборы на 220/240 вольт, что дает? Что ж, это не трехфазное питание. Фактически это 2 однофазные линии.

Так как же рассчитать мощность объединения двух линий в трехфазную цепь? Формула рассчитывается как умножение вольт на квадратный корень из 3, который округляется до 1.732. Для 2 линий, каждая на 120 вольт, вычисление для этого составляет 120 вольт, умноженное на 1,732, и результат округляется до 208 вольт.

Вот почему мы называем это трехфазной цепью на 208 вольт или трехфазной линией на 208 вольт. Трехфазная цепь на 400 вольт означает, что на каждую из трех линий подается 230 вольт.

Последняя тема, о которой я расскажу в этом видео: почему компании и центры обработки данных используют 3 фазы?

А сейчас позвольте дать вам простой обзор. Для трехфазного подключения вы подключаете линию 1 к линии 2 и получаете 208 вольт.В то же время вы [можете] подключить линию 2 к линии 3 и получить 208 вольт. И вы [можете] соединить линию 3 с линией 1 и получить 208 вольт. Если провод может выдавать 30 ампер, то передаваемая мощность составляет 208 вольт, умноженное на 30 ампер, умноженное на 1,732, при общей доступной мощности 10,8 кВА.

Для сравнения, для однофазной 30-амперной цепи с напряжением 208 В вы получите только 6,2 кВА. Обычно 3 фазы обеспечивают большую мощность.

Существуют и другие факторы, по которым гораздо лучше подавать трехфазное питание в стойку центра обработки данных, чем использовать однофазное питание, и эти факторы обсуждаются в видео в зависимости от напряжения вольт, а также в видео с напряжением 208 и 400 вольт.

Как рассчитать максимальный входной переменный ток

Как рассчитать максимальный входной переменный ток.
Ан-21

Информация о максимальном входном токе источника питания может быть полезна при выборе требований к электроснабжению, выборе автоматического выключателя, выбора входного кабеля переменного тока и разъема и даже при выборе изолирующего трансформатора для плавающих приложений. Вычислить максимальный входной ток довольно просто, зная несколько основных параметров и некоторую простую математику.

Номинальная мощность высоковольтного блока питания
Все блоки питания Spellman имеют заявленную максимальную номинальную мощность в ваттах. Это первый параметр, который нам понадобится, и его можно найти в паспорте продукта. У большинства блоков питания Spellman максимальная мощность указана прямо в номере модели. Как и в этом примере, SL30P300 / 115 представляет собой блок 30 кВ с положительной полярностью, который может обеспечить максимум 300 Вт; работает от входной линии 115Vac.

КПД источника питания
КПД источника питания — это отношение входной мощности к выходной мощности.Эффективность обычно указывается в процентах или в виде десятичной дроби меньше 1, например, 80% или 0,8. Чтобы вычислить входную мощность, мы берем заявленную максимальную выходную мощность и делим ее на эффективность:

300 Вт / 0,8 = 375 Вт

Коэффициент мощности
Коэффициент мощности — это отношение реальной мощности к полной используемой мощности. Обычно она выражается десятичным числом меньше 1. Реальная мощность выражается в ваттах, а полная мощность выражается в ВА (вольт-амперах). Однофазные импульсные источники питания без коррекции обычно имеют довольно низкий коэффициент мощности, например 0.65. Трехфазные импульсные источники питания без коррекции имеют более высокий коэффициент мощности, например 0,85. Блоки со схемой активной коррекции коэффициента мощности могут иметь очень хороший коэффициент мощности, например 0,98. В нашем примере выше источник питания представляет собой неисправный блок, питаемый от однофазной сети, поэтому:

375 Вт / 0,65 = 577 ВА

Напряжение входной линии
Нам необходимо знать входное напряжение переменного тока, от которого устройство предназначено для питания . В приведенном выше примере входное напряжение переменного тока составляет 115 В переменного тока. Это номинальное напряжение, в действительности входное напряжение указано как ± 10%.Нам нужно вычесть 10%, чтобы учесть наихудший случай, состояние низкой линии:

115Vac — 10% = 103,5Vac

Максимальный входной переменный ток
Если мы возьмем 577 VA и разделим его на 103,5Vac, получим:

577 ВА / 103,5 В переменного тока = 5,57 ампер

Если наше входное напряжение переменного тока однофазное, то у нас есть ответ — 5,57 ампер.

Трехфазное входное напряжение
Блоки с трехфазным входным напряжением питаются от трех фаз, поэтому они имеют лучший коэффициент мощности, чем однофазные блоки.Также за счет наличия трех фаз, питающих агрегат, фазные токи будут меньше. Чтобы получить входной ток на каждую фазу, мы разделим наш расчет входного тока на √3 (1,73).

Рассчитаем этот пример: STR10N6 / 208. Из таблицы данных STR мы узнаем, что максимальная мощность составляет 6000 Вт, КПД составляет 90%, а коэффициент мощности составляет 0,85. Несмотря на то, что STR по проекту будет работать с напряжением до 180 В переменного тока, в этом примере он будет питаться от трехфазной сети 208 В переменного тока. Мы получаем максимальный входной ток на фазу следующим образом:

КПД источника питания
6000 Вт /.9 = 6666 Вт

Коэффициент мощности
6666 Вт / 0,85 = 7843 ВА

Напряжение входной линии
208 В переменного тока — 10% = 187 В переменного тока

Максимальный входной ток переменного тока
7843 ВА / 187 В переменного тока = 41,94 ампер (если он был однофазным)

Поправка для трехфазного входа
41,94 ампера / √3 (1,73) = 24,21 ампера на фазу

Итак, у нас есть два уравнения, одно для однофазных входов и одно для трехфазных входов:

Однофазное уравнение максимального входного тока
Входной ток = максимальная мощность / (КПД) (коэффициент мощности) (минимальное входное напряжение)

Уравнение трехфазного максимального входного тока
Входной ток = максимальная мощность / (КПД) (коэффициент мощности) (минимальное входное напряжение) ( √3)

Эти расчеты входного тока предназначены для наихудшего случая: предполагается, что блок работает на максимальной мощности, работает при низком уровне напряжения в сети и с учетом КПД и коэффициента мощности.

Щелкните здесь, чтобы загрузить pdf.

Разрядники

NEMA »Общие сведения о паспорте разрядников

Просмотреть в формате PDF

Введение

Частью выбора разрядника хорошего качества является понимание опубликованных данных. Поставщик хорошего качества полностью раскроет соответствующие данные в понятном и удобном для пользователя формате. Эта статья представляет собой руководство для понимания таблицы данных разрядника и того, что за ним стоит.

Таблица напряжения разряда

В каждом техническом описании разрядника вы найдете наиболее важную таблицу с указанием напряжения разрядки рассматриваемого разрядника.В этой таблице указано, насколько хорошо разрядник фиксирует молнии и коммутационные перенапряжения, что является основным назначением разрядников. Этот пример предназначен для разрядника станционного класса, но может использоваться для понимания всех таблиц разрядного напряжения всех разрядников.

Номинальные параметры разрядника: MCOV и номинальное напряжение

Металлооксидные разрядники варисторного типа (MOV) имеют два номинальных напряжения: максимальное продолжительное рабочее напряжение (MCOV) и номинальное напряжение. Разрядник MCOV показан в группе 2 таблицы 1 и указан в кВ (1 кВ = 1000 вольт).Это напряжение определяется в ходе испытаний разрядника в соответствии со стандартом IEEE C62.11 и является наиболее важным номинальным напряжением разрядника. Это номинальный ток переменного тока, который при любых обстоятельствах должен быть выше, чем максимальное линейное напряжение системы, к которой он будет применяться. В некоторых случаях из-за условий более высокого временного перенапряжения (TOV) может потребоваться увеличение MCOV на ОПН, но его никогда не следует понижать ниже установившегося напряжения между фазой и землей системы.


Номинальное напряжение (группа 1) — это номинальное значение со времен карбидокремниевых разрядников с зазором и стало знакомым нам числом. По этой причине он был перенесен на разрядник MOV при его первоначальном выпуске на рынок. Хотя номинальное напряжение разрядника не соответствует фактическому рабочему напряжению современного разрядника MOV, оно по-прежнему является общепринятым обозначением, используемым для определения разрядника.

Максимальное напряжение разряда 8/20 мкс

Данные группы 4 в таблице 1 показывают напряжение разряда на разряднике.Эти данные показывают напряжения разряда для семи различных амплитуд импульсных токов с одинаковой формой волны 8/20 мкс. Формы волн показаны на рис. 1 . Поскольку молния бывает разной амплитуды, от нескольких кА (1 кА = 1000 ампер) до иногда> 100 кА, в этой таблице показано, каким будет напряжение ограничения для 95% уровней импульсного тока, которые возникают в природе. Данные в столбце 10 кА чаще всего используются для сравнения одного ОПН с другим. Его часто называют «уровнем молниезащиты» (его также называют напряжением классифицирующего тока разрядника).Если сравниваются два ОПН, напряжение разряда 10 кА, 8/20, указанное в этом столбце, можно использовать для сравнения аналогичных номиналов, а более низкий уровень считается лучшей защитой.

,5 мкс 10 кА Максимальное значение IR

Данные, содержащиеся в группе 3, представляют собой другую форму напряжения разряда, также известную как уровень защиты от фронта волны (FOW). В этом случае форма волны имеет более быстрое время нарастания, чем 8/20 мкс, используемых для максимального напряжения разряда, и представляет собой вторые последующие выбросы в многоходовой молнии.Согласно IEEE C62.11-2012, форма волны тока для этого защитного уровня составляет 1 мкс до пика, без указания на хвосте. Обратите внимание, что в , таблица 1 , термин IR используется дважды: это термин, который означает напряжение, как в E = I x R, где E означает напряжение, I для ампер и R для Ом. Этот термин используется некоторыми поставщиками, но не всеми.

Максимальное значение коммутируемого перенапряжения IR

Данные из группы 5 таблицы 1 (коммутационный уровень защиты от перенапряжения, напряжение разряда 45/90 мкс) — это третий тип напряжения разряда, который измеряется и публикуется для ОПН.Пиковые уровни тока могут варьироваться от 125 до 2000 ампер, в зависимости от класса разрядника. Это разрядное напряжение представляет собой реакцию разрядника на медленно нарастающий импульс, возникающий в энергосистемах во время работы выключателя или переключателя.

Выбор номинальных характеристик ОПН

Вероятно, наиболее широко используемая таблица в технических паспортах ОПН — это таблица выбора номинальных характеристик ОПН. Пример в таблице 2 предназначен как для систем распределения, так и для систем передачи. Двумя наиболее важными факторами, используемыми при выборе номинала ОПН, являются напряжение системы и конфигурация заземления нейтрали трансформатора источника.В этих таблицах предполагается, что максимальная длительность и амплитуда перенапряжения в наихудшем случае во время замыкания на землю неизвестны. Когда предлагаются два рейтинга, более низкий рейтинг будет минимально возможным, а более высокий рейтинг предназначен для наихудшего сценария, когда ничего не известно о потенциальных событиях перенапряжения.


Линейные напряжения системы

Так как для большинства трехфазных систем используется линейное напряжение, таблица составлена ​​именно так.Во многих случаях номинал ОПН меньше линейного напряжения, потому что ОПН подключаются к земле. Для тех, кто хочет рассчитать, линейное напряжение — это линейное напряжение, деленное на 1,73.

Номинальное и максимальное напряжение системы указаны в таблице; номинал ОПН рассчитывается на основе максимального ожидаемого напряжения системы.

Рекомендуемые номиналы ОПН

Этот рейтинг разделен на несколько столбцов, чтобы охватить различные конфигурации системы.Нейтральная конфигурация трансформатора, обеспечивающего питание схемы, является единственной нейтральной конфигурацией, которую необходимо учитывать. Трансформаторы, расположенные ниже по цепи, не влияют на потенциальные перенапряжения, если они не являются частью источника повреждения.

Четырехпроводная звезда с несколькими заземлениями

Эта колонка в основном представляет собой схему распределительного типа, в которой нейтральный проводник заземлен во многих местах цепи, а также на питающем трансформаторе. В этом случае максимальное перенапряжение в системе этого типа равно 1.25 на единицу линейного напряжения (pu), а продолжительность перенапряжения будет очень короткой (несколько циклов).

Трех- или четырехпроводная звезда с глухим заземлением нейтрали в источнике

Эта схема может быть распределительной или передающей. Выбранный разрядник одинаков для обоих типов цепей. В этом случае


максимальная величина перенапряжения составляет около 1,4 о.е. и может длиться очень долго.

Треугольник и незаземленная звезда

Это может быть цепь распределения или передачи.В этом случае максимальное перенапряжение из-за неисправной цепи составляет 1,73 п.у. между фазой и землей. Это означает, что в некоторых случаях межфазное напряжение может увеличиваться до уровня межфазного напряжения.

Таблицы тока короткого замыкания, тока короткого замыкания или номинальные значения сброса давления

Согласно IEEE C62.11, все ОПН должны иметь номинальный ток короткого замыкания. Этот рейтинг показывает, сколько тока короткого замыкания 60 Гц от энергосистемы может протекать через ОПН без сильного разрыва и выброса крупных фрагментов.Обратите внимание, что это не ток молнии или коммутации, а ток промышленной частоты, поступающий от системы.

Испытание на короткое замыкание проводится путем последовательного включения отказавшего разрядника с источником тока короткого замыкания на заданную продолжительность в секундах или циклах, как показано в третьем столбце таблицы 3 . Указанный уровень тока должен протекать через ОПН в течение заданного времени без выталкивания внутренних частей, чтобы выдержать испытания. Распределительные разрядники испытываются при токах до 20 000 ампер в течение 12 циклов, а ОПН класса станций — до 63 000 ампер и выше.Меньший ток 500 ампер также протестирован и показан в таблице 3 .
Чтобы обеспечить минимальный сопутствующий ущерб другому оборудованию в случае перегрузки ОПН, доступный ток короткого замыкания в системе не должен превышать уровня, указанного во втором столбце таблицы 3 .

Таблицы спецификаций энергопотребления

В каждом хорошем техническом паспорте разрядника в таблице указаны возможности выдерживания энергии разрядником. Информация в таблице 4 соответствует IEEE C62.11-2005. В выпуске 2012 года требуются разные тесты, и значения разные. До 2012 года этот рейтинг не был стандартизирован, и производители публиковали несколько другие уровни. См. таблица 5 для получения дополнительной информации о том, как использовать новые данные.

Импульсный классификационный ток

Импульсный классификационный ток, показанный в таблице 3, представляет собой значение, которое некоторые производители добавляют в свои таблицы данных, чтобы предоставить дополнительную информацию. Это уровень импульсного тока, используемый во время тестов рабочего цикла IEEE в IEEE C62.11. Для распределительных ОПН он может составлять 5 или 10 кА, а для станционных ОПН — 5, 10, 15 или 20 кА. Как правило, чем выше ток, тем выше срок службы разрядника.


Стойкость к сильным токам

Стойкость к сильным токам почти всегда указывается в технических данных ОПН, как показано на рис. 2 . Этот ток относится к уровню импульсного тока, который используется во время кратковременного сильноточного теста IEEE.Для разрядников нормального режима он составляет 65 кА, для ОПН для тяжелых условий эксплуатации и разрядников на стояках — 100 кА, а для разрядников станционного класса минимальный уровень составляет 65 кА. Может показаться странным, что ОПН станционного класса может быть сертифицирован ниже, чем разрядник распределительного типа, но это потому, что станционные ОПН предназначены для использования на подстанциях, которые почти всегда экранированы воздушными проводами, и прямые удары не достигают ОПН станционного класса. Этот рейтинг фактически является единственным средством оценки энергоемкости распределительного ОПН, поскольку они не проверяются с помощью других тестов на номинальную мощность.

Номинальная энергия разряда в кДж / кВ MCOV

Этот рейтинг взят из IEEE C62.11-2005 и был заменен испытаниями на импульсный импульс в издании 2012 года. Этот рейтинг, как показано в , таблица 4 , указывает на максимальный уровень коммутационного перенапряжения, с которым этот ОПН может справиться без сбоев. Исторически этот тест был одно- или двухимпульсным, в зависимости от поставщика.

Стандарт 2012 г. устранил это несоответствие. Этот рейтинг применяется только к ОПН станционного класса, но не к распределительным ОПН.Значения получены в результате проведения испытаний на разрядку линии электропередачи.

Таблицы энергопотребления

IEEE C62.11-2012 представил два новых испытания на энергопотребление ОПН. Номинальная энергия импульсного перенапряжения аналогична предыдущей номинальной энергии разряда. Преимущество этого изменения для пользователей ОПН заключается в том, что теперь в стандарте указывается, как рассчитывать фактический номинал, делая это значение согласованным от одного производителя к другому. Таблица 5 представляет собой пример того, как будущие рейтинги будут отображаться в таблицах данных.

Рекомендуемый класс и уровень энергии импульсных перенапряжений

Класс энергии коммутационных перенапряжений и номинальные значения энергии определяются во время испытаний в соответствии с IEEE C62.11. Это значение указывает уровень энергии, которую разрядник может рассеять во время коммутационного перенапряжения. Уравнения для вычисления этого значения доступны в том же стандарте. Руководство по применению IEEE C62.22 предлагает номинальные значения энергии, которые должен иметь разрядник для различных системных напряжений


.Эта таблица кратко представлена ​​в таблице 6 этого документа.

Временное перенапряжение

Во всех технических паспортах хороших ОПН будет кривая TOV, аналогичная кривой, показанной на рис. 3 . Эта кривая используется для определения минимального рейтинга MCOV, который можно использовать для систем, которые могут испытывать TOV. Обратите внимание, что ОПН спроектированы так, чтобы выдерживать перенапряжения переменного тока, а не уменьшать их. TOV могут быть вызваны одиночным замыканием линии на землю, потерей нейтрали или другими системными явлениями. См. IEEE C62.22 для получения более подробной информации о том, как использовать эту кривую. Проще говоря, если линия, представляющая амплитуду и продолжительность TOV, как показано в , таблица 6 , пересекает кривую TOV разрядника, то следует использовать разрядник с более высоким номиналом.

Например, TOV в 1,4 раза больше MCOV в течение 100 секунд превысит возможности этого разрядника, и потребуется выбрать более высокий MCOV. Если TOV в 1,3 раза больше MCOV в течение 10 секунд (зеленая линия на рис. 3 , ) не превысит возможности разрядника, можно использовать выбранный MCOV.

Кривая «без предварительной нагрузки» на рисунке 3 должна использоваться, если есть уверенность в том, что разрядник не будет поглощать энергию до TOV. Обычно это


случай одиночных замыканий на землю. Если неясно, мог ли рассматриваемый разрядник поглощать энергию до TOV, тогда необходимо использовать предыдущую кривую нагрузки, что является более консервативным методом. MCOV на единицу по вертикальной оси — удобный способ показать TOV для всех номиналов ОПН.Чтобы получить фактический уровень перенапряжения, который может выдержать выбранная вами модель, умножьте уровень PU на кривой для заданной продолжительности на MCOV выбранного разрядника. Как показано на рис. 3 , если MCOV выбранного вами ОПН составляет 98 кВ, то выдерживаемая способность ОПН 98 кВ в течение 10 секунд составляет 98 x 1,4 = 137 кВ. TOV иногда указывается в таблице с конкретными напряжениями, которые могут выдержать 1 или 10 секунд. Это те же данные, что и для кривой TOV, но вместо единицы MCOV выдерживаемое напряжение TOV выражается в действительном действующем значении кВ.

Таблицы выдерживаемой изоляции

Таблицу выдерживаемости изоляции, представленную в технических паспортах ОПН, как показано в таблице 7 , легко неправильно понять. Непонимание возникает, когда эти значения сравниваются с базовыми уровнями импульсной изоляции системы (BIL). Значения выдерживаемости корпуса разрядника не соответствуют BIL; они выдерживают напряжение корпуса при снятии внутренних компонентов разрядника (подробнее ниже). Длина пути утечки часто, но не всегда, указывается в одной и той же таблице.

Длина пути утечки

Длина пути утечки для разрядников, показанная в таблице 7, должна быть аналогична расстоянию утечки для всех изоляторов в системе, в которой они будут применяться. Часто для прибрежных районов или районов с высоким уровнем загрязнения используются дополнительные устройства для отвода утечек. Определение длины пути утечки показано на рис. 4 .


Импульс 1,2 / 50 мкс

Это импульсное выдерживаемое напряжение грозового импульса корпуса разрядника, если внутренние варисторы сняты с разрядника, как показано в третьем столбце таблицы 7 .Поскольку ОПН всегда будет защищен внутренними компонентами, эта характеристика не имеет значения. Этот уровень 1,2 / 50 мкс не соответствует и не должен соответствовать BIL изоляторов в системе. Уровень в паспорте ОПН всегда будет ниже, чем BIL системы. Минимальное значение указано в IEEE C62.11-2012.

Импульс коммутации импульсных перенапряжений

Эта характеристика корпуса разрядника также измеряется без установленных внутренних компонентов разрядника, как показано в четвертом столбце таблицы , таблица 7 .С установленными внутренними компонентами разрядника этот уровень никогда не будет достигнут из-за самозащиты разрядника. Этот уровень, скорее всего, не будет таким высоким, как характеристики выдерживания коммутационного импульса системы. Минимальное значение указано в IEEE C62.11-2012.

60 Гц Влажный и сухой

Эти две характеристики устойчивости требуют минимальных значений в соответствии с IEEE C62.11, как показано в четвертом и пятом столбцах таблицы 7 . Минимальное значение основано на напряжении системы, максимальной высоте применения и максимальном TOV разрядника.Эти значения не обязательно должны совпадать с изоляторами в системе.


Кривая зажигания разъединителя

Если распределительный разрядник оснащен заземляющим разъединителем, в таблице данных, скорее всего, будет указана кривая зажигания, как показано на рис. 5 . Пользователи разрядников, которым интересно, насколько быстро работает разъединитель, могут использовать эту кривую, чтобы показать момент времени, когда разъединитель начинает работать. Важно отметить, что это не кривая очистки, а кривая зажигания.Это связано с тем, что разъединители не отключают устройства.

Разрядники в полимерном корпусе

Максимальная расчетная прочность консоли (статическая MDCL), как указано в таблице , таблица 8 , проверяется и подтверждается в процессе сертификационных испытаний IEEE. Это установившаяся рабочая сила разрядника, если он используется для поддержки шины или кабеля. Обычно понимается, что для механических систем, таких как ограничитель в полимерном корпусе, рабочая прочность (статическая MDLC) составляет 40% от разрывного усилия или предела прочности. Рисунок 6 показывает базовую настройку теста.

Разрядники в фарфоровом корпусе

Прочность консоли проверяется приложением силы до разрушения устройства. Это предел механической прочности (UMS) разрядника в фарфоровом корпусе. Принято, что рабочая сила составляет 40% от этого уровня.

Выводы

Паспорта разрядников могут отличаться от производителя к производителю, но основные данные все те же. Приведенные выше определения охватывают все сложные характеристики, указанные в этих таблицах данных.Если техническое описание не охватывает все темы, обсуждаемые в этом документе, поставщик качества сможет предоставить эту информацию.

Низковольтные потребители — Руководство по устройству электроустановок

Страна Частота и допуск
(Гц и%)
Внутренний (V) Коммерческий (V) Промышленное (V)
Афганистан 50 380/220 (а)
220 (к)
380/220 (а) 380/220 (а)
Алжир 50 ± 1.5 220/127 (д)
220 (к)
380/220 (а)
220/127 (а)
10,000
5,500
6,600
380/220 (а)
Ангола 50 380/220 (а)
220 (к)
380/220 (а) 380/220 (а)
Антигуа и Барбуда 60 240 (к)
120 (к)
400/230 (а)
120/208 (а)
400/230 (а)
120/208 (а)
Аргентина 50 ± 2 380/220 (а)
220 (к)
380/220 (а)
220 (к)
Армения 50 ± 5 380/220 (а)
220 (к)
380/220 (а)
220 (к)
380/220 (а)
Австралия 50 ± 0.1 415/240 (а)
240 (к)
415/240 (а)
440/250 (а)
440 (м)
22,000
11,000
6,600
415/240
440/250
Австрия 50 ± 0,1 230 (к) 380/230 (а) (б)
230 (к)
5,000
380/220 (а)
Азербайджан 50 ± 0,1 208/120 (а)
240/120 (к)
208/120 (а)
240/120 (к)
Бахрейн 50 ± 0.1 415/240 (а)
240 (к)
415/240 (а)
240 (к)
11000
415/240 (а)
240 (к)
Бангладеш 50 ± 2 410/220 (а)
220 (к)
410/220 (а) 11 000
410/220 (а)
Барбадос 50 ± 6 230/115 (к)
115 (к)
230/115 (к)
200/115 (а)
220/115 (а)
230/400 (г)
230/155 (к)
Беларусь 50 380/220 (а)
220 (к)
220/127 (а)
127 (к)
380/220 (а)
220 (к)
380/220 (а)
Бельгия 50 ± 5 230 (к)
230 (а)
3N, 400
230 (к)
230 (а)
3N, 400
6,600
10,000
11,000
15,000
Боливия 50 ± 0.5 230 (к) 400/230 (а)
230 (к)
400/230 (а)
Ботсвана 50 ± 3 220 (к) 380/220 (а) 380/220 (а)
Бразилия 60 ± 3 220 (к, а)
127 (к, а)
220/380 (а)
127/220 (а)
69 000
23 200
13 800
11 200
220/380 (а)
127/220 (а)
Бруней 50 ± 2 230 230 11 000
68 000
Болгария 50 ± 0.1 220 220/240 1000
690
380
Камбоджа 50 ± 1 220 (к) 220/300 220/380
Камерун 50 ± 1 220/260 (к) 220/260 (к) 220/380 (а)
Канада 60 ± 0,02 120/240 (к) 347/600 (а)
480 (ж)
240 (е)
120/240 (к)
120/208 (а)
7200/12 500
347/600 (а)
120/208
600 (ж)
480 (ж)
240 (ж)
Кабо-Верде 220 220 380/400
Чад 50 ± 1 220 (к) 220 (к) 380/220 (а)
Чили 50 ± 1 220 (к) 380/220 (а) 380/220 (а)
Китай 50 ± 0.5 220 (к) 380/220 (а)
220 (к)
380/220 (а)
220 (к)
Колумбия 60 ± 1 120/240 (г)
120 (к)
120/240 (г)
120 (к)
13,200
120/240 (г)
Конго 50 220 (к) 240/120 (к)
120 (к)
380/220 (а)
Хорватия 50 400/230 (а)
230 (к)
400/230 (а)
230 (к)
400/230 (а)
Кипр 50 ± 0.1 240 (к) 415/240 11 000
415/240
Чешская Республика 50 ± 1 230 500
230/400
400,000
220,000
110,000
35,000
22,000
10,000
6,000
3,000
Дания 50 ± 1 400/230 (а) 400/230 (а) 400/230 (а)
Джибути 50 400/230 (а) 400/230 (а)
Доминика 50 230 (к) 400/230 (а) 400/230 (а)
Египет 50 ± 0.5 380/220 (а)
220 (к)
380/220 (а)
220 (к)
66,000
33,000
20,000
11,000
6,600
380/220 (а)
Эстония 50 ± 1 380/220 (а)
220 (к)
380/220 (а)
220 (к)
380/220 (а)
Эфиопия 50 ± 2,5 220 (к) 380/231 (а) 15 000
380/231 (а)
Фолклендские острова 50 ± 3 230 (к) 415/230 (а) 415/230 (а)
Острова Фиджи 50 ± 2 415/240 (а)
240 (к)
415/240 (а)
240 (к)
11 000
415/240 (а)
Финляндия 50 ± 0.1 230 (к) 400/230 (а) 690/400 (а)
400/230 (а)
Франция 50 ± 1 400/230 (а)
230 (а)
400/230
690/400
590/100
20 000
10 000
230/400
Гамбия 50 220 (к) 220/380 380
Грузия 50 ± 0,5 380/220 (а)
220 (к)
380/220 (а)
220 (к)
380/220 (а)
Германия 50 ± 0.3 400/230 (а)
230 (к)
400/230 (а)
230 (к)
20 000
10 000
6 000
690/400
400/230
Гана 50 ± 5 220/240 220/240 415/240 (а)
Гибралтар 50 ± 1 415/240 (а) 415/240 (а) 415/240 (а)
Греция 50 220 (к)
230
6000
380/220 (а)
22 000
20 000
15 000
6 600
Гранада 50 230 (к) 400/230 (а) 400/230 (а)
Гонконг 50 ± 2 220 (к) 380/220 (а)
220 (к)
11 000
386/220 (а)
Венгрия 50 ± 5 220 220 220/380
Исландия 50 ± 0.1 230 230/400 230/400
Индия 50 ± 1,5 440/250 (а)
230 (к)
440/250 (а)
230 (к)
11000
400/230 (а)
440/250 (а)
Индонезия 50 ± 2 220 (к) 380/220 (а) 150 000
20 000
380/220 (а)
Иран 50 ± 5 220 (к) 380/220 (а) 20 000
11 000
400/231 (а)
380/220 (а)
Ирак 50 220 (к) 380/220 (а) 11,000
6,600
3,000
380/220 (а)
Ирландия 50 ± 2 230 (к) 400/230 (а) 20 000
10 000
400/230 (а)
Израиль 50 ± 0.2 400/230 (а)
230 (к)
400/230 (а)
230 (к)
22,000
12,600
6,300
400/230 (а)
Италия 50 ± 0,4 400/230 (а)
230 (к)
400/230 (а) 20 000
15 000
10 000
400/230 (а)
Ямайка 50 ± 1 220/110 (г) (к) 220/110 (г) (к) 4,000
2,300
220/110 (г)
Япония (восток) + 0.1
— 0,3
200/100 (в) 200/100 (ч)
(до 50 кВт)
140,000
60,000
20,000
6,000
200/100 (ч)
Иордания 50 380/220 (а)
400/230 (к)
380/220 (а) 400 (а)
Казахстан 50 380/220 (а)
220 (к)
220/127 (а)
127 (к)
380/220 (а)
220 (к)
380/220 (а)
Кения 50 240 (к) 415/240 (а) 415/240 (а)
Киргизия 50 380/220 (а)
220 (к)
220/127 (а)
127 (к)
380/220 (а)
220 (к)
380/220 (а)
Корея (Северная) 60 +0, -5 220 (к) 380/220 (а) 13 600
6 800
Корея (Южная) 60 ± 0.2 220 (к) 380/220 (а) 380/220 (а)
Кувейт 50 ± 3 240 (к) 415/240 (а) 415/240 (а)
Лаос 50 ± 8 380/220 (а) 380/220 (а) 380/220 (а)
Лесото 220 (к) 380/220 (а) 380/220 (а)
Латвия 50 ± 0.4 380/220 (а)
220 (к)
380/220 (а)
220 (к)
380/220 (а)
Ливан 50 220 (к) 380/220 (а) 380/220 (а)
Ливия 50 230 (к)
127 (к)
400/230 (а)
220/127 (а)
230 (к)
127 (к)
400/230 (а)
220/127 (а)
Литва 50 ± 0.5 380/220 (а)
220 (к)
380/220 (а)
220 (к)
380/220 (а)
Люксембург 50 ± 0,5 380/220 (а) 380/220 (а) 20 000
15 000
5 000
Македония 50 380/220 (а)
220 (к)
380/220 (а)
220 (к)
10 000
6 600
380/220 (а)
Мадагаскар 50 220/110 (к) 380/220 (а) 35 000
5 000
380/220
Малайзия 50 ± 1 240 (к)
415 (а)
415/240 (а) 415/240 (а)
Малави 50 ± 2.5 230 (к) 400 (а)
230 (к)
400 (а)
Мали 50 220 (к)
127 (к)
380/220 (а)
220/127 (а)
220 (к)
127 (к)
380/220 (а)
220/127 (а)
Мальта 50 ± 2 240 (к) 415/240 (а) 415/240 (а)
Мартиника 50 127 (к) 220/127 (а)
127 (к)
220/127 (а)
Мавритания 50 ± 1 230 (к) 400/230 (а) 400/230 (а)
Мексика 60 ± 0.2 127/220 (а)
120/240 (к)
127/220 (а)
120/240 (к)
4,160
13,800
23,000
34,500
277/480 (а)
127/220 (б)
Молдавия 50 380/220 (а)
220 (к)
220/127 (а)
127 (к)
380/220 (а)
220 (к)
380/220 (а)
Марокко 50 ± 5 380/220 (а) 380/220 (а) 225 000
220/110 (а) 150 000
60 000
22 000
20 000
Мозамбик 50 380/220 (а) 380/220 (а) 6 000
10 000
Непал 50 ± 1 220 (к) 440/220 (а)
220 (к)
11 000
440/220 (а)
Нидерланды 50 ± 0.4 230/400 (а)
230 (к)
230/400 (а) 25 000
20 000
12 000
10 000
230/400
Новая Зеландия 50 ± 1,5 400/230 (д) (а)
230 (л)
460/230 (д)
400/230 (д) (а)
230 (к)
11 000
400/230 (а)
Нигер 50 ± 1 230 (к) 380/220 (а) 15 000
380/220 (а)
Нигерия 50 ± 1 230 (к)
220 (к)
400/230 (а)
380/220 (а)
15000
11000
400/230 (а)
380/220 (а)
Норвегия 50 ± 2 230/400 230/400 230/400
690
Оман 50 240 (к) 415/240 (а)
240 (к)
415/240 (а)
Пакистан 50 230 (к) 400/230 (а)
230 (к)
400/230 (а)
Папуа-Новая Гвинея 50 ± 2 240 (к) 415/240 (а)
240 (к)
22000
11000
415/240 (а)
Парагвай 50 ± 0.5 220 (к) 380/220 (а)
220 (к)
22 000
380/220 (а)
Филиппины (Республика) 60 ± 0,16 110/220 (к) 13,800
4,160
2,400
110/220 (в)
13,800
4,160
2,400
440 (б)
110/220 (в)
Польша 50 ± 0,1 230 (к) 400/230 (а) 1000
690/400
400/230 (а)
Португалия 50 ± 1 380/220 (а)
220 (к)
15 000
5 000
380/220 (а)
220 (к)
15 000
5 000
380/220 (а)
Катар 50 ± 0.1 415/240 (к) 415/240 (а) 11 000
415/240 (а)
Румыния 50 ± 0,5 220 (к)
220/380 (а)
220/380 (а) 20 000
10 000
6 000
220/380 (а)
Россия 50 ± 0,2 380/220 (а)
220 (к)
380/220 (а)
220 (к)
380/220 (а)
Руанда 50 ± 1 220 (к) 380/220 (а) 15 000
6 600
380/220 (а)
Сент-Люсия 50 ± 3 240 (к) 415/240 (а) 11 000
415/240 (а)
Самоа 400/230
Сан-Марино 50 ± 1 230/220 380 15 000 90 100 380
Саудовская Аравия 60 220/127 (а) 220/127 (а)
380/220 (а)
11 000
7 200
380/220 (а)
Соломоновы Острова 50 ± 2 240 415/240 415/240
Сенегал 50 ± 5 220 (а)
127 (к)
380/220 (а)
220/127 (к)
90 000
30 000
6 600
Сербия и Черногория 50 380/220 (а)
220 (к)
380/220 (а)
220 (к)
10 000
6 600
380/220 (а)
Сейшелы 50 ± 1 400/230 (а) 400/230 (а) 11 000
400/230 (а)
Сьерра-Леоне 50 ± 5 230 (к) 400/230 (а)
230 (к)
11 000 90 100 400
Сингапур 50 400/230 (а)
230 (к)
400/230 (а) 22 000
6 600
400/230 (а)
Словакия 50 ± 0.5 230 230 230/400
Словения 50 ± 0,1 220 (к) 380/220 (а) 10 000
6 600
380/220 (а)
Сомали 50 230 (к)
220 (к)
110 (к)
440/220 (к)
220/110 (к)
230 (к)
440/220 (г)
220/110 (г)
Южная Африка 50 ± 2,5 433/250 (а)
400/230 (а)
380/220 (а)
220 (к)
11000
6600
3300
433/250 (а)
400/230 (а)
380/220 (а)
11,000
6,600
3,300
500 (б)
380/220 (а)
Испания 50 ± 3 380/220 (а) (д)
220 (к)
220/127 (а)
127 (к)
380/220 (а)
220/127 (а) (д)
15000
11000
380/220 (а)
Шри-Ланка 50 ± 2 230 (к) 400/230 (а)
230 (к)
11 000
400/230 (а)
Судан 50 240 (к) 415/240 (а)
240 (к)
415/240 (а)
Свазиленд 50 ± 2.5 230 (к) 400/230 (а)
230 (к)
11 000
400/230 (а)
Швеция 50 ± 0,5 400/230 (а)
230 (к)
400/230 (а)
230 (к)
6000
400/230 (а)
Швейцария 50 ± 2 400/230 (а) 400/230 (а) 20,000
10,000
3,000
1,000
690/500
Сирия 50 220 (к)
115 (к)
380/220 (а)
220 (к)
200/115 (а)
380/220 (а)
Таджикистан 50 380/220 (а)
220 (к)
220/127 (а)
127 (к)
380/220 (а)
220 (к)
380/220 (а)
Танзания 50 400/230 (а) 400/230 (а) 11 000
400/230 (а)
Таиланд 50 220 (к) 380/220 (а)
220 (к)
380/220 (а)
Того 50 220 (к) 380/220 (а) 20 000
5 500
380/220 (а)
Тунис 50 ± 2 380/220 (а)
220 (к)
380/220 (а)
220 (к)
30 000
15 000
10 000
380/220 (а)
Туркменистан 50 380/220 (а)
220 (к)
220/127 (а)
127 (к)
380/220 (а)
220 (к)
380/220 (а)
Турция 50 ± 1 380/220 (а) 380/220 (а) 15 000
6 300
380/220 (а)
Уганда + 0.1 240 (к) 415/240 (а) 11 000
415/240 (а)
Украина + 0,2 / — 1,5 380/220 (а)
220 (к)
380/220 (а)
220 (к)
380/220 (а)
220 (к)
Объединенные Арабские Эмираты 50 ± 1 220 (к) 415/240 (а)
380/220 (а)
220 (к)
6,600
415/210 (а)
380/220 (а)
Соединенное Королевство
(кроме Северной
Ирландии)
50 ± 1 230 (к) 400/230 (а) 22,000
11,000
6,600
3,300
400/230 (а)
Соединенное Королевство
(включая Северную
Ирландию)
50 ± 0.4 230 (к)
220 (к)
400/230 (а)
380/220 (а)
400/230 (а)
380/220 (а)
Соединенные Штаты
Америка
Шарлотта
(Северная Каролина)
60 ± 0,06 120/240 (к)
120/208 (а)
265/460 (а)
120/240 (к)
120/208 (а)
14 400
7 200
2400
575 (ж)
460 (ж)
240 (ж)
265/460 (а)
120/240 (к)
120/208 (а)
Соединенные Штаты
Америка
Детройт (Мичиган)
60 ± 0.2 120/240 (к)
120/208 (а)
480 (ж)
120/240 (в)
120/208 (а)
13 200
4800
4 160
480 (ж)
120/240 (в)
120/208 (а)
США
Америка
Лос-Анджелес (Калифорния)
60 ± 0,2 120/240 (к) 4800
120/240 (г)
4800
120/240 (г)
Соединенные Штаты
Америка
Майами (Флорида)
60 ± 0.3 120/240 (к)
120/208 (а)
120/240 (к)
120/240 (в)
120/208 (а)
13200
2400
480/277 (а)
120/240 (в)
Соединенные Штаты
Америка Нью-Йорк
(Нью-Йорк)
60 120/240 (к)
120/208 (а)
120/240 (к)
120/208 (а)
240 (е)
12,470
4,160
277/480 (а)
480 (ж)
Соединенные Штаты
Америка
Питтсбург
(Пенсильвания)
60 ± 0.03 120/240 (к) 265/460 (а)
120/240 (к)
120/208 (а)
460 (е)
230 (е)
13 200
11 500
2400
265/460 (а)
120/208 (а)
460 (е)
230 (е)
Соединенные Штаты
Америка
Портленд (Орегон)
60 120/240 (к) 227/480 (а)
120/240 (к)
120/208 (а)
480 (е)
240 (е)
19 900
12 000
7 200
2400
277/480 (а)
120/208 (а)
480 (ж)
240 (ж)
Соединенные Штаты
Америка
Сан-Франциско
(Калифорния)
60 ± 0.08 120/240 (к) 277/480 (а)
120/240 (к)
20800
12000
4,160
277/480 (а)
120/240 (г)
Соединенные Штаты
Америка
Толедо (Огайо)
60 ± 0,08 120/240 (к)
120/208 (а)
277/480 (в)
120/240 (в)
120/208 (в)
12,470
7,200
4,800
4,160
480 (ж)
277/480 (а)
120/208 (а)
Уругвай 50 ± 1 220 (б) (л) 220 (б) (л) 15 000
6 000
220 (б)
Вьетнам 50 ± 0.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *