Напряжение в вольтах: Чем отличается Вольт от Ватт

Содержание

какая между ними разница, как они обозначаются, как перевести вольты в ватты

Основными единицами измерения, регламентирующими показания электрического тока, являются ватт и вольт. Во всех руководствах по эксплуатации и паспортах эти показатели присутствуют.

Что такое ватт и вольт

1 вольт равен единице напряжения, созданного электрическим током, на концах проводящего устройства, предназначенного для тепловыделения мощностью в 1 ватт при постоянной электротехнической характеристике, проходящим через проводник. Характеристика вольта также определяется как разность потенциалов между двумя измеряемыми точками, при передвижении заряда в один кулон из точки А в точку В, когда требуется выполнить работу величиной в 1 джоуль.

Вольты, ватты и амперы

1 Вт – показатель мощности, при котором за секунду выполняется работа равная 1 Дж. Получается, что Вт считается производной от двух величин. Мощность и напряжение имеют соотношение:

1Вт = 1В*1А

Формулы

Чтобы иметь представление, что такое мощность, необходимо мыслить логически. Если считать, что это просто сила, такое заключение будет неверным. Чтобы правильно дать оценку физической величине, достаточно знать, что мощность является скоростью, с которой устройство потребляет энергию.

К примеру, лампа может давать яркий либо тусклый свет, зависит от того, с какой скоростью потребляется энергия. Если яркость выше, то расход больше, и наоборот.

Внимание! Показатель мощности распространяется на все электрические приборы, но она не всегда связана с электроэнергией. Это основное различие показателей.

Основные величины тока

Мощность также бывает:

  • Тепловая – определяется по температурным параметрам.
  • Электрическая – показатель учитывается в электрических приборах, в том числе в лампочках.
  • Механическая, определяемая по количеству лошадиных сил.

Все перечисленное относится к физическим характеристикам.

Как они обозначаются

Вт – это ватт или вольт, некоторые затрудняются ответить. Обозначение Вт отмечалось уже в позапрошлом веке в Великобритании. Название мере было дано в честь знаменитого ученого, идеолога промышленной революции, Джеймса Ватта, который был также создателем первого парового двигателя.

Множество лет он потратил на изучение этого показателя и для измерения использовал лошадиную силу.

Вольт – единица, названная в честь великого физика Алессандро Вольта. Вольт определяется как разница напряжений или потенциалов на концах проводника, а также между токопроводящими участками цепи.

Обозначение величин:

  • Вт – ватт
  • В – вольт.

Это принятая аббревиатура (сокращение) в международной системе.

Какая разница между Вт и В (В и А)

Чем отличается вольт от показателя ампера: Вольт – единица измерения напряжения, а ватт – мощности. В – это разница, создаваемая в электрическом потенциале на линии провода, когда ток с силой в 1А рассеивает единицу мощности, то есть напряжение. Определение напряжения заключается в том, что это потенциал электричества между разными точками. Наряду с этим он используется, чтобы обозначить разницу потенциальной энергии электрического заряда между точками. Источник энергии – это напряжение, представляющее затраченную или потерянную энергию.

О мощности

Внимание! Напряжение гипотетически напоминает давление, создаваемое в цепи и проталкивающее электроны.

На двух путях должно быть обеспечено прохождение тока. Эта характеристика считается общей энергией для перемещения заряда. Определение напряжения основано на том, что отрицательные заряды притягиваются к высоким показателям, а положительные – к низким.

Вт – скорость выполнения работы. Скорость поддерживается на уровне 1 метра в секунду против постоянной силы противодействия в 1 ньютон. Если рассматривать относительно электромагнетизма, единицей считается скорость выполнения работы при прохождении 1 ампера через разность потенциалов показателем в 1В. Ватт – это мера мощности.

Мощность

Мощность – это энергический поток, с которым осуществляется потребление энергии. Бывает, что в описании прибора встречается вместо кВт – кВА. Чтобы определить это значение, следует знать, что измеряется в кВА.

На выполнение работы полностью энергия не затрачивается, а напротив:

  • Одна из фракций становится активной, то есть выполняет работу либо трансформируется в иную форму.
  • Другая фракция реактивная. Энергия направляется в электромагнитное поле.

Внимание! Эти величины разные, несмотря на одинаковую соразмерность. Чтобы не допускать путаницы, показатель измеряется не в ваттах, а вольт-амперах.

Механическая мощность

Какое напряжение измеряется в вольтах и ваттах

Напряжение в ваттах или в вольтах измеряется по индивидуальным критериям. Измерения напряжения осуществляется в Вольтах, а на чертежах обозначается буквой V. Напряжение замеряется прибором – вольтметром. Последние устройства могут быть:

  • Аналоговыми.
  • Цифровыми.

Более точными являются первые.

В портативные устройства встроены вольтметры, и этим инструментом пользуются электрики. Аналоговые приборы установлены на электрических панелях: распредщиты и генераторы. Новейшее оборудование поставляется в комплекте с цифровыми счетчиками.

Величина напряжения в соответствии с международными стандартами устанавливается:

  • Киловольт – кВ.
  • Милливольт – мВ.
  • Вольт – В.
  • Мегавольт – МВ.
  • Микровольт – мкВ.
Замеры напряжения

Важно! В ваттах (киловаттах) измеряется мощность. Эта величина связана с напряжением прямо пропорционально, а также с величиной силы тока. Основное отличие – это обозначение установленных показателей, согласно системе измерений.

Как перевести вольты и ватты и наоборот

Чтобы правильно выполнить задачу, связанную с переводом вольтов в ватты, можно руководствоваться следующим алгоритмом:

  • В руководстве по эксплуатации электроприбора нужно найти значение мощности. Зачастую компании указывают эту величину в вольт-амперах. Это обозначение показывает максимальное количество потребляемой электроэнергии. Так оно приравнивается к значению мощности.
  • Определить КПД источника питания по особенностям конструктивного исполнения и количеству подключенных к нему приборов. Как правило, этот коэффициент устанавливается в диапазоне от 0,6 до 0,8.
  • Перевести вольтамперные показатели в Вт: узнать активную мощность энергетического оборудования, предназначенного для снабжения бесперебойным питанием.

Важно! Вычислить количество ватт достаточно перемножением вольт-ампер на КПД.

Наглядное изображение напряжения и тока
  • Перевод из Вт в В проходит по обратной схеме: ватты нужно разделить на коэффициент полезного действия.

При выборе источника питания от завода-изготовителя не всегда бывает понятно, сколько мощности выдает прибор. Поэтому рекомендуется изучить технические параметры, указанные в инструкции, чтобы осуществить корректный перевод из одной величины в другую.

Сколько вольт в киловольте. Смертельное это напряжение

сколько вольт в киловольте. Смертельное это напряжение?

  1. смертельно частота тока
  2. 1 Киловольт = 1000 Вольт

    Смертельно или несмертельно — зависит от множества факторов.
    Место приложения к телу, путь тока, состояние организма.

    Но это опасное напряжение однозначно, при неудачном раскладе может хорошо приложить!

  3. Это одна тысяча вольт. Если речь идет об электрической сети промышленной частоты, то да, это опасно для жизни! Нельзя прикасаться или подходить близко, если провод на земле лежит.
  4. 1 киловольт=1000 вольт
    1 килограмм=1000 грамм
    1 килобит= 1024 битам =)
  5. Электрик старый, дядя Сма,
    Зайдя по вызову в отдел,
    Как старый добрый наш знакомый,
    Сперва розетку оглядел,

    Потом спросил не без причины
    У нас, оставшихся без дел,
    Искрила ли перед кончиной,
    Предохранитель ли слетел

    И, развинтив нутро на клеммы,
    На пальцы смачно поплевал;
    Вложив в розетку, суть проблемы
    Тотчас без тестера признал.

    Увидев наше изумленье,
    Нам старый мастер объяснил,
    Что не имеет больше сил
    Преодолеть сопротивленье

    Привычной кожи, потому
    Плевать приходится ему,
    Когда в розетке двести двадцать.
    Совсем иное дело, братцы,

    Коль надо за трхфазный браться
    Вот здесь могу сухой рукой
    Понять, под фазою какой
    Но тоже нечего бояться.

    Что не люблю я, без сомненья,
    И в том могу признаться вам:
    Не мило мне прикосновенье
    К высоковольтным проводам!

  6. Смертелен ампераж
  7. а жалко, что убить не может. . надо бы общество проредить)) вроде как от 40 вольт официально считают, ну это для тех у кого прививки от электричества нет..
  8. Кило — это тыща. А далее — щитайЪ.
  9. кило это три нуля 000. В киловольте 1 000 вольт.
    Да смертельно. Зависит от силы тока.
  10. кило — тысяча, а смертельно даже 12вольт тут мужику аккумулятор автомобильный на голову упал- мужик умер
  11. Смертелен ток — 100мА, и частота тока. Чем выше частота, тем больше ток течт по поверхности, чем по сечению проводника (тела) . Поэтому 1000вольт при токе 10мА вас не убьт, и 1000вольт частотой 1Мгерц — обожжет кожу.
  12. 1000 вольт. Смертельно не само напряжение, а сила тока, которая проходит через человека. В зажигалках, которые искры дают при нажатии на кнопку, вырабатываются пьезоэлементом десятки киловольт, однако сила тока ничтожно маленькая, и убить, естественно, никого не может
  13. И большее напряжение может быть не смертельно, если маленькая сила тока. Больше 10 мА уже не стоит испытывать.
    http://www.guitarplayer.ru/forum/index.php?topic=64970.0
    …Порог восприятия постоянного тока, входящего в руку, составляет примерно 5-10 миллиампер (мА) , порог восприятия используемого в быту переменного тока (60 Гц) около 110 мА. Максимальная сила тока, который вызывает сокращение мышц-сгибателей руки, но еще позволяет пострадавшему освободить руку от источника тока, составляет (в зависимости от мышечной массы) для постоянного тока 75 мА и для переменного 15 мА; такой ток называют током отпускания (неотпускающим током) . Переменный ток (60 Гц) низкого напряжения (110-220 В) , проходящий через грудную клетку в течение долей секунды, может вызвать фибрилляцию желудочков при силе всего лишь 60100 мА; постоянный ток вызывает подобный эффект при силе 300500 мА. Если ток проводится прямо в сердце (например, через сердечный зонд или электроды электрокардиостимулятора) , то фибрилляция может возникнуть под действием очень слабого тока, переменного или постоянного (lt;1 мА) .
  14. 1 кВ-1000 В. Опасным для жизни человека переменный ток становится начиная с силы примерно 0,01 А, а постоянный с 0,05 А.

Поскольку мы живём в эпоху электричества, многим нам с детства знакомо понятие электрического

напряжения: ведь мы порой, исследуя окружающую действительность, получали от него немалый шок, засунув тайком от родителей пару пальцев в розетку питания электрических устройств. Поскольку вы читаете эту статью, ничего особо страшного с вами не произошло — трудно жить в эпоху электричества и не познакомится с ним накоротке. С понятием электрического потенциала дело обстоит несколько сложнее.

Будучи математической абстракцией, электрический потенциал лучше всего по аналогии описывается действием гравитации — математические формулы абсолютно схожи, за исключением того, не существуют отрицательные гравитационные заряды, так как масса всегда положительная и в то же время электрические заряды бывают как положительными, так и отрицательными; электрические заряды могут как притягиваться, так и отталкиваться. В результате же действия гравитационных сил тела могут только притягиваться, но не могут отталкиваться. Если бы мы смогли разобраться с отрицательной массой, мы бы овладели антигравитацией.

Понятие электрического потенциала играет важную роль в описании явлений, связанных с электричеством. Вкратце понятие электрического потенциала описывает взаимодействие различных по знаку или одинаковых по знаку зарядов или групп таких зарядов.

Из школьного курса физики и из повседневного опыта, мы знаем, что поднимаясь в гору, мы преодолеваем силу притяжения Земли и, тем самым, совершаем работу против сил притяжения, действующих в потенциальном гравитационном поле. Поскольку мы обладаем некоторой массой, Земля старается понизить наш потенциал — стащить нас вниз, что мы с удовольствием позволяем ей, стремительно катаясь на горных лыжах и сноубордах. Аналогично, электрическое потенциальное поле старается сблизить разноимённые заряды и оттолкнуть одноимённые.

Отсюда следует вывод, что каждое электрически заряженное тело старается понизить свой потенциал, приблизившись как можно ближе к мощному источнику электрического поля противоположного знака, если никакие силы этому не препятствуют. В случае одноимённых зарядов каждое электрически заряженное тело старается понизить свой потенциал, удалившись как можно дальше от мощного источника электрического поля одинакового знака, если никакие силы этому не препятствуют. А если они препятствуют, то потенциал не меняется — пока вы стоите на ровном месте на вершине горы, сила гравитационного притяжения Земли компенсируется реакцией опоры и вас ничто не тянет вниз, только ваш вес давит на лыжи. Но стоит только оттолкнуться…

Аналогично и поле, создаваемое каким-то зарядом, действует на любой заряд, создавая потенциал для его механического перемещения к себе или от себя в зависимости от знака заряда взаимодействующих тел.

Электрический потенциал

Заряд, внесённый в электрическое поле, обладает определенным запасом энергии, т. е. способностью совершать работу. Для характеристики энергии, запасённой в каждой точке электрического поля, и введено специальное понятие — электрический потенциал. Потенциал электрического поля в данной точке равен работе, которую могут совершить силы этого поля при перемещении единицы положительного заряда из этой точки за пределы поля.

Возвращаясь к аналогии с гравитационным полем, можно обнаружить, что понятие электрического потенциала сродни понятию уровня различных точек земной поверхности. То есть, как мы рассмотрим ниже, работа по поднятию тела над уровнем моря зависит от того, как высоко мы поднимаем это тело, и аналогично, работа по отдалению одного заряда от другого зависит от того, насколько далеко будут эти заряды.

Представим себе героя древнегреческого мира Сизифа. За его прегрешения в земной жизни боги приговорили Сизифа выполнять тяжёлую бессмысленную работу в загробной жизни, вкатывая огромный камень на вершину горы. Очевидно, что для подъема камня на половину горы, Сизифу нужно затратить вдвое меньшую работу, чем для подъема камня на вершину. Далее камень, волею богов, скатывался с горы, совершая при этом некоторую работу. Естественно, камень, поднятый на вершину горы высотой Н (уровень Н), при спуске сможет совершить большую работу, чем камень, поднятый на уровень Н /2. Принято считать уровень моря нулевым уровнем, от которого и производится отсчет высоты.

По аналогии, электрический потенциал земной поверхности считается нулевым потенциалом, то есть

ϕ Earth = 0

где ϕ Earth — обозначение электрического потенциала Земли, являющегося скалярной величиной (ϕ — буква греческого алфавита и читается как «фи»).

Эта величина количественно характеризует способность поля совершить работу (W) по перемещению какого-то заряда (q) из данной точки поля в другую точку:

ϕ = W/q

В системе СИ единицей измерения электрического потенциала является вольт (В).

Напряжение

Одно из определений электрического напряжения описывает его как разность электрических потенциалов, что определяется формулой:

V = ϕ1 – ϕ2

Понятие напряжение ввёл немецкий физик Георг Ом в работе 1827 года, в которой предлагалась гидродинамическая модель электрического тока для объяснения открытого им в 1826 г. эмпирического закона Ома:

V = I·R,

где V — это разность потенциалов, I — электрический ток, а R — сопротивление.

Другое определение электрического напряжения представляется как отношение работы поля по передвижению заряда в проводнике к величине заряда.

Для этого определения математическое выражение для напряжения описывается формулой:

V = A / q

Напряжение, как и электрический потенциал, измеряется в вольтах (В) и его десятичных кратных и дольных единицах — микровольтах (миллионная доля вольта, мкВ), милливольтах (тысячная доля вольта, мВ), киловольтах (тысячах вольт, кВ) и мегавольтах (миллионах вольт, МВ).

Напряжением в 1 В считается напряжение электрического поля, совершающего работу в 1 Дж по перемещению заряда в 1 Кл. Размерность напряжения в системе СИ определяется как

В = кг м²/(А с³)

Напряжение может создаваться различными источниками: биологическими объектами, техническими устройствами и даже процессами, происходящими в атмосфере.

Элементарной ячейкой любого биологического объекта является клетка, которая с точки зрения электричества представляет собой электрохимический генератор малого напряжения. Некоторые органы живых существ, вроде сердца, являющихся совокупностью клеток, вырабатывают более высокое напряжение. Любопытно, что самые совершенные хищники наших морей и океанов — акулы различных видов — обладают сверхчувствительным датчиком напряжения, называемым органом боковой линии , и позволяющим им безошибочно обнаруживать свою добычу по биению сердца. Отдельно, пожалуй, стоит упомянуть об электрических скатах и угрях, выработавших в процессе эволюции для поражения добычи и отражения нападения на себя способность создавать напряжение свыше 1000 В!

Хотя люди генерировали электричество, и, тем самым, создавали разность потенциалов (напряжение) трением кусочка янтаря о шерсть с давних времён, исторически первым техническим генератором напряжения явился гальванический элемент . Он был изобретён итальянским учёным и врачом Луиджи Гальвани , который обнаружил явление возникновения разности потенциалов при контакте разных видов металла и электролита. Дальнейшим развитием этой идеи занимался другой итальянский физик Алессандро Вольта . Вольта впервые поместил пластины из цинка и меди в кислоту, чтобы получить непрерывный электрический ток, создав первый в мире химический источник тока. Соединив несколько таких источников последовательно, он создал химическую батарею, так называемый «Вольтов столб» , благодаря которой стало возможным получать электричество с помощью химических реакций.

Из-за заслуг в создания надёжных электрохимических источников напряжения, сослуживший немалую роль в деле дальнейших исследования электрофизических и электрохимических явлений, именем Вольта названа единица измерения электрического напряжения — Вольт.

Среди создателей генераторов напряжения необходимо отметить голландского физика Ван дер Граафа , создавшего генератор высокого напряжения , в основе которого лежит древняя идея разделения зарядов с помощью трения — вспомним янтарь!

Отцами современных генераторов напряжения были два замечательных американских изобретателя — Томас Эдисон и Никола Тесла . Последний был сотрудником в фирме Эдисона, но два гения электротехники разошлись во взглядах на способы генерации электрической энергии. В результате последующей патентной войны выиграло всё человечество — обратимые машины Эдисона нашли свою нишу в виде генераторов и двигателей постоянного тока, исчисляющихся миллиардами устройств — достаточно просто заглянуть под капот своего автомобиля или просто нажать кнопку стеклоподъёмника или включить блендер; а способы создания переменного напряжения в виде генераторов переменного тока, устройств для его преобразования в виде трансформаторов напряжения и линий передач на большие расстояния и бесчисленных устройств для его применения по праву принадлежат Тесле. Их число ничуть не уступает числу устройств Эдисона — на принципах Тесла работают вентиляторы, холодильники, кондиционеры и пылесосы, и масса других полезных устройств, описание которых выходит за рамки настоящей статьи.

Безусловно, учёными позднее были созданы и другие генераторы напряжения на других принципах, в том числе и на использовании энергии ядерного распада. Они призваны служить источником электрической энергии для космических посланцев человечества в дальний космос.

Но самым мощным источником электрического напряжения на Земле, не считая отдельных научных установок, до сих пор остаются естественные атмосферные процессы.

Ежесекундно на Земле грохочут свыше 2 тысяч гроз, то есть, одновременно работают десятки тысяч естественных генераторов Ван дер Граафа, создавая напряжения в сотни киловольт, разряжаясь током в десятки килоампер в виде молний. Но, как ни удивительно, мощь земных генераторов не идёт ни в какое сравнение с мощью электрических бурь, происходящих на сестре Земли — Венере — не говоря уже об огромных планетах вроде Юпитера и Сатурна.

Характеристики напряжения

Напряжение характеризуется своей величиной и формой. Относительно его поведения с течением времени различают постоянное напряжение (не изменяющееся с течением времени), апериодическое напряжение (изменяющееся с течением времени) и переменное напряжение (изменяющееся с течением времени по определённому закону и, как правило, повторяющее само себя через определённый промежуток времени). Иногда для решения определённых целей требуется одновременное наличие постоянного и переменного напряжений. В таком случае говорят о напряжении переменного тока с постоянной составляющей.

В электротехнике генераторы постоянного тока (динамо-машины) используются для создания относительно стабильного напряжения большой мощности, в электронике применяются прецизионные источники постоянного напряжения на электронных компонентах, которые называются стабилизаторами .

Измерение напряжения

Измерение величины напряжения играет большую роль в фундаментальных физике и химии, прикладных электротехнике и электрохимии, электронике и медицине и во многих других отраслях науки и техники. Пожалуй, трудно найти отрасли человеческой деятельности, исключая творческие направления вроде архитектуры, музыки или живописи, где с помощью измерения напряжения не осуществлялся бы контроль над происходящими процессами с помощью разного рода датчиков, являющимися по сути дела преобразователями физических величин в напряжение. Хотя стоит заметить, что в наше время и эти виды человеческой деятельности не обходятся без электричества вообще и без напряжения в частности. Художники используют планшеты, в которых измеряется напряжение емкостных датчиков, когда над ними перемещается перо. Композиторы играют на электронных инструментах, в которых измеряется напряжение на датчиках клавиш и в зависимости от него определяется насколько сильно нажата та или иная клавиша. Архитекторы используют AutoCAD и планшеты, в которых тоже измеряется напряжение, которые преобразуется в числовую форму и обрабатывается компьютером.

Измеряемые величины напряжения могут меняться в широких пределах: от долей микровольта при исследованиях биологических процессов, до сотен вольт в бытовых и промышленных устройствах и приборах и до десятков миллионов вольт в сверхмощных ускорителях элементарных частиц. Измерение напряжения позволяет нам контролировать состояние отдельных органов человеческого организма при помощи снятия энцефалограмм мозговой деятельности. Электрокардиограммы и эхокардиограммы дают информацию о состоянии сердечной мышцы. При помощи различных промышленных датчиков мы успешно, а, главное, безопасно, контролируем процессы химических производств, порой происходящие при запредельных давлениях и температурах. И даже ядерные процессы атомных станций поддаются контролю с помощью измерения напряжений. С помощью измерения напряжения инженеры контролируют состояние мостов, зданий и сооружений и даже противостоят такой грозной природной силе как землетрясения.

Блестящая идея связать различные значения уровней напряжения со значениями состояния единиц информации дало толчок к созданию современных цифровых устройств и технологий. В вычислительной технике низкий уровень напряжения трактуется как логический нуль (0), а высокий уровень напряжения — как логическая единица (1).

По сути дела, все современные устройства вычислительной техники являются в той или иной степени компараторами (измерителями) напряжения, преобразовывая свои входные состояния по определённым алгоритмам в выходные сигналы.

Помимо всего прочего, точные измерения напряжения лежат в основе многих современных стандартов, выполнение которых гарантирует их абсолютное соблюдение и, тем самым, безопасность применения.

Средства измерения напряжения

В ходе изучения и познания окружающего мира, способы и средства измерения напряжения значительно эволюционировали от примитивных органолептических методов — русский учёный Петров срезал часть эпителия на пальцах, чтобы повысить чувствительность к действию электрического тока — до простейших индикаторов напряжения и современных приборов разнообразных конструкций на основе электродинамических и электрических свойств различных веществ.

К слову сказать, начинающие радиолюбители легко отличали «рабочую» плоскую батарейку на 4,5 В от «подсевшей» без каких-либо приборов по причине их полного отсутствия, просто лизнув её электроды. Протекавшие при этом электрохимические процессы давали ощущение определённого вкуса и лёгкого жжения. Отдельные выдающиеся личности брались определять таким способом пригодность батареек даже на 9 В, что требовало немалой выдержки и мужества!

Примером простейшего индикатора — пробника сетевого напряжения — может служить обыкновенная лампа накаливания с рабочим напряжением не ниже напряжения сети. В продаже имеются простые пробники напряжения на неоновых лампах и светодиодах, потребляющие малые токи. Осторожно, использование самодельных конструкций может быть опасным для Вашей жизни!

Необходимо отметить, что приборы для измерения напряжения (вольтметры) весьма отличаются друг от друга в первую очередь по типу измеряемого напряжения — это могут быть приборы постоянного или переменного тока. Вообще, в измерительной практике важно поведение измеряемого напряжения — оно может быть функцией времени и иметь различную форму — быть постоянным, гармоническим, негармоническим, импульсным и так далее, и его величиной принято характеризовать режимы работ электротехнических цепей и устройств (слаботочные и силовые).

Различают следующие значения напряжения:

  • мгновенное,
  • амплитудное,
  • среднее,
  • среднеквадратичное (действующее).

Мгновенное значение напряжения U i (см. рисунок) — это значение напряжения в определенный момент времени. Его можно наблюдать на экране осциллографа и определять для каждого момента времени по осциллограмме.

Амплитудное (пиковое) значение напряжения U a — это наибольшее мгновенное значение напряжения за период. Размах напряжения U p-p — величина, равная разности между наибольшим и наименьшим значениями напряжения за период.

Среднее квадратичное (действующее) значение напряжения U rms определяется как корень квадратный из среднего за период квадрата мгновенных значений напряжения.

Все стрелочные и цифровые вольтметры обычно градуируются в среднеквадратических значениях напряжения.

Среднее значение (постоянная составляющая) напряжения — это среднее арифметическое всех его мгновенных значений за время измерения.

Средневыпрямленное напряжение определяется как среднее арифметическое абсолютных мгновенных значений за период.

Разность между максимальным и минимальным значениями напряжения сигнала называют размахом сигнала.

Сейчас, в основном, для измерения напряжения используются как многофункциональные цифровые приборы, так и осциллографы — на их экранах отображается не только форма напряжения, но и существенные характеристики сигнала. К таким характеристикам относится и частота изменения периодических сигналов, поэтому в технике измерений важен частотный предел измерений прибора.

Измерение напряжения осциллографом

Иллюстрацией к вышесказанному будет серия опытов по измерению напряжений с использованием генератора сигналов, источника постоянного напряжения, осциллографа и многофункционального цифрового прибора (мультиметра).

Эксперимент №1

Общая схема эксперимента №1 представлена ниже:


Генератор сигналов нагружен на сопротивление нагрузки R1 в 1 кОм, параллельно сопротивлению подключены измерительные концы осциллографа и мультиметра. При проведении опытов учтём то обстоятельство, что рабочая частота осциллографа значительно выше рабочей частоты мультиметра.

Опыт 1: Подадим на сопротивление нагрузки сигнал синусоидальной формы с генератора частотой 60 герц и амплитудой 4 вольт. На экране осциллографа будем наблюдать изображение, показанное ниже. Отметим, что цена деления масштабной сетки экрана осциллографа по вертикальной оси 2 В. Мультиметр и осциллограф при этом покажут среднеквадратичное значение напряжение 1,36 В.


Опыт 2: Увеличим сигнал от генератора вдвое, размах изображения на осциллографе возрастёт ровно вдвое и мультиметр покажет удвоенное значение напряжения:


Опыт 3: Увеличим частоту генератора в 100 раз (6 кГц), при этом частота сигнала на осциллографе изменится, но размах и среднеквадратичное значение останутся прежними, а показания мультиметра станут неправильными — сказывается допустимый рабочий частотный диапазон мультиметра 0-400 Гц:


Опыт 4: Вернёмся к исходной частоте 60 Гц и напряжению генератора сигналов 4 В, но изменим форму его сигнала с синусоидальной на треугольную. Размах изображения на осциллографе остался прежним, а показания мультиметра уменьшились по сравнению со значением напряжения, которое он показывал в опыте №1, так как изменилось действующее напряжение сигнала:


Эксперимент №2

Схема эксперимента №2, аналогична схеме эксперимента 1.

Ручкой изменения напряжения смещения на генераторе сигналов добавим смещение 1 В. На генераторе сигналов установим синусоидальное напряжение с размахом 4 В с частотой 60 Гц — как и в эксперименте №1. Сигнал на осциллографе поднимется на половину большого деления, а мультиметр покажет среднеквадратичное значение 1,33 В. Осциллограф покажет изображение, подобное изображению из опыта 1 эксперимента №1, но поднятое половину большого деления. Мультиметр покажет почти такое же напряжение, как было в опыте 1 эксперимента №1, так как у него закрытый вход, а осциллограф с открытым входом покажет увеличенное действующее значение суммы постоянного и переменного напряжений, которое больше действующего значения напряжения без постоянной составляющей:


Техника безопасности при измерении напряжения

Поскольку в зависимости от класса безопасности помещения и его состояния даже относительно невысокие напряжения уровня 12–36 В могут представлять опасность для жизни, необходимо выполнять следующие правила:

  1. Не проводить измерения напряжения, требующих определённых профессиональных навыков (свыше 1000 В).
  2. Не производить измерения напряжений в труднодоступных местах или на высоте.
  3. При измерении напряжений в бытовой сети применять специальные средства защиты от поражения электрическим током (резиновые перчатки, коврики, сапоги или боты).
  4. Пользоваться исправным измерительным инструментом.
  5. В случае использования многофункциональных приборов (мультиметров), следить за правильной установкой измеряемого параметра и его величины перед измерением.
  6. Пользоваться измерительным прибором с исправными щупами.
  7. Строго следовать рекомендациям производителя по использованию измерительного прибора.


МВАр (Мегавольт Ампер-реактивный)
Не буду вдаваться в теорию, расскажу упрощенно и для сведения. На самом деле все генераторы на электростанциях вырабатывают два вида мощности. Во-первых, Активную мощность (это те самые Мегаватты — МВт, про которые я рассказал выше). Активная мощность совершает всю полезную работу — по нагреву проводников, по вращению двигателей. Но есть еще и реактивная мощность. Без нее не смогут крутиться двигатели (только активной мощности для приведения во вращение двигателя недостаточно) и работать некоторые потребители. Просто знайте, что она есть. Отсюда вытекает понятие полной мощности — измеряется в Мегавольт Амперах (МВА) — это корень квадратный из суммы квадратов активной и реактивной мощностей. Кстати, косинус фи (может слышали такое понятие, относящиеся к энергетике, показывает соотношение активной и реактивной мощностей, которые берет из сети потребитель). Все, идем дальше.

кВ (киловольт)
В Вольтах измеряется электрическое напряжение, обозначается «U». Если подумать — мы постоянно сталкиваемся с этой физической величиной. Электрическое напряжение между «+»-ом и «-»-ом пальчиковой батарейки от пульта телевизора всего 1,5 В, «в розетке на стене», то есть между ее контактами 220 В. Чаще всего напряжение используется журналистами при упоминании в материале линий электропередачи и электрических подстанций. Хочу открыть маленький секрет — если речь идет об отключении линии, зная ее напряжение можно оценить примерный масштаб отключений. Итак, в нашей стране используются следующие классы напряжений (про специфические, которые используются на некотором оборудовании промышленных предприятий писать не буду):
220 Вольт (220 В) — на такое напряжение рассчитаны бытовые приборы в СССР и соответственно проводка в жилых и административных зданиях.
0,4 кВ (0,4 киловольта или 400 Вольт, на самом деле 380 Вольт, для удобства округленные до целого значения) — линии такого напряжения прокладывают на очень маленькие расстояния, обычно от «трансформаторной будки» во дворе дома, до подъезда или по сельской улице, в любом случае максимальная длина такой линии — десятки метров. Соответственно если такая линия отключится, об этом узнают не более сотни потребителей электроэнергии.
6 кВ (6 киловольт или 6 тысяч Вольт, 6 000 В), 10 кВ, 35 кВ — это класс напряжения распределительной внутригородской сети, отключение сразу нескольких таких линий может «погасить» максимум небольшой городской квартал, как правило, длина таких линий несколько километров.
110 кВ, 220 кВ — системообразующая региональная сеть, длина от десятков до сотен километров. Отключение такой линии может оставить без света от 100 000 до 200 000 человек. Правда, обычно такие линии работают по несколько в параллели, так, что для того, чтобы пропал свет должно отключиться сразу нескольких линий или вся подстанция целиком.
500 кВ — сеть, образующая Единую Электроэнергетическую Систему Казахстана, также линии такого класса напряжения образуют межгосударственные электрические связи. Отключение такой линии может привести к обесточиванию до полумиллиона потребителей (а если отключение получит развитие, без света останется намного больше людей). Однако, как правило, ничего страшного не происходит, поскольку в параллели несколько таких линий. Длина несколько сотен километров. Самая длинная линия 500 кВ в Казахстане — от Актюбинска до Костаная — 500 км. Первые линии напряжением 500 кВ появились в СССР после 1960 года. В Казахстане первая 500-ка это линия между г. Аксу (Ермак) и Экибастузом, построенная в 1972 году.
1150 кВ (1 миллион 150 тысяч Вольт) — линия (вернее транзит длиной 2500 км, из которых 1500 км проходит по нашей территории) уникальна для Земли. Ни в одной стране мира нет линий такого класса напряжения. Только в Казахстане и России. Линия была построена для обмена мощностью между Сибирью, Казахстаном и Европейской частью СССР. Транзит берет начало в сибирском Итате, затем идет через Барнаул, Экибастуз, Кокшетау, Костанай в Челябинск. Для чего такие «дикие» напряжения, спросите вы? Просто это дает возможность передавать по транзиту 5 500 МВт — это самая мощная ВЛ в мире. Правда, на своем «родном» напряжении линии удалось поработать недолго. Распался Советский Союз, произошел резкий спад потребления — передавать стало нечего. Вот и перевели ее на напряжение 500 кВ. Но кто знает, может все вернется обратно?

Был один случай. Приехал к нам в Казахстан один иностранец, по линии какой-то международной организации, то ли ООН, то ли USAID, не помню. Приехал обучать аборигенов, так сказать. Достижениям западной цивилизации. Долго парил мозги про «их» успехи (которые, по правде говоря, для нас стали пройденным этапом году эдак в 1970), и по концовке видимо решил нас окончательно добить своим превосходством. У нас, говорит (многозначительно так), системообразующая сеть работает на напряжении… целых 400 тысяч Вольт! Последовавший за этим наш дружный смех он интерпретировал неправильно, подумал, что по причине сильной отсталости, туземцы не верят в существование такой «огромной» цифры, и уже было начал обдумывать продолжение спича. Однако был нами остановлен, и под белы ручки подведен к карте с трассировкой линий по стране. Док долго отказывался верить в то, что у нас буквально весь Казахстан в линиях на 500 кВ, а что построена линия напряжением 1150 кВ он поверил только у себя на родине, когда ознакомился с разведданными ЦРУ:) Больше к нам спецов не присылали.

Я перечислил все классы напряжения, которые используются в Казахстане и странах бывшего СССР (правда в России, Белоруссии, Прибалтике и на Украине используются еще классы 330 кВ и 750 кВ). В странах дальнего зарубежья классы напряжения отличаются от вышеприведенной шкалы. И это не от большого ума. Например, в США напряжение, используемое бытовыми приборами не 220 В, как у нас, а 127 В. На что это влияет? Если кто помнит, электрические «шнуры» (кабели питания) советской бытовой техники были довольно тонкими. Не то, что сейчас — телевизор, мощностью с лампочку в подъезде, получает питание от сети по кабелю, толщиной чуть ли не с мизинец, а про стиральную машинку я вообще молчу. Кстати, мой советский телевизор «Радуга» потреблял 750 Вт — в 3 раза больше, чем телек 51-ой диагонали LG сегодня. Далекие от школьных уроков физики люди думают, что такая разница в толщине проводов из-за желания иностранных производителей сделать более надежную и безопасную технику. А вот и нет. Просто кабели выпускаются под западные 110 -127В, а при таком напряжении меди в проводе должно быть в 4 (!) раза больше, чем при «советском» напряжении 220 В (для питания бытового прибора той же мощности). Чтобы оценить весь ужас перерасхода цветных металлов в США, помимо неэффективных «шнуров» к бытовой технике нужно учесть такую же проводку в стенах зданий, рассчитанную на 110-127 В. Скажете, что это они, дураки, что ли? Взяли бы да поменяли на 220 В. Не все так просто. Они бы сейчас может и поменяли, да денег это стоит переделывать все по новой стольких, что они запарятся доллары печатать.

Напряжение — локальный фактор. Если у вас слишком низкое напряжение в квартире, значит, проблема скорее всего существует в совсем небольшом районе. Скорее всего, на местной подстанции неправильно отрегулированы трансформаторы, либо в вашем районе дефицит реактивной мощности, про которую я написал ниже. Локальный — это означает, что если есть проблемы с напряжением в одном из Алматинских дворов, в соседнем может быть все в порядке, тем более все в порядке с напряжением в другом городе.

Постоянный и переменный электрический ток
Несмотря на то, что журналисты почти не сталкиваются с понятием электрического тока, для общего развития вкратце напишу и про него. Электрический ток это направленное движение электрически заряженных частиц под воздействием электрического поля. Уфф…:) Заряженными частицами могут быть, например электроны в металлических проводниках (поэтому провода ЛЭП делают из металла). Ионы в электролитах (поэтому «человека может ударить током»). Проще всего объяснить, что такое ток на устройстве простейшей электрической цепи. Есть источник тока — батарейка. Есть лампочка, подключенная к «+» и «-» батарейки при помощи проводника, например медной проволоки. Это простейшая электрическая цепь.

Батарейка является химическим источником тока. Из-за химических реакций, протекающих в батарейке, на стороне «-» батарейки, накапливаются электроны. Далее. Медная проволока, состоит из атомов, образующих кристаллическую решетку. Сквозь эту решетку могут свободно проходить электроны. Как только цепь замыкается (лампочка через проводки соединяется с обоими концами батарейки), электроны от «-» батарейки начинают перетекать к «+» по проволоке и нити накаливания лампочки (благодаря электродвижущей силе, которую создает батарейка) — это и есть электрический ток. Нить лампочки накаливания тоже металлическая, но кристаллическая решетка металла, из которого она изготовлена (обычно Вольфрам) намного «меньше» чем кристаллическая решетка меди, из которой сделаны проводки. Электронам труднее «протиснуться» через нее, в результате «трения» нить накаливания разогревается до высокой температуры и начинает светиться. Здесь мы коснулись еще одного понятия — электрического сопротивления. У меди оно меньше, чем у Вольфрама. Итак, здесь все понятно. Электроны циркулируют по цепи — это электрический ток, причем постоянный, поскольку они циркулируют в одном и том же направлении.

На постоянном токе «работает» практически вся бытовая электроника (компьютеры, телевизоры, пульты дистанционного управления). Исторически электрификация (централизованное обеспечение электроэнергией) начиналась с постоянного тока. Вообще, электрификация была голубой мечтой дедушки Томаса Эдисона, которую он, кстати, воплотил в жизнь. «Никогда не изобретай то, чего не сможешь продать!» — любил повторять предприимчивый изобретатель. Действительно, в те времена организация искусственного освещения сулила огромные барыши (в наше время это тоже отличный бизнес). Интересно, что до распространения искусственного освещения люди спали в среднем 10 часов в сутки. Основатель «General Electric », Эдисон стал одним из отцов современной энергетики, он спроектировал и выполнил в натуре первую в мире законченную энергетическую инфраструктуру — и производство электроэнергии на генераторах постоянного тока и ее доставку по линиям электропередачи к потребителям и всякие «мелочи» вроде выключателей, патронов к лампочкам, счетчиков электроэнергии и т.д. Кстати, размер цоколя лампочки до сих пор принято обозначать с большой латинской «E». Например, Е27 или Е14, где «Е» — означает Edison, а цифра это диаметр цоколя в миллиметрах. Сама лампочка накаливания — коллективное творение. Во всяком случае, Эдисон в 1906 году купил у Лодыгина патент на вариант лампочки с вольфрамовой нитью накаливания. Первым электрифицированным районом Земли стал Манхеттен в Нью-Йорке.

Все у Эдисона было нормально, пока не обнаружилась одна проблемка. Рабочее напряжение Эдисоновской сети постоянного тока было 127 Вольт — такое напряжение давали генераторы. Но чем дальше от генераторов пытались передать электроэнергию, тем меньше ее передавалось — сильно снижалось напряжение (это происходило из-за наличия сопротивления в электрических кабелях). Выход из положения состоял либо в том, чтобы повысить напряжение, но это создавало угрозу поражения электрическим током для конечных потребителей, а самое главное (самое — потому, что не до людей, когда такие деньги) нужно было менять генераторы, но это дорого, либо второй вариант — «понатыкать» электростанций по всему Нью-Йорку (через каждые 1,5-2 км), что, вообще говоря, снижало экономическую эффективность всей системы, про экологию я вообще молчу. Поскольку компания Эдисона была монополистом, он склонялся ко второму варианту.

Но тут Никола Тесла, который работал у Эдисона, подбросил идею перехода на переменный ток. В чем суть идеи. В 1831 году Майкл Фарадей обнаружил, что если поместить в магнитное поле проводник и перемещать его так, чтобы он при своем движении пересекал силовые линии магнитного поля, то в проводнике возникнет электрический ток. Блин, если так и дальше пойдет скоро и сам начну понимать, о чем пишу:) Проще говоря, что сделал Фарадей, — взял катушку, намотал на нее провод, концы провода подсоединил к вольтметру и как Ослик Иа из мультика про Винни Пуха стал опускать в полую сердцевину катушки магнит на ниточке, а потом поднимать. «Замечательно входит, замечательно выходит», — думал Фарадей. Тут смотрит, а стрелка вольтметра с каждым таким движением и дергается. Так и открыл электромагнитную индукцию.

Так вот, мо мере опускания магнита, по проводу, намотанному на катушку, начинает течь и возрастать ток, затем он уменьшается, затем становится равным нулю, а потом все повторяется в обратном направлении, а затем снова и снова. Это и есть переменный ток. Только до Теслы, куда его присобачить, этот переменный ток, никто не знал. Ну, есть, мол, такой и все тут.

Да, и еще изобрели трансформатор.

На Фарадейевскую катушку надели еще одну, большего диаметра (электрическая матрешка получилась), и тут заметили, что во второй катушке (если число витков отлично от первой катушки), напряжение другим становится. Так вот, Тесла прикинул 2+2 и предложил использовать переменный ток следующим образом. Делаем генератор переменного тока. Затем пропускаем переменный ток через трансформатор и многократно увеличиваем напряжение (это позволит передавать электроэнергию на большие расстояния). Затем доставляем электроэнергию до потребителя по линии электропередачи и снова пропускаем ток через трансформатор, только уже для понижения напряжения. Надо сказать, что такой фокус с постоянным током не проходит. Постоянный ток не трансформируется. Короче, вот проблема и решена, тем более что лампочке, если честно, вообще до лампочки — постоянный или переменный ток через нее проходит, светит почти одинаково. «Так, так, так, — захлопнув крышку карманных часов, сказал Эдисон, не дав Тесле договорить до конца. — А где генератор переменного тока взять, ты, что ли его изобретать будешь?». «Да я и не такое изобрести смогу, самодовольный ты осел », — ответил Никола. «Послушай, чем заниматься ерундой, приложи-ка лучше усилия к решению проблем электрических машин постоянного тока, если получится, дам тебе … $50 000, — прищурив глаза, Эдисон протянул Тесле исписанный листок бумаги. — И ступай уже, работать мешаешь». В подтверждение окончания разговора Эдисон отвернулся к верстаку, с какими-то железками, которым вскоре предстояло стать первым в мире видеовоспроизводящим устройством — кинетоскопом. Тесла довольно быстро решил проблемы с машинами Эдисона, и так же быстро придумал принцип работы генератора переменного тока. Помните Ослика Иа Фарадея с катушкой? Теперь немного изменим опыт. Не будем привязывать магнит за ниточку. Вместо этого, насадим магнит на палочку (тфу ты, детский сад какой-то) и будем палочку крутить, вдоль свой оси. Пишу, а самого почему-то смех разбирает:)) Катушка начнет вырабатывать переменный ток. В промышленном образце, конечно, никакого магнитика с палочкой нет, там есть ротор с мощным электромагнитом, который приводится во вращение паровой турбиной, вместо катушки с проволокой — статор. Итак, Тесла решил все задачи по машинам постоянного тока, которые Эдисон не смог решить сам. А Эдисон денег не дал. «Ну, ты парень даешь, совсем наших американских шуток не понимаешь, какие такие 50 штук баксов, я ж тебе зарплату плачу!» — ехидно улыбаясь, Эдисон похлопал Теслу по плечу и, приложив некоторое усилие, вырвал из рук своего сотрудника папку с чертежами и расчетами. «Нет, все-таки я великий изобретатель», — подумал Эдисон, наблюдая как сутуловатая фигура худощавого Теслы удаляется по коридору. Вот как Тесла и Эдисон рассорились. Да так, что через много лет, когда Тесле присудили Нобелевскую, он от нее отказался, поскольку ее на двоих с Эдисоном давали.

Почему Эдисон пробросил Теслу — понятно. Чтобы на переменный ток переходить, надо, во-первых, признать, и рассказать инвесторам, что я, Томас Алва Эдисон, в свое время недошурупил, что перспектив у постоянного тока как у снежка в микроволновке, а во-вторых, надо растрясти этих инвесторов на новые вложения. Не так-то это и просто. А что Тесла? А Тесла взял и пошел к Джорджу Вестингаузу, конкуренту Эдисона. Рассказал ему все как есть и сделали они первую в мире ГЭС с генераторами переменного тока на Ниагарском водопаде. Кстати, наш «КaзАтoмПрoм» владеет 10% акций компании «Westinghouse Electric », скажи в те годы Джорджу Вестингаузу, что казахи будут совладельцами его компании, думаю он бы сильно удивился, вот что глобализация делает.

Надо сказать, что Эдисон тоже не сдавался, какое то время. Что он только не делал, чтобы насолить развеселой компании Коли и Жоры. Статьи заказные писал с кричащими заголовками вроде «Еще одна жертва переменного тока» или «Все, что вы хотели узнать о переменном токе — убийце, но боялись спросить». И стул изобрел «электрический» (конечно же, на переменном токе), дескать, видите, мы этим переменным током преступников на тот свет отправляем, а вы хотите, чтобы он у вас из розетки дома торчал. И через «своих» сенаторов закон провел об ограничении уровня напряжения на линиях электропередачи, что делало бессмысленным использование переменного тока (потом закон конечно отменили). При этом опасность поражения постоянным током при напряжении 127 В ничуть не меньше, чем переменным. Это противостояние назвали «войной токов ». Но. Развитие не остановишь, переменный ток взял свое. Других вариантов нет и сегодня. Правда, надо сказать, американцы странные люди — на одной полке с прогрессом у них и технологическая отсталость может лежать. При всех преимуществах переменного тока, последние эдисоновские сети постоянного тока в Нью-Йорке были демонтированы только в 2007 году. Как говорится, дедушка умер, а дело живет, лучше бы было наоборот.

Стабилизатор напряжения ВОЛЬТ АМПЕР Э 9-1/50 v2.0

Характеристики стабилизатора напряжения ВОЛЬТ АМПЕР Э 9-1/50 v2.0

Мощность стабилизатора
11 кВA (10…11 кВт)
Количество фаз
1
Максимальный ток
50 А
Тип стабилизатора
Дискретный, тиристорный
Скорость коммутации, мс
20
Напряжение входа предельное, В
135 — 285
Напряжение входа номинальное, В
160 — 260
Напряжение выхода, В
220 ± 4.5%
Охлаждение
Конвекционное/принудительное
Подключение
Клеммная винтовая колодка
КПД, %
>98
Ток холостого хода, А
0.16 (35Вт)
Класс защиты по ГОСТ 14254-96
IP 20
Климатическое исполнение
УХЛ 4.2
Размеры (ВхШхГ), мм
530х295х175
Масса, кг
26
Производство
Россия, Москва, НПО «Вольт Инжиниринг»
Гарантия
5 лет

Описание стабилизатора напряжения ВОЛЬТ АМПЕР Э 9-1/50 v2.0

Электронный тиристорный стабилизатор напряжения ВОЛЬТ АМПЕР Э 9-1/50 v2.0 предназначен для поддержания стабильного напряжения 220В и защиты от скачков, просадок и помех на линии электропитания.

Стабилизатор имеет цифровое микропроцессорное управления на основе ARM-контроллера, который при помощи dlueRMS анализатора сети и полупроводниковых силовых ключей обеспечивает стабильное напряжение 220В выхода и надежную защиту от скачков и просадок напряжения. Дополнительно, стабилизатор оснащен фильтрами ВЧ и импульсных помех, защитой от искрения контактов на линии и электронным байпасом с функционалом отсекающего реле, что ставит его в один ряд со стабилизаторами профессиональных серий.

Стабилизатор предназначен в том числе и для бытового применения и особое внимание в его конструкции уделено уровню шума: используется бесшумный тороидальный трансформатор (не гудит), полупроводниковые силовые ключи (тиристор), металлический корпус имеет особую геометрию и компоновку внутренних элементов. Вентилятор системы активного охлаждения имеет несколько скоростей вращения и включается лишь при значительной нагрузке, а в штатных режимах работы отвод тепла осуществляется конвекционно.

Стабилизатор ВОЛЬТ АМПЕР имеет возможность ручной подстройки нижнего порога отключения (60-135В). Данная функция предназначена для нагрузок с высокими пусковыми токами, при запуске которых возможна сильная просадка напряжения и аварийное отключение стабилизатора. При активации данной опции стабилизатор в течении минуты даст возможность запустить любой двигатель или насос даже при просадке напряжения до 60В в сети.

Стабилизаторы ВОЛЬТ АМПЕР производятся в России, отличаются эргономичностью, высоким качеством и надежностью при относительно небольшой стоимости и имеют расширенную гарантию 5 лет. Их можно рекомендовать всем, кто ценит надежность и качество отечественного производителя.

В нашем магазине действует скидка 3%* при единовременном заказе трёх и более товаров.

*Для получения скидки необходимо оформить заказ по телефону 8 (800) 333-23-44

Мы будем рады сотрудничеству и готовы предложить Вам лучшую цену.

Стабилизаторы напряжения ВОЛЬТ Engineering

Стабилизаторы напряжения ВОЛЬТ Engineering

Гибридный симисторно-релейный стабилизатор с мягким переключением ступеней, электронным анализатором сети и микропроцессорным управлением

Напряжение входа, В: 130 — 295
Напряжение выхода, В: 220 ± 7.5%
Мощность, кВА: 2.2

Симисторный стабилизатор с цифровой системой управления. Стабилизирует напряжение 220В, защищает от скачков и просадок, фильтрует сетевые помехи

Напряжение входа, В: 135 — 285
Напряжение выхода, В: 220 ± 4.5%
Мощность, кВА: 2.2

Гибридный симисторно-релейный стабилизатор с мягким переключением ступеней, электронным анализатором сети и микропроцессорным управлением

Напряжение входа, В: 130 — 295
Напряжение выхода, В: 220 ± 7.5%
Мощность, кВА: 3.5

Симисторный стабилизатор с цифровой системой управления. Стабилизирует напряжение 220В, защищает от скачков и просадок, фильтрует сетевые помехи

Напряжение входа, В: 135 — 285
Напряжение выхода, В: 220 ± 4.5%
Мощность, кВА: 3.5

Гибридный симисторно-релейный стабилизатор с мягким переключением ступеней, электронным анализатором сети и микропроцессорным управлением

Напряжение входа, В: 120 — 295
Напряжение выхода, В: 220 ± 7.5%
Мощность, кВА: 5.5

Симисторный стабилизатор с цифровой системой управления. Стабилизирует напряжение 220В, защищает от скачков и просадок, фильтрует сетевые помехи

Напряжение входа, В: 135 — 285
Напряжение выхода, В: 220 ± 4.5%
Мощность, кВА: 5.5

Высокоточный симисторный стабилизатор с цифровым управлением. Стабилизирует напряжение 220В, защищает от скачков и просадок, фильтрует сетевые помехи

Напряжение входа, В: 100 — 295
Напряжение выхода, В: 220 ± 2.7%
Мощность, кВА: 5.5

Гибридный симисторно-релейный стабилизатор с мягким переключением ступеней, электронным анализатором сети и микропроцессорным управлением

Напряжение входа, В: 120 — 295
Напряжение выхода, В: 220 ± 7.5%
Мощность, кВА: 7

Симисторный стабилизатор с цифровой системой управления. Стабилизирует напряжение 220В, защищает от скачков и просадок, фильтрует сетевые помехи

Напряжение входа, В: 135 — 285
Напряжение выхода, В: 220 ± 4.5%
Мощность, кВА: 7

Высокоточный симисторный стабилизатор с цифровым управлением. Стабилизирует напряжение 220В, защищает от скачков и просадок, фильтрует сетевые помехи

Напряжение входа, В: 100 — 295
Напряжение выхода, В: 220 ± 2.7%
Мощность, кВА: 7

Гибридный симисторно-релейный стабилизатор с мягким переключением ступеней, электронным анализатором сети и микропроцессорным управлением

Напряжение входа, В: 120 — 295
Напряжение выхода, В: 220 ± 7.5%
Мощность, кВА: 9

Симисторный стабилизатор с цифровой системой управления. Стабилизирует напряжение 220В, защищает от скачков и просадок, фильтрует сетевые помехи

Напряжение входа, В: 135 — 285
Напряжение выхода, В: 220 ± 4.5%
Мощность, кВА: 9

Высокоточный симисторный стабилизатор с цифровым управлением. Стабилизирует напряжение 220В, защищает от скачков и просадок, фильтрует сетевые помехи

Напряжение входа, В: 100 — 295
Напряжение выхода, В: 220 ± 2.7%
Мощность, кВА: 9

Симисторный стабилизатор с цифровой системой управления. Стабилизирует напряжение 220В, защищает от скачков и просадок, фильтрует сетевые помехи

Напряжение входа, В: 135 — 285
Напряжение выхода, В: 220 ± 4.5%
Мощность, кВА: 11

Высокоточный симисторный стабилизатор с цифровым управлением. Стабилизирует напряжение 220В, защищает от скачков и просадок, фильтрует сетевые помехи

Напряжение входа, В: 100 — 295
Напряжение выхода, В: 220 ± 2.7%
Мощность, кВА: 11

Симисторный стабилизатор с цифровой системой управления. Стабилизирует напряжение 220В, защищает от скачков и просадок, фильтрует сетевые помехи

Напряжение входа, В: 135 — 285
Напряжение выхода, В: 220 ± 4.5%
Мощность, кВА: 14

Высокоточный симисторный стабилизатор с цифровым управлением. Стабилизирует напряжение 220В, защищает от скачков и просадок, фильтрует сетевые помехи

Напряжение входа, В: 100 — 295
Напряжение выхода, В: 220 ± 2.7%
Мощность, кВА: 14

Симисторный стабилизатор с цифровой системой управления. Стабилизирует напряжение 220В, защищает от скачков и просадок, фильтрует сетевые помехи

Напряжение входа, В: 135 — 285
Напряжение выхода, В: 220 ± 4.5%
Мощность, кВА: 18

Высокоточный симисторный стабилизатор с цифровым управлением. Стабилизирует напряжение 220В, защищает от скачков и просадок, фильтрует сетевые помехи

Напряжение входа, В: 100 — 295
Напряжение выхода, В: 220 ± 2.7%
Мощность, кВА: 18

Тиристорный трехфазный стабилизатор для бытовых и промышленных сетей суммарной мощностью до 17 кВт. Может работать как в режиме 380/400В, так и в режиме 3×220В.

Напряжение входа, В: 173 — 485 / 100 — 280
Напряжение выхода, В: 380 ± 2.3% / 220 ± 2.3%
Мощность, кВА: 17

Тиристорный трехфазный стабилизатор для бытовых и промышленных сетей суммарной мощностью до 22 кВт. Может работать как в режиме 380/400В, так и в режиме 3×220В.

Напряжение входа, В: 173 — 485 / 100 — 280
Напряжение выхода, В: 380 ± 2.3% / 220 ± 2.3%
Мощность, кВА: 22

Тиристорный трехфазный стабилизатор для бытовых и промышленных сетей суммарной мощностью до 27 кВт. Может работать как в режиме 380/400В, так и в режиме 3×220В.

Напряжение входа, В: 173 — 485 / 100 — 280
Напряжение выхода, В: 380 ± 2.3% / 220 ± 2.3%
Мощность, кВА: 27

Тиристорный трехфазный стабилизатор для бытовых и промышленных сетей суммарной мощностью до 33 кВт. Может работать как в режиме 380/400В, так и в режиме 3×220В.

Напряжение входа, В: 173 — 485 / 100 — 280
Напряжение выхода, В: 380 ± 2.3% / 220 ± 2.3%
Мощность, кВА: 33

Тиристорный трехфазный стабилизатор для бытовых и промышленных сетей суммарной мощностью до 42 кВт. Может работать как в режиме 380/400В, так и в режиме 3×220В.

Напряжение входа, В: 173 — 485 / 100 — 280
Напряжение выхода, В: 380 ± 2.3% / 220 ± 2.3%
Мощность, кВА: 42

Тиристорный трехфазный стабилизатор для бытовых и промышленных сетей суммарной мощностью до 53 кВт. Может работать как в режиме 380/400В, так и в режиме 3×220В.

Напряжение входа, В: 173 — 485 / 100 — 280
Напряжение выхода, В: 380 ± 2.3% / 220 ± 2.3%
Мощность, кВА: 53

Тиристорный трехфазный стабилизатор для бытовых и промышленных сетей суммарной мощностью до 66 кВт. Может работать как в режиме 380/400В, так и в режиме 3×220В.

Напряжение входа, В: 173 — 485 / 100 — 280
Напряжение выхода, В: 380 ± 2.3% / 220 ± 2.3%
Мощность, кВА: 66

Тиристорный трехфазный стабилизатор для бытовых и промышленных сетей суммарной мощностью до 83 кВт. Может работать как в режиме 380/400В, так и в режиме 3×220В.

Напряжение входа, В: 173 — 485 / 100 — 280
Напряжение выхода, В: 380 ± 2.3% / 220 ± 2.3%
Мощность, кВА: 83

Тиристорный трехфазный стабилизатор для бытовых и промышленных сетей суммарной мощностью до 106 кВт. Может работать как в режиме 380/400В, так и в режиме 3×220В.

Напряжение входа, В: 173 — 485 / 100 — 280
Напряжение выхода, В: 380 ± 2.3% / 220 ± 2.3%
Мощность, кВА: 106

где взять и что для этого нужно

Сегодня мы с вами попробуем разобраться, что из себя представляет напряжение 12 вольт. Кто это за монстр такой? Насколько сильно кусается? И вообще, на что он способен? Поверьте, то, что он слабее чем обычный монстр с напряжением в 220 вольт — это сказки. Интересно, тогда поехали.

Начнём с истории возникновения. А история проста, вся суть в безопасности. Ведь все, что изобретается, делается по двум причинам. Первая — лень, она, как известно, двигатель прогресса. Вторая — желание себя обезопасить, ведь мы с вами частенько чего-нибудь боимся. Тут и возникает потребность в инновациях. Ведь нас постоянно пугают тем, что нельзя совать пальцы в розетку — убьёт. Хотя, если мы с вами засунем пальцы в розетку, вряд ли с нами случится что-то более страшное, чем легкий шок. Но ведь у многих из нас с вами дома есть дети и домашние животные. Дети — люди любознательные. Им все всегда интересно, и ребёнок не ребёнок, если прополз мимо розетки. Он обязательно должен засунуть туда пальцы. А вот если его ударит током, то ничего хорошего точно не будет. Понятно, что все зависит от конкретного случая, но лучше не экспериментировать. А если животное залезет в розетку? И хорошо, если ваш кот спалит себе только усы и пару минут посидит в шоке под кроватью. Но все может быть страшнее.

Так, хватит жути нагонять. 12 вольт — это безопасное напряжение, которое способно решить сразу массу проблем. Но к сожалению это напряжение не распространено именно в розетках, так как под него просто не делают электроприборов.

Давайте обратимся к истокам. Существует масса опасных для электричества помещений или имеющих повышенный уровень опасности. К таким помещениям в вашей квартире можно отнести — кухню, ванную комнату и другие подобные пространства. Представьте какое короткое замыкание способен устроить электрический монстр на 220 вольт? Последствия могут выходить далеко за грань нашего представления. И поверьте, они могут не ограничиться сработавшими системами безопасности. 12 же вольт, точно не устроят катастрофу планетарного или даже квартирного масштаба. В худшем случае сработают системы безопасности или перегорит трансформатор.

Теперь про то, откуда появилось напряжение на 12 вольт. Такое напряжение в большинстве случаев используется для освещения и оттуда оно и берет начало. Несколько десятков лет назад были изобретены галогенные лампы для бытового применения. Что такое галогенная лампа? Эта та же самая лампа накаливания, но имеет больший срок службы и гораздо меньший размер. Благодаря чему это возможно? Благодаря тому, что колба такой лампы заполнена газом, содержащим галоген, например йод. Нить накаливания в такой среде изнашивается гораздо медленнее. Вот и получается, что такая лампа работает в два раза дольше, при размере в одну четвертую обычной. Но причём тут напряжение 12 вольт? А при том. Кто-то провёл опыты и понял, что при таком напряжении нить накала подвержена гораздо меньшему разрушительному воздействию электрического тока. А это значит, что её можно нагреть до большей температуры и, следовательно, получить больше света. Добавьте к этому практически абсолютную безопасность для влажных помещений. Получается очень крутой способ проводки и освещения.


Но не стоит торопиться, как и с любым бесплатным сыром, здесь тоже есть мышеловки. Заключаются они в трансформаторе. А так как во всей остальной квартире напряжение 220 вольт, он нам обязательно понадобиться, без него никак не обойтись. А лишний элемент в сети электропитания, как известно, снижает её надежность. Но единственное, чем может быть опасен трансформатор, так это тем, что он попросту перегорит. Давайте теперь перейдём к описанию самой сети, к тому как она строиться и что для этого нужно.

Сама по себе сеть с напряжением 12 вольт начинается именно с трансформатора. Именно он преобразует обычные 220 вольт в 12. Но трансформатор нужно подбирать с умом. Не будем вдаваться в частности устройства самого трансформатора. Скажу одно, трансформатор должен быть подходящей мощности. Это значит, что для начала стоит понять сколько будет ламп, какова их суммарная мощность. К полученному значению стоит прибавить процентов 40 запаса, и вы получите нужную мощность трансформатора. В противном случае трансформатор может очень быстро выйти из строя, а это не есть хорошо.

После того, как вы выбрали трансформатор, стоит задуматься о светильниках и лампах. В светильниках нет ничего необычного, многие светильники универсальны, но перед покупкой на всякий случай стоит уточнить. А вот с лампами дела обстоят несколько сложнее. Они разделяются на лампы, которые работают от 220 вольт, и те, что работают от 12. И если 220-ваттные лампы от 12 вольт просто не заработают, то в обратной последовательности начнутся вспышки. Из-за перенапряжения лампа может взорваться. Поэтому просто проверяйте маркировку, и все, как говориться, будет пучком. Лампы, рассчитанные на 12 вольт, как правило стоят дороже. Просто потому, что безопаснее, никакой другой конструктивной и кардинальной разницы в конструкции нет.

Если говорит про связующее звено ламп и трансформатора — провод, то он может быть любым. Но огромным плюсом является то, что можно использовать провода маленького сечения. Так как при таком напряжении сети перегревы практически невозможны. Есть специальные провода, они продаются в магазинах, но подойдет любой провод маленького сечения. Теперь вы знаете все.

Вывод: Низковольтное освещение это огромный плюс для бытового использования, да и для некоторых промышленных объектах. Сами понимаете, безопасность превыше всего. Так же огромным и несомненным плюсом является то, что вы можете сами сделать такую проводку у себя в ванной или на кухне. Согласитесь в статье не описано не одного сложного процесса. С многими из этих процессов справиться даже ребенок, но им этого лучше не поручать.

До новых встреч.

Стабилизаторы напряжения или как получить 3,3 вольта

 

Исходные данные:  мотор-редуктор рабочее напряжение у которого 5 Вольт при токе 1 А и микроконтроллер ESP-8266 с чувствительным на изменение рабочим напряжением питания 3,3 Вольт и с пиковым током до 600 миллиампер. Все это необходимо учесть и запитать от одной аккумуляторной литий-ионной батареи 18650 напряжением 2,8 -4,2 Вольт.

Собираем схему приведенную ниже:  аккумулятор литий-ионный 18650 напряжением 2,8 — 4,2 Вольт без внутренней схемы зарядного устройства  -> присоединяем  модуль на микросхеме TP4056 предназначенный для зарядки литий-ионных аккумуляторов с функцией ограничения разряда аккумулятора до 2,8 Вольт и защитой от короткого замыкания (не забываем что этот модуль запускается при включенном аккумуляторе и кратковременной подачи питания 5 Вольт на вход модуля от USB зарядного устройства, это позволяет не использовать выключатель питания, ток разряда в ждущем режиме не очень большой и при долгом не использования всего устройства оно само выключиться при падении напряжения на аккумуляторе ниже 2,8 Вольт)

К модулю TP4056  подключаем модуль на микросхеме  MT3608  — повышающий DC-DC (постоянного в постоянный ток) стабилизатор и преобразователь напряжения с 2,8 -4,2 Вольт аккумулятора до стабильных 5 Вольт 2 Ампера — питания мотор-редуктора.

Параллельно к выходу модуля MT3608 подключаем понижающий DC-DC стабилизатор-преобразователь на микросхеме MP1584 EN предназначенный для стабильного питания 3,3 Вольта 1 Ампер микропроцессора ESP8266.

Стабильная работа ESP8266 очень зависит от стабильности напряжения питания. Перед подключением последовательно модулей DC-DC стабилизаторов-преобразователей не забудьте настроить переменными сопротивлениями нужное напряжение, поставьте конденсатор параллельно клеммам мотор-редуктора что бы тот не создавал высокочастотных помех работе микропроцессору ESP8266.

 

Как видим из показаний мультиметра при присоединении мотор-редуктора напряжение питания микроконтроллера ESP8266 НЕ ИЗМЕНИЛОСЬ!

 

Небольшой обзор стабилизаторов напряжения и тока


Зачем нужен СТАБИЛИЗАТОР НАПРЯЖЕНИЯ. Как использовать стабилизаторы напряжения

Знакомство со стабилитронами, расчет параметрического стабилизатора; использование интегральных стабилизаторов; конструкция простого тестера стабилитронов и другое.AMS1117 Технический паспорт

Наименование RT9013
Richtek технологии 
Описание Стабилизатор-преобразователь на нагрузку с током потребления 500мА, с малым падением напряжения, низким уровенем собственных шумов, сверхбыстродействующий, с защитой выхода по току и от короткого замыкания, CMOS LDO.  
RT9013 PDF Технический паспорт (datasheet) :

 

*Описание MP1584EN

**Приобрести можно в магазине Your  Cee

MP2307N

*Приобрести можно в магазине Your  Cee

Наименование LM2596
Во-первых компонентов Международной 
Описание Простой понижающий стабилизатор-преобразователь питания 3A с внутренней частотой 150 кГц 
LM2596 Технический паспорт PDF (datasheet) :
Наименование MC34063A
Крыло Шинг International Group 
Описание DC-DC управляемый преобразователь
MC34063A Технический паспорт PDF (datasheet) :
ОПИСАНИЕ
MC34063A представляет собой монолитную схему управления , содержащую основные функции , необходимые для преобразователей постоянного тока в постоянный ток.
ОСОБЕННОСТИ
Работа от  0.3 Вольт до 40Вольт.
Низкое потребление в режиме ожидания.
Выходная защита по току до 1.5A.
Регулируемая рабочая частота до 42kHz.
Точность 2% от заданного значения.Применение: DC-DC преобразователь

 

Наименование XL6009
XLSEMI 
Описание 4A, 400kHz, входное напряжение 5~32V / выходное напряжение 5~35V, коммутируемый повышающий преобразователь DC / DC
XL6009 Технический паспорт PDF (datasheet) :

Готовый модуль повышающего преобразователя напряжения XL6009

 

Общее описание
XL6009 является повышающим преобразователем постоянного в постоянный ток с широким диапазоном входного напряжением,  который способен генерировать положительное или отрицательное выходное напряжение. Повышающий DC / DC конвертер  XL6009 служит для поднятия напряжения. Используется при подаче питания к ESP8266, Arduino и других микроконтроллеров от аккумулятора или блока питания с низким напряжением. А также для питания подключенных сенсорных и исполнительных модулей  к ESP8266, Arduino и другим микроконтроллерам  работающих от напряжения  выше 3.3 Вольт прямо от источника питания самого контроллера.Характеристики:
  • Входное напряжение 5~32V
  • Выходное напряжение 5~35V
  • Входной ток 4А (макс), 18мА без нагрузки
  • Конверсионная эфективность более 94%
  • Частота 400кГц
  • Габариты 43x14x21мм

Таблица характеристик при различных напряжениях:

Входное, V Выходное, V сила тока, A мощность,Вт
5 12 0,8 9,6
7,4 12 1,5 18
12 15 2 30
12 16 2 32
12 18 1,6 28,8
12 19 1,5 28,5
12 24 1 24
3 12 0,4 4,8

 

Повышающий преобразователь напряжения XL6009 (Видео)

http://dwiglo.ru/mp2307dn-PDF.html

Китайские стабилизаторы для самоделкиных. Часть 1.

Китайские стабилизаторы для самоделкиных. Часть 2.

Китайские стабилизаторы для самоделкиных. Часть 3.

 

 

Напряжение в частном доме 160 — 180 вольт. что делать?

Эффект «проседания» входного напряжения ниже установленной нормы довольно распространенная проблема. Она более характерна для электроснабжения в сельской местности, но нередко ее проявления могут наблюдать и горожане.

Известно, что низкое напряжение в сети приводит к сбоям в работе бытовых приборов, понижению их мощности и преждевременному выходу из строя.

Этих причин достаточно, чтобы не пускать дело на самотек и принимать решительные меры для устранения или снижения перепадов напряжения.

Причины просадки напряжения

Существуют определенные требования к электрической сети, они приведены в ГОСТе 13109 97. В нем указано, что возможны длительные отклонения напряжения от номинала в пределах 10% (-5% и +5%).

Помимо этого допускаются краткосрочные скачки напряжения до 20% от номинала (от -10% до +10%). То есть, при норме 220 вольт длительное «проседание» до 209,0 В будет не критичным, как и краткосрочное понижение до 198,0 В.

Падение напряжения за указанные пределы (например, до 180 Вольт) говорит о том, что параметры сети не отвечают установленным нормам.

190 В – это уже пониженное напряжение

Важно установить природу «просадок» напряжения, в противном случае устранение последствий будет неэффективным. Проблемы с электрической сетью могут быть связаны со следующими причинами:

  1. Износ проводов ЛЭП, большое число соединителей, магистральные лини не соответствуют возросшей нагрузки и т.д.
  2. Мощность трансформаторов недостаточна для текущей нагрузки. Большинство трансформаторных подстанций были установлены более 30-40 лет назад, естественно, что за прошедшее время число потребителей электроэнергии существенно возросло. В результате действительные мощности превышают расчетные, что приводит к перегрузке трансформаторов, и, как следствию – нестабильному напряжению сети.
  3. Дисбаланс мощности. Как правило, в квартиру или дом заводится однофазное питание, но каждая из фаз является отдельным плечом трехлинейной схемы. Соответственно, при неравномерном распределении нагрузки будет наблюдаться понижение или повышение напряжения. Такой эффект получил название «перекос фаз».
  4. Подвод осуществляется кабелем с недостаточным сечением проводов для подключения нагрузки. Например, при расчетной мощности 11 кВт, подключение нагрузки осуществляется жилами сечением 6,0 мм2, при норме 10,0 мм2.
    Таблица соответствия площади сечения вводного кабеля подключаемой нагрузке
  5. Некачественное ответвление от воздушной линии.
  6. Плохой контакт на входном автомате.

В первых трех случаях самостоятельно устранить причину не представляется возможным, но можно подать жалобу в энергосбыт на поставщика электроэнергии (подробно об этом будет рассказано в другом разделе). В пунктах 4-6 указаны неисправности в домашних электросетях, поэтому такие проблемы решаются потребителями электроэнергии самостоятельно или для этой цели привлекаются специалисты.

Влияние и последствия низкого напряжения на электроприборы

Пониженное напряжение отражается на бытовых электроприборах следующим образом:

  • Происходит существенно ухудшение пусковых характеристик электродвигателей и компрессорных установок. В частности, превышает норму пусковой ток, что может привести критическому перегреву обмоток.
  • Изменяются основные параметры и эксплуатационные характеристики электрических приборов, например, на нагрев воды бойлером занимает больше времени из-за слабой мощности.
  • Понижается интенсивность светового потока у ламп с нитью накала. Примечательно, что перепады в сети не приводят к снижению яркости энергосберегающих и светодиодных источников с импульсными источниками питания. Качественные модели могут работать и с сетевым напряжением 140 Вольт, но при этом снижается ресурс устройства.
    Снижение яркости лампы накаливания – характерный признак падения напряжения
  • Повышение силы тока и как следствие перегрев проводов линий сети частного дома, что может привести к разрушению изоляции.
  • Сбои в работе электроники.

Исходя из вышесказанного, можно констатировать, что наиболее подвержены пагубному воздействию пониженного (маленького) напряжения те устройства, конструкция которых включает в себя электродвигатель или компрессор.

К таковым относится большая часть бытовых электроинструментов, холодильные установки, насосное оборудование и т.д. Встроенная защита такого оборудования может не позволить включить приборы, если напряжение скачет или существенно ниже нормы.

Нештатные режимы работы снижают ресурсы оборудования, что приводит к уменьшению срока эксплуатации.

Менее подвержена влиянию техника, оснащенная импульсными БП с широким диапазоном входных напряжений. На нагревательном оборудовании «проседание» практически не отражается, единственное, что наблюдается — снижение мощности по сравнению с нормальным напряжением. Исключение — устройства с электронным управлением.

Способы решения проблемы

Начать необходимо с установления причины, повлекшей «проседание» электрической энергии. Распишем подробно алгоритм действий:

  1. Можно начать с опроса соседей, чтобы установить имеется ли у них подобная проблема. Если они столкнулись с подобной ситуацией, то велика вероятность, что имеет место внешний фактор (слабый трансформатор на подстанции, проблемы с ВЛ или дисбаланс мощности). Но прежде, чем писать коллективное заявление в Энергосбыт, следует проверить внутреннею сеть, поэтому вне зависимости от результатов опроса переходим к следующему пункту.
  2. Отключите вводный автомат защиты и измерьте напряжение на входных клеммах, после чего повторить измерение с подключенной нагрузкой.
    Вводный автоматический выключатель отмечен зеленым овалом

Если без нагрузки напряжение в пределах нормы, а после подключения внутренней сети «проседает», то можно констатировать, что проблема имеет местный характер и решать ее придется своими силами. В первую очередь необходимо проверить вводный автомат, поскольку слабый контакт на его входе или выходе может вызвать «проседание» напряжения.

Проблемы с электрическим контактом в автоматическом выключателе (АВ)

Как правило, в случаях с плохим электрическим контактом в проблемном месте выделяется много тепла, что приводит к деформации корпуса АВ. В таких случаях необходимо произвести замену защитного устройства. Поскольку на входе прибора имеется высокое напряжение, такую работу должен выполнять специалист с 3-й группой допуска, самостоятельно производить замену опасно для жизни.

  1. Если с АВ все в порядке и дефектов не обнаружено, следует проверить соответствие сечения вводного кабеля. Для этой цели можно воспользоваться таблицей, приведенной на рисунке 2. При необходимости производится замена провода.
  2. В том случае, когда проверка кабеля и АВ не дала результатов (автомат защиты в норме, а кабель соответствует нагрузке), следует проверить отвод. Оплавленный корпус или искрение при подключении нагрузку свидетельствует о ненадежном контакте, следовательно, необходимо выполнить переподключение.

Обратим внимание, что все монтажные работы «до счетчика» должны выполняться специалистами поставщика услуг (если договор заключен напрямую) или управляющей компании.

Все значительно сложнее, когда имеют место внешние причины. Модернизацию линии или трансформаторов на подстанции можно ждать годами. В таких случаях поднять напряжение до приемлемого уровня поможет установка стабилизатора.

Электронный стабилизатор Luxeon EWR-10000

Представленный на рисунке стабилизатор напряжения имеет рабочий диапазон от 90,0 до 270 Вольт и рассчитан на нагрузку до 10,0 кВА.

Приборы такого типа устанавливаются на весь дом или квартиру, то есть, нет необходимости защищать каждый бытовой прибор отдельно.

Стоимость электронных стабилизаторов напряжения около $200-$300, что однозначно дешевле, чем покупка новой техники, взамен вышедшей из строя.

Поднять напряжение до должного уровня также можно путем подключения домашней сети через повышающий трансформатор. Такой способ решения проблемы неудачный, поскольку нормализация электросистемы приведет к перенапряжению, что в лучшем случае приведет к срабатыванию защиты в бытовой технике. По этой же причине не рекомендуется использовать повышающей автотрансформатор.

Иногда проблему пытаются решить путем установки реле напряжения. Эффективность такого решения нулевая, прибор просто отключает питание сети, когда напряжение выходит из допустимого диапазона. В результате в розетках нет тока пока ситуация не нормализуется.

Куда звонить и жаловаться на электросети?

Звонками сложившуюся проблему не решить, необходимо подавать претензию на ненадлежащее качество предоставляемых услуг. То есть, пишите заявление в компанию, обеспечивающую поставки электроэнергии (если договор заключен напрямую) или подавайте жалобу в управляющую компанию. Заявление необходимо зарегистрировать или отправить заказное письмо (почтовый адрес указан в договоре).

Если вышеуказанные меры не помогли, можно обратиться в прокуратуру, Роспотребнадзор, районную администрацию, общественную палату, а также в районный суд.

Обратим внимание, что более эффективны коллективные жалобы, поэтому если с проблемой низкого напряжения столкнулись соседи или другие жильцы дома (района, поселка и т.д.), то лучше и их привлечь к процессу.

Если из-за отклонения напряжения от установленных норм (по вине поставщика услуг) вышла из строя бытовая техника, можно требовать возместить ущерб. Для этого необходимо действовать по следующему алгоритму:

  1. Следует обратиться к поставщику услуг, чтобы его представители зафиксировали, что авария имела место, и составили соответствующий акт.
  2. Берется заключение из сервисного центра, в котором указывается причина выхода бытовой техники из строя.
  3. Подается претензия поставщику услуг с требованием возместить ущерб.
  4. При отказе, необходимо решать вопрос в судебном порядке.

Повышаем напряжение в электросети: практические советы

Низкое напряжение в сети – можно сказать, болезнь удаленных потребителей. Стиралка еле крутится, в квартире или в доме; совершенно исправный насос вдруг перестал качать воду на даче – причина чаще всего одна: падение напряжения сети электропитания. При допустимых пределах 195 – 235 В (если линейное напряжение, как и нас и в Европе, 220 В) на «кончиках» распределительной сети может быть 180 и даже 175 В.

Прежде всего, нужно разобраться, где происходит падение напряжения. Тут не нужно измерений и приборов – достаточно поспрашивать соседей. Если у них все в порядке, потери напряжения – в Вашей абонентской проводке и нужно звать мастера-электрика.

Повышение напряжения в сети электропитания

Если же низкое напряжение у всех в округе – нужно думать, как повысить напряжение в сети у себя. Но не пугайтесь сразу же больших затрат на чудеса современной электроники. Они нужны, о них речь пойдет ниже. Но чаще всего проблему можно решить быстро и без хлопот подручными средствами. Причем – технически грамотно и совершенно безопасно.

При стабильно низком напряжении в сети выручит самый обыкновенный понижающий трансформатор на 12 – 36 В. Да, да, именно понижающий. И большой его мощности не потребуется. 100-ваттный потянет нагрузку в 500 Вт, а киловаттный – в 5 кВт. И увеличить напряжение в сети можно до допустимых пределов.

Никаких чудес, никакой паранауки – достаточно такой трансформатор использовать как повышающий автотрансформатор, добавив напряжение понижающей обмотки к линейному. Тогда при 175 В в розетке на выходе будет при 12 В добавочных 187 В. Маловато, но бытовая техника работать будет.

Если вдруг напряжение повысится до нормы, автотрансформатор выдаст 232 В; это еще в норме. При 36 В добавочных 175 В вытягиваем до 211 В – норма! Но вдруг и в розетке норма окажется, получим 256 В, а это уже нехорошо для электроприборов. Поэтому лучше всего – 24 В добавочных.

А как же мощность? Дело в том, что в сетевой обмотке автотрансформатора течет РАЗНОСТНЫЙ ток, и если повышать напряжение на небольшую долю от исходного, он окажется совсем незначительным.

Правда, в дополнительной обмотке пойдет суммарный ток, но она в понижающих трансформаторах выполняется из толстого провода и при мощности исходного трансформатора в 100 Вт выдержит ток в 3-5 А, а это более 500 Вт при 220 В.

Нужно только правильно сфазировать обмотки. Для этого включаем трансформатор, как показано на схеме, БЕЗ НАГРУЗКИ. К гнездам «Прибор» подключаем любой вольтметр переменного тока на 300 В и более, хотя бы тестер. Показывает меньше, чем в розетке? Меняем местами концы любой из обмоток. Стало больше, чем в розетке? Все, можно пользоваться. Потребителей включаем вместо измерительного прибора.

Нужно только поставить в цепь сети предохранитель – вдруг в розетке «зашкалит» (это может случиться, если на старой и плохо обслуживаемой подстанции испортится зануление), так пусть он сгорит, а не техника.

Подходящий трансформатор можно найти на «железном» или радиорынке, а то и у себя в кладовке. Не спутайте только с гасящим устройством для низковольтных электропаяльников – они выполнены на конденсаторах, и от них толку не будет, а будет авария.

Защита от перепадов напряжения

В городских условиях напряжение в сети, как правило, держится, но актуальной становится защита квартиры от перепадов напряжения. Вот тут пора вспомнить о чудесах электроники, поскольку «железно – проволочная» электротехника эффективных, простых и дешевых способов их сглаживания не знает.

Поспрашивайте в электро- и радиомагазинах автомат защиты от перепадов напряжения; их еще называют «барьер защитный». Как примерно такой выглядит, видно на иллюстрации. Современные устройства такого типа сравнительно недороги, компактны, их легко подключить и обслуживания в процессе эксплуатации они не требуют.

Простой защитный барьер для домашней электросети

Но не вспоминайте об автотрансформаторе на даче – защитный барьер лишь устраняет броски напряжения; все время держать напряжение в розетке при стабильно пониженном он не может. В качестве накопителей энергии в таких устройствах используются суперконденсаторы, а они хоть и «супер», но все же не электрогенераторы.

Как все-таки быть при нестабильном напряжении?

Бывает и так, что напряжение в сети резко колеблется – то меньше нормы, то больше. Это признак запущенного местного электрохозяйства: тронутых коррозией распределительных проводов в сочетании с плохим нулем на подстанции. Законные меры воздействия на энергетиков оставим юристам; данная же статья техническая, и нам нужно знать, как держать напряжение в норме.

Старый добрый стабилизатор напряжения для дачи вполне подойдет. Возможно, еще от дедушкина черно-белого телевизора, если хранился в подходящих условиях.

Только нужно учесть, что наиболее употребительные феррорезонансные стабилизаторы могут давать очень короткие, в несколько миллисекунд, выбросы напряжения, а они могут повредить компьютерную технику, современный телевизор и вообще все, где используются импульсные блоки питания.

Поэтому после такого стабилизатора желательно включить описанный выше автотрансформатор, но с добавкой не 24, а 6-12 В. Напряжение в розетке будет в пределах нормы, а обмотки с большой индуктивностью на массивном железе автотрансформатора паразитные импульсы погасят.

В продаже на интернет-аукционах и с рук можно встретить старые промышленные магнитнокомпенсационные стабилизаторы, и вроде бы подходящей мощности: 1-10 кВт. Но ныне применение таких устройств запрещено. Они хорошо держат напряжение, но дают большую реактивную составляющую потребляемой мощности, очень вредную для управляемых электроникой энергосистем.

Энергетики, вооруженные ныне компьютерным мониторингом, засекают «реактивку» мгновенно, вычисляют источник абсолютно точно, а штрафные санкции (весьма внушительные) применяют охотно и без промедления.

В частном домовладении достаточно обеспеченного владельца радикальное средство стабилизации напряжения в домовой сети – электронный преобразователь напряжения с собственным накопителем энергии. По принципу действия это тот же компьютерный «бесперебойник» (UPS), но на мощность 3-10 кВт.

Стоят такие устройства весьма и весьма недешево (3-20 тыс. долл. США), но обеспечивают идеальное качество напряжения в сети и электропитание потребителей при ее пропадании.

В отличие от компьютерных UPS, они, как правило, имеют интерфейс связи со снабженным собственной электроникой аварийным дизель-генератором, так что «движок» запускается не сразу при пропадании сети, а спустя некоторое время, или когда аккумулятор бесперебойника начинает садиться.

В заключение – важный момент. Человек, поверхностно знакомый с электротехникой, может «сообразить»: ага, компьютерный киловаттный UPS, стало быть, сможет держать утюг почаса-час, а телевизор или люстру – чуть ли не сутки, а стоит несколько сотен долларов. Поставлю-ка я такой на даче!

Неверно. Компьютерные UPS рассчитаны на кратковременное эпизодическое использование, потому и стоят в десятки раз дешевле ИБП общего назначения. При непрерывном использовании достаточно дорогостоящий прибор очень быстро окончательно выйдет из строя.

***

© 2012-2020 Вопрос-Ремонт.ру

Загрузка…

Вывести все материалы с меткой:

Перейти в раздел:

Низкое напряжение в сети – причины и способы стабилизации

Проводка

29.05.2017

29 тыс.

19.5 тыс.

6 мин.

С низким напряжением часто сталкиваются жители частного сектора, в городских квартирах эта проблема тоже встречается. Прежде всего, следует выяснить, чья тут вина – поставщика электроэнергии или потребителя и, в зависимости от причины, принимать меры.

Низкое напряжение в сети – явление неприятное, но с ним имеют дело многие. Плохое освещение, когда лампочка только обозначает свое присутствие, еще не самая большая беда.

Хуже, когда невозможно постирать, вскипятить воду, приготовить еду на электроплите, холодильник работает с перебоями. Это случается, когда напряжение падает до критического значения, но и 180 Вольт, когда все вроде работает, тоже мало радуют.

Приборы потребляют такой же ток, как при нормальном напряжении, а двигатели еще больший, но исполняют свои функции за более длительное время.

По стандартам допустимое отклонение электроэнергии составляет 198–242 В

Поставщик электроэнергии обязан предоставить услуги, соответствующие стандартам: 220 В на входе в квартиру с допустимыми отклонениями 198–242 В.

Почему нормативные требования иногда нарушаются? Одной из причин является старение линий электропередач, их некачественное обслуживание, ремонты проводятся редко. Оборудование зачастую изношено, устарело и не отвечает современным требованиям.

Также встречаются ошибки планирования линий электропередач, подвода к домам, когда одна фаза перегружена, другая недогружена.

Причины также кроются в самых потребителях. Если в советское время под счетчиком стоял предохранитель на 6,5 А, то это значило, что жильцы одновременно потребляют максимум 1,5 кВт.

Сейчас один чайник имеет мощность 2 кВт, а сколько еще бытовых приборов, различного электроинструмента имеется в современном доме? Также наблюдается сезонность потребления электроэнергии, которое значительно возрастает в холодное время года, когда включают электрообогрев.

На дачах потребление возрастает на выходные, мощности сетей недостаточно, напряжение меньше необходимого.

Первым делом выясняем, кто виновник недостаточного напряжения. В многоквартирном доме сделать это очень просто, достаточно спросить соседей, нет ли у них подобной проблемы. Если нет, причину ищем у себя. В частном секторе опрашиваем людей, чьи дома подключены к той же фазе.

Смотрим на электролинию, запоминаем, от каких проводов идет отвод к собственному дому, ищем дома, запитанные от таких же проводов. Можно также отключить все приборы, измеряем напряжение. Если оно нормальное, а после включения нескольких приборов падает – причина кроется в доме.

Если напряжение падает именно в доме, то причины следующие:

  1. 1. Недостаточное сечение провода на вводе. Тонкий провод является причиной низкого напряжения в  сети, особенно при предельнойнагрузке
  2. 2. Подгорел контакт на вводе, образуется дополнительное сопротивление, отчего падает напряжение. Потери могут быть значительными.
  3. 3. Некачественное выполнение ответвления провода от линии к дому. Плохой контакт на скрутке повышает сопротивление, и все происходит подобно предыдущему случаю.

Падение напряжения сопровождается выделением тепла. При недостаточном сечении проводки это не страшно, так как тепло равномерно распределяется по всей длине проводки. Если плохие контакты, последствия могут быть самыми неприятными.

Это место будет интенсивно нагреваться вплоть до того, что перегорит проводка, но возможен и пожар. Если проблемы с напряжением связаны с энергокомпанией, то кажется, будто решить этот вопрос легко, стоит лишь написать заявление.

На самом деле все обстоит сложнее, часто поставщики оставляют без внимания пониженное напряжение в сети, потому что это связано с проведением дорогостоящих работ на ЛЭП.

Возможно, что в связи с возросшим потреблением электричества, трансформатор подстанции перегружен, и требуется его замена.

Случается, что провода ЛЭП проложены очень давно, и теперь их сечение неспособно удовлетворить возросшие потребности, необходимо проводить реконструкцию. Еще одна распространенная причина – неравномерное распределение нагрузки по фазам трансформатора.

Причиной пониженного напряжения может быть устаревшее оборудование ЛЭП

Проводники с малым сечением характерны чаще для садоводческих товариществ, но и для частного сектора города существует такая проблема. Дело в том, что несколько десятков лет назад на ЛЭП использовали дешевый сталеалюминиевый провод.

Он тогда удовлетворял имеющиеся потребности, а теперь они значительно возросли. Сечения провода 16 мм2 уже не хватает.

Характерным признаком низкой мощности трансформатора или недостаточного сечения проводников является пониженное напряжение днем и его повышение до нормального ночью.

Доказать, что трансформатор имеет недостаточную мощность или неправильно распределена нагрузка по фазам, практически невозможно. В какое-то время может наблюдаться перегрузка сети, затем исчезать. Явление просадки напряжения имеет непостоянный характер, и потребителям зачастую приходится решать проблему самостоятельно. Писать энергокомпании жалобу нужно, но и самому что-то придется делать.

Если вы убеждены, что напряжение домашней сети падает из-за проблем ответвления от ЛЭП к дому, то предпринимаем некоторые действия. Осматриваем соединение ответвления с магистральной линией электропередач.

Очень часто оно выполнено обычной скруткой, что приводит к неуклонному росту сопротивления. Только хорошее охлаждение под открытым небом уберегает провода от перегорания.

Соединение выполняем, используя сертифицированные зажимы.

Иногда соединяют скруткой алюминиевые провода линии и медные ввода в дом. Место соединения двух разнородных металлов сильно нагревается, скрутку меняем на зажимы или клеммную колодку.

Если соединение выполнено зажимами, обращаем внимание на их корпус. Оплавленная поверхность указывает на плохой контакт.

Если включаем предельную нагрузку, то появление дыма, искрение внутри говорит, что просадка напряжения происходит в зажиме, его меняем на новый. Подобная проблема встречается на верхних зажимах входного автомата.

Прибор с подгоревшими контактами, оплавленным корпусом меняем, а контакты надежно затягиваем.

Проблему может решить стабилизатор напряжения

Если энергокомпания оставляет без внимания заявления жильцов, не меняет трансформатор на более мощный, а магистральные провода на большее сечение, придется искать выход самостоятельно.

Поставщики электроэнергии, устраняя проблемы, с увеличением напряжения сталкиваются с необходимостью миллионных капиталовложений, идут на такой шаг неохотно. Одним из способов частного решения проблемы является подвод к дому трех фаз, на что требуется разрешение энергосбыта.

Если оно получено, на вводе ставим переключатель фаз и при необходимости используем наименее загруженную.

Существуют и другие пути решения проблемы в частном порядке:

  1. 1. Устанавливаем на своем вводе стабилизатор напряжения, но при значительной просадке до 160 В, прибор может оказаться неэффективным. Хороший стабилизатор подходящей мощности стоит дорого. Если по улице подключат десяток подобных приборов, сеть упадет до предела, стабилизатор окажется бесполезным.
  2. 2. Устанавливаем повышающий трансформатор, подобрав соответствующие параметры. Но дело в том, что просадка нестабильная и, когда напряжение придет в норму, трансформатор поднимает его до такого значения, что сгорят все подключенные приборы. Чтобы избежать этого, ставим реле, которое разорвет цепь при достижении предельного порога.
  3. 3. Устанавливаем на вводе дополнительное заземление нулевого провода. Таким образом, понижается сопротивление нуля и всей проводки в целом. Но способ опасный, есть вероятность, что при ремонте могут перепутать местами фазный и нулевой провод, получится короткое замыкание. Еще хуже, когда происходит обрыв нуля на ЛЭП, ток пойдет через заземление, возможны очень серьезные последствия.
  4. 4. Для частного дома  при достаточных средствах приобретаем преобразователь напряжения, имеющий накопитель энергии. Это самый радикальный способ поднять напряжение, избавиться от проблем, но стоит такое оборудование весьма дорого: от 3 до 20 тыс. долларов.

Такое устройство обеспечивает идеальные параметры тока в сети, питание потребителей электроэнергией при ее отключении.

Оно действует по тому же принципу, что и бесперебойник для компьютера, но имеет гораздо большую мощность от 3 до 10 кВт.

Прибор имеет электронную связь с дизельным генератором, который автоматически запускается при пропадании электричества. Но запуск происходит через некоторое время, сначала используются аккумуляторы устройства.

Еще один, на первый взгляд парадоксальный способ добиться нормального напряжения – используем понижающий трансформатор.

Он должен уменьшать напряжение в пределах 12–36 В, мощность 100 Ватт выдержит нагрузку 0,5 кВт, а 1 кВТ мощности потянет 5-киловаттную нагрузку.

Понижающую обмотку подключаем к сети, в зависимости от параметров трансформатора получим добавочных 12–36 Вольт. Чтобы избежать риска перенапряжение, оптимальным окажется трансформатор на 24 В, а еще лучше поставить на входе реле напряжения.

Самостоятельно решить вопрос с повышением напряжения в сети, если слабый трансформатор или недостаточное сечение проводов, практически невозможно. Следует действовать всем жителям сообща, обращаться в энергопоставляющую компанию. Возможно, придется взять долю расходов на себя, иначе ситуация может длиться годами.

Низкое напряжение или как увеличить напряжение в сети?

Низкое напряжения — реальность современной жизни
Состояние электрических сетей в нашей стране далеко от идеального, особенно во многих дачных кооперативах, в загородных домах.

Зачастую возникает такая проблема, как пониженное напряжение в сети, по причине чего случаются сбои в работе электроаппаратуры, бытовой техники, ее возгорание.

Ниже мы расскажем почему возникают такие ситуации и как увеличить напряжение в сети.

Низкое напряжение в сети

Причины пониженного напряжения бывают разные: износ электропроводки, одновременное подключение нескольких мощных электрических устройств (особенно с электродвигателями, сварочных аппаратов), включение большого числа климатической техники, а также сбои в работе трансформаторной подстанции и др.

Если ваши бытовые электроустройства (холодильник, стиральная машина, электрический котел, микроволновка…

) длительное время работают в условиях пониженного напряжения, то это грозит быстрым износом электронных компонентов, перегревом деталей, что в свою очередь приводит к поломке или даже возгоранию электробытовой техники.

Стабилизатор — надежная защита от пониженного напряжения!

Наиболее простой способ защиты от пониженного напряжения в сети — установка бытового стабилизатора напряжения соответствующей мощности, который регулируем напряжение (U), увеличивая или уменьшая его.

Стабилизатор подключается между электрической сетью и электроприбором, берет из электросети то напряжение, которое подается и делает «правильное» U (из пониженного, например, в 160В — «правильное» в 220В), подавая его к электробытовой технике.

Принцип работы стабилизатора напряжения

Работа стабилизатора основана на изменении количества витков трансформатора (с помощью реле, тиристоров или щеток). Схема защиты от низкого напряжения довольна проста.

Пока питающее U находится в допустимых пределах (например, для электромеханической модели — от 140 до 260V), оговариваемых инструкцией, стабилизатор способен сглаживать колебания, выдавая U в 220V с погрешностью, не превышающей 8%, что составляет 17,6V (для разных устройств погрешность может отличаться).

При понижении (повышении) U за рабочие пределы устройство отключает питание, информируя об этом (звуковая индикация и/или световая).

Необходимо рассмотреть, как построен алгоритм работы стабилизатора напряжения при выходе U за рабочие пределы. При критическом падении U (ниже 140V) выходное U достигает 130% от величины питающего напряжения. При снижении U на выходном устройстве стабилизатора до 180V (± 5V) прибор отключает питание, обнуляя U на выходе.

При превышении максимального значения U сети свыше 260V прибор способен поддерживать выходное U на уровне 90% от величины питающего U. При достижении на выходе 255 вольт (± 5В), т.е. сильном увеличении напряжения, питание нагрузки тоже отключается.

Восстановление параметров питающего U позволяет возобновить подачу U на нагрузку, но происходит это в режиме, позволяющем избежать вредного для устройств влияния резких «ударных» изменений режима питания.

Кроме того, стабилизатор имеет заданную рабочую температуру (номинально – до 120°С).

При отклонении от этого параметра, превышающем 10 градусов, также может отключаться питание, восстанавливаемое автоматически при достижении допустимой температуры (как правило, включение происходит при температуре 85°С (± 15°С).

Большинство регуляторов сетевого напряжения снабжены системами, позволяющими в полностью автоматическом режиме производить аварийное отключение и при превышении допустимого тока (использовании регулятора для подключения нагрузки выше допустимой).

Таким образом, повысить напряжение в сети довольно просто.

Реальные варианты решения проблемы низкого напряжения

Здесь мы хотим остановиться на конкретных моделях стабилизаторов напряжения для разных потребностей. Если Вам нужно защитить отопительный газовый котел или холодильник, то как-правило будет достаточно мощности в 1-1,5 кВт.

Если не принимать во внимание дешевые релейные устройства китайского производства, то наиболее оптимальным решением проблемы будет приобретение или аппарата Курского электроаппаратного завода — Оптивольт-2000 (если напряжение не падает ниже 150В) или псковского — Лидер 2000 W-50, при более серьезной просадке сетевого напряжения.
Вариант для дачи.

Тут покупатели в своем большинстве останавливают выбор на недорогих релейниках 5-8 кВт.
Примеры: Руцелф SRWII-9000-L, ВоТо 10000, Вольтрон 5000.
Из приборов отечественного производства или братской Украины часто также выбирают бюджетные серии: Лидер Best 5000, Укртехнология Норма 5000.

Для квартиры или загородного дома, 8 кВт — это уже минимальная мощность, обычно устанавливаются стабилизаторы на 10-12 кВт и более.
Примеры: Донстаб СНПТО-11, Прогресс 12000TR, Оптимум 15000, СКАТ-11111.

Правильно подобранный стабилизатор — надежная защита от низкого напряжения в электросети!

Причины низкого напряжения в сети | Полезные статьи от БАСТИОН

25-10-2016

Причины понижения напряжения в сети могут быть различные. В этой статье мы остановимся на основных причинах, приводящих к низкому напряжению.

Основные причины снижения напряжения в сети

Всегда ли в нашей сети — 220? Вопрос, конечно, риторический, очень часто напряжение в сети не соответствует нормативам и является пониженным или повышенным. Приводим список основных причин низкого напряжения:

  • низкое напряжение в линии ЛЭП;
  • недостаточная мощность трансформатора, установленного на подстанции;
  • перекос напряжения по фазам на линии от трансформатора до дома;
  • проблемы в распределительном щитке, малое сечение проводов в разводке.

Подробнее о причинах низкого напряжения и методах решения данной проблемы

Падение напряжения в линии ЛЭП

Одной из глобальных причин понижения напряжения является недостаточная мощность электрогенерации и электротрансформации в регионе. Недостаточное финансирование электрической отрасли с одной стороны, и бурный рост потребления электроэнергии в последние годы с другой стороны приводят к проблемам с качеством электроснабжения.

Повлиять на решение данной проблемы мы практически не можем, единственное решение в этой ситуации — покупка и установка повышающего стабилизатора напряжения.

Низкая мощность распределительного трансформатора или неправильная его настройка

Часто бывает так. К одному трансформатору было подключено определенное количество потребителей, и проблем с качеством электроэнергии не было.

Потом к этому же трансформатору или подстанции подключаются ещё новые дома, и мощность его оказывается недостаточной, это приводит к понижению напряжения во всей подключенной сети.

Такое явление часто наблюдается в дачных посёлках, и напряжение в 180, 170, 160 и даже 150 Вольт там не редкость.

Какие есть методы решения?. Наиболее правильный — замена трансформатора на более мощный. Но для этого нужно иметь общее решение всех потребителей и финансовые возможности. Индивидуально решить проблему в этом случае можно путём установки повышающих стабилизаторов напряжения на весь дом или нужную группу приборов.

Перекос фаз в распределительной сети, вызывающий снижение напряжения, и методы решения

Причиной снижения напряжения на входе в дом может быть неравномерное распределение потребителей в распределительной сети или «перекос фаз». Как правило, такое явление наблюдается в сельской местности, в дачных посёлках и частном секторе.

Дома в таких сетях подключаются к электросети по мере строительства новых объектов индивидуально. Часто при этом подключение идёт по принципу «так удобно монтеру» или «этот провод ближе». В результате на одной «фазе» или одном «плече» сети потребителей оказывается больше, чем на других.

Напряжение в этой части электросети будет ниже.

Исправить ситуацию путём повышения значения напряжения на питающем трансформаторе не получится, так как этот приведёт к повышенному (или опасно высокому) значению напряжения на других участках этой электросети.

Правильное решение — устранить неравномерность распределения потребителей, переключится на питание от другой фазы сети. Но часто это бывает не возможно физически.

Второй вариант решения проблемы — установка стабилизатора напряжения на входе в дом.

Проблемы в домашней сети, приводящие к понижению напряжения и методы их устранения

Первое, что нужно сделать, если у Вас низкое напряжение в розетке, — это выяснить, является ли проблема внутренней или внешней.

Самое простое — узнать, есть ли проблемы с электропитанием у соседей. После надо отключить автоматы в распределительном щите и измерить напряжение на входе в доме. Если напряжение низкое — то проблема во внешней сети. Если напряжение на входе в дом нормальное, то проблема в доме. Приводим список частых проблем в электросети дома или квартиры:

  • снижение напряжения может быть вызвано плохими контактами на входе в распределительный щит или плохими контактами в самом распределительном щите;
  • снижение напряжения может быть вызвано плохими контактами в комнатных распределительных коробах и на самих розетках;
  • снижение напряжения может быть вызвано неправильным выбором сечения провода в разводке.

Если выявить точную причину самостоятельно не получилось, следует обратиться за помощью к профессиональному электрику.

Как поднять напряжение с помощью стабилизаторов

Существует два основных способа решить проблему низкого напряжения. Первый способ — установка большого мощного стабилизатора на входе в дом. Такой стабилизатор должен иметь большую мощность, большой диапазон входного напряжения и высокую надёжность. Мы рекомендуем стабилизаторы напряжения SKAT ST мощность от 3,5 кВт до 12 кВт.

На следующем видео представлены возможности стабилизатора SKAT ST-12345.

Второй способ — установка локальных стабилизаторов для питания отдельных электроприборов. Такие стабилизаторы должны иметь достаточную мощность, большой диапазон входного напряжения, компактный размер и высокую надёжность. Мы рекомендуем стабилизаторы напряжения SKAT ST мощность от 1,5 кВт до 3 кВт. На следующем видео представлены возможности стабилизатора SKAT ST-2525.

Выводы: для решения проблемы низкого напряжения в доме необходимо установить причины этого явления, попытаться устранить проблемы в сети, использовать стабилизаторы напряжения.

по теме

Товары из статьи

Электрический блок

Вольт (В)

Определение вольт

Вольт — электрическая единица измерения напряжения или разности потенциалов (обозначение: В).

Один вольт определяется как потребление энергии в один джоуль на электрический заряд в один кулон.

1 В = 1 Дж / Кл

Один вольт равен току, умноженному на 1 ампер на сопротивление 1 Ом:

1 В = 1 А ⋅ 1 Ом

Алессандро Вольта

Блок Volt назван в честь итальянца Алессандро Вольта. физик, который изобрел электрическую батарею.

Вольт субъединицы и таблица преобразования

наименование символ преобразование , пример
мкв мкВ 1 мкВ = 10 -6 В В = 30 мкВ
милливольт мВ 1 мВ = 10 -3 В В = 5 мВ
вольт В

В = 10 В
киловольт кВ 1кВ = 10 3 В В = 2 кВ
мегавольт МВ 1 мВ = 10 6 В В = 5 мВ

Преобразование из вольт в ватты

Мощность в ваттах (Вт) равна напряжению в вольтах (В), умноженному на ток в амперах (A):

Вт (Вт) = вольт (В) × ампер (A)

Вольт в джоули преобразование

Энергия в джоулях (Дж) равна напряжению в вольтах (В). умножить на электрический заряд в кулонах (Кл):

джоулей (Дж) = вольт (В) × кулоны (Кл)

Преобразование из вольт в амперы

Ток в амперах (А) равен напряжению в вольтах (В) деленное на сопротивление в омах (Ω):

ампер (А) = вольт (В) / ом (Ом)

Ток в амперах (A) равен мощности в ваттах (Вт). разделить на напряжение в вольтах (В):

ампер (А) = ватт (Вт) / вольт (В)

Преобразование из вольт в электрон-вольт

Энергия в электронвольтах (эВ) равна разности потенциалов или напряжению в вольтах (В), умноженному на электрический заряд в зарядах электронов (е):

электронвольт (эВ) = вольт (В) × заряд электрона (е)

= вольт (В) × 1.602176e-19 кулонов (C)


См. Также

Напряжение — Энергетическое образование

Напряжение часто используется как сокращенное обозначение для разности напряжений , что является другим названием для разности потенциалов . Напряжение измеряет энергию, которую получит заряд, если он перемещается между двумя точками в пространстве. Единицей измерения напряжения является вольт (В), а 1 вольт = 1 Дж / Кл. [2]

Розетки и батареи имеют связанные с ними напряжения.Фактически, когда электричество доставляется на любое расстояние, между начальной и конечной точками существует напряжение (также известное как разность потенциалов). При приложении напряжения энергетически предпочтительно, чтобы электрический заряд двигался к точке самого низкого напряжения в проводе; это причудливый способ сказать, что положительный электрический заряд приобретает энергию при переходе от точки высокого напряжения к точке низкого напряжения. Отрицательный электрический заряд получит энергию от движения в другом направлении.

Чем больше напряжение, тем больше выигрыш в энергии от перемещения между двумя точками. Кроме того, чем больше заряд проходит через напряжение, тем больше кинетическая энергия, получаемая зарядом. Уравнение, которое моделирует это:

[математика] E = Q \ Delta V [/ математика]

Одна единственная точка не имеет напряжения, поскольку напряжение определяется как разность энергии между двумя точками.Напряжение всегда зависит от некоторой контрольной точки, которая определяется как 0 В. Для удобства Земля почти всегда определяется как 0 В (в классах физики 0 В часто рассматривается как потенциал в точке бесконечно удаленной, но это бесполезен в электронике). Напряжение генерирует поток электронов (электрический ток) через цепь. Специфическое название источника энергии, создающего напряжение для протекания тока, — электродвижущая сила. Это соотношение между напряжением и током задается законом Ома.

Часто бывает полезна аналогия:

Гравитационная потенциальная энергия — это энергия, которую мяч накапливает, сидя на столе. Высота, умноженная на ускорение свободного падения ( g ), дает полную энергию, которая преобразуется в кинетическую энергию, если мяч упадет с этой высоты. Электродвижущая сила — это то, что продолжает поднимать мяч и класть его обратно на стол (это то, что движет потоком мячей, падающих со стола).

Электрическая энергия — это энергия, выделяющаяся, когда заряд «падает» через разность потенциалов (напряжение).Напряжение существует независимо от того, есть заряд или нет.

Для бытового применения

Электрическая розетка в доме имеет напряжение 120 В (в Канаде и США) через два отверстия. Это напряжение присутствует всегда, и когда электрическая нагрузка становится частью цепи (например, путем подключения прибора), это напряжение заставляет ток течь по цепи.

Электрические генераторы перемещают магниты возле катушек с проводами, чтобы создать напряжение в электрической сети.

Генерация постоянного тока создает напряжения, используя энергию света в фотоэлектрических элементах или энергию химических реакций, обычно внутри батарей, и даже разницу температур с помощью термопар.Чтобы узнать больше о физике напряжения, см. Гиперфизику.

Аккумулятор на 9 В имеет напряжение 9 В. Двойные батареи A, AAA, C и D имеют напряжение (разность потенциалов) 1,5 В.

Моделирование Phet

Чем больше напряжение, тем больше тока проходит через цепь. Университет Колорадо любезно разрешил нам использовать следующую симуляцию Фета. Используя приведенное ниже моделирование, исследуйте, как увеличение напряжения увеличивает ток в цепи:

Для дальнейшего чтения

Для получения дополнительной информации см. Соответствующие страницы ниже:

Список литературы

  1. ↑ Это изображение предоставлено кем-то из команды.
  2. ↑ R.T. Пэйнтер, «Основные электрические компоненты и счетчики», в Введение в электричество , 1-е изд. Нью-Джерси: Прентис-Холл, 2011, гл. 2, сек. 2.4, с. 49-50.

Разница между ваттами и вольтами

Знание разницы между ваттами и вольтами, а также амперами (амперами) и омами имеет решающее значение при работе с любым типом электрической системы. Ремонт домашней электропроводки требует твердого понимания электрических терминов, и это даже полезная база знаний для повседневной жизни.Сколько раз вы видели лампочку с надписью «100W / 120V» и задавались вопросом, как соотносятся две единицы электричества? Могут ли они использоваться как взаимозаменяемые? Прежде чем рассматривать различия, полезно начать с основных определений.

Определение ватт, вольт, ампер и ом

Электрические термины и определения, такие как ватты и вольты, устанавливаются системой, называемой SI (Международная система единиц). Межправительственное международное агентство под названием BIPM (Bureau International des Poids et Mesures) устанавливает термины и определения для весов и мер в рамках этой системы.Более сотни стран являются членами или ассоциированными членами BIPM.

Гидравлическая (водная) аналогия — распространенный метод объяснения электрических терминов. Поток воды внутри трубы или контура замкнутой системы сравнивается с электрическим потоком. Как и в случае с трубами замкнутой системы, для работы электричество должно двигаться по непрерывной цепи (или по кругу).

Что такое вольт?

Вольт, согласно BIPM, представляет собой «разность потенциалов между двумя точками проводящего провода, по которому проходит постоянный ток в 1 ампер, когда мощность, рассеиваемая между этими точками, равна 1 ватту».«Вольт обозначается буквой« V ».

В упрощенном виде это означает, что напряжение по сравнению с давлением воды в трубах — это скорость электронов, проходящих через точку в цепи.

Полезно знать

Подобно ваттам — слово, полученное от английского изобретателя Джеймса Ватта — вольт названо в честь другого изобретателя, итальянца Алессандро Вольта. Вольта изобрел предшественник электрической батареи.

Что такое усилители?

Официальное определение СИ не только громоздко, но и постоянно меняется.Однако его общая тяга никогда не меняется. Амперы — это базовая единица измерения количества электронов в электрической цепи. Буква «A» с заглавной буквы обозначает амперы или амперы.

При гидравлическом сравнении ампер будет единицей измерения, показывающей объем воды, проходящей мимо определенной точки. Объем — это количество, а не скорость. Удар молнии составляет около 20 000 ампер. Часы могут потреблять одну миллионную долю усилителя. Бытовые электрические кабели обычно рассчитаны на 15 или 20 ампер.

Что такое ватт?

Ватт описывает скорость потока энергии. Когда один ампер проходит через электрическую разность в один вольт, результат выражается в ваттах. «W» обозначает ватт или ватт.

Ватты рассчитываются по формуле V x A = W.

Подсказка

Думайте о ваттах не с точки зрения силы или мощности, а с точки зрения скорости или скорости. Скорость потока воды через садовый шланг или скорость автомобиля — хорошие аналогии для ватт.

Что такое ом?

Базовая единица Ом — это термин СИ, обозначающий электрическое сопротивление. Ом — это измерение сопротивления, которое устройство или материал, помещенный в электрическую цепь, сопротивляется или уменьшает электрический поток. Греческий символ омеги, напоминающий подкову, направленную вниз, также является символом ом.

Разница между ваттами и вольтами

Ватты и вольты не независимы друг от друга. Ватты не могут существовать без вольт, поскольку они являются продуктом комбинации вольт и ампер.

В общих чертах, используя аналогию с гидравликой, вольты аналогичны давлению, а ватты аналогичны скорости.

Аналогия скорости передвижения

Понимание базовой концепции скорости является ключом к пониманию ватт и вольт.

Рассказывая другу о путешествии, можно сказать, что машина преодолела 65 миль. Хотя это полезная информация, она не дает полной картины того, что именно произошло.

Возможно, вы сказали, что проехали 65 миль, но каков больший контекст этого? Вы проехали на нем примерно за час? Это нормально и ожидаемо.Если вы проехали на нем за три месяца, это совсем другое дело. Вот тут-то и играет роль.

Само по себе время тоже неполные данные. Если вы сказали другу, что ехали десять часов, он может ответить, спросив, где вы ехали или как далеко проехали. Обсуждение продолжительности автомобильной поездки — неполный набор данных.

Один набор данных касается расстояния в физическом мире; другой набор имеет дело со временем. Вместо того, чтобы жонглировать двумя наборами данных туда и обратно, гораздо полезнее и удобнее придумать одно число, которое объединяет эти два.Это число — ставка.

Итак, формула V x A = W аналогична примеру поездки на автомобиле; оба указывают скорость. В автомобиле эта скорость известна как MPH (мили в час): скорость равна расстоянию, разделенному на время.

В электрических системах полезными наборами информации являются сила тока и напряжение. Но мощность является дополнительным обычным массивом данных, потому что она объединяет их для получения показателя, аналогичного скорости или скорости.

Больше напряжения для газонного оборудования лучше?

По мере того как уход за газонами и OPE (наружное электрооборудование) продолжают переход на более беспроводные продукты, ориентироваться в ландшафте становится непросто.Большие газовые двигатели означают большую мощность. Похоже, что более высокое напряжение батареи — это то, что профессионалы и потребители считают эквивалентным измерением. Однако проблема не так проста. Чтобы разрешить спор, давайте подробнее рассмотрим вольты, амперы и сопротивление.


Вольт и ампер

Ни вольт, ни ампер не описывают мощность сами по себе. Это название относится к ваттам, и расчет довольно прост:

Вольт (В) x Амперы (А) = Ватты (Вт)

Допустим, нам нужно 2200 Вт для работы газонокосилки.Есть несколько способов добраться туда.

  • 36 В x 61,1 A = 2200 Вт
  • 56 В x 39,3 A = 2200 Вт
  • 108 В x 20,4 A = 2200 Вт

Если вы можете потреблять от батареи достаточно тока (ампер), вы можете получить такое же количество мощности из многих напряжений.

Таким образом, теоретически более высокое напряжение само по себе не означает большей мощности.

Краткое примечание о вольтах
Числа напряжения, такие как 40 В, 80 В и 120 В, часто представляют пиковые (максимальные) вольты.Это напряжение, которое вы можете измерить прямо на зарядном устройстве. Как только вы начнете их использовать, они установятся на свое номинальное напряжение: 36 В, 72 В и 108 В. Как только вы это поймете, вы увидите, что 18 В = 20 В макс., 36 В = 40 В макс. И так далее. В Pro Tool Reviews есть более подробная статья под названием 20V Max Vs 18V: Setting the Record Straight.

[amazon_link asins = ‘B01JEMNPSS, B015PVD9ME, B01FAW5MKK, B01ESFQOXO, B073R8DFJF’ template = ‘ProductCarousel’ store = ‘opereviews-2077’ marketplace = ‘US’ link_idd = ‘e9224e1] Присоединяйтесь к сопротивлению

Когда энергия достигает двигателя, наше уравнение V x A = W описывает, сколько мощности он получает.Однако сопротивление сводит на нет уравнение и не дает ему быть простым делом.

Возьмем для примера топливопровод. Более тонкая трубка ограничивает легкость попадания топлива в двигатель. Аналогичная проблема существует и с электрической энергией.

Более тонкая проволока и материалы более низкого качества ограничивают поток электронов. Толстая проволока и материалы более высокого качества позволяют электронам плавно течь. Возможно, вы столкнулись с падением напряжения при использовании слишком тонкого удлинителя на электроинструментах на 15 ампер. Или, возможно, вы заметили мерцание света, когда в вашем доме включается кондиционер.

Именно здесь в игру вступает парень по имени Ом . Он отвечает за уравнение сопротивления и единицу под названием «Ом».

Ом обнаружил, что сопротивление больше влияет на ток (амперы или амперы), чем на напряжение. Если вы попытаетесь передать одно и то же количество энергии через два разных напряжения, более высокое напряжение имеет меньшее сопротивление.

Краткое исследование

Вольт 2 / Сопротивление = Ватты
2 / R = W)

или

Ток 2 x Сопротивление = Ватты
(I 2 x R = W)

Примечание. В законе Ома для обозначения тока используется «I» вместо «A».

Давайте вернемся к нашему примеру с 56 В и посмотрим, как все меняется, когда мы применяем закон Ома.

56 В x 39,3 A = 2200 Вт

В этом примере сопротивление равно 1,42 Ом. (56 В / 39,3 А = 1,42 Ом)

Увеличение напряжения

Вот что происходит, когда мы увеличиваем напряжение на 20% (67,2 В):

(67,2 В x 67,2 В) / 1,42 Ом = 4514,4 Вт

A Увеличение напряжения на 20% дает увеличение мощности на 105% при том же сопротивлении.

Увеличение тока

Теперь вернемся назад и вместо этого увеличим ток на 20%.

47,2 ампер x 47,2 ампер x 1,42 Ом = 3119,0 Вт

Это 20% -ное увеличение тока дало нам только 42% -ное увеличение мощности. Дело в том, что для получения большей выходной мощности требуется большее увеличение тока, чем увеличение напряжения.

Вернуться к обсуждению

Одним из последствий сопротивления является снижение энергии. Система с более высоким напряжением более эффективна, чем система с более низким напряжением, поскольку она испытывает меньшие потери энергии из-за сопротивления при том же количестве потребляемой мощности.

Это все хорошо, но что, если вы можете снизить сопротивление, чтобы обеспечить более эффективную передачу энергии в системах с более низким напряжением?

Можно!

Аккумулятор на 18 В — отличный тому пример. Используя литий-ионные элементы 18650 и технологию стандартных корпусов, эти блоки обеспечивают мощность 800 Вт. Это означает, что производители уверены, что пропускают через него до 44,4 ампер тока и рассчитывают, что он прослужит 3 года или более.

Когда они модернизируют блоки для использования литий-ионных элементов 21700, большее количество медных компонентов и более толстые провода обеспечивают меньшее сопротивление.Теперь эти блоки достигают мощности до 1440 Вт. Вы получите такое же точное напряжение, но с током 80 ампер. Это на 80% больше энергии!

Теперь удвойте это количество, чтобы покрыть систему на 36 В, и в этом пакете доступно 2 880 Вт — более чем достаточно для нашей газонокосилки мощностью 2200 Вт.

Примечание автора: Типичная домашняя электрическая розетка работает от 120 вольт и 15 ампер. Посчитайте, и вы можете получить только 1800 Вт из вашей домашней розетки. Батареи могут помочь вам продвинуться дальше! Единственным препятствием остается время выполнения.

Не забывайте емкость батареи

То же уравнение, которое мы используем для мощности, работает и с потенциальной мощностью. Просто возьмите номинальное напряжение аккумулятора и умножьте его на общее количество ампер-часов батареи, чтобы получить ватт-часы. Это общее количество энергии в батарее.

  • 18V x 9Ah = 162Wh
  • 36V (40V Max) x 5Ah = 180Wh
  • 56V x 2.5Ah = 140Wh
  • 72V (80V max) x 2.0 Ah = 144 Wh

топливо доступно в системе с более низким напряжением.Конечно, это не всегда так, но теперь у вас есть ключ, чтобы открыть для себя реальный потенциал!

Заключительные мысли

В целом, более низкое сопротивление систем с более высоким напряжением делает их более электрически эффективными и более простыми в сборке. Системы OPE, которые действительно конкурируют по производительности при более низких напряжениях, должны снижать свое сопротивление за счет лучшей конструкции аккумуляторных батарей и / или использовать для этого модернизированные литий-ионные элементы.

Дело в том, что на некоторых уровнях проще работать с более высоким напряжением.Само собой разумеется, что вы можете даже отказаться от компонентов более низкого качества, выбрав этот путь. Чтобы иметь достаточно мощности, чтобы конкурировать с системами с более высоким напряжением, системы с более низким напряжением должны создавать лучший аккумулятор. По всей видимости, в результате им также придется создать более качественную систему.

Изучая доступные варианты, помните, что напряжение — это еще не все. По нашему опыту, беспроводные продукты OPE в диапазоне от 36 до 54 В (от 40 до 60 В) обладают достаточной мощностью для выполнения своей работы.Подойдет и более высокое напряжение.

Только не гонитесь за максимально возможным числом.

Зависимость тока от напряжения — разница и сравнение

Связь между напряжением и током

Ток и напряжение — две фундаментальные величины в электричестве. Напряжение — это причина, а ток — это следствие.

Напряжение между двумя точками равно разности электрических потенциалов между этими точками. На самом деле это электродвижущая сила (ЭДС), ответственная за движение электронов (электрический ток) по цепи.Поток электронов, приводимый в движение напряжением, называется током. Напряжение представляет собой потенциал каждого кулоновского электрического заряда для выполнения работы.

В следующем видео объясняется взаимосвязь между напряжением и током:

Схема

Электрическая цепь с источником напряжения (например, аккумулятором) и резистором.

Источник напряжения имеет две точки с разностью электрических потенциалов. Когда между этими двумя точками существует замкнутый контур, он называется цепью, и ток может течь.При отсутствии цепи ток не будет течь, даже если есть напряжение.

Обозначения и единицы

Заглавная курсивная буква I обозначает ток. Стандартная единица измерения — Ампер (или Ампер), обозначаемая буквой A. Единица измерения тока в системе СИ — Кулон / секунду .

1 ампер = 1 кулон в секунду.

Один ампер тока соответствует одному кулону электрического заряда (6,24 x 10 18 носителей заряда), проходящего мимо определенной точки в цепи за одну секунду.Устройство, используемое для измерения тока, называется Амперметр .

Заглавная курсивная буква В обозначает напряжение.

1 вольт = 1 джоуль / кулон.

Один вольт перемещает один кулон (6,24 x 10 18 ) носителей заряда, таких как электроны, через сопротивление в 1 Ом за одну секунду. Вольтметр используется для измерения напряжения.

Поля и интенсивность

Электрический ток всегда создает магнитное поле.Чем сильнее ток, тем сильнее магнитное поле.

Напряжение создает электростатическое поле. По мере увеличения напряжения между двумя точками электростатическое поле становится более интенсивным. По мере увеличения расстояния между двумя точками, имеющими заданное напряжение по отношению друг к другу, интенсивность электростатического заряда между точками уменьшается.

Последовательные и параллельные соединения

В последовательной цепи

Напряжения суммируются для компонентов, соединенных последовательно.Токи одинаковы во всех компонентах, соединенных последовательно.

Электрические компоненты в последовательном соединении

Например, если батарея 2 В и батарея 6 В подключены последовательно к резистору и светодиоду, ток через все компоненты будет одинаковым (скажем, 15 мА), но напряжения будут разными (5 В на резисторе и 3 В на светодиод). Эти напряжения складываются с напряжением батареи: 2 В + 6 В = 5 В + 3 В.

В параллельной цепи

Токи суммируются для компонентов, соединенных параллельно.Напряжения одинаковы на всех компонентах, подключенных параллельно.

Электрические компоненты при параллельном подключении

Например, если одни и те же батареи подключены к резистору и светодиоду параллельно, напряжение на компонентах будет одинаковым (8 В). Однако ток 40 мА через аккумулятор распределяется по двум путям в цепи и прерывается до 15 мА и 25 мА.

Список литературы

Что такое напряжение »Примечания по электронике

Напряжение является одним из основных параметров, описывающих электрические условия в цепи, а вольт, который является единицей напряжения, является одним из ключевых параметров для любой электрической или электронной схемы.


Напряжение включает:
Что такое напряжение Электрическое поле Делитель напряжения / потенциала Электродвижущая сила


Напряжение — это один из основных параметров, связанных с любой электрической или электронной схемой. Напряжение широко используется в спецификациях множества электрических элементов, от батарей до радиоприемников, от лампочек до бритв, и, кроме того, это ключевой параметр, который также измеряется в схемах и используется в расчетах проектирования электронных схем.

Единицей измерения напряжения или разности потенциалов является вольт, и он широко используется во всех аспектах электрических и электронных схем и проектирования электронных схем. Наряду с током и сопротивлением единица измерения напряжения важна при проектировании и реализации любой схемы.

Рабочее напряжение элемента оборудования очень важно — необходимо подключить электрические и электронные элементы к источникам питания с правильным напряжением. Подключите лампочку на 240 В к батарее на 12 В, и она не загорится, но подключите небольшое USB-устройство на 5 В к источнику питания 240 В, и будет течь слишком большой ток, и она сгорит и будет непоправимо повреждена.

Кроме того, уровни напряжения в цепи дают ключ к ее работе — если присутствует неправильное напряжение, то это может указывать на причину неисправности. Кроме того, многие электрические и электронные компоненты имеют максимальное рабочее напряжение, поэтому очень важно соблюдать их технические характеристики.

По этим и многим причинам электрическое напряжение является ключевым параметром, и знание его значения может быть ключевым требованием в любых обстоятельствах.

Основы напряжения

Напряжение можно рассматривать как давление, которое заставляет заряженные электроны течь в электрической цепи.Этот поток электронов представляет собой электрический ток, который течет

Напряжение, показанное в простой схеме

Если положительный потенциал помещен на один конец проводника, то он будет притягивать к нему отрицательные заряды, потому что разные заряды притягиваются. Чем выше потенциал притяжения зарядов, тем сильнее притяжение и больше ток.

Чем выше разность потенциалов напряжения, тем больше притяжение электронов и больше ток.

По сути, напряжение — это электрическое давление, и оно измеряется в вольтах, что может быть представлено буквой V.

Обычно буква V используется для обозначения вольт в уравнении, подобном закону Ома, но иногда может использоваться буква E — это означает ЭДС или электродвижущую силу.

Чтобы получить представление о том, что такое напряжение и как оно влияет на электрические и электронные схемы, часто полезно в качестве основной аналогии подумать о воде в трубе, возможно, даже о водопроводной системе в доме. Резервуар для воды расположен высоко, чтобы обеспечить давление (напряжение), чтобы заставить воду течь (ток) по трубам.Чем больше давление, тем выше расход воды.

Алессандро Вольта

Единицей измерения напряжения или электрического потенциала является вольт, названный в честь Алессандро Вольта, итальянского физика, жившего между 1745 и 1827 годами.

Записка на Алессандро Вольта:

Алессандро Вольта был одним из пионеров динамического электричества. Исследуя основные свойства электричества, он изобрел первую батарею и продвинул понимание электричества.

Подробнее о Алессандро Вольта.

Разница потенциалов

Электрический потенциал или напряжение — это мера электрического давления, которое может заставить ток в цепи. Полезным сравнением для этих целей является простая система, содержащая воду, такую ​​как резервуар для воды с присоединенной трубой, и вода, проходящая через полуоткрытый кран. Чем выше уровень воды над краном, тем больше давление нагнетает воду по трубе и через полуоткрытый кран.Чем выше давление воды, тем больше воды будет проходить через систему при заданном уровне сопротивления в системе.

Чем выше уровень воды, тем больше давление, проталкивающее воду через систему.

Аналогично электрической системе, чем выше электрическое давление или разность потенциалов в секции системы, тем большее количество воды пройдет через систему в течение заданный уровень электрического сопротивления.

Чем выше электрическое давление или напряжение, тем выше ток для данного уровня сопротивления.

Видно, что повышение давления воды увеличивает поток.Для электрической цепи повышение электрического потенциала или напряжения увеличивает протекающий ток.

Рассматривая аналогию с водяной системой как объяснение разности потенциалов, стоит помнить, что это только базовая аналогия, и есть некоторые фундаментальные различия между резервуаром для воды и электрической цепью, особенно с точки зрения того факта, что что электрическая цепь именно такая, а система водоснабжения — нет. Однако он служит хорошей иллюстрацией концепции давления и электрического потенциала в понятной манере.

Что такое вольт: единица напряжения

Основной единицей измерения напряжения является вольт, названный в честь итальянского ученого Алессандро Вольта, который сделал несколько первых батарей и провел множество других экспериментов с электричеством.

Определение напряжения:

Стандартная единица измерения напряжения или разности потенциалов и электродвижущей силы в Международной системе единиц (СИ) формально определяется как разность электрических потенциалов между двумя точками проводника, по которому проходит постоянный ток в один ампер, когда мощность рассеивается. между этими точками равен одному ватту.

Чтобы получить представление о возможных напряжениях, радиостанция CB обычно работает от источника питания около 12 В (12 В). Элементы, используемые в бытовых батареях, имеют напряжение около 1,5 вольт. Перезаряжаемые никель-кадмиевые элементы имеют немного меньшее напряжение 1,2 В, но обычно могут использоваться взаимозаменяемо с неперезаряжаемыми типами.

В других областях могут встречаться напряжения намного меньшие и намного большие, чем это. Входной сигнал аудиоусилителя будет меньше указанного, а напряжения часто будут измеряться в милливольтах (мВ) или тысячных долях вольта.Сигналы на входе в радиоприемник даже меньше этого и часто измеряются в микровольтах (мкВ) или миллионных долях вольта.

С другой стороны, можно услышать о гораздо более высоких напряжениях. Электронно-лучевые трубки в телевизионных или компьютерных мониторах требуют напряжения в несколько киловольт (кВ) или тысяч вольт, а даже большие напряжения в миллионы вольт или мегавольт (MV) можно услышать в связи с такими темами, как молния.

ЭДС и ПД

При работе с напряжениями часто встречаются два термина: электродвижущая сила, ЭДС и разность потенциалов, PD.Эти термины имеют много общего, но также имеют некоторые ключевые и очень важные различия.

И ЭДС, и напряжение используют одну и ту же единицу — вольт, но термины обозначают разные.


Как измерить напряжение

Одним из ключевых параметров, которые необходимо знать в любой электрической или электронной схеме, является напряжение. Существует несколько способов измерения напряжения, но одним из наиболее распространенных является использование мультиметра. Можно использовать как аналоговые, так и цифровые мультиметры, но в наши дни чаще всего используются цифровые мультиметры, поскольку они более точны и доступны по очень разумным ценам.

Примечание по измерению напряжения мультиметром:

Напряжение — это один из ключевых параметров, который необходимо знать в любой электрической или электронной схеме. Напряжение можно легко измерить с помощью аналогового или цифрового мультиметра, где очень легко снять точные показания.

Подробнее о как измерить напряжение.

Напряжение — это одна из трех основных электрических единиц наряду с током и сопротивлением.Напряжение играет ключевую роль в процессе проектирования электронных схем, а также любых электрических цепей. Соответственно, он используется практически во всех процессах проектирования и является параметром, связанным с очень многими электрическими и электронными компонентами.

Другие основные концепции электроники:
Напряжение Текущий Мощность Сопротивление Емкость Индуктивность Трансформеры Децибел, дБ Законы Кирхгофа Q, добротность Радиочастотный шум
Вернуться в меню «Основные понятия электроники».. .

Разница между высоким, средним и низким напряжением


Классификация напряжений Высокое, среднее и низкое напряжение — это термины, которые мы чаще всего слышим, когда говорим о классификации напряжения. С международной точки зрения эти классификации и диапазоны меняются в зависимости от того, где вы живете. В США Национальный электротехнический кодекс (NEC) и Национальная ассоциация производителей электрооборудования (NEMA) имеют руководящие принципы и стандарты, которые охватывают все классификации напряжения.Американский национальный институт стандартов (ANSI) наблюдает за созданием, опубликованием и использованием тысяч руководств и стандартов, влияющих на бизнес. Каждая отрасль соответствует применимым нормам.

И ANSI, и код NEC являются приобретенными публикациями. Портал электротехники (EEP) предоставляет подробную информацию о стандартах ANSI C84.1-1989. В этом документе напряжения делятся на пять классификаций. Эти классификации можно объединить в следующие категории:

  • Высокое (HV), сверхвысокое (EHV) и сверхвысокое напряжение (UHV) — от 115000 до 1100000 В переменного тока
  • Среднее напряжение (MV) — от 2400 до 69000 В переменного тока
  • Низкое напряжение (LV) — от 240 до 600 В переменного тока
Компания Generac выпустила технический документ под названием «Обзор генерации среднего напряжения на месте».В официальном документе NEC сравнивается со стандартами ANSI. На нем размещены следующие стандарты напряжения NEC:
  • Высокое распределение — от 1000 до 4160 В
  • Среднее распределение — от 50 до 1000 вольт
  • Низкое распределение — от 0 до 49 В
Приведенные выше списки иллюстрируют классификацию изменений уровня напряжения в зависимости от регулирующего органа. Generac заявляет, что генераторы с напряжением ниже 600 вольт и равным ему относятся к среднему напряжению, а генераторы с напряжением более 600 вольт — к высокому напряжению.Генераторы, вырабатывающие 4160 вольт, распространены во многих отраслях промышленности для больших двигателей, требующих высокого напряжения. Резервный генератор подает напряжение в отдельную сеть.

Обычно напряжение на складе генератора составляет 4160 В переменного тока, 480 В переменного тока, 12 470 В переменного тока и 13 800 В переменного тока. При отключении электроэнергии на промышленном объекте резервный генератор подает питание на распределительные панели и панели управления для непрерывной работы. Более высокие напряжения от генератора понижаются трансформаторами. Нижеприведенный контент предоставляет информацию по каждой категории информации.

ПРИМЕЧАНИЕ:
Содержание этого документа предназначено только для информационного использования. Всегда консультируйтесь с сертифицированным специалистом при проектировании и работе с электрическим оборудованием. Никогда не работайте в цепях под напряжением и не выполняйте обязанности, для которых вы не имеете квалификации.

Высокое, сверхвысокое и сверхвысокое напряжение

Высокое и сверхвысокое напряжение связано с передачей питания от электростанции. Причина передачи мощности на высоких и сверхвысоких уровнях напряжения заключается в повышении эффективности.Более низкий ток, сопровождающий передачу высокого напряжения, позволяет использовать более тонкие и легкие кабели. Это снижает затраты на строительство башни и линии электропередач. Высокое напряжение составляет от 115 000 до 230 000 В переменного тока, а сверхвысокое напряжение — от 345 000 до 765 000 В переменного тока.

Соединенные Штаты пропускают до 500 000 вольт по высоковольтной сети. Для высоких напряжений требуются специальные коммутационные и распределительные щиты. В диспетчерских есть резервные возможности коммутации. Они могут управляться дистанционно или помещаться в руководство для обслуживания и тестирования отдельных систем питания.Подстанции обеспечивают пониженное напряжение, распределяемое по определенным территориям. Сверхвысокое напряжение — это напряжение от 765 000 до 1 100 000 В переменного тока. В Китае используется передача наивысшего напряжения — 800 000 В переменного тока. Сегодня они разрабатывают систему на 1 100 000 В переменного тока с использованием кабелей, рассчитанных на 1 200 000 В переменного тока.

Средние напряжения и промышленность

Крупные промышленные комплексы и заводы, которым требуется значительное количество электроэнергии, часто используют средние напряжения питания. Электрический вариационный анализ показывает, что напряжение обратно пропорционально силе тока.Это означает, что при повышении напряжения сила тока уменьшается для завершения операции.

Двигатели и электрическое оборудование, предназначенные для работы с более высоким напряжением, потребляют меньше электроэнергии и более экономичны в эксплуатации. Большинство первичных подстанций не получают от электросети более 35 000 В переменного тока. Первичная подстанция может подавать пониженную мощность на вторичные подстанции или в отдельное здание.

Вторичная подстанция распределяет мощность, полученную от первичной подстанции.Вторичные подстанции могут иметь понижающие трансформаторы для дальнейшего понижения мощности для распределения на панель управления для распределения по всему объекту. Подстанции обычно расположены в зонах, которые могут обслуживать одно или несколько зданий на территории.

Алюминиевая компания Америки (ALCOA) Warrick Operations является примером крупной отрасли, потребляющей огромное количество энергии. Они расположены в Южной Индиане и имеют автономную электростанцию. Они вырабатывают электроэнергию с помощью угольной электростанции, расположенной на реке Огайо.Они перерабатывают алюминиевые слитки в рулонные алюминиевые листы, которые используются заводами, которым требуется склад алюминиевых банок. Слитки плавятся в больших электроплавильных печах, а затем обрабатываются с помощью ряда операций для получения правильной толщины заготовки.

Любому предприятию, которое использует источник среднего напряжения для подстанции, требуется аварийный или резервный источник питания. Нередко можно увидеть генераторы, вырабатывающие 13 800 В переменного тока. Источник напряжения идеально подходит для малых и средних подстанций и вторичных подстанций.При надлежащей поддержке генератора комплекс может продолжать работать во время перебоев в подаче электроэнергии. Предлагаются в различных стилях дизайна, включая установленные, звукопоглощающие корпуса и переносные устройства. Переносные агрегаты заключены в звукопоглощающие кожухи на прицепе, тянущемся полуприцепом.

Низковольтное питание и управление

Низкое напряжение имеет множество значений в электрическом / электронном мире. Общее практическое правило заключается в том, что все, что ниже 600 вольт, считается низким напряжением.Заводы, использующие автоматизацию, могут использовать несколько напряжений. Разделение использования электроэнергии на источники питания и средства управления помогает понять использование. Каждое подразделение выполняет миссию, критически важную для работы фабрики. Оба должны работать на продакшене.


Поставка
Заводы, которым требуется подача среднего или высокого напряжения от электросети, могут иметь выделенную подстанцию. Эти подстанции понижают уровни напряжения и распределяют их по зданиям по всей территории.

Однако не всем предприятиям требуется высокое или среднее напряжение. Некоторые требуют от электросети низкого напряжения 240, 480 или 600 В переменного тока. В этом случае мощность направляется непосредственно в распределительную систему завода.

Элементы управления
Система или машина, использующая низкое напряжение для работы с оборудованием с более высоким напряжением, являются основой системы управления. Программируемый логический контроллер (ПЛК) — обычное дело в этих системах. ПЛК получает входные данные от датчиков через входную часть ввода / вывода.Выходы рассчитываются и отправляются через выходную секцию ввода / вывода. Оба входа и выхода — 12 или 12 В постоянного тока в зависимости от конструкции системы.

Выход может быть направлен на реле с катушкой постоянного тока и контактами переменного тока. Когда реле получает сигнал постоянного тока, его контакты замыкаются. Это активирует оборудование или компонент до тех пор, пока триггерный сигнал не будет удален входом / выходом.

Электроэнергия требуется всем предприятиям. Когда энергоснабжение пропадает, промышленность останавливается без резервного генератора надлежащего размера.Мы предлагаем генераторы широкого диапазона стилей, которые могут удовлетворить большинство потребностей. Перед продажей наши бывшие в употреблении генераторы проходят проверку по 31 пункту. Перейдите в Инвентарь, чтобы просмотреть список имеющихся на складе генераторов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *