Операционные усилители с однополярным питанием: LM358NG, Двухканальный операционный усилитель с однополярным питанием, 3В…32В, [DIP-8]

Содержание

Предупреждение частых ошибок при разработке схем с операционными и инструментальными усилителями — Компоненты и технологии

По сравнению с усилителями, собранными на дискретных полупроводниковых элементах, операционные и инструментальные усилители (ОУ и ИУ) предоставляют разработчику большие удобства. Опубликовано огромное количество остроумных, полезных и привлекательных схем. Но очень часто схема, смонтированная поспешно, без учета некоторых основных требований, не работает как положено. В этой статье рассмотрено несколько наиболее характерных ошибок в применении этих устройств и предложены практические решения.

Отсутствует цепь для отвода тока смещения при связи по переменному току

Одна из наиболее распространенных ошибок при применении связи по переменному току в схемах с операционными или инструментальными усилителями — это отсутствие цепи постоянного тока для стекания тока смещения. На рис. 1 включение последовательно с неинвертирующим входом (+) ОУ конденсатора для связи по переменному току является простым способом не пропустить постоянную составляющую, имеющуюся во входном напряжении (VIN).

Это особенно полезно для схем с большим усилением, где даже небольшое постоянное напряжение на входе может ограничить динамический диапазон или вызвать насыщение выхода. Однако емкостная связь на высокоомном входе приведет к неприятностям, если не обеспечить цепь постоянному току, текущему в неинвертирующий вход или из него.

Рис. 1. Неработоспособная схема на ОУ со связью по переменному току

В такой схеме входные токи смещения будут течь через разделительный конденсатор, заряжая его, пока синфазное напряжение на входе не достигнет максимально допустимого значения или пока выход не достигнет предельного напряжения. В зависимости от направления входного тока смещения конденсатор будет заряжаться или до положительного, или до отрицательного напряжения питания. Напряжение смещения усиливается коэффициентом усиления при замкнутой ОС по постоянному току.

Этот процесс может занять длительное время. Например, усилитель с полевыми транзисторами на входе с током смещения 1 пА с конденсатором развязки 0,1 мкФ будет заряжаться со скоростью I/C 10–12/10–7 = 10 мкВ/с или 600 мкВ в минуту. Если коэффициент усиления равен 100, выходное напряжение будет меняться на 0,06 В в минуту. Таким образом, испытания в лаборатории (с помощью осциллографа с входом по переменному току) могут не выявить эту проблему, и схема будет работоспособна в течение нескольких часов. Разумеется, очень важно не допустить подобной проблемы.

На рис. 2 показано решение этой весьма распространенной задачи. Для обеспечения цепи протекания тока смещения здесь вход ОУ соединен с «землей» с помощью резистора. Для минимизации входных напряжений смещения, вызванных токами смещения, которые отслеживают друг друга в биполярных ОУ, сопротивление резистора R1 выбирают равным сопротивлению параллельно включенных R2 и R3.

Рис. 2. Правильный подход к обеспечению связи по переменному току входа ОУ при работе с двухполярным питанием

Однако отметим, что данный резистор будет всегда привносить в схему некоторый шум, так что должен быть компромисс между входным импедансом схемы, требуемой емкостью входного развязывающего конденсатора, и тепловым шумом, добавляемым резистором. Типичные значения сопротивления резистора лежат в диапазоне от 100 кОм до 1 МОм.

Аналогичная проблема может иметь место и в схеме с инструментальным усилителем. На рис. 3 показана схема с ИУ с двумя разделительными конденсаторами, не обеспечивающая цепь для протекания входного тока смещения. Эта проблема обычна для инструментальных усилителей, работающих как в схеме с двухполярным питанием (рис. 3a), так и в схеме с одним источником питания (рис. 3б).

Рис. 3. Примеры неработоспособных схем со связью по переменному току на ИУ: а) двухполярный источник питания; б) однополярный источник питания

Подобная проблема может возникнуть и при трансформаторной связи, как на рис. 4, если нет цепи для постоянного тока на «землю» на стороне вторичной обмотки трансформатора.

Рис. 4. Неработоспособная схема с трансформаторной связью на ИУ

Простые решения этих проблем показаны на рис. 5 и 6. Здесь между каждым входом и «землей» добавлены высокоомные резисторы R

A и RB. Это простое и практичное решение для схем на ИУ с двухполярным питанием.

Рис. 5. Высокоомный резистор между каждым входом и общим проводом необходим для пути возврата тока смещения на «землю»: a) двухполярное питание; б) однополярное питание

Рис. 6. Правильный способ трансформаторной связи со входами ИУ

Эти резисторы обеспечивают путь для стекания входного тока смещения на «землю». В схеме с двухполярным источником питания (рис. 5a) теперь оба входа связаны по постоянному току с «землей». В схеме с однополярным питанием на рис. 5б оба входа соединены или с «землей» (при VCM, подключенной к «земле»), или с напряжением смещения, обычно равным половине максимального размаха входного напряжения.

Точно такой принцип может быть использован для входов с трансформаторной связью (рис. 6), за исключением случая, когда обмотка трансформатора имеет среднюю точку. Средняя точка трансформатора может быть соединена с «землей» или с VCM.

В этих схемах погрешность в виде небольшого напряжения смещения нуля возникает из-за несовпадения номиналов входных резисторов или несовпадения входных токов смещения. Для минимизации таких погрешностей между двумя резисторами можно подключить третий резистор с величиной сопротивления около 1/10 сопротивления этих двух (но больше, чем дифференциальное сопротивление источника), таким образом шунтируя эти резисторы.

Подача опорного напряжения на ОУ, ИУ и АЦП

На рис. 7 приведена схема с однополярным питанием, в которой напряжение на несимметричный вход аналого-цифрового преобразователя (АЦП) подается с инструментального усилителя. Опорное напряжение усилителя обеспечивает напряжение смещения, соответствующее нулевому дифференциальному входному напряжению, а опорное напряжение АЦП обеспечивает коэффициент масштабирования. Для снижения внеполосного шума между выходом ИУ и входом АЦП часто применяется простой сглаживающий RC-фильтр нижних частот. Разработчики часто соблазняются простыми решениями — например, для подачи опорного напряжения на ИУ и АЦП применяют резистивные делители вместо низкоомного источника. Для некоторых ИУ это может послужить причиной появления погрешности.

Рис. 7. Типичная схема подачи сигнала с ИУ на АЦП с однополярным питанием

Корректная подача опорного напряжения в ИУ

Часто полагают, что вход для подачи опорного напряжения высокоомный (поскольку это вход). Так, разработчики могут соблазниться подключить высокоомный источник, например резистивный делитель, к выводу ИУ для опорного напряжения. С некоторыми типами инструментальных усилителей это может привести к значительным погрешностям (рис. 8).

Рис. 8. Неправильное использование простого делителя напряжения для непосредственной подачи опорного напряжения в инструментальный усилитель из трех ОУ

Например, в конструкции популярного ИУ применено три ОУ, соединенных, как показано выше. Общий коэффициент усиления равен:

где R2/R1 = R4/R3.

Коэффициент передачи для входа опорного напряжения равен единице (при подаче напряжения от источника с низким импедансом).

Однако в рассматриваемом случае вывод опорного напряжения ИУ подключен к простому делителю напряжения на резисторах. Это приводит к разбалансу схемы вычитания и нарушает коэффициент деления делителя напряжения. В свою очередь, это снижает коэффициент подавления синфазного сигнала в ИУ и точность его коэффициента усиления. Однако если бы внутренний резистор R4 был нам доступен, то при снижении его сопротивления на величину, равную параллельному соединению двух резисторов делителя напряжения (здесь 50 кОм), схема вела бы себя так, будто к изначальному сопротивлению резистора R4 подключен низкоомный источник, равный (в данном примере) половине напряжения питания, и точность схемы вычитания была бы сохранена.

Этот подход невозможен, если ИУ — интегральная схема в закрытом корпусе. Еще одна проблема заключается в том, что температурные коэффициенты сопротивления (ТКС) внешних резисторов делителя отличаются от ТКС резистора R4 и других резисторов схемы вычитания. И, наконец, такой подход не позволяет регулировать значение опорного напряжения.

Если, с другой стороны, попытаться использовать в делителе напряжения низкоомные резисторы, чтобы влияние их добавленного сопротивления было бы пренебрежимо малым, то ток потребления от источника питания и рассеиваемая мощность схемы увеличатся. В любом случае, такой метод «грубой силы» не приносит успеха.

На рис. 9 показано лучшее решение — применение буфера на ОУ с малым потреблением энергии между делителем напряжения и входом опорного напряжения ИУ. Это ликвидирует необходимость подбора сопротивления и проблему резисторов с разными ТКС, а также дает возможность легко регулировать опорное напряжение.

Рис. 9. Подача опорного напряжения на ИУ с низкоимпедансного выхода ОУ

Сохранение коэффициента ослабления отклонений напряжения источника питания (КОНИП) при формировании опорного напряжения для усилителей делителями из напряжения источника питания

Часто при анализе не учитывается тот факт, что любой шум, импульсные помехи и дрейф напряжения источника питания VS, подаваемого на вход опорного напряжения напрямую, добавляются к выходному напряжению, ослабленные только коэффициентом деления делителя. Практические решения включают в себя развязывание конденсаторами, фильтрацию и, возможно, даже генерацию опорного напряжения прецизионными интегральными схемами, например ADR121, вместо ответвления напряжения VS.

Этот анализ особенно важен, когда разрабатываемые схемы содержат и операционные, и инструментальные усилители. Методика ослабления отклонений питающего напряжения применяется для того, чтобы изолировать усилитель от помех, шумов и других кратковременных изменений напряжения, присутствующих на шине питания. Это важно, потому что многие практические схемы содержат, подключаются или существуют в окружении далеко не идеальных источников напряжений питания. Кроме того, существующие на шинах питания переменные составляющие могут проникнуть в схему, усилиться и при нормальных условиях возбуждать паразитные колебания.

Современные операционные и инструментальные усилители обеспечивают значительное ослабление низкочастотных отклонений напряжения источника питания. У разработчиков это считается как бы само собой разумеющимся. Многие современные ОУ и ИУ имеют в спецификациях значение КОНИП 80 и даже более 100 дБ, что ослабляет действие флуктуаций напряжения питания от 10 000 до 100 000 раз. Даже весьма умеренный КОНИП в 40 дБ ослабляет влияние флуктуаций питания на усилитель в 100 раз. Тем не менее, высокочастотные блокировочные конденсаторы (которые изображены на рис. 1–7) всегда желательны, и часто без них не обойтись.

Когда разработчики применяют простой резистивный делитель сшины питания и буфер на ОУ для подачи на вход опорного напряжения ИУ, все флуктуации напряжения источника питания проходят через эту схему с небольшим ослаблением и непосредственно добавляются к выходному уровню ИУ. Таким образом, пока не обеспечена низкочастотная фильтрация, высокое значение КОНИП интегральной схемы не дает существенных преимуществ.

На рис. 10 к делителю напряжения добавлен конденсатор, отфильтровывающий флуктуации напряжения питания в выходном напряжении и позволяющий сохранить значение КОНИП.

Рис. 10. Развязывание цепи опорного сигнала для сохранения КОНИП

Полюс –3 дБ этого фильтра устанавливается сопротивлением параллельно включенных R1/R2 и емкости конденсатора C1. Частота этого полюса должна быть примерно в 10 раз ниже, чем самая низкая частота сигнала.

При параметрах компонентов, приведенных на рисунке, спад –3 дБ будет на частоте 0,03 Гц. Конденсатор с маленькой емкостью (0,01 мкФ), включенный параллельно R3, минимизирует шумы резистора.

Фильтру для заряда после включения требуется время. При приведенных номиналах время заряда составляет 10–15 с (несколько постоянных времени фильтра, T = R3Cƒ = 5 c).

В схеме на рис. 11 предложены дальнейшие улучшения. Здесь буфер на ОУ работает как активный фильтр, что позволяет применить конденсаторы с меньшими емкостями для тех же значений развязывания источника питания. Кроме того, активный фильтр можно сделать высокодобротным, что уменьшит время включения.

Рис. 11. Подача опорного напряжения на вход ИУ с выхода ОУ, включенного в качестве активного фильтра

Результаты испытаний

С указанными на схеме номиналами элементов и при источнике питания 12 В на входе ИУ было обеспечено 6 В опорного отфильтрованного напряжения. При коэффициенте усиления ИУ, равном единице, питающее напряжение 12 В было промодулировано синусоидальным сигналом с размахом 1 В с разными частотами. При этих условиях, при снижении частоты примерно до 8 Гц на экране осциллографа не наблюдалось переменного сигнала на опорном напряжении и на выходе ИУ. При небольших уровнях сигнала на входе ИУ измеренный диапазон напряжений питания для этой схемы составил от 4 до 25 В и более. Время включения схемы примерно 2 с.

Развязывание напряжения питания схем на ОУ с однополярным питанием

Чтобы работать с положительными и отрицательными полуволнами переменного сигнала, схемам на ОУ с однополярным питанием требуется синфазное смещение входа. При использовании для реализации такого смещения шины питания, для сохранения значения КОНИП требуется соответствующее развязывание.

Обычной и неправильной практикой для смещения неинвертирующего входа на уровень VS/2 является применение резистивного делителя 100/100 кОм с развязывающим конденсатором емкостью 0,1 мкФ. При таких номиналах элементов развязывание напряжения источника питания недостаточно, так как частота полюса составляет всего 32 Гц. Часто возникает нестабильность схемы (низкочастотная генерация типа «шум мотора»), особенно при работе на индуктивную нагрузку.

На рис. 12 (неинвертирующая схема) и рис. 13 (инвертирующая схема) показаны улучшенные схемы для получения развязанного напряжения смещения VS/2. В обеих схемах смещение подведено к неинвертирующему входу, обратная связь приводит инвертирующий вход к той же величине смещения, и единичный коэффициент усиления на постоянном токе смещает оба входа на одинаковое напряжение. Развязывающий конденсатор C1 понижает коэффициент усиления ниже частоты BW3 до единицы.

Рис. 12. Неинвертирующий усилитель с однополярным питанием с правильным развязыванием источника питания. Коэффициент усиления на средних частотах равен 1+R2/R1

Рис. 13. Инвертирующий усилитель с однополярным питанием с правильным развязыванием источника питания. Коэффициент усиления на средних частотах равен – R2/R1

При использовании делителя 100/100 кОм хорошим эмпирическим правилом является применение конденсатора C2 с емкостью не менее 10 мкФ для получения спада на –3 дБ на частоте 0,3 Гц. Значение емкости 100 мкФ (полюс на частоте 0,03 Гц) достаточно практически для всех схем.

Однополярное питание операционных усилителей | Electronic-devices.com.ua

Мобильные электронные системы с питанием от батарей получают все большее распространение.
Обычно в них используется однополярное питание напряжением 5 В и меньше. Схемы с однополярным
питанием позволяют уменьшить сложность источника питания и зачастую повысить экономичность
устройств.

Операционные усилители (ОУ)  преимущественно используются в схемах с двухполярным питанием, поскольку входные и выходные сигналы ОУ чаще всего могут иметь как положительную так и отрицательную полярность относительно общей шины схемы. В случае, если не инвертирующий вход ОУ соединен с общей шиной, синфазное входное напряжение, вызывающее погрешность преобразования сигнала схемой на ОУ, отсутствует (рис. 1).

Тогда выходное напряжение ОУ   Vout=-Vin R2/R1 .

Если источник входного сигнала не соединен с общей шиной (рис. 2, а), то разность потенциалов Vсф между общей шиной и выводом источника входного сигнала влияет на выходное напряжение Vout=-(Vin+Vсф)R2/R1 .

Иногда это допустимо, но чаще выходное напряжение усилителя должно обязательно определяться только входным сигналом Vin. В таком случае ОУ используется в дифференциальном включении, причем на второй вход подается смещение, в точности равное Vсф  (рис. 2, б). Напряжение Vсф существует в обеих входных цепях, и, следовательно,
является синфазным входным сигналом. Схема инвертирующего включения ОУ с однополярным питанием приведена на рис. 3.

Здесь входное напряжение привязано не к средней точке источника питания, как это обычно делается в случае двухпоярного питания ОУ, а к отрицательному полюсу источника питания. Эта схема не работает, если входное напряжение положительно, поскольку выходное напряжение должно в этом случае становиться отрицательным, а отрицательного источника питания здесь нет. Для нормальной работы с отрицательными входными сигналами в этой схеме следует  использовать  ОУ, допускающие соединение входов с шинами питания. Непременное требование соединения входов с общей шиной или другим опорным напряжением затрудняет  построение схем на ОУ с однополярным питанием. Наиболее естественно использовать однополярное питание операционных усилителей тогда, когда источник входного сигнала однополярный, например, фотодиод (рис. 4).

В других случаях могут использоваться различные способы смещения входных и выходных напряжений ОУ.

Смещение ОУ с однополярным питанием

На рис. 5 представлены три основные схемы подключения источника смещения при однополярном питании ОУ.

Схема на рис. 5, а  представляет собой инвертирующий сумматор,

на рис. 5, б —дифференциальный усилитель,

а на рис. 5, в — неинвертирующий сумматор.

В общем случае связь между входными и выходными напряжениями в этих схемах можно представить уравнением

 Vout= kVin+b . (3)

Уравнению (3)  соответствует график статической переходной характеристики схемы с ОУ в виде прямой
линии (рис. 6).

таблица 1.

В табл. 1 приведены значения постоянных k и b для уравнения (2), соответствующих схемам на рис. 5. Если в схеме на рис. 5, б поменять местами источники VIN и VOF, то такому включению соответствует нижняя строка в графе «Рис. 5, б» табл. 1.
Схемы и значения постоянных k и b выбираются так, чтобы при любых возможных значениях входного напряжения
VIN выполнялось условие  0 < VOUT < VS.  (4)
Обычно k определяется необходимым усилением схемы, поэтому разработчик может выбрать только конфигурацию схемы и постоянную b. Более подробно смещение ОУ при однополярном питании рассматривается в [1]. Типовая схема включения ОУ для усиления сигналов переменного тока с питанием от однополярного источника приведена на рис. 7.

Здесь напряжение смещения равно половине напряжения питания. Резисторы делителя цепи смещения могут быть выбраны достаточно высокоомными, что бы не нагружать источники питания и входного сигнала.

Введение искусственной нулевой точки

От использования цепей смещения можно отказаться, если ввести искусственную нулевую (среднюю) точку, т. е. точку схемы, потенциал которой располагается приблизительно посередине между потенциалами положительного и отрицательного полюсов однополярного источника питания. Для того, чтобы схема могла усиливать биполярные сигналы, источник входного сигнала включается между входом инвертирующего усилителя и искусственной  нулевой  точкой
(рис. 8 ).

При этом, чтобы избежать смещения выходного напряжения,  нагрузку  R включают между выходом усилителя и искусственной нулевой точкой. Это усложняет построение цепей, формирующих нулевую точку.

На рис. 9 представлены примеры схем формирования потенциала нулевой точки. Наиболее простым является резистивный делитель напряжения, средняя точка которого соединена с искусственной нулевой точкой 0 (рис. 9, а). Однако при наличии нагрузки RL ток нагрузки IL протекает через один из резисторов этого делителя, создавая не симметрию напряжений между полюсами источника питания и точкой 0,  причем степень этой не симметрии зависит от силы тока
нагрузки. Уменьшение сопротивлений делителя снижает не симметрию этих напряжений, но при этом возрастают потери энергии в делителе.
Схема со стабилитроном (рис. 9, б) обеспечивает хорошую стабилизацию потенциала искусственной нулевой точки относительно отрицательного полюса источника питания. В качестве стабилитрона в этой схеме целесообразно применение двухвыводного источника опорного напряжения (или регулируемого трехвыводного, такого как, например,
(TL431). Эта схема хорошо работает при вытекающем выходном токе ОУ, но для сохранения стабильности потенциала точки 0 при значительном втекающем выходном токе требуется резистор R с низким сопротивлением, что опять-таки
обуславливает повышенные потери. Аналогичные проблемы возникают при использовании для формирования искусственной нулевой точки стабилизатора напряжения с последовательным регулирующим элементом.
Лучшие характеристики имеет схема с операционным усилителем, подключенным по схеме не инвертирующего повторителя к средней точке резистивного делителя напряжения (рис. 9, в). В данной схеме делитель может быть высокоомным, т. к. он нагружен только входным током покоя операционного усилителя. ОУ сравнивает потенциал на выходе схемы с потенциалом в средней точке делителя и поддерживает напряжение на своем выходе таким, чтобы разность сравниваемых потенциалов была равна нулю. Этот эффект достигается благодаря действию отрицательной обратной связи. При малых токах покоя, потребляемых этой схемой (менее 1 мА), такой активный делитель имеет выходное сопротивление не более 1 Ом.

Еще более эффективно применение специальных микросхем для формирования искусственной нулевой точки (рис. 9, г). Фирма Texas Instruments (США) выпускает ИМС типа TLE2425. Эта ИМС изготавливается в малогабаритном трех выводном корпусе ТО-92 и обеспечивает ток через искусственную среднюю точку до 20 мА в любом направлении при токе собственного потребления не более 0,25 мА и динамическом выходном сопротивлении не более 0,22 Ом. В том случае, если нагрузка может быть не связана с общей точкой схемы или с какой-либо из шин питания, можно использовать простейший вариант формирования искусственной нулевой точки на резистивном делителе (рис. 9, а),  но с мостовой усилительной схемой (рис. 9, д).

В этой схеме инвертирующий повторитель на ОУ2 создает на нижнем полюсе нагрузки RL потенциал, противофазный по отношению к потенциалу верхнего ее полюса.Здесь в искусственную нулевую точку втекает ток, равный VIN/R1, поэтому сопротивление резистора R1 следует взять по возможности большим, иначе возможна не симметрия нулевой точки. Дополнительные достоинства этой схемы: увеличение максимальной амплитуды напряжения
на нагрузке в два раза при том же напряжении питания и заметное повышение КПД при полном размахе выходного напряжения.

Расширение динамического диапазона

Снижение напряжения питания ОУ от обычных +15 В до однополярного 5 В значительно уменьшает амплитудный диапазон входного и выходного напряжений. Амплитудный диапазон в данном случае можно определить как разность между максимально и минимально возможными входными (выходными) напряжениями. Применение усилителей, рассчитанных на двухполярное питание, возможно и с однополярным питанием, но, во-первых, при низкой разности потенциалов между выводами питания далеко не все типы таких ОУ имеют приемлемые характеристики (например, коэффициент усиления), а во-вторых, амплитудный диапазон их выходных напряжений сравнительно мал из-за довольно больших напряжений насыщения транзисторов выходного каскада. Размах выходного напряжения обычных усилителей общего применения не доходит до верхнего и нижнего потенциалов источника питания на 1…2 В при номинальной нагрузке. При питании такого усилителя от однополярного источника напряжением 5 В, амплитудный диапазон выхода составит 1…3 В. Это означает серьезное снижение соотношения сигнал/шум и уменьшение разрешающей способности схемы.

В настоящее время для работы от низковольтных источников питания, в том числе и однополярных, разработано большое количество моделей ОУ с полным размахом выхода(«Rail-to-Rail»). Выходное напряжение таких усилителей при работе на  холостом  ходу может  изменяться практически от потенциала отрицательного полюса источника питания до потенциала положительного полюса.

Схемотехника выходных каскадов усилителей с полным размахом выхода и обычных ОУ различна. Выходной каскад обычных ОУ строится по схеме с общим коллектором на комплиментарных транзисторах (рис. 10, а).

При использовании такого схемного решения минимальное падение напряжения на выходном транзисторе принципиально не может быть снижено. Как следует из схемы на рис. 10, а, источник тока I должен обеспечивать ток коллектора транзистора каскада усиления напряжения VT3 и базовый ток выходного транзистора VT1. Для нормальной работы схемы источника тока необходимо падение напряжения на нем VT1 не менее 1 В. Остальная часть общего падения напряжения приходится на выходной транзистор. Можно уменьшить минимальное падение на транзисторах выходного каскада, включив в выходном каскаде транзисторы по схеме с общим эмиттером (рис. 10, б). По этой схеме построен выходной каскад, например, ОУ AD823 фирмы Analog Devices.

На рис. 11 представлены графики зависимости напряжения насыщения VSAT выходных транзисторов этого усилителя от тока нагрузки IL для максимального (VS –VOH) и минимального (VOL) выходных напряжений. Очевидно, что при работе усилителя на холостом ходу максимальное выходное напряжение почти достигает напряжения питания, а минимальное — мало отличается от нуля. Еще лучшие характеристики на холостом ходу  обеспечивают усилители, у которых выходной каскад построен на комплементарных МОП-транзисторах  (рис.  10,  в).
Сопротивления полностью открытого канала верхнего и нижнего МОП-транзисторов выходного каскада ОУ типа TLC2272 фирмы Texas InstRuments составляют, соответственно, 500 и 200 Ом при питании усилителя от однополярного источника 5 В.

Если нагрузка RL включена между выходом ОУ и общей точкой схемы, так как показано на рис. 4, то при низких выходных напряжениях выходной ток также мал, и напряжение на открытом нижнем транзисторе усилителя весьма близко к нулю (доли милливольта). Если ток нагрузки велик, и нагрузка соединена другим выводом с плюсом источника питания или искусственной нулевой точкой, напряжение на полностью открытом выходном транзисторе может достигать больших значений (более 1 В). В некоторых применениях требуется не только полный размах выхода ОУ, но и полный размах (Rail-to-Rail) допустимых значений входного синфазного напряжения VСФ (вход с полным размахом). Это нужно, например, в схеме неинвертирующего повторителя, согласующего датчик сигнала с аналого-цифровым преобразователем. Для некоторых приложений необходимо, чтобы диапазон входных сигналов был ниже потенциала общей шины на 0,2…0,3 В. Это требуется при однополярном питании инвертирующего усилителя, где на вход должно  подаваться отрицательное напряжение (рис. 3), например, в схеме  фотометра (рис. 4), где полярность напряжения на инвертирующем входе ОУ  несколько ниже, чем на неинвертирующем. Усилители, имеющие вход с полным размахом, схемотехнически заметно сложнее, чем обычные. Других преимуществ, кроме возможности работы с широким диапазоном входного синфазного сигнала, они не имеют. Поэтому их следует применять только там, где действительно требуется полный размах входа.

На рис. 12, а приведена схема дифференциального входного каскада обычного ОУ. Он состоит из двух согласованных структур. Для того, чтобы входной сигнал мог достигать потенциала общей шины используются p-n-p-транзисторы.
Такое построение позволяет подавать на вход потенциал общей шины без нарушения работы входного каскада. При
более низком синфазном входном напряжении поведение входного каскада становится непредсказуемым. Часто наблюдается инверсия входов, при которой меняется знак обратной связи, и происходит переход ОУ в триггерный режим
(так называемое «защелкивание»). Поскольку напряжение на источнике тока VИТ в схеме на рис. 12, а должно быть не
менее 0,4 В (иначе он просто не будет работать), а напряжение база-эмиттер транзисторов VBE в активном режиме
составляет приближенно 0,6 В, то входной синфазный сигнал должен быть по крайней мере на 1 В меньше напряжения питания.

На рис. 12, б представлен дифференциальный каскад на n-канальных полевых транзисторах с управляюшим p-n-переходом (JFET-транзисторы). Поскольку пороговое напряжение исток-затвор таких транзисторов составляет  –2…–3 В, то можно легко обеспечить нормальную работу входного каскада ОУ при небольших отрицательных синфазных входных напряжениях. Именно так построен входной каскад ОУ AD823 с полным размахом выхода. Этот усилитель нормально работает при –1 В < VСФ < VS –1 В.

Если обязательно требуется работа ОУ с полным размахом входного напряжения, то применяют двойной комплементарный дифференциальный каскад (рис. 12, в). Биполярный вариант, показанный на рис. 12, в, используется в ОУ типа TLV245x и OP196, КМОП вариант этой схемы — в TLV247х и AD853х. Из схемы ясно, что оба дифференциальных усилителя входного каскада управляются одновременно. Дифференциальный усилитель (ДУ) с p-n-p-транзисторами работает до максимального уровня входных сигналов на 1 В ниже напряжения питания. Для нормальной работы n-p-n-усилителя требуется синфазный сигнал не менее 1 В. Таким образом, в зоне 1 В <VСФ < VS –1 В работают оба ДУ, а в зонах VСФ > VS –1 В и VСФ <1 В — только один. Это обстоятельство вызывает довольно значительное изменение входных токов и напряжения смещения нуля (до 3 нА и 70 мкВ у TLV245x) при переходе через
границы этих зон, что может вызвать искажения усиливаемого сигнала. Уменьшить эти искажения можно, включив последовательно с неинвертирующим входом резистор RC (рис. 3), сопротивление которого определяется по формуле

Rc = R1R2/R1+R2          (5)

В табл. 2 представлены основные параметры (типичные значения) некоторых типов ОУ, предназначенных для работы с однополярным питанием.

Схемы на ОУ с однополярным питанием

Линейный стабилизатор напряжения
Схема линейного стабилизатора напряжения на ОУ с регулирующим транзистором, включенным по схеме с ОК, представлена на рис. 13, а.

Схема содержит ОУ, включенный по схеме неинвертирующего усилителя с отрицательной обратной связью понапряжению,  источника опорного напряжения VREF и регулирующего n-p-n-транзистора VТ, включенного последовательно с нагрузкой. Выходное напряжение VOUT контролируется с помощью цепи отрицательной обратной связи, выполненной на резистивном делителе R1R2. ОУ играет роль усилителя ошибки. Ошибкой здесь является разность между опорным напряжением VREF, задаваемым источником опорного напряжения (ИОН) и
выходным напряжением делителя R1R2

ΔV = VREF – VOUT R1/R1+R2.   (6)

Питание операционного усилителя осуществляется однополярным положительным напряжением. При этом операционные усилители, рассчитанные на двухполярное питание +15 В можно использовать в схемах стабилизаторов
со входным напряжением до 30 В. Стабилизируемое выходное напряжение ограничено снизу минимальным синфазным входным напряжением ОУ, а сверху — суммой напряжения насыщения ОУ и напряжения насыщения база-эмиттер регулирующего транзистора, т. е. минимально допустимое напряжение вход-выход стабилизатора  при  применении
обычных ОУ будет большим (около 3 В). На рис. 13, б приведена схема стабилизатора с пониженным допустимым напряжением вход/выход (так называемый, LDO-стабилизатор). Здесь регулирующий транзистор включен
по схеме с ОЭ, поэтому могут быть проблемы с устойчивостью [2]. Минимально допустимое напряжение вход/выход в
этой схеме ограничено только напряжением насыщения коллектор-эмиттер регулирующего транзистора VT.

Прецизионный выпрямитель

Замечательная по простоте схема двухполупериодного прецизионного выпрямителя представлена на рис. 14.

Она вообще не содержит диодов. Однако в этой схеме могут применяться только ОУ с полным размахом входных и выходных напряжений (Rail-to-Rail). Усилители питаются обязательно от однополярного источника. Если VIN>0, то усилитель ОУ1 работает как неинвертирующий повторитель. В этом случае усилитель ОУ2 работает в дифференциальном включении и VOUT=VIN. При VIN<0 усилитель ОУ1 уходит в отрицательное насыщение, напряжение на его выходе становится равным нулю (питание однополярное!). Тогда усилитель ОУ2 переходит в режим инвертирующего повторителя, поэтому VOUT= –VIN. Как следствие, VOUT= |VIN|.

Усилитель ОУ2 всегда работает в линейном режиме, а потенциал неинвертирующего входа ОУ1 при VIN<0 становится ниже потенциала отрицательного полюса источника питания. Не все операционные усилители это допускают. Например, сдвоенный ОУ ОР291 как нельзя лучше подходит для этой схемы. Его входы защищены от дифференциального перенапряжения встречно-параллельно включенными диодами, причем в цепи баз входных транзисторов включены резисторы сопротивлением в 5 кОм. Это позволяет усилителю выдерживать при однополярном питании входное синфазное напряжение до –15 В. В этом случае резистор R1 можно не включать. Иное дело — сдвоенный усилитель ОР296. Он не имеет защитных резисторов, и при его применении в этой схеме необходимо включать резистор R1=2 кОм.
Изготовитель рекомендует для этой схемы при 5-вольтовом питании диапазон  входных  сигналов ±1 В. Из-за того, что усилитель ОУ1 долго выходит из насыщения, частотный диапазон схемы оказывается довольно узким — для ОУ ОР291 он составляет 0…2 кГц.

Схема измерения тока

Для измерения больших токов в линии, находящейся под относительно высоким потенциалом, может быть использована схема, представленная на рис. 15.

Ток, протекающий через нагрузку, создает напряжение VIN на шунте Rш, который здесь является датчиком тока. Полагаем ОУ идеальным. Тогда через инвертирующий вход усилителя ток не течет, и, поскольку напряжение между дифференциальными входами усилителя равно нулю, напряжение VIN приложено к левому резистору R. Ток через резистор R и коллектор транзистора VТ

lc = VIN/R = lL Rш/R    (7)

Пренебрегая током базы транзистора, найдем выходное напряжение схемы

VOUT = lCRT = lL RT Rш/R     (8)

Именно по этой схеме выполнен измеритель тока фирмы Burr-Brown INA168 (границы кристалла показаны на рис. 15 штриховой линией). Он допускает синфазное напряжение на входах до 60 В и коэффициент усиления напряжения на шунте до 100. Ток, потребляемый микросхемой, составляет всего 50 мкА. Микросхема LT1787 аналогичного назначения построена симметрично, т. к. имеет в своем составе усилитель с дифференциальными входами и выходами и нагрузку  в виде токового зеркала. Допустимое синфазное напряжение также 60 В. Динамический диапазон —12 бит (72 дБ). Микросхема измерителя тока МАХ471 имеет на кристалле шунтовой резистор, рассчитанный на ток до 3 А, а у МАХ4372 такого резистора нет, но зато ее погрешность преобразования не превышает 0,18%.

Цифро-аналоговый преобразователь
с выходом в виде напряжения

Комбинация ЦАП с токовым выходом, например, 12-битного AD7541А и ОУ с полным размахом показана на рис. 16.

Здесь используется инверсное включение резистивной матрицы R-2R. ОУ включен по схеме неинвертирующего усилителя с коэффициентом усиления 2. В качестве источника опорного напряжения может быть использован TL431. Выходное напряжение схемы определяется формулой

VOUT = 2VREF/4096*DI,          (9)

где DI — входной код.

Выводы

Операционные усилители, предназначенные для работы с биполярным питанием, могут работать в схемах с одним источником, однако амплитудный диапазон их входных и выходных сигналов может оказаться слишком узким. Операционные усилители, предназначенные для работы с одним источником,  в свою очередь, тоже могут работать в схемах с биполярным питанием. Необходимо только, чтобы разность потенциалов положительного и отрицательного источника не превышала предельно допустимого напряжения питания для данного типа усилителя. Если требуется усиливать сигналы переменного тока, то при однополярном питании целесообразно использовать цепи смещения и разделительные конденсаторы (рис. 7).
Если входной сигнал постоянного тока биполярный, то можно использовать цепи смещения, однако более удобно
введение в схему искусственной нулевой точки. Если предполагается работа со входными сигналами ниже потенциала общей шины при однополярном питании, следует в необходимых случаях предусмотреть меры для защиты входов усилителя.

Георгий Волович,
[email protected]

Литература
1. Mancini R. Single Supply Op Amp Design Techniques // Application  RepoRt  SLOA030.  —  Texas  InstRuments
IncoRpoRated. — OctobeR 1999. — 23 p.
2. Волович Г. Устойчивость линейных интегральных стабилизаторов напряжения. — Схемотехника, 2001. № 11.

на Ваш сайт.

Однополярное питание ОУ » PRO-диод

Однополярное питание ОУ

11.11.2013 | Рубрика: Операционный усилитель

В предыдущих главах, например в этой, предполагалось, что ОУ имеет два напряжения питания — положительной и отрицательной полярности (рис. 1). При этом напряжения питания обычно выбираются равными по величине, а их средняя точка является землёй. Сигналы на входе и выходе при этом подаются и снимаются относительно земли. Однако…

Однако в современной портативной аппаратуре с батарейным питанием это неудобно.

Рис. 1. Схема включения ОУ с двуполярным питанием.

При однополярном питании ОУ необходимо использовать цепь смещения выходного напряжения так, чтобы выходные сигналы могли изменяться в максимально широком диапазоне, ограниченном нулём (землёй) и напряжением питания. Кроме того, входные сигналы изменяются относительно потенциала земли, что эквивалентно подаче входных сигналов относительно шины отрицательного питания в схеме применения ОУ с двуполярным питанием. Необходимость преодоления этих проблем влечёт за собой некоторое усложнение схем применения ОУ с однополярным питанием.

Когда входной сигнал имеет постоянное смещение относительно земли (рис. 2), напряжение смещения усиливается вместе с напряжением входного сигнала. За исключением случая, когда это напряжение смещения используется для установления нужного постоянного напряжения на выходе ОУ, его приходится исключать из усиливаемого сигнала.

Рис. 2. Схема включения ОУ с двуполярным питанием и источником постоянного смещения на входе усилителя

На рис. 3 приведена одна из схем, применяемых для исключения постоянного смещения из усиливаемых сигналов за счёт использования дифференциального усилителя. В нём одинаковые постоянные напряжения от источников KREF являются синфазными и вычитаются друг из друга благодаря свойствам дифференциального усилителя.

Рис. 3. Схема включения ОУ с двуполярным питанием и синфазным напряжением на входах

Когда сигнал подаётся относительно земли, при однополярном питании ОУ, как правило, не удаётся использовать схему включения ОУ с двуполярным питанием. В схеме на рис. 4 усилитель совсем не может работать при положительной фазе входного сигнала, так как выходное напряжение при этом должно быть отрицательнее потенциала земли. Что касается отрицательной фазы входного напряжения, то только немногие ОУ могут работать при нулевом потенциале входа.

Рис. 4. Схема включения ОУ с однополярным питанием и входным сигналом, подаваемым относительно земли

Главную сложность при конструировании схем на ОУ с однополярным питанием представляет необходимость учёта того обстоятельства, что входные сигналы, как правило, подаются относительно земли или содержат различную постоянную составляющую. Если не указано иное, все схемы на ОУ в этой главе являются схемами с одним напряжением питания. Следует отметить, что с землёй может быть соединён как положительный, так и отрицательный полюс источника питания.

Использование одного напряжения питания ограничивает полярность выходных напряжений ОУ Например, при напряжении питания 10В выходное напряжение может быть только в диапазоне 0 <= VOUT <= 10В. Это обстоятельство не позволяет получать выходные напряжения отрицательной полярности. Вместе с тем инвертирующий усилитель может работать с отрицательными входными сигналами, когда выходные сигналы имеют положительную полярность.

Следует быть внимательным при работе с отрицательными (положительными) входными напряжениями при питании ОУ от источника положительной (отрицательной) полярности. Дело в том, что входы ОУ, как правило, очень чувствительны к пробою при обратном напряжении смещения. Особое внимание необходимо уделять условиям включения схем: необходимо, чтобы входы ОУ не оказались при этом под воздействием напряжения иной полярности, чем напряжение питания.

Метки:: Однополярное питание, Операционный усилитель

Схемы питания операционных усилителей | HomeElectronics

Всем доброго времени суток! Продолжаем тему операционных усилителей. В последних двух статьях я несколько отвлёкся от основной темы и рассказывал про обратную связь, но как я уже говорил в одной из предыдущих статей, что без обратной связи невозможно вести повествование про операционные усилители.

В данной статье я начну рассказывать о применении операционных усилителей в линейных схемах.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Работа ОУ от двухполярного источника питания

Как указывалось в одной из предыдущих статей, в основе операционного усилителя лежит дифференциальный каскад на транзисторах, для питания которого требуется источник питания с двумя напряжениями – положительным и отрицательным. Причем оба эти напряжения должны быт одинаковы: например, +5 и -5 В, +12 и -12 В. Типовая схема подключения ОУ к источнику питания приведена ниже


Типовая схема питания ОУ.

Типовая схема питания ОУ состоит из следующих элементов: конденсаторов С1, С2, защитный диодов VD1, VD2 и двухполярного источника питания +Uпит, -Uпит. Защитные диоды VD1 и VD2 являются необязательными элементами схемы, но рекомендуются для всех источников питания, где есть возможность случайно перепутать выводы питания.

Конденсаторы С1 и С2 обеспечивают развязку шин питания по переменному току и должны подключаться как можно ближе к выводам микросхемы. Данные конденсаторы должны иметь ёмкость порядка 0,001 – 0,1 мкФ.

Так как современные ОУ имеют достаточно большое усиление на высоких частотах, то довольно часто возникает паразитная обратная связь по цепям питания усилителя. Поэтому довольно часто в дополнение к развязывающим конденсаторам С1 и С2 в цепях питания ОУ часто подключают конденсаторы непосредственно к шинам питания, что улучшает стабильность усилителей.

Работа ОУ от однополярного источника питания

В обычных условиях схема включения ОУ предусматривает двухполярное питание, однако в современной портативной аппаратуре с батарейным питанием это представляется не совсем удобным. Вследствие этого применяют схемы однополярного питания ОУ с введение в схему цепи дополнительного смещения.

В линейном усилителе соотношение между входным UBX и выходным UBbIX напряжением имеет следующую функциональную зависимость, которая представляет собой уравнение прямой и называется передаточной характеристикой

где k – крутизна усилителя

b – смещение выходного напряжения.

Поэтому, в зависимости от коэффициентов k и b, возможно четыре варианта передаточных характеристик линейного усилителя

Для нахождения коэффициентов k и b в уравнении прямой линии необходимо задаться параметрами двух точек на этой прямой, в случае линейного усилителя – параметрами входного и выходного напряжения в двух точках, чаще всего крайних.

В качестве примера найдём коэффициенты k и b в следующем случае: на входе линейного усилителя сигнал от датчика может изменяться в пределах от 0,3 до 0,7 В, а с выхода усилителя на аналого-цифровой преобразователь должен поступать сигнал в диапазоне от 1 до 6 В. Для определения уравнения линейного усилителя мы имеем две точки А1(UBbIX1; UBX1) = (1; 0,3) и А2(6; 0,7), поэтому составим систему уравнений

Решив данную систему, получим следующие значения коэффициентов k = 7 и b = 1,1. В итоге передаточная характеристика линейного усилителя будет иметь следующий вид

Для каждого вида передаточной характеристики существует своя схема реализации цепей смещения, рассмотрим их подробнее.

Схема цепей смещения в усилителях типа U

BbIX = kUBX + b

Схема, реализующая передаточную характеристику вида UBbIX = kUBX + b, представлена на рисунке ниже


Схема усилителя с передаточной характеристикой типа UBbIX = kUBX + b.

Данная схема представляет собой неинвертирующий сумматор и состоит из развязывающих конденсаторов С1 и С2 имеющих ёмкость порядка 0,001 – 0,1 мкФ, резисторов R1, R2, R3 и R4 и самого ОУ DA1 в неинвертирующей схеме. Передаточная характеристика данной схемы описывается следующим выражением

тогда коэффициенты k и b будут определяться следующими выражениями

Расчёт усилителя с характеристикой типа U

BbIX = kUBX + b

Для примера рассчитаем элементы усилителя со следующими параметрами: входное напряжение UBX = 0,1…1 В, выходное напряжение UBЫX = 1…5 В, напряжение питания UПИТ = 6 В, в качестве источника смещения используется напряжение питания UCM = UПИТ = 6 В.

  1. Определим тип передаточной характеристики. Определяем коэффициенты k и b

    Решив данную систему, получим k = 4,44 и b = 0,556, тогда передаточная характеристика будет иметь следующий вид

  2. Рассчитаем номиналы резисторов R1 и R2, решив следующую систему уравнений относительно (R3 + R4) / R3

    Подставив значения коэффициентов k, b и UCM получим следующее уравнение

    Величина резистора R1 обычно выбирается в пределах от 1 до 10 кОм, так как резистор R1 определяет входное сопротивление усилителя и его следует увеличивать, чтобы исключить перегрузку источника сигнала.

    Выберем R1 = 10 кОм, тогда R2 = 47,91 * 10 = 479,1 кОм. Примем R2 = 470 кОм.

  3. Рассчитаем величины сопротивлений R3 и R4

    Величина резистора, также как и R1 выбирается в пределах 1 … 10 кОм, поэтому примем R3 = 10 кОм, R4 = 10 * 3,53 = 35,3 кОм. Примем R4 = 36 кОм.

Схема цепей смещения в усилителях типа U

BbIX = kUBX – b

Схема усилителя передаточная характеристика, которого имеет вид UBbIX = kUBX – b представлена ниже


Схема усилителя с передаточной характеристикой типа UBbIX = kUBX – b

Передаточная характеристика данной схемы представлена следующим выражением

В данном случае коэффициенты k и b будут определяться следующими выражениями

Расчёт усилителя с характеристикой типа U

BbIX = kUBX — b

Для примера рассчитаем усилитель со следующими параметрами: входное напряжение UBX = 0,3…0,7 В, выходное напряжение UBЫX = 1…5 В, напряжение питания UПИТ = 6 В, в качестве источника смещения используется напряжение питания UCM = UПИТ = 6 В.

  1. Рассчитаем коэффициенты передаточной характеристики

    Решив данную систему уравнений, получим k = 10 и b = -2.

    Тогда переходная характеристика данного усилителя будет иметь вид

  2. Рассчитаем сопротивление резисторов R3 и R В данной схеме сопротивление резистора R3 должно быть значительно больше эквивалентного сопротивления параллельных резисторов R1 || R2. Поэтому коэффициент k можно выразить следующим приближённым выражением

    Примем сопротивление резистора R3 = 10 кОм, тогда R4 = 90 кОм.

  3. Рассчитаем сопротивление резисторов и R

    Так как R3 >> R1 || R2 примем R2 = 0,75 кОм, тогда R1 = 26*0,75=19,5 кОм. Примет R1 = 20 кОм.

    Таким образом, передаточная характеристика усилителя будет иметь вид UBbIX = 10UBX — 2 при следующих номиналах элементов: R1 = 20 кОм, R2 = 0,75 кОм, R3 = 10 кОм, R4 = 90 кОм.

Схема цепей смещения в усилителях типа U

BbIX = – kUBX + b

Третий случай питания ОУ от однополярного источника имеет передаточную характеристику вида UBbIX = – kUBX + b. Схемное решение для данного случая представлено ниже


Схема усилителя с передаточной характеристикой вида UBbIX = – kUBX + b.

Данная схема состоит из ОУ DA1, развязывающих конденсаторов C1 и C2, резисторов R1, R2, R3, R4 и представляет собой дифференциальный или разностный усилитель.

С учётом элементов схемы можно передаточная характеристика будет иметь вид

Тогда коэффициенты k и b можно представить следующими выражениями

Расчёт усилителя с характеристикой вида U

BbIX = – kUBX + b

В качестве примера рассчитаем усилитель, который должен иметь следующие параметры: диапазон входного напряжения UBX = -0,1 … -1 В, диапазон выходного напряжения UBЫX = 1 … 5 В, напряжение смещение берётся от напряжения питания UCM = UПИТ = 6 В.

  1. Определим коэффициенты передаточной характеристики k и b, для этого составим и решим систему линейных уравнений

    Решив данную систему, получаем k = — 4,44 и b = 0,556, тогда переходная характеристика данной схемы усилителя будет иметь вид

  2. Определим сопротивление резисторов R1 и R4

    Примем R1 = 10 кОм, тогда R4 = 4,44 * 10 = 44,4 кОм. Примем R4 = 43 кОм

  3. Рассчитаем сопротивление резисторов и R3

    Примем R3 = 1кОм, тогда R2 = 56,19 * 1 = 56,19 кОм. Примем R2 = 56 кОм.

Схема цепей смещения в усилителях типа U

BbIX = – kUBX – b

Последний, четвёртый случай ОУ с однополярным питанием и переходной характеристикой вида UBbIX = – kUBX – b имеет схему представленную на рисунке ниже


Схема усилителя с передаточной характеристикой вида UBbIX = – kUBX — b

Данная схема представляет собой инвертирующий сумматор и состоит из ОУ DA1, развязывающего конденсатора С1, резисторов R1, R2 и R3. С учётом элементов схемы передаточная характеристика будет иметь вид

Тогда коэффициенты k и b можно представить в следующем виде

Расчёт усилителя с переходной характеристикой вида U

BbIX = – kUBX – b

Для примера рассчитаем усилитель реализующий переходную характеристику вида UBbIX = – kUBX — b. В качестве начальных условий примем следующие параметры схемы: диапазон входного напряжения UBX = -0,2 … -0,8 В, диапазон выходного напряжения UBЫX = 1 … 5 В, напряжение смещение берётся от напряжения питания UCM = UПИТ = 6 В.

  1. Рассчитаем коэффициенты k и b, для этого решим систему линейных уравнений

    Решив данную систему, получим k = – 6,67 и b = — 0,334. Тогда переходная характеристика будет иметь вид

  2. Определим величину сопротивления R1 и R3

    Примем R1 = 10 кОм, тогда R3 = 6,67 * 10 = 66,7 кОм. Примем R3 = 68 кОм.

  3. Определим величину сопротивления R2

    Примем R2 = 200 кОм.

Вместо заключения

Разработка схем на ОУ с однополярным питанием несколько сложнее, чем при использовании двухполярного источника питания, однако воспользовавшись расчетами, приведёнными в данной статье, хорошие результаты не заставят себя ждать.

Довольно часто необходимо построить схемы с несколькими входами, дополнительными требованиями по подавлению помех и так далее, но описанные схемы расчёта могут быть использованы и здесь.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Операционные усилители с однополярным питанием

РАЗДЕЛ 3: Усилители для нормирования сигналов

Унекоторых операционных усилителей, например, семейство ОР191/OP291/OP491

иОР279, порог переключения от одной пары транзисторов к другой находится при синфазном напряжении на 1 В ниже положительной шины питания. p-n-p дифференциальный входной каскад приблизительно активен от 200 мВ ниже отрицательной шины питания до 1 В ниже положительной шины. По данному диапазону синфазных сигналов напряжение смещения, входной ток, ОСС, шумы напряжения/тока ОУ определяются, главным образом, характеристиками p-n-p транзисторной пары. Однако, при переключении входное напряжение смещения может резко измениться, из-за того что оно представляет собой среднее значение напряжений смещения p-n-p и n-p-n транзисторных пар. Входные токи усилителя изменят полярность и величину в момент включения n-p-n пары.

Операционные усилители, например, ОР184/OP284/OP484, используют входной каскад с технологией «от питания до питания», в котором обе транзисторные пары n-p-n

иp-n-p активны во всем диапазоне синфазных сигналов, и порога переключения не существует. Входное напряжение смещения усилителя является средним из напряжений смещения p-n-p и n-p-n каскадов.

Усилитель дает плавное изменение входного напряжения смещения по всему диапазону входного синфазного напряжения, что достигается тщательной лазерной подгонкой резисторов входного каскада. Это же происходит и со входным током. Исключение составляют крайние точки (не доходя 1 В до уровней питания), где напряжение смещения и входной ток резко изменяются вследствие открытия паразитных p-n переходов.

Когда обе дифференциальные пары транзисторов активны по всему диапазону входного синфазного напряжения, переходная характеристика усилителя более быстра в области середины диапазона синфазного сигнала (в два раза выше для биполярных транзисторов и в √2 раз в случае JFET транзисторов). Переходная проводимость входного каскада определяет скорость нарастания выходного напряжения и частоту единичного усиления усилителя, следовательно, время отклика слегка уменьшится в крайних точках диапазона синфазного сигнала, когда, либо p-n-p каскад (сигнал приближается к положительной шине питания), либо n-p-n каскад (сигнал идет в сторону отрицательной шины) вводятся в режим отсечки. Пороги, при которых переходная проводимость изменяется, отстоят приблизительно на 1 В от каждой шины питания.

По этой причине для приложений, требующих действительных входов «от питания до питания», следует тщательно оценивать операционный усилитель с тем, чтобы отобранные усилители гарантировали нужные для работы: входное напряжение смещения, входной ток, ОСС и шумы (тока и напряжения).

Выходные каскады ОУ с однополярным питанием

Выходные каскады первых операционных усилителей представляли собой n-p-n эмиттерные повторители с источниками тока или резисторами на «землю», как показано в левой части Рис. 3.21. В действительности, скорости нарастания получались выше для положительных перепадов сигналов, нежели для отрицательных. В то время как современные операционные усилители имеют пуш-пульные выходные каскады различного типа, многие из них обладают асимметричностью и имеют скорость нарастания выходного сигнала в одну сторону выше, чем в другую. Асимметрия вводит искажения в сигналы переменного тока и проистекает из технологического процесса, дающего более быстрые n-p-n транзисторы, чем p-n-p транзисторы. Асимметрия может также привести к тому, что выходной сигнал будет приближаться к одной из шин питания ближе, чем к другой.

©АВТЭКС Санкт-Петербург (812) 567-7202, http://www.autexspb.da.ru, E-mail: [email protected] Автор перевода: Горшков Б.Л.

Рекомендации по включению «Быстрых» операционных усилителей


Заказать этот номер

2007 №11

Китчин Чарльз

По сравнению с усилителями, собранными на дискретных полупроводниковых элементах, операционные и инструментальные усилители (ОУ и ИУ) предоставляют разработчику большие удобства. Опубликовано огромное количество остроумных, полезных и привлекательных схем. Но очень часто схема, смонтированная поспешно, без учета некоторых основных требований, не работает как положено. В этой статье рассмотрено несколько наиболее характерных ошибок в применении этих устройств и предложены практические решения.

Отсутствует цепь для отвода тока смещения при связи по переменному току

Одна из наиболее распространенных ошибок при применении связи по переменному току в схемах с операционными или инструментальными усилителями — это отсутствие цепи постоянного тока для стекания тока смещения. На рис. 1 включение последовательно с неинвертирующим входом (+) ОУ конденсатора для связи по переменному току является простым способом не пропустить постоянную составляющую, имеющуюся во входном напряжении (VIN). Это особенно полезно для схем с большим усилением, где даже небольшое постоянное напряжение на входе может ограничить динамический диапазон или вызвать насыщение выхода. Однако емкостная связь на высокоомном входе приведет к неприятностям, если не обеспечить цепь постоянному току, текущему в неинвертирующий вход или из него.

Рис. 1. Неработоспособная схема на ОУ со связью по переменному току

В такой схеме входные токи смещения будут течь через разделительный конденсатор, заряжая его, пока синфазное напряжение на входе не достигнет максимально допустимого значения или пока выход не достигнет предельного напряжения. В зависимости от направления входного тока смещения конденсатор будет заряжаться или до положительного, или до отрицательного напряжения питания. Напряжение смещения усиливается коэффициентом усиления при замкнутой ОС по постоянному току.

Этот процесс может занять длительное время. Например, усилитель с полевыми транзисторами на входе с током смещения 1 пА с конденсатором развязки 0,1 мкФ будет заряжаться со скоростью I/C 10–12/10–7 = 10 мкВ/с или 600 мкВ в минуту. Если коэффициент усиления равен 100, выходное напряжение будет меняться на 0,06 В в минуту. Таким образом, испытания в лаборатории (с помощью осциллографа с входом по переменному току) могут не выявить эту проблему, и схема будет работоспособна в течение нескольких часов. Разумеется, очень важно не допустить подобной проблемы.

На рис. 2 показано решение этой весьма распространенной задачи. Для обеспечения цепи протекания тока смещения здесь вход ОУ соединен с «землей» с помощью резистора. Для минимизации входных напряжений смещения, вызванных токами смещения, которые отслеживают друг друга в биполярных ОУ, сопротивление резистора R1 выбирают равным сопротивлению параллельно включенных R2 и R3.

Рис. 2. Правильный подход к обеспечению связи по переменному току входа ОУ при работе с двухполярным питанием

Однако отметим, что данный резистор будет всегда привносить в схему некоторый шум, так что должен быть компромисс между входным импедансом схемы, требуемой емкостью входного развязывающего конденсатора, и тепловым шумом, добавляемым резистором. Типичные значения сопротивления резистора лежат в диапазоне от 100 кОм до 1 МОм.

Аналогичная проблема может иметь место и в схеме с инструментальным усилителем. На рис. 3 показана схема с ИУ с двумя разделительными конденсаторами, не обеспечивающая цепь для протекания входного тока смещения. Эта проблема обычна для инструментальных усилителей, работающих как в схеме с двухполярным питанием (рис. 3a), так и в схеме с одним источником питания (рис. 3б).

Рис. 3. Примеры неработоспособных схем со связью по переменному току на ИУ: а) двухполярный источник питания; б) однополярный источник питания

Подобная проблема может возникнуть и при трансформаторной связи, как на рис. 4, если нет цепи для постоянного тока на «землю» на стороне вторичной обмотки трансформатора.

Рис. 4. Неработоспособная схема с трансформаторной связью на ИУ

Простые решения этих проблем показаны на рис. 5 и 6. Здесь между каждым входом и «землей» добавлены высокоомные резисторы RA и RB. Это простое и практичное решение для схем на ИУ с двухполярным питанием.

Рис. 5. Высокоомный резистор между каждым входом и общим проводом необходим для пути возврата тока смещения на «землю»: a) двухполярное питание; б) однополярное питание

Рис. 6. Правильный способ трансформаторной связи со входами ИУ

Эти резисторы обеспечивают путь для стекания входного тока смещения на «землю». В схеме с двухполярным источником питания (рис. 5a) теперь оба входа связаны по постоянному току с «землей». В схеме с однополярным питанием на рис. 5б оба входа соединены или с «землей» (при VCM, подключенной к «земле»), или с напряжением смещения, обычно равным половине максимального размаха входного напряжения.

Точно такой принцип может быть использован для входов с трансформаторной связью (рис. 6), за исключением случая, когда обмотка трансформатора имеет среднюю точку. Средняя точка трансформатора может быть соединена с «землей» или с VCM.

В этих схемах погрешность в виде небольшого напряжения смещения нуля возникает из-за несовпадения номиналов входных резисторов или несовпадения входных токов смещения. Для минимизации таких погрешностей между двумя резисторами можно подключить третий резистор с величиной сопротивления около 1/10 сопротивления этих двух (но больше, чем дифференциальное сопротивление источника), таким образом шунтируя эти резисторы.

Чарльз Китчин, компания Analog Devices.

ОДНОПОЛЯРНОЕ ИЛИ ДВУПОЛЯРНОЕ ПИТАНИЕ?

Хотя симметричное двуполярное питание является оптимальным для операционных усилителей (ОУ), во многих случаях (жесткие требования к потреблению электроэнергии) необходимо или желательно использовать однополярное электропитание. Системы с однополярным электропитанием для обработки аналоговых сигналов имеют общие для таких решений дополнительные свойства, вызванные необходимостью использования компонентов для смещения аналогового сигнала на каждой стадии обработки. Если смещение аналогового сигнала не продумано, а тем более не выполнено, то возникает множество проблем, в том числе — нестабильность работы операционных усилителей.

ПРОБЛЕМЫ, ВОЗНИКАЮЩИЕ ПРИ СМЕЩЕНИИ С ПОМОЩЬЮ РЕЗИСТОРОВ

Применение ОУ с однополярным питанием связано с проблемами, которые обычно не встречаются при использовании двуполярного питания. Главная из них возникает тогда, когда входной сигнал является двуполярным относительно общего уровня («земли»). В системе с однополярным питанием этот уровень совпадает с уровнем отрицательного источника питания в традиционных решениях. Поэтому в этом случае нулевой уровень входного сигнала не может соответствовать «земле» и должен находиться между «землей» и уровнем питающего напряжения.

Основное преимущество систем с двуполярным питанием состоит в том, что их общее соединение («земля») является устойчивым, низкоомным нулевым уровнем для входного сигнала. При этом положительное и отрицательное напряжения питания могут быть несимметричными. При однополярном питании с помощью схем смещения создается уровень нулевого сигнала, обычно лежащий в середине диапазона питающего напряжения.

Чтобы использовать усилитель эффективно, то есть получить с его выхода максимальный сигнал без ограничения, входной сигнал должен быть смещен на середину выходного диапазона, или, что одно и то же, на уровень половины питающего напряжения. Наиболее эффективный способ — использование линейного стабилизатора, как показано на рисунке 6. Однако наиболее популярная схема смещения — резистивный делитель напряжения питания. Хотя этот способ наиболее прост, при его использовании возникает ряд проблем.

Используя рисунок 1, рассмотрим некоторые из них. На этом рисунке изображена классическая схема неинвертирующего усилителя переменного тока. Входной сигнал с помощью емкостной связи подается на вход усилителя. Средний уровень входного сигнала смещен на величину VS/2 с помощью резисторного делителя RA—RB. В полосе пропускания данный усилитель имеет коэффициент усиления КУ = 1 + R2/R1. Паразитное усиление постоянного сигнала сведено к единице с помощью емкостной обратной связи цепочкой R1C1, соединенной с нулевым уровнем («землей»). Поэтому уровень постоянной составляющей равен напряжению смещения. Этим самым мы избегаем возникновения искажений из-за усиления напряжения смещения. Обратная связь обеспечивает коэффициент усиления, равный 1 + R2/R1 для высокочастотных сигналов и равный единице — для постоянной составляющей и низкочастотных сигналов с частотами подавления f = 1/(2πR1C1) и f = 1/[2π(R1 + + R2)C1], а также вносит фазовый сдвиг во входную и выходную цепи.

Эта схема имеет серьезные ограничения применения. Во-первых, невозможно использовать такое важное свойство операционных усилителей, как подавление синфазного сигнала. Поскольку любое изменение питающего напряжения моментально отразится на напряжении смещения, равном VS/2, установлен ным резисторным делителем, любой шум, присутствующий в шине питания, будет усилен наряду с сигналом (за исключением самых низких частот). Так, при КУ = 100 пульсации напряжением 20 мВ от электросети могут быть усилены до напряжения более 1 В (в зависимости от параметров компонентов схемы).

Еще хуже, что при мощной нагрузке усилитель становится нестабильным в работе. Плохие стабилизация и фильтрация в источнике питания приводят к тому, что на шинах питания появляется значительный уровень сигнала. При работе усилителя, включенного по неинвертирующей схеме, этот сигнал поступает на вход усилителя через схему смещения, как было рассмотрено ранее, и усилитель самовозбуждается.

Оптимизация расположения компонентов на печатной плате, установка большого количества блокирующих конденсаторов, правильная разводка заземляющих шин и соединение их в одной точке, соответствующее проектирование шин питания уменьшают наводки и повышают стабильность схемы, но не исключают рассмотренных проблем. Поэтому далее будет предложено несколько решений, помогающих избежать трудностей в использовании усилителей при включении по схеме с однополярным электро питанием.

РАЗВЯЗКА СХЕМЫ СМЕЩЕНИЯ

Чтобы снизить влияние нестабильности напряжения питания, можно зашунтировать схему смещения по переменному току и добавить отдельный резистор для входного сигнала, как показано на рисунке 2. Конденсатор C2 обеспечивает фильтрацию пульсаций шины питания, тем самым восстанавливая способность ОУ ослаблять синфазные сигналы и влияние напряжения питания. Резистор RIN, который заменяет в этой схеме входное сопротивление RA/2 для сигналов переменного тока, обеспечивает передачу постоянного смещения на неинвертирующий вход усилителя.

Сопротивления резисторов RA и RB должно быть минимальными, насколько это позволяют ограничения по энергопотреблению. В данном случае выбрано значение 100 кОм, чтобы уменьшить потребляемый ток в схемах с батарейным питанием. Выбор величины шунтирующего конденсатора также требует внимания. С делителем напряжения RA/RB (100 кОм/100 кОм) и С2 = 0,1 мкФ частота среза по уровню –3 дБ фильтра высоких частот (ФВЧ), образованного параллельно соединенными резисторами RA и RB и конденсатором С2, равна 1/[2π(RA/2)C2] = 32 Гц. Хотя это усовершенствование схемы, приведенной на рисунке 1, позволило подавить синфазные помехи с часто тами выше 32 Гц, более низкочастотные сигналы сохранили обратную связь по шине питания усилителя. Поэтому при реализации такой схемы необходимо использовать конденсаторы большой емкости.

На практике емкость конденсатора C2 требуется увеличить до таких значений, при которых резисторный делитель схемы смещения эффективно шунтировался бы для всех частот в полосе пропускания усилителя. Хорошим правилом для расчета частоты среза ФВЧ, образованного RA, RB и C2, является выбор значения, равного 1/10 от наименьшего из значений частот среза RC-цепочек RIN CIN и R1C1.

Коэффициент усиления по постоянному току остается равным единице. Даже в этом случае должны учитываться входные токи. RIN с последовательно соединенным делителем напряжения RA/RB значительно повышают входное сопротивление на неинвертирующем входе операционного усилителя. Поддержание смещения выходного сигнала на уровне половины напряжения питания при использовании обычных усилителей

с обратной связью по напряжению, которые имеют симметричные сбалансированные входы, достигается правильным выбором величины резистора обратной связи R2.

В зависимости от напряжения питания значения резисторов, которые обеспечивают разумный компромисс между увеличением тока потребления или увеличением зависимости параметров усилителя от изменений входного тока, должны быть порядка 100 кОм для питающего напряжения 12ѕ15 В, снижены до 42 кОм для питания 5 В и до 27 кОм — для 3,3 В.

В высокочастотных усилителях (особенно с обратной связью по току) следует использовать низкоомный делитель и резистор обратной связи, для того чтобы сохранить широкую полосу пропускания при наличии паразитной емкости. Для операционных усилителей, таких как AD811, разработанных для обработки видеосигналов, оптимально подходит значение резистора R2, равное около 1 кОм. Поэтому схемы с такими ОУ требуют использования намного меньших значений резисторов RA и RB в делителе напряжения (и большую емкость шунтирующего конденсатора C2).

Из-за малого входного тока необходимость согласования резисторов на входах современных усилителей с полевыми транзисторами во входных каскадах не так важна, если усилитель не будет работать в широком температурном диапазоне. Иначе такое согласование необходимо.

Схема на рисунке 3 показывает, как реализуется смещение и шунтирование цепи смещения для инвертирующего усилителя.

Смещение с помощью резисторного делителя дешево и обеспечивает пос тоянный средний уровень выходного сигнала, равный половине величины напряжения питания, но подавление синфазного сигнала операционным усилителем зависит от постоянной времени RC-цепочки, образованной делителем RA/RB и конденсатором C2. Необходимо использовать в качестве С2 конденсатор такой емкости, которая обеспечивает по крайней мере в 10 раз большее значение постоянной времени RC-цепи RA/RB – C2, чем у RINCIN и R1C1. Это гарантирует достаточное подавление синфазного сигнала. С резисторами RA и RB, равными 100 кОм, величина конденсатора C2 может оставаться довольно небольшой, если не требуется работа усилителя на очень низких частотах.

СМЕЩЕНИЕ ПРИ ПОМОЩИ СТАБИЛИТРОНА

Более эффективный способ обеспечить необходимое смещение при однополярном питании — это использование стабилитрона, как показано на рисунке 4. В этой схеме резистор RZ обеспечивает необходимый рабочий ток стабилитрона. Конденсатор CN шунтирует вход операционного усилителя от шума стабилитрона.

Стабилитрон должен иметь напряжение стабилизации, близкое к половине напряжения питания. Резистор RZ должен обеспечивать достаточно большой ток, позволяющий стабилитрону работать в устойчивом режиме и, тем самым, обеспечивать минимальную погрешность стабилизации. С другой стороны, важно минимизировать энергопотребление (и тепловые потери). Поскольку входной ток операционного усилителя незначителен, то

наиболее оптимален выбор стабилитрона малой мощности. Стабилитрон мощностью 250 мВт является оптимальным, но и наиболее распространенные 500-мВт стабилитроны также приемлемы. Оптимальный рабочий

ток — около 0,5 мА для 250-мВт и около 5 мА — для 500-мВт стабилитронов.

Схема на рисунке 4 обеспечивает низкоомный опорный уровень и устраняет влияние нестабильности питающего напряжения на вход усилителя. Преимущества существенны, но стоимость и энергопотребление увеличиваются, да и средний уровень напряжения на выходе усилителя будет соответствовать выходному напряжению стабилитрона и может отличаться от VS/2. Если это отличие окажется существенным, то при боль-

ших выходных сигналах будет происходить асимметричное ограничение. Входные токи смещения также должны быть согласованы. Резисторы RIN и R2 должны быть равными, чтобы при прохождении через них входного тока разница падения напряжения на них не приводила к появлению ошибки смещения.

Рисунок 5 показывает схему инвертирующего усилителя со смещением уровня входного сигнала стабилитроном.

В таблице 1 перечислены стабилитроны нескольких типов, которые могут быть выбраны в зависимости от напряжения питания для обеспе чения необходимого смещения. Значение RZ в таблице выбрано исходя из обеспечения стабилитронов током 5 или 0,5 мА для схем, показанных на рисунках 4 и 5. Для уменьшения шума (ошибки стабилизации) может быть выбран и больший ток; его максимальную величину следует выяснить в техническом описании стабилитрона.

СМЕЩЕНИЕ С ПОМОЩЬЮ ЛИНЕЙНОГО СТАБИЛИЗАТОРА

Для операционных усилителей с однополярным питанием 3,3 В требуется смещение напряжения 1,65 В. Однако напряжение стабилизации выпускаемых стабилитронов — не ниже 2,4 В. Хотя существуют источники опорного напряжения AD589 и AD1580 с напряжением 1,225 В, которые могут использоваться подобно стабилитронам, но они не обеспечивают смещение на половину напряжения питания. Самый простой способ

обеспечить смещение входного сигнала на произвольную величину — это использовать линейный стабилизатор напряжения, например ADP667 или ADP3367, как показано на рисунке 6.

Выходное напряжение линейного стабилизатора может быть установлено в пределах от 1,3 В до 16 В, и это обеспечит низкоомное смещение для операционного усилителя с однополярным напряжением питания от 2,6 В до 16,5 В.

СВЯЗЬ ПО ПОСТОЯННОМУ ТОКУ ПРИ ОДНОПОЛЯРНОМ ПИТАНИИ

Пока была обсуждена только связь операционного усилителя по переменному току. Хотя при использовании входных и выходных конденсаторов связи большой емкости усилитель может работать с сигналами с частотами значительно ниже 1 Гц, в некоторых случаях требуется истинная связь по постоянному току. Схемные решения, которые обеспечивают низкоомное постоянное напряжение смещения, типа стабилитронов

и линейных стабилизаторов, обсуждаемых выше, могут использоваться, чтобы создавать напряжение «среднего уровня».

Альтернативно схеме смещения, построенной на резистивном делителе, показанной на рисунках 1 и 3, для создания низкоомной искусственной «земли» может использоваться буферный операционный усилитель, как показано на рисунке 7. Если для питания используется низковольтная батарея, скажем 3,3 В, ОУ должен иметь возможность работать с сигналами, равными размаху напряжения питания — rail-to-rail. Кроме того,

ОУ также должен быть способен обеспечить большой положительный или отрицательный выходной ток. Конденсатор C2 шунтирует делитель напряжения, чтобы уменьшить шумы резисторов. На эту схему не влияет нестабильность электропитания, потому что общий уровень («земля») всегда находится на уровне половины напряжения питания.

ПРОБЛЕМЫ ЗАДЕРЖКИ ВКЛЮЧЕНИЯ

В заключение необходимо рассмотреть еще одну проблему — время включения усилителя. Оно приблизительно будет зависеть от постоянной времени RC-цепочки, используемой в самом низкочастотном фильтре.

В пассивных схемах смещения, рассмотренных здесь, требуется, чтобы постоянная времени RC-цепочки, состоящей из параллельно соединенных резисторов RA и RB и С2, была в 10 раз больше, чем постоянные времени входной и выходной цепей. Длительная постоянная времени помогает удерживать схему смещения во «включающемся» состоянии по отношению к входным и выходным цепям усилителя, обеспечивая постепенное нарастание среднего уровня выходного сигнала от 0 В до половины напряжения питания без скачков до уровня напряжения питания. Главное требование, чтобы частота среза схемы смещения на уровне 3 дБ была меньше в десять раз, чем наименьшая из частот среза R1C1 и RLOAD/COUT. Например, в схеме на рисунке 2 для полосы пропускания начиная с 10 Гц и коэффициента усиления, равного 10, емкость конденсатора C2 должна быть равна 3 мкФ, что обеспечит частоту среза по уровню 3 дБ, равную 1 Гц.

С резисторами RA и RB = 100 кОм сопротивление в RC-цепочке (параллельное соединение) будет равно 50 кОм, и при C2 = 3 мкФ постоянная времени будет равна 0,15 с. Таким образом, средний уровень выходного сигнала усилителя достигнет величины половины напряжения питания приблизительно за 0,2ѕ0,3 с. Между тем, входные и выходные RC-цепи установятся в десять раз быстрее.

В устройствах, где время включения может оказаться чрезмерно длительным, предпочтительнее использовать схемы смещения на стабилитронах или линейных стабилизаторах.

Подача опорного напряжения на ОУ, ИУ и АЦП

На рис. 7 приведена схема с однополярным питанием, в которой напряжение на несимметричный вход аналого-цифрового преобразователя (АЦП) подается с инструментального усилителя. Опорное напряжение усилителя обеспечивает напряжение смещения, соответствующее нулевому дифференциальному входному напряжению, а опорное напряжение АЦП обеспечивает коэффициент масштабирования. Для снижения внеполосного шума между выходом ИУ и входом АЦП часто применяется простой сглаживающий RC-фильтр нижних частот. Разработчики часто соблазняются простыми решениями — например, для подачи опорного напряжения на ИУ и АЦП применяют резистивные делители вместо низкоомного источника. Для некоторых ИУ это может послужить причиной появления погрешности.

Рис. 7. Типичная схема подачи сигнала с ИУ на АЦП с однополярным питанием

Универсальные фильтры на ОУ

Для построения ФНЧ, ФВЧ, ПФ требуются различные схемы, однако существуют структуры на ОУ, позволяющие на одной схеме получать все 3 характеристики. При построении таких фильтров используют как интеграторы, так и дифференциаторы на ОУ.

Структура универсального фильтра 2-го порядка на 3-х ОУ

R1 = R2 = R

C1 = C2 = C

fф = 1/(2pRC)

R3 = R5

|K| = Roc/R4 < 3

В основе структуры фильтра лежат 2 интегратора на ДА2 и ДА3, которые обеспечивают частотную характеристику схемы и порядок фильтра. Для построения универсального фильтра используются многопетлевые ОС через R3, R5 и Roc, которые обеспечивают суммирование внешних и внутренних сигналов на ОУ ДА1. Обычно используют одинаковые элементы, тогда fср = 1/2pRC.

Внешними элементами являются конденсаторы С1 и С2. На выходе схемы ДА3 имеет место дважды проинтегрированный сигнал, т. е. выход фильтра ФНЧ. После ДА1 имеет место выход фильтра ФВЧ, т. к. на выход ДА1 имеет место сигнал, у которого из полного входного сигнала вычтены нижние частоты, следовательно, остаются только ВЧ. НА выходе ДА2 ослабляется ВЧ, следовательно, если R1C1 < R2C2 на выходе ДА2 остается полосовой сигнал или ПФ. Таким образом, в зависимости от использования выхода, эта схема выполняет функции ФНЧ, ФВЧ и ПФ, что позволяет на ее основе создавать различные фильтры.

По похожей структуре может быть построен универсальный фильтр и на дифференциаторах. Однако фильтр на интеграторах более устойчив.

Общее свойство фильтров на ОУ:

Потенциально устойчивые фильтры требуют использования полного числа ОУ. Фильтры с минимальным числом ОУ потенциально неустойчивы и при неблагоприятном сочетании параметров могут возбуждаться.

Корректная подача опорного напряжения в ИУ

Часто полагают, что вход для подачи опорного напряжения высокоомный (поскольку это вход). Так, разработчики могут соблазниться подключить высокоомный источник, например резистивный делитель, к выводу ИУ для опорного напряжения. С некоторыми типами инструментальных усилителей это может привести к значительным погрешностям (рис. 8).

Рис. 8. Неправильное использование простого делителя напряжения для непосредственной подачи опорного напряжения в инструментальный усилитель из трех ОУ

Например, в конструкции популярного ИУ применено три ОУ, соединенных, как показано выше. Общий коэффициент усиления равен:

где R2/R1 = R4/R3.

Коэффициент передачи для входа опорного напряжения равен единице (при подаче напряжения от источника с низким импедансом). Однако в рассматриваемом случае вывод опорного напряжения ИУ подключен к простому делителю напряжения на резисторах. Это приводит к разбалансу схемы вычитания и нарушает коэффициент деления делителя напряжения. В свою очередь, это снижает коэффициент подавления синфазного сигнала в ИУ и точность его коэффициента усиления. Однако если бы внутренний резистор R4 был нам доступен, то при снижении его сопротивления на величину, равную параллельному соединению двух резисторов делителя напряжения (здесь 50 кОм), схема вела бы себя так, будто к изначальному сопротивлению резистора R4 подключен низкоомный источник, равный (в данном примере) половине напряжения питания, и точность схемы вычитания была бы сохранена.

Этот подход невозможен, если ИУ — интегральная схема в закрытом корпусе. Еще одна проблема заключается в том, что температурные коэффициенты сопротивления (ТКС) внешних резисторов делителя отличаются от ТКС резистора R4 и других резисторов схемы вычитания. И, наконец, такой подход не позволяет регулировать значение опорного напряжения. Если, с другой стороны, попытаться использовать в делителе напряжения низкоомные резисторы, чтобы влияние их добавленного сопротивления было бы пренебрежимо малым, то ток потребления от источника питания и рассеиваемая мощность схемы увеличатся. В любом случае, такой метод «грубой силы» не приносит успеха.

На рис. 9 показано лучшее решение — применение буфера на ОУ с малым потреблением энергии между делителем напряжения и входом опорного напряжения ИУ. Это ликвидирует необходимость подбора сопротивления и проблему резисторов с разными ТКС, а также дает возможность легко регулировать опорное напряжение.

Рис. 9. Подача опорного напряжения на ИУ с низкоимпедансного выхода ОУ

Фильтры 2-го порядка на ОУ

В основе построения фильтра 2-го порядка широко используются свойства ОУ, которые позволяют рассматривать его как:

q ИНУН – источник напряжения управляемый напряжением. В простейшем случае – не инвертирующий усилитель, у которого

Rвх Þ ¥

Rвых Þ 0

Uвых = kUвх

q ИТУН – источник тока, управляемый напряжением. Это источник тока на ОУ.

q ИНУТ – источник напряжения, управляемый током. Это инвертирующий усилитель.

q ИТУТ – источник тока, управляемый током. Это источник тока на ОУ в не инвертирующем включении.

Наиболее простая – ИНУН.

Фильтры на этих усилителях называют фильтрами Саллена и КИ или фильтры на основе ИНУН.

ФНЧ

ФВЧ

Используется не инвертирующее включение ОУ, в результате ОУ не нагружает фильтр. Включение С1 и R1 (для ФВЧ) в ОС обеспечивает необходимую крутизну передаточной функции фильтров. Т. к. это связь положительная, то необходимо, чтобы кb < 1 (для ПОС), в противном случае такая схема возбуждается и становится просто генератором. Поэтому существуют ограничения на выбор R3 и R4, т. к.

Ku = 1 + R3/R4, то

R3/R4 = 2 — a, где a — коэффициент затухания фильтра и определяет тип фильтра.

Фильтры 2-го порядка в зависимости от вида передаточной функции делятся на следующие типы:

I. Фильтры Баттерворта

v a = 1,414

v наклон характеристики = 40 дб/дек

v в пределах полосы пропускания характеристика гладкая

v фазовая характеристика нелинейная


Т. к. имеет место в схеме ПОС, то крутизна переходной характеристики может быть как больше, так и меньше 40 дб/дек.

II. Фильтр Чебышева

v a = 1,578¸0,766

Фильтр Чебышева имеет колебания в пределах полосы пропускания, но более крутую характеристику в переходной полосе. Чем круче переходная полоса, тем больше выбросы. Имеет более нелинейную ФЧХ, чем фильтр Баттерворта. Нелинейность ФЧХ для этих фильтров приводит к тому, что при прохождении импульсных сигналов появляются выбросы на них.

III. Фильтр Бесселя

v a = 1,732

Гладкая спадающая характеристика в пределах полосы пропускания и плавная в пределах переходной области, но скорость спада < 40 дб.

«+» линейная ФЧХ, т. е. Dj = 1/кw (кw)

Это эквивалентно тому, что все сигналы задерживаются линейно в полосе пропускания. Эти фильтры не искажают импульсные сигналы.

Фильтры используются для выравнивания и компенсации задержек, возникающих в линиях связи.

Также используются эллиптические фильтры, которые имеют неравномерную характеристику, как в полосе пропускания, так и в полосе заграждения, и более крутую характеристику в переходной области, чем фильтр Чебышева.

Развязывание напряжения питания схем на ОУ с однополярным питанием

Чтобы работать с положительными и отрицательными полуволнами переменного сигнала, схемам на ОУ с однополярным питанием требуется синфазное смещение входа. При использовании для реализации такого смещения шины питания, для сохранения значения КОНИП требуется соответствующее развязывание.

Обычной и неправильной практикой для смещения неинвертирующего входа на уровень VS/2 является применение резистивного делителя 100/100 кОм с развязывающим конденсатором емкостью 0,1 мкФ. При таких номиналах элементов развязывание напряжения источника питания недостаточно, так как частота полюса составляет всего 32 Гц. Часто возникает нестабильность схемы (низкочастотная генерация типа «шум мотора»), особенно при работе на индуктивную нагрузку.

На рис. 12 (неинвертирующая схема) и рис. 13 (инвертирующая схема) показаны улучшенные схемы для получения развязанного напряжения смещения VS/2. В обеих схемах смещение подведено к неинвертирующему входу, обратная связь приводит инвертирующий вход к той же величине смещения, и единичный коэффициент усиления на постоянном токе смещает оба входа на одинаковое напряжение. Развязывающий конденсатор C1 понижает коэффициент усиления ниже частоты BW3 до единицы.

Рис. 12. Неинвертирующий усилитель с однополярным питанием с правильным развязыванием источника питания. Коэффициент усиления на средних частотах равен 1+R2/R1

Рис. 13. Инвертирующий усилитель с однополярным питанием с правильным развязыванием источника питания. Коэффициент усиления на средних частотах равен – R2/R1

При использовании делителя 100/100 кОм хорошим эмпирическим правилом является применение конденсатора C2 с емкостью не менее 10 мкФ для получения спада на –3 дБ на частоте 0,3 Гц. Значение емкости 100 мкФ (полюс на частоте 0,03 Гц) достаточно практически для всех схем.

Однополярное питание операционных усилителей

Если за точку отсчета будет принят положительный полюс батарейки а измеряющий щуп был подключен к минусу то любой вольтметр нам покажет В. Теория это хорошо, но без практического применения это просто слова. Схемы включения операционных усилителей, описанные выше, не являются исчерпывающими, а лишь только призваны дать основные понятия. При превышении напряжения на входе величины основного опорного напряжения, на выходе получается наибольшее напряжение, которое равно положительному питающему напряжению.

Поэтому интегратор может действовать в качестве активного фильтра низких частот.


И в результате мы получаем К сожалению инвертирующий усилитель обладает одним явным недостатком — низким входным сопротивлением, которое равняется резистору R1.


Как следует из схемы на рис.


Скорее она связана с неприятностями, так как в схеме с отрицательной ОС на высокой частоте могут возникать достаточно большие сдвиги по фазе, приводящие к возникновению положительной ОС и нежелательным автоколебаниям. Усилитель с единичным коэффициентом усиления называют иногда буфером, так как он обладает изолирующими свойствами большим входным импедансом и малым выходным.


Более подробно смещение ОУ при однополярном питании рассматривается в [1]. Сигнала поступает на усилитель с бесконечным входным сопротивлением, а напряжение на неинвертирующем входе имеет такое же значение, как и на инвертирующем входе.


Здесь было бы уместно вспомнить транзистор включенный по схеме с ОЭ. В современной измерительной аппаратуре в качестве линейных усилителей используются операционные усилители. Электроника от простого к сложному. Урок 8. Первые схемы на оу. (PCBWay)

Мостовые усилители для приложений с однополярным источником питания

Добавлено 19 декабря 2019 в 19:40

Сохранить или поделиться

В данной статье описывается схема мостового усилителя и объясняется, почему она особенно удобна, когда у вас нет источника отрицательного напряжения.

Вспомогательная информация

Почему однополярный источник питания?

Существует несколько различных терминов, используемых для обозначения системы, в которой разработчик имеет доступ к шинам положительного и отрицательного напряжения: двуполярное, симметричное, с двойным источником питания, с раздельными источниками питания. Как бы вы ни хотели их назвать, они мне нравятся; аналоговые схемы являются более простыми и (на мой взгляд) более математически связными, когда уровень сигнала может опускаться фактически ниже уровня земли.

Однако неизбежный факт заключается в том, что система с двойным источником питания обычно является персоной нон-грата в мире современной электроники. Причина этого достаточно проста: для создания источника отрицательного напряжения требуются дополнительные схемы, что означает больше времени проектирования, более высокую стоимость и большие размеры печатной платы; таким образом, если системные требования могут быть каким-то образом выполнены без обращения к отрицательной шине питания, тем лучше. Альтернативой дополнительной схеме является вторая батарея; помимо того, что этот подход применим только к оборудованию с питанием от батарей, он всё же увеличивает стоимость и громоздкость, которые могут быть устранены с помощью продуманной схемы с однополярным источником питания.

Примечание. Не существует закона, утверждающего, что система с двойным источником питания должна иметь положительное и отрицательное напряжения питания, которые равны по величине (то есть симметричны). Однако симметричные источники питания являются нормой для схем усилителей, и обсуждение систем с двойными источниками питания или с раздельными источниками питания может включать предположение, что напряжения питания являются симметричными.

Мостовой усилитель

Одной вещью, которая может быть трудной в среде с однополярным источником питания, является формирование выходных сигналов переменного тока высокой мощности. Давайте посмотрим на схему, которая может помочь с этой задачей:

Рисунок 1 – Мостовой усилитель

Как видите, входной сигнал подается на две схемы на операционных усилителях, одна неинвертирующая, другая инвертирующая; резисторы выбираются таким образом, чтобы оба усилителя имели одинаковую величину коэффициента усиления. Нагрузка подключена между выходами двух усилителей; обратите внимание, что нагрузка «плавающая», то есть она не имеет прямого соединения с узлом земли. Как вы, наверное, уже поняли, мостовой усилитель приводит к увеличению напряжения на нагрузке в два раза:

Рисунок 2 – Мостовой усилитель приводит к увеличению напряжения на нагрузке в два раза

Показанный здесь стандартный мостовой усилитель не является схемой с однополярным источником питания. Оба операционных усилителя имеют входной вывод, который привязан к земле; таким образом, входной синусоидальный сигнал с привязкой к земле потребовал бы от обоих операционных усилителей формирование отрицательных выходных напряжений, и это, конечно, совершенно невозможно, когда вывод отрицательного питания операционного усилителя подключен к земле.

Версия с однополярным источником питания

Следующая схема адаптирует схему мостового усилителя к использованию однополярного источника питания:

Рисунок 3 – Мостовой усилитель с однополярным питанием

Важная особенность схемы на операционном усилителе с однополярным источником питания – это напряжение смещения, которое задает опорный уровень, равный половине напряжения питания (так же, как потенциал земли служит в качестве опорного уровня среднего напряжения питания в системах с двойным источником питания). Напряжение смещения не обязательно должно быть равно половине напряжения питания, но оно обычно выбирается таким при работе с синусоидальными сигналами, поскольку смещение, равное половине напряжения питания гарантирует, что выходной сигнал имеет одинаковые возможности раскачиваться и в «положительную», и в «отрицательную» стороны («положительная» значит выше напряжения смещения, а «отрицательная» значит ниже напряжения смещения).

Существуют различные способы смещения в схемах на операционном усилителе с однополярным источником питания. На мой взгляд, самый простой подход показан на схеме, приведенной выше: вы конфигурируете схему как инвертирующий усилитель и прикладываете Vсмещ к положительному входу. Вот почему мостовой усилитель с однополярным источником питания использует два инвертирующих усилителя, тогда как стандартный мостовой усилитель использует неинвертирующий усилитель и инвертирующий усилитель.

Смещение неинвертирующего усилителя неудобно – независимо от того, применяете ли вы смещение к положительному или отрицательному входу, взаимосвязь между напряжением смещения и выходным напряжением является более сложной по сравнению с инвертирующей схемой. Кроме того, если для формирования напряжения смещения вы используете резистивный делитель, резисторы в неинвертирующем усилителе взаимодействуют с резисторами в делителе и тем самым делают вашу жизнь еще более сложной, чем она уже есть. Инвертирующая схема позволяет подключать напряжение смещения непосредственно к высокоимпедансному входному выводу операционного усилителя, и, таким образом, вы можете использовать резистивный делитель без опасений:

Рисунок 4 – Организация смещения в мостовой схеме с однополярным питанием

Наконец, вы, вероятно, заметили, что на вход одного из операционных усилителей подается не сам входной сигнал, а выходной сигнал другого операционного усилителя. 2 \times \frac{1}{R}\]

Таким образом, мощность пропорциональна квадрату пикового напряжения. Мостовая схема удваивает напряжение на нагрузке; следовательно, она обеспечивает увеличение мощности, передаваемой нагрузке, в четыре раза. Возможно, вы задаетесь вопросом – почему мы не можем просто использовать один операционный усилитель и увеличить коэффициент усиления, чтобы получить большее напряжение? Зачем беспокоиться о мостовой схеме? Это хорошие вопросы, и ответ на них следующий: мостовой усилитель обеспечивает Pнагр, превышающую в четыре раза максимальную мощность, которую вы можете достичь при заданном напряжении питания. Другими словами, мостовой усилитель особенно полезен, когда вы пытаетесь получить как можно больше мощности от вашей шины питания.

В этот век низковольтных систем вы можете обнаружить, что напряжение питания является ограничивающим фактором того, какую мощность вы можете подавать на нагрузку. Предположим, что сопротивление нагрузки является фиксированным, поэтому вы не можете увеличить мощность, уменьшив Rнагр, и давайте также предположим, что у вас имеется достаточный уровень тока, доступный от вашего источника питания. В этом случае ваш источник питания 3,3 В сдерживает вас – вы могли бы легко подать больше мощности, если бы у вас было немного большее напряжение питания. Ну, вот тут-то и появляется мостовой усилитель: та же шина напряжения, но в четыре раза большая мощность.

Не требуется конденсатор связи

Моя любимая особенность мостового усилителя заключается в том, что он позволяет устранить постоянное напряжение смещения без устранения постоянного напряжения смещения… или что-то типа того. Допустим, у вас есть динамик, который вам необходимо подключить к вашей схеме с однополярным источником питания. Все аудиосигналы имеют смещение по постоянному напряжению, которое удерживает отрицательные участки синусоиды выше уровня земли. Но сигнал, который мы посылаем на динамик, должен быть чистым переменным напряжением; постоянное напряжение смещения в аудиосигнале уменьшает динамический диапазон и способствует искажению. Эта проблема часто решается с помощью конденсатора, блокирующего постоянный ток (также называемого разделительного конденсатора), но у этого подхода есть недостатки: во-первых, конденсатор может быть достаточно большим (часто сотни микрофарад), чтобы избежать ослабления низкочастотных составляющих сигнала; во-вторых, вам нужно беспокоиться о переходных эффектах, связанных с зарядом или разрядом разделительного конденсатора, таких как артефакты типа «щелчков» и «хлопков», которые мешают воспроизведению звука.

К счастью, если у вас есть мостовой усилитель, то отпадает необходимость в разделительном конденсаторе. Дополнительная особенность инвертированных и неинвертированных сигналов такова, что постоянное напряжение смещения одного сигнала может компенсировать постоянное напряжение смещения другого:

Рисунок 5 – Компенсация напряжения смещения

Заключение

Мы рассмотрели стандартный мостовой усилитель, а также вариант, совместимый с однополярным источником питания, и обсудили два основных преимущества, предлагаемых мостовой схемой. Как один из моих профессоров однажды сказал в связи с какой-то математической концепцией, которую я не могу вспомнить, сложите ее и держите в кармане; мостовой усилитель может оказаться весьма полезным, когда вам будет необходимо подавать значительный уровень мощности сигнала переменного напряжения от низковольтной системы или системы с однополярным источником питания.

Оригинал статьи:

Теги

Аудиосистема с однополярным источником питанияАудиоусилительМостовой усилительНапряжение смещенияНапряжение смещения операционного усилителяОперационный усилитель с однополярным источником питанияОУ (операционный усилитель)Системы с однополярным источником питанияУсилитель

Сохранить или поделиться

Как избежать проблем с нестабильностью операционных усилителей в приложениях с однополярным питанием

Одиночное или двойное питание?

Несмотря на то, что выгодно реализовать схемы операционного усилителя со сбалансированным двойным источником питания, существует множество практических приложений, в которых из соображений экономии энергии или по другим причинам работа с однополярным питанием необходима или желательна. Например, в автомобильном и морском оборудовании аккумулятор обеспечивает только одну полярность. Даже оборудование с питанием от сети, такое как компьютеры, может иметь только однополярный встроенный источник питания, обеспечивающий для системы +5 В или +12 В постоянного тока.При обработке аналоговых сигналов общей чертой работы с однополярным питанием является необходимость в дополнительных компонентах на каждом этапе для соответствующего смещения сигнала. Если это не будет тщательно продумано и выполнено, могут возникнуть нестабильность и другие проблемы.

Распространенные проблемы с подмагничиванием резистора

Приложениям с ОУ с однополярным питанием присущи проблемы, которые обычно не встречаются в схемах с двойным питанием. Фундаментальная проблема состоит в том, если сигнал качаться как положительным, так и отрицательным по отношению к «общий», это опорное напряжение нулевой сигнал должен быть на фиксированном уровне между поставку рельсов.Основное преимущество двух источников питания является то, что их общее соединение обеспечивает стабильную, с низким сопротивлением нулевой ссылки. Два напряжения питания обычно равны и противоположны (и часто отслеживаются), но это не абсолютная необходимость. При одном источнике питания такой узел должен быть создан искусственно, путем введения дополнительных схем, обеспечивающих некоторую форму смещения, чтобы поддерживать общий сигнал при соответствующем среднем напряжении питания.

Поскольку обычно желательно, чтобы большие выходные значения ограничивались симметрично, смещение обычно устанавливается в средней точке номинального выходного диапазона усилителя или (для удобства) на половине напряжения питания.Самый эффективный способ добиться этого — использовать регулятор, как показано на рисунке 6; однако популярный метод заключается в снятии напряжения питания с помощью пары резисторов. Несмотря на кажущуюся простоту, с этим есть проблемы.

Для иллюстрации проблемы схема на рис. 1, имеющая несколько конструктивных недостатков, представляет собой неинвертирующий усилитель со связью по переменному току. Сигнал имеет емкостную связь на входе и выходе. Средний уровень входного сигнала со связью по переменному току смещен до V s /2 парой делителей R A -R B , а внутриполосное усиление составляет G = 1 + R2 / R1.«Усиление шума» постоянного тока уменьшается до единицы за счет емкостной связи обратной связи с нулем, установленным R1 и C1, так что уровень постоянного тока на выходе равен напряжению смещения. Это позволяет избежать искажений из-за чрезмерного усиления входного напряжения смещения усилителя. Коэффициент усиления усилителя с обратной связью снижается от (1 + R2 / R1) на высокой частоте до единицы при постоянном токе, с частотами излома при f = 1 / [2π R1 C1] и f = 1 / [2π (R1 + R2) C1. ], вводя фазовые сдвиги, которые добавляют к сдвигам, связанным со схемами связи входов и выходов.

Рис. 1. Потенциально нестабильная схема операционного усилителя с однополярным питанием.

Эта простая схема имеет дополнительные потенциально серьезные ограничения. Во-первых, неотъемлемая способность операционного усилителя подавлять колебания напряжения питания бесполезна, поскольку любое изменение напряжения питания напрямую изменяет напряжение смещения V s /2, устанавливаемое резистивным делителем. Хотя это не представляет проблемы при постоянном токе, любой синфазный шум, появляющийся на клеммах источника питания, будет усилен вместе с входным сигналом (за исключением самых низких частот).При усилении 100 20 милливольт пульсации 60 Гц и гул на выходе будут усилены до уровня 1 вольт.

Еще хуже, нестабильность может возникнуть в схемах, где операционный усилитель должен обеспечивать большие выходные токи в нагрузке. Если источник питания не отрегулирован (и не шунтирован), на линии питания будут появляться значительные сигнальные напряжения. Поскольку неинвертирующий вход операционного усилителя напрямую связан с питающей линией, эти сигналы будут подаваться непосредственно обратно в операционный усилитель, часто в фазовом соотношении, которое будет вызывать «мотор-лодку» или другие формы колебаний.

Хотя использование чрезвычайно тщательной компоновки, обхода многоконденсаторного источника питания, заземления звездой и печатной платы «силовой плоскости» — все это помогает снизить шум и поддерживать стабильность схемы, лучше внести изменения в конструкцию схемы, которые улучшат отказ источника питания. Здесь предлагается несколько.

Отсоединение сети смещения от источника питания

Один из шагов к решению — обойти делитель напряжения смещения и предоставить отдельный входной возвратный резистор, модифицируя схему, как показано на рисунке 2.Точка ответвления на делителе напряжения теперь блокируется для сигналов переменного тока конденсатором C2, чтобы восстановить подавление подачи переменного тока. Резистор Rin, который заменяет Ra / 2 в качестве входного сопротивления схемы для сигналов переменного тока, также обеспечивает обратный путь постоянного тока для входа +.

Рис. 2. Изолированная схема смещения операционного усилителя с однополярным питанием.

Разумеется, значения R A и R B должны быть как можно более низкими; Выбранные здесь значения 100 кОм предназначены для экономии тока питания, как это может быть сделано в приложениях с батарейным питанием.Также следует тщательно выбирать номинал байпасного конденсатора. С делителем напряжения 100 кОм / 100 кОм для R A и R B и значением емкости 0,1 мкФ или аналогичным значением для C2 полоса пропускания -3 дБ для полного сопротивления этой сети устанавливается параллельной комбинацией R A , R B и C2, равно 1 / [2π (R A /2) C2] = 32 Гц. Хотя это улучшение по сравнению с рис. 1, подавление синфазного сигнала падает ниже 32 Гц, обеспечивая значительную обратную связь через источник питания на низких частотах сигнала.Для этого требуется конденсатор большего размера, чтобы избежать «катания на лодке» и других проявлений нестабильности.

Практический подход заключается в увеличении емкости конденсатора C2. так что он достаточно велик, чтобы эффективно обходить делитель напряжения на всех частотах в полосе пропускания схемы. Хорошее практическое правило — установить этот полюс на одну десятую ширины входной полосы по уровню –3 дБ, установленной в R IN / C IN и R 1 / C 1 .

Коэффициент усиления усилителя на постоянном токе по-прежнему равен единице.Даже в этом случае необходимо учитывать входные токи смещения операционного усилителя. R IN , последовательно с делителем напряжения R A / R B , добавляет значительное сопротивление последовательно с положительной входной клеммой операционного усилителя. Поддержание выхода операционного усилителя близко к среднему источнику питания с использованием обычных операционных усилителей с обратной связью по напряжению, которые имеют симметричные симметричные входы, может быть достигнуто путем балансировки этого сопротивления путем выбора R2.

В зависимости от напряжения питания типичные значения, обеспечивающие разумный компромисс между повышенным током питания и повышенной чувствительностью к току смещения усилителя, варьируются от 100 кОм для одиночных источников питания + 15 В или + 12 В до 42 кОм для питание 5 В и 27 кОм для 3.3 В.

Усилители

, предназначенные для высокочастотных приложений (особенно типов с обратной связью по току), должны использовать низкое входное сопротивление и сопротивление обратной связи для сохранения полосы пропускания при наличии паразитной емкости. Операционный усилитель, такой как AD811, который был разработан для приложений скорости видео, обычно будет иметь оптимальную производительность при использовании резистора 1 кОм для R2. Следовательно, в этих типах приложений необходимо использовать резисторы гораздо меньшего номинала в делителе напряжения R A / R B (и более высокие байпасные емкости), чтобы минимизировать входной ток смещения и избежать низкочастотной нестабильности.

Из-за их низкого тока смещения потребность в балансировочных входных резисторах не так велика в приложениях с современными операционными усилителями на полевых транзисторах, если только схема не должна работать в очень широком диапазоне температур. В этом случае балансировка сопротивления на входных клеммах операционного усилителя по-прежнему является разумной мерой предосторожности.

На рисунке 3 показано, как смещение и шунтирование могут применяться в случае инвертирующего усилителя.

Рисунок 3. Схема инвертирующего усилителя с развязкой и однополярным питанием.

Метод смещения резистивного делителя недорогой и поддерживает выходное напряжение постоянного тока операционного усилителя на уровне V S /2, но подавление синфазного сигнала операционного усилителя по-прежнему зависит от постоянной времени RC, формируемой R A || R B и конденсатор C2. Использование значения C2, которое обеспечивает как минимум 10-кратную постоянную времени RC входной цепи RC-связи (R1 / C1 и R в / C в ), поможет обеспечить разумный коэффициент подавления синфазного сигнала. С резисторами 100 кОм для R A и R B практические значения C2 могут быть довольно небольшими, если полоса пропускания схемы не слишком мала.

Смещение стабилитрона

Более эффективным способом обеспечения необходимого смещения V S /2 для работы с однополярным питанием является использование стабилитрона, такого как показанный на рисунке 4. Здесь ток подается на стабилитрон через резистор R. Конденсатор. C N помогает уменьшить генерируемый стабилитроном шум на входе операционного усилителя.

Рис. 4. Неинвертирующий усилитель с однополярным питанием и смещением на стабилитроне.

Следует выбрать стабилитрон с рабочим напряжением, близким к В S /2.Резистор R Z должен быть выбран так, чтобы обеспечить достаточно высокий ток для работы стабилитрона при его стабильном номинальном напряжении и поддерживать низкий уровень шума на выходе стабилитрона. Тем не менее, также важно минимизировать энергопотребление (и нагрев) и избежать повреждения стабилитрона. Поскольку вход операционного усилителя потребляет небольшой ток от эталона, рекомендуется выбрать маломощный диод. Лучше всего устройство с номинальной мощностью 250 мВт, но приемлемы и более распространенные типы мощностью 500 мВт. Идеальный ток стабилитрона варьируется от каждого производителя, но практические уровни I z от 500 мкА (устройство на 250 мВт) до 5 мА (устройство на 500 мВт) обычно являются хорошим компромиссом для этого приложения.

в рабочих пределах стабилитрона, схема на фиг.4 в основном обеспечивает низкий опорный уровень импеданс, который восстанавливает отказ источника питания операционного усилителя. Преимущества существенны, но есть цена: потребляется больше энергии, а выход постоянного тока операционного усилителя фиксируется напряжением стабилитрона, а не на уровне V S /2. Если напряжение источника питания существенно упадет, на больших сигналах может произойти асимметричное ограничение. Также необходимо учитывать входные токи смещения.Резисторы R , IN и R2 должны быть близки к одному и тому же значению, чтобы входные токи смещения не создавали существенную ошибку напряжения смещения.

На рисунке 5 показана схема инвертирующего усилителя, использующая тот же метод смещения стабилитрона.

Рис. 5. Инвертирующий усилитель с однополярным питанием, использующий смещение стабилитрона.

В таблице 1 показаны некоторые распространенные типы стабилитронов, которые можно выбрать для обеспечения половинного смещения питания для различных уровней напряжения питания. Для удобства предусмотрены практические значения R Z , обеспечивающие 5 мА и 0.Токи устройства 5 мА в цепях 4 и 5. Для снижения шума в цепи оптимальный ток стабилитрона можно выбрать, обратившись к паспорту производителя.

Таблица 1. Предлагаемые номера деталей стабилитронов (типы Motorola) и значения Rz для использования на рисунках 4 и 5.

Напряжение питания
Ссылка
Напряжение
Диод
Тип
Стабилитрон
Ток
Rz
Значение Ом
+ 15В
7.
1N4100
0,5 мА
15к
+ 15В
7,5 В
1N4693
5 мА
1,5к
+ 12В
6,2 В
1N4627
0,5 мА
11.5к
+ 12В
6,2 В
1N4691
5 мА
1,15к
+ 9В
4,3 В
1N4623
0,5 мА
9.31k
+ 9В
4,3 В
1N4687
5 мА
931
+ 5В
2.
1N4617
0,5 мА
5.23k
+ 5В
2,7 В
1N4682
5 мА
464

Смещение операционного усилителя с использованием линейного регулятора напряжения

Для схем операционных усилителей, работающих от стандарта + 3,3 В, необходимо напряжение смещения + 1,65 В.Стабилитроны обычно доступны только с напряжением до +2,4 В, хотя шунтирующие регуляторы шириной запрещенной зоны AD589 и AD1580 на 1,225 В могут использоваться как стабилитроны для обеспечения фиксированного, но не центрированного напряжения при низком импедансе. Самый простой способ обеспечить произвольные значения напряжения смещения при низком импедансе (например, V S /2) — использовать линейный стабилизатор напряжения, такой как ADM663A или ADM666A, как показано на рисунке 6. Его выход можно регулировать. от 1,3 до 16 В и обеспечит низкоомное смещение для однополярных напряжений от 2 В до 16.5 В.

Рис. 6. Схема смещения с однополярным питанием операционного усилителя с использованием линейного регулятора напряжения.

Цепи одинарного питания со связью по постоянному току

До сих пор обсуждались только схемы операционных усилителей со связью по переменному току. Хотя при использовании подходящих больших входных и выходных разделительных конденсаторов схема со связью по переменному току может работать на частотах значительно ниже 1 Гц, для некоторых приложений требуется настоящая связь по входу и выходу по постоянному току. Цепи, которые обеспечивают постоянное постоянное напряжение при низком импедансе, такие как стабилитроны и регуляторы, описанные выше, могут использоваться для обеспечения напряжения «нулевого уровня».

В качестве альтернативы резисторы смещения V S /2 на рисунках 1–3 могут быть буферизованы операционным усилителем для создания низкоомной цепи «фантомного заземления», как показано на рисунке 7. Если источником питания является низковольтная батарея. Источник, скажем, + 3,3 В, операционный усилитель должен быть устройством типа «rail-to-rail», способным эффективно работать во всем диапазоне напряжений питания. Операционный усилитель также должен иметь возможность подавать положительный или отрицательный выходной ток, достаточный для удовлетворения требований нагрузки главной цепи.Конденсатор C2 идет в обход делителя напряжения, чтобы уменьшить шум резистора. Эта схема не должна обеспечивать отказ от источника питания, потому что она всегда будет управлять общей клеммой («землей») при половинном напряжении питания.

Рис. 7. Использование операционного усилителя для обеспечения «фантомного заземления» для приложений с прямым подключением с батарейным питанием.

Проблемы со временем включения цепи

Еще один последний вопрос, который необходимо учитывать, — это время включения цепи. Приблизительное время включения будет зависеть от постоянной времени RC используемого фильтра с самой низкой полосой пропускания.

Все схемы с пассивным смещением, показанные здесь, должны требовать, чтобы цепь делителя напряжения R A || R B -C2 имела постоянную времени в 10 раз больше, чем постоянная времени входной или выходной цепи. Это сделано для упрощения схемы (поскольку входную полосу пропускания задают до трех разных полюсов RC). Эта длительная постоянная времени также помогает удерживать цепь смещения от «включения» перед входными и выходными цепями операционного усилителя, тем самым позволяя выходному сигналу операционного усилителя постепенно повышаться от нуля вольт до V S /2, не приводя к напряжению. положительная подающая шина.Требуемая частота излома 3 дБ составляет 1/10 от частоты R1C1 и R , нагрузка C на выходе . Например: на рисунке 2 для полосы пропускания цепи 10 Гц и коэффициента усиления 10 значение C2, равное 3 мкФ, обеспечивает полосу пропускания 3 дБ, равную 1 Гц.

С R A || R B = 50 000 Ом конденсатор емкостью 3 мкФ обеспечивает постоянную времени RC 0,15 секунды. Таким образом, выходу операционного усилителя потребуется от 0,2 до 0,3 секунды, чтобы он стал достаточно близким к V S /2. Между тем, входные и выходные RC-цепи будут заряжаться в десять раз быстрее.

В приложениях, где время включения схемы может стать чрезмерно большим, лучше выбрать стабилитрон или метод активного смещения.

% PDF-1.4 % 402 0 объект > endobj xref 402 82 0000000016 00000 н. 0000002831 00000 н. 0000002997 00000 н. 0000003652 00000 п 0000003840 00000 н. 0000003977 00000 н. 0000004109 00000 н. 0000004402 00000 н. 0000004964 00000 н. 0000005640 00000 н. 0000005754 00000 н. 0000005866 00000 н. 0000005959 00000 н. 0000006377 00000 п. 0000006404 00000 п. 0000007006 00000 н. 0000007669 00000 н. 0000008256 00000 н. 0000008644 00000 н. 0000009115 00000 п. 0000009142 00000 п. 0000009571 00000 н. 0000009809 00000 н. 0000010132 00000 п. 0000011589 00000 п. 0000012458 00000 п. 0000012603 00000 п. 0000012747 00000 п. 0000012861 00000 п. 0000014133 00000 п. 0000015693 00000 п. 0000017239 00000 п. 0000017378 00000 п. 0000017515 00000 п. 0000017701 00000 п. 0000019309 00000 п. 0000019448 00000 н. 0000019896 00000 п. 0000019923 00000 п. 0000021949 00000 п. 0000022231 00000 п. 0000022486 00000 п. 0000024359 00000 п. 0000024429 00000 п. 0000024510 00000 п. 0000024779 00000 п. 0000025382 00000 п. 0000039551 00000 п. 0000039632 00000 п. 0000039702 00000 п. 0000043147 00000 п. 0000043623 00000 п. 0000048421 00000 п. 0000048502 00000 п. 0000053391 00000 п. 0000053461 00000 п. 0000053722 00000 п. 0000054017 00000 п. 0000054087 00000 п. 0000054168 00000 п. 0000082169 00000 п. 0000082432 00000 п. 0000082888 00000 п. 0000084999 00000 н. 0000085295 00000 п. 0000085365 00000 п. 0000085446 00000 п. 0000099974 00000 н. 0000100261 00000 н. 0000100623 00000 н. 0000100916 00000 н. 0000100943 00000 н. 0000101300 00000 н. 0000101327 00000 н. 0000101725 00000 н. 0000101752 00000 н. 0000102145 00000 п. 0000102172 00000 н. 0000102488 00000 н. 0000112786 00000 н. 0000002646 00000 н. 0000001975 00000 н. трейлер ] / Назад 482492 / XRefStm 2646 >> startxref 0 %% EOF 483 0 объект > поток hb«`c`g`X Ȁ

Компромиссы конструкции для ОУ с однополярным питанием

Аннотация: Тенденция к низковольтным системам с однополярным питанием подпитывается попытками разработчиков найти баланс между часто противоречивыми целями меньшего размера и стоимости продукта иболее длительное время автономной работы и лучшая производительность системы. Эта тенденция может быть полезной для потребителей, но она усложняет задачу выбора подходящего операционного усилителя для конкретного приложения.

Работа с однополярным питанием обычно является синонимом работы при низком напряжении, а переход от ± 15 В или ± 5 В к одиночной шине питания 5 В или 3 В уменьшает доступный диапазон сигнала. Следовательно, гораздо более важными становятся синфазный входной диапазон, размах выходного напряжения, CMRR, шум и другие ограничения операционного усилителя. Как и во всем инженерном деле, вам часто приходится жертвовать одним аспектом производительности системы, чтобы улучшить другой.Следующее обсуждение компромиссов между операционными усилителями с однополярным питанием также объясняет, чем эти низковольтные усилители отличаются от своих предшественников с более высоким напряжением.

Проблемы с входным каскадом

Диапазон входного синфазного напряжения — одна из первых проблем, которую разработчик должен учитывать при выборе операционного усилителя с однополярным питанием. Первый импульс — устранить эту проблему, указав возможность ввода Rail-to-Rail. Однако за истинное железнодорожное сообщение должны быть уплачены определенные штрафы.

Большинство низковольтных операционных усилителей Maxim имеют диапазоны входных синфазных напряжений, которые включают отрицательную шину питания (, таблица 1, ), но только некоторые допускают входы, которые также простираются до положительной шины.Другие допускают входные напряжения только в пределах одного или двух вольт от положительной шины. Операционные усилители, которые пропускают сигналы только на отрицательную шину, будут называться усилителями с датчиком заземления. Те, которые пропускают сигналы на любую из шин, будут называться входными усилителями типа rail-to-rail.

Таблица 1. Низковольтные операционные усилители Maxim

V

OS и I B Проблемы Во многих приложениях усилитель обеспечивает усиление + 2 В / В или более для сигнала, отнесенного к земле.В этих случаях для работы в синфазном диапазоне сигнала обычно достаточно усилителя с датчиком заземления. Если это так, он может обеспечить лучшую производительность, чем тот, у которого есть вход Rail-to-Rail. Типичные входные каскады Rail-to-Rail используют две дифференциальные входные пары вместо одной (, рис. 1, ).


Рис. 1. Входной каскад типа Rail-to-Rail (a) имеет две дифференциальные пары, тогда как стандартный входной каскад с измерением заземления (b) имеет только одну.

По мере того, как входной сигнал перемещается от одной шины питания к другой, усилитель переключается с одной входной пары на другую.В точке кроссовера этот сдвиг может вызвать изменения входного тока смещения и напряжения смещения, которые влияют как на величину, так и на полярность этих параметров. Эти изменения напряжения смещения обычно ухудшают характеристики искажения и прецизионные характеристики усилителей Rail-to-Rail (по сравнению с типами с датчиком заземления). Чтобы свести к минимуму сдвиги напряжения смещения и сгладить переход от одной входной пары к другой, Maxim подрезает смещение своих усилителей между питанием от шины питания как на верхнем, так и на нижнем концах синфазного диапазона.

Чтобы уменьшить напряжения смещения, вызванные входными токами смещения, разработчик должен согласовать импедансы на инвертирующем и неинвертирующем узлах операционного усилителя. Поскольку входные токи смещения обычно больше, чем входные токи смещения, такое согласование импеданса является хорошей практикой для всех типов операционных усилителей, а не только для входных усилителей с размахом шины.

Чтобы проиллюстрировать эту точку зрения, Рисунок 2 показывает изменение входного тока смещения в зависимости от диапазона синфазного сигнала для операционных усилителей семейства MAX4122 – MAX4129 (которые имеют возможность прямого подключения питания как на входе, так и на выходе).Поскольку синфазное входное напряжение изменяется от 0 В до 5 В, входной ток смещения совершает абсолютное изменение на 85 нА (с -45 нА до + 40 нА). Напротив, спецификация для входного тока смещения составляет всего ± 1 нА. Таким образом, изменения на инвертирующем и неинвертирующем входах (входной ток смещения) точно отслеживают друг друга, несмотря на значительные изменения величины и знака токов смещения. Согласовав импедансы в этих узлах, вы можете минимизировать напряжение смещения, вызванное изменениями входного тока смещения.


Рис. 2. Поскольку синфазное входное напряжение входного усилителя Rail-to-Rail переходит от одной шины питания к другой, входной ток смещения может изменяться как по знаку, так и по величине.

На рисунке 3 показано, как согласовать импедансы в классических инвертирующих и неинвертирующих конфигурациях операционных усилителей. Конфигурации инвертирующего ( Рисунок 4 ) предлагает один из способов устранить изменения тока входного смещения, сохраняя синфазного константу входного напряжения усилителя при опорного напряжения (V REF ).Выход определяется как V OUT = (-V IN x R2 / R1) + V REF (1 + R2 / R1). Если R2 = R1, это становится V OUT = -V IN + 2V REF . Для V REF = 2 В и V IN от 0 до 3 В, V OUT находится в диапазоне от 4 до 1 В. Диапазон синфазного сигнала фиксирован, поэтому ошибки CMR также устраняются. В таблице 2 перечислены ссылки, подходящие для использования в низковольтных системах.


Рис. 3. Согласование сопротивления на инвертирующем и неинвертирующем узлах сводит к минимуму ошибки смещения, вызванные входными токами смещения как для неинвертирующей (a), так и для инвертирующей (b) конфигураций.


Рис. 4. Поддерживая постоянное синфазное входное напряжение, конфигурация инвертирующего усилителя устраняет ошибки подавления синфазного сигнала.

Таблица 2. Низковольтные ссылки Maxim

Скорость нарастания

Скорость нарастания напряжения также может пострадать, когда входной усилитель с прямой связью используется вместо усилителя с датчиком заземления. Более простой входной каскад усилителя с датчиком заземления может использовать преимущества многих схем увеличения скорости нарастания, которые просто недоступны для усилителей с двухпарным входом типа rail-to-rail.Например, операционные усилители семейства MAX4212 (Таблица 1) имеют входы с датчиком заземления, которые помогают им достичь скорости нарастания 600 В / мкс и ширины полосы 300 МГц при максимальных токах питания всего 7 мА. Если бы у них были входные каскады Rail-to-Rail, а все остальные характеристики остались бы неизменными, скорость нарастания была бы в несколько раз ниже.

Проблемы с выходным каскадом

В то время как в низковольтных схемах могут не потребоваться операционные усилители с входными каскадами типа rail-to-rail, они обычно требуют выходных каскадов rail-to-rail для максимального увеличения динамического диапазона. Поскольку операционные усилители обеспечивают усиление в большинстве приложений, выходное напряжение обычно больше входного.Таким образом, входной каскад Rail-to-Rail не всегда требуется, но обычно требуется выходной каскад Rail-to-Rail. Эти выходные каскады отличаются от каскадов в операционных усилителях с двойным питанием и вызывают другое поведение схемы в выходных усилителях с прямой разгрузкой.

Выходные каскады Rail-to-Rail обычно имеют конфигурацию с общим эмиттером, а стандартные выходные каскады обычно имеют конфигурацию эмиттер-повторитель (, рис. 5, ). Для выходных каскадов с общим эмиттером падение напряжения от входа к выходу относительно невелико (напряжение насыщения одиночный коллектор-эмиттер, или V CE (SAT) ), но классический выходной каскад эмиттер-повторитель не может приблизиться к шина, чем V CE (SAT) (из-за источника тока) плюс V BE (из-за выходного транзистора).


Рис. 5. Выходной каскад с питанием от шины к шине (a) имеет конфигурацию с общим эмиттером, тогда как стандартный выходной каскад (b) имеет конфигурацию эмиттерно-повторителя.

Поскольку V CE (SAT) биполярного транзистора зависит от тока через транзистор, размах выходного сигнала биполярного операционного усилителя зависит от его тока нагрузки. Таким образом, несмотря на заявления о совместимости напряжения питания, выходной каскад усилителя никогда не достигает шины питания. MAX4122 с нагрузкой 100 кОм, например, колеблется в пределах 12 мВ от положительной шины и 20 мВ от отрицательной шины.Однако при нагрузке 250 Ом он колеблется только в пределах 240 мВ от положительной шины и 125 мВ от отрицательной шины. Для выходных каскадов КМОП аналогом напряжения коллектор-эмиттер биполярного транзистора является напряжение сток-исток полевого МОП-транзистора, которое возникает из-за произведения сопротивления в открытом состоянии и тока канала в полевом МОП-транзисторе. Таким образом, размах выходного напряжения для выходного каскада MOSFET также зависит от нагрузки.

Коэффициент усиления по отношению к нагрузке

Помимо низкого падения напряжения на входе и выходе, каскад с общим эмиттером усилителя Rail-to-Rail отличается от каскада с эмиттерным повторителем и другими важными способами.Каскады с общим эмиттером обеспечивают усиление по напряжению и имеют выходы с относительно высоким импедансом; Каскады эмиттер-повторитель обеспечивают единичный коэффициент усиления по напряжению и имеют выходы с низким сопротивлением. По этой причине операционные усилители с железнодорожным подключением обычно включают выходной узел как часть компенсационной сети, тогда как стандартные операционные усилители обычно получают свою компенсацию на предыдущем этапе. Для операционных усилителей с питанием от шины питания к сети результирующая зависимость коэффициента усиления от тока нагрузки может сделать их нестабильными при управлении емкостными нагрузками.

Эти свойства выходов rail-to-rail могут быть подавлены с помощью тщательного проектирования операционного усилителя, но компромисс, как правило, заключается в более высоком потребляемом токе, чем требуется для операционных усилителей с выходными каскадами эмиттерного повторителя.Операционные усилители семейства MAX4122 – MAX4129 хорошо подходят для управления емкостными нагрузками (таблица 1). Обладая входами и выходами типа rail-to-rail, которые остаются стабильными при работе с 500 пФ, эти операционные усилители полезны для управления как кабелями с неправильной оконечной нагрузкой, так и емкостными входами аналого-цифровых преобразователей. Функции, которые позволяют им управлять большими емкостными нагрузками, также позволяют им поддерживать хороший коэффициент усиления по напряжению при большом сигнале даже при больших резистивных нагрузках.

Зависимость усиления разомкнутого контура от колебаний выходного сигнала

Как и все операционные усилители, коэффициент усиления без обратной связи для выходного усилителя с прямой связью является функцией размаха выходного напряжения.Таким образом, для оценки выходного усилителя с Rail-to-Rail необходимо указать коэффициент усиления как при заданном выходном напряжении, так и при заданной нагрузке. Максим указывает таким образом на усиление, но не все производители включают такие данные в свои таблицы данных. Например, операционный усилитель может иметь коэффициент усиления разомкнутого контура 106 дБ и способность управлять нагрузкой 250 Ом с точностью до 125 мВ от шин, но он не может одновременно демонстрировать эти возможности. Например, таблица данных MAX4122 – MAX4129 правильно определяет усиление по напряжению большого сигнала и размах выходного напряжения в таблице электрических характеристик (, рис. 6, ).График усиления напряжения большого сигнала в зависимости от выходного напряжения и нагрузки для этих устройств показан на рисунке 7.


Рисунок 6. Правильная спецификация для усиления напряжения большого сигнала включает как нагрузку, так и размах выходного напряжения. Размах выходного напряжения зависит от нагрузки.


Рис. 7. На этих графиках показана зависимость коэффициента усиления от нагрузки и размаха выходного напряжения для выходных усилителей с прямой схемой подключения.

Операционные усилители с зарядным насосом

Семейство операционных усилителей MAX4162 демонстрирует новый подход к решению проблем стандартного выходного каскада с питанием от шины питания к сети.Эти операционные усилители имеют классический выходной каскад с эмиттерным повторителем, но достигают выходных сигналов с прямой загрузкой с помощью внутреннего преобразователя с накачкой заряда, который обеспечивает внутреннее напряжение питания для смещения выходного каскада. Преобразователь заряда-накачки также обеспечивает питание других каскадов усилителя. Таким образом, входной каскад имеет стандартную конфигурацию измерения заземления, но позволяет входам переключаться с земли на V CC . Технические характеристики этого семейства перечислены в таблице 1. Каждое устройство потребляет всего 35 мкА (включая преобразователь накачки заряда), обеспечивая полосу пропускания 200 кГц.Токи питания низкие, но эти усилители могут выдерживать относительно большие нагрузки 20 кОм и 500 пФ.

Поскольку подкачка заряда позволяет создавать операционные усилители со стандартными входными и выходными структурами, такие усилители могут обеспечивать производительность, превосходящую производительность операционных усилителей с питанием от шины питания к сети. Операционные усилители с подкачкой заряда имеют очень хорошее подавление синфазного сигнала, и их пара вход-транзистор не подвержена изменениям напряжения смещения, вызванным переключением между входными парами. Кроме того, классический выходной каскад эмиттер-повторитель обеспечивает высокий коэффициент усиления без обратной связи даже при относительно большой резистивной нагрузке.Это также позволяет усилителю оставаться стабильным при работе с большими емкостными нагрузками.

Общие проблемы

Работа с однополярным питанием также усугубляет проблемы шума, смещения и искажений.

Шум

Приложения с однополярным питанием, как правило, имеют низкое напряжение, и более низкие шины питания вынуждают проектировщика соответствующим образом снижать уровень шума только для поддержания отношения сигнал / шум в системе. К сожалению, работа при низком напряжении обычно идет рука об руку с режимом работы с низким энергопотреблением, и по мере уменьшения тока питания шум усилителя имеет тенденцию к увеличению.При прочих равных условиях усилитель с меньшим шумом требует более высокого рассеяния мощности.

Чтобы оценить шум операционного усилителя, рассмотрите все источники шума: шум входного напряжения, шум входного тока и тепловой шум, вызванный резисторами регулировки усиления. Рисунок 8 иллюстрирует эти источники шума с ОУ с обратной связью по напряжению. C1 — паразитная емкость на инвертирующем входе операционного усилителя, C2 ограничивает усиление шума и ширину полосы сигнала на более высоких частотах, а R1 / R2 — стандартные резисторы, устанавливающие усиление.R3 уравновешивает сопротивления инвертирующих и неинвертирующих входов.


Рис. 8. Основные источники шума в операционном усилителе с обратной связью по напряжению показаны на рисунке.

На низких частотах коэффициент усиления шума определяется выражением 1 + R2 / R1 ( Рисунок 9 ). Коэффициент усиления шума видит свой первый ноль на частоте, заданной как 1 / 2ΠR1C1, затем увеличивается на 6 дБ на октаву, пока не достигнет полюса, вызванного C2. На этом полюсе (1 / 2ΠR2C2) коэффициент усиления шума ровный и равен 1 + C1 / C2. Затем коэффициент усиления шума перехватывает коэффициент усиления без обратной связи усилителя и падает до 6 дБ на октаву (стандартный однополюсный спад усиления без обратной связи усилителя).


Рис. 9. На этом графике показано усиление шума и усиление разомкнутого контура для усилителя на Рисунке 8.

Поскольку шум входного напряжения, шум неинвертирующего тока и шум из-за R3 интегрированы по всей замкнутой цепи. полоса пропускания и умноженный на коэффициент усиления шума схемы, вы можете увидеть (из графиков усиления шума и усиления разомкнутого контура), что шум схемы можно минимизировать, выбрав операционный усилитель с более низкой частотой кроссовера с единичным усилением. Для инвертирующего входа токовый шум и тепловой шум из-за R1 и R2 интегрируются только по ширине полосы сигнала (1 / 22R2C2).Поскольку конденсатор C2 отсутствует в операционных усилителях с обратной связью по току, шум для этих типов интегрируется по всей полосе сигнала с обратной связью.

Искажения

Контурное усиление усилителя минимизирует искажения, которые в противном случае были бы результатом нелинейности его передаточной функции от входа к выходу. Поскольку усиление усилителя падает на более высоких частотах, гармонические искажения усилителя увеличиваются.

Таким образом, для данной частоты операционный усилитель может достичь превосходных гармонических характеристик, если он работает в более линейной области с максимальным усилением контура.Обычно это означает смещение выхода от шин питания, как на Рисунке 4 (который представляет инверсию и смещение сигнала) или Рисунок 10 (который вводит смещение, но не инверсию сигнала).


Рис. 10. Обеспечивая как усиление, так и смещение входного сигнала, эта схема смещает выходное напряжение от шин питания.

Метод инвертирования, показанный на рисунке 4, устраняет синфазные нелинейности, поддерживая постоянное синфазное входное напряжение.Эта функция особенно полезна для входных усилителей типа rail-to-rail, нелинейность которых вызывается изменениями синфазного входа (когда входной каскад переключается с одной входной пары на другую).

Снова сфокусируемся на выходном каскаде. Небольшая нагрузка улучшит гармонические характеристики усилителей Rail-to-Rail, поскольку коэффициент усиления является функцией тока нагрузки. Разброс напряжения усилителя также влияет на искажения. Все операционные усилители, как правило, выигрывают от нагрузок, требующих минимального скачка напряжения (внутренние узлы не должны перемещаться слишком далеко, поэтому они, как правило, остаются в своих линейных областях).Скорость нарастания сигнала усилителя, связанная с полосой пропускания полной мощности, также влияет на гармонические искажения. При работе усилителя выше его полосы пропускания полной мощности связанные с этим ограничения скорости нарастания напряжения вызывают серьезные нелинейности.

Создание второй поставки

Высокопроизводительные операционные усилители с однополярным питанием становятся все более распространенными, но для достижения максимальной производительности иногда приходится выбирать усилитель с двумя источниками питания. Выбор типов с двойным питанием шире, потому что системы с двойным питанием доступны дольше, а операционные усилители с двойным питанием не имеют тех же ограничений, что и их собратья с однополярным питанием.

Существует бесчисленное множество методов для создания отрицательного предложения из существующего положительного. Импульсные регуляторы являются наиболее гибкими, но преобразователи напряжения с накачкой заряда предлагают самую простую, самую маленькую и дешевую альтернативу. Поскольку преобразователи с накачкой заряда обеспечивают преобразование напряжения с помощью внешних конденсаторов, а не катушек индуктивности, они превосходно обеспечивают получение целых чисел, кратных входному напряжению (-V IN , + 2V IN и т. Д.). Их выходные напряжения обычно не регулируются, но если токи нагрузки относительно малы, выходные напряжения остаются довольно близкими к целому кратному входному.

Поскольку преобразователи с накачкой заряда могут иметь очень низкие токи покоя, они могут быть очень эффективными при малых нагрузках. На рис. 11 преобразователь заряда-накачки сконфигурирован для генерации отрицательного напряжения, равного входному по величине, но противоположной полярности. Варианты перемычек устанавливают частоту внутреннего генератора на 13 кГц, 100 кГц или 250 кГц, что позволяет разработчику найти компромисс между потребляемым током покоя, размером конденсатора накачки заряда или пульсациями выходного напряжения.


Рис. 11. Простые, небольшие и недорогие преобразователи с накачкой заряда могут легко создать отрицательную шину питания из положительной.

% PDF-1.3 % 634 0 объект > endobj xref 634 95 0000000016 00000 н. 0000002269 00000 н. 0000002461 00000 н. 0000002601 00000 н. 0000002632 00000 н. 0000002689 00000 н. 0000003376 00000 н. 0000003647 00000 н. 0000003713 00000 н. 0000003811 00000 н. 0000003907 00000 н. 0000004076 00000 н. 0000004244 00000 н. 0000004340 00000 н. 0000004452 00000 п. 0000004579 00000 п. 0000004700 00000 н. 0000004888 00000 н. 0000005000 00000 н. 0000005105 00000 н. 0000005273 00000 н. 0000005478 00000 н. 0000005683 00000 п. 0000005888 00000 н. 0000005997 00000 н. 0000006204 00000 н. 0000006329 00000 н. 0000006536 00000 н. 0000006740 00000 н. 0000006852 00000 н. 0000007041 00000 н. 0000007173 00000 н. 0000007353 00000 п. 0000007472 00000 н. 0000007652 00000 н. 0000007777 00000 н. 0000007983 00000 п. 0000008127 00000 н. 0000008332 00000 н. 0000008510 00000 н. 0000008633 00000 н. 0000008797 00000 н. 0000008958 00000 н. 0000009079 00000 н. 0000009198 00000 п. 0000009318 00000 п. 0000009413 00000 н. 0000009507 00000 н. 0000009600 00000 н. 0000009693 00000 п. 0000009787 00000 н. 0000009881 00000 п. 0000009976 00000 н. 0000010070 00000 п. 0000010164 00000 п. 0000010330 00000 п. 0000010695 00000 п. 0000010929 00000 п. 0000011778 00000 п. 0000012110 00000 п. 0000012695 00000 п. 0000012882 00000 п. 0000014115 00000 п. 0000014138 00000 п. 0000014579 00000 п. 0000015373 00000 п. 0000016807 00000 п. 0000016830 00000 п. 0000018296 00000 п. 0000018319 00000 п. 0000019923 00000 п. 0000019946 00000 п. 0000020485 00000 н. 0000021193 00000 п. 0000021994 00000 п. 0000022330 00000 п. 0000023952 00000 п. 0000023975 00000 п. 0000025644 00000 п. 0000025667 00000 п. 0000026350 00000 п. 0000026556 00000 п. 0000028220 00000 п. 0000028243 00000 п. 0000029328 00000 н. 0000029351 00000 п. 0000034534 00000 п. 0000038516 00000 п. 0000040204 00000 п. 0000044861 00000 п. 0000045287 00000 п. 0000045971 00000 п. 0000046088 00000 п. 0000002730 00000 н. 0000003354 00000 п. трейлер ] >> startxref 0 %% EOF 635 0 объект > endobj 636 0 объект a_

10 лучших операционных усилителей

Операционный усилитель — или сокращенно «операционный усилитель» — это обычный строительный блок аналоговой электроники.Независимо от того, являетесь ли вы профессиональным дизайнером электроники или только начинаете, вполне вероятно, что вы использовали в своих разработках операционный усилитель.

Изобретенный в 1941 году Карлом Д. Шварцелем-младшим из Bell Labs, операционный усилитель изначально был построен на электронных лампах и был изобретен для выполнения математических операций в аналоговых компьютерах, поэтому он и получил свое название. Теперь операционные усилители используются во всех сферах применения, начиная с обработки сигналов и фильтрации, а также для сложных математических операций, таких как интегрирование и дифференцирование.Они составляют основу многих современных аналоговых электронных схем, поскольку они экономичны, оптимально работают и легко доступны.

Операционные усилители

обычно доступны в виде интегральных схем (ИС). У них есть входные и выходные клеммы, способные выдавать большую версию сигналов напряжения, которые проходят через них. Они могут быть спроектированы так, чтобы действовать как устройство усиления напряжения при использовании с активными компонентами, такими как транзисторы, и пассивными компонентами, такими как резисторы и конденсаторы, для обеспечения желаемого отклика.

Когда сигналы проходят через дискретные элементы в аналоговой схеме, они имеют тенденцию к уменьшению амплитуды — их уровень напряжения уменьшается, но операционный усилитель может помочь буферизовать и повысить амплитуду таких сигналов, тем самым обеспечивая сигнал, который полезен на выходе. .

Операционные усилители

легко адаптируются и универсальны для многих электронных схем. Они используются в аудио и видео приложениях, регуляторах напряжения, прецизионных схемах, аналого-цифровых и цифро-аналоговых преобразователях и во многих других приложениях.

Выбор операционного усилителя

При разработке приложения, для которого требуется операционный усилитель, важно учитывать требования к конструкции, чтобы убедиться, что вы выбрали правильный.

Разработчикам следует учитывать усиление, входное сопротивление, выходное сопротивление, шум и полосу пропускания, а также следующие факторы, которые следует учитывать при выборе ИС операционного усилителя:

1. Количество каналов / входов

Операционный усилитель может иметь несколько каналов от 1 до 8, причем наиболее распространенные операционные усилители имеют 1, 2 или 4 канала.

2. Прирост

Коэффициент усиления операционного усилителя показывает, насколько больше по величине будет его выход, чем его вход, следовательно, его коэффициент усиления. Обычно это определяется как усиление разомкнутого контура или усиление напряжения большого сигнала .

Бесконечное усиление разомкнутого контура означает, что нулевое напряжение на входе полностью включит или выключит выход, и хотя это кажется непрактичным, в основном это означает, что вы можете быстро переключить выход с включения на выключение, просто изменив входное напряжение.Типичные реальные значения находятся в диапазоне примерно от 20 000 до 200 000.

Усиление напряжения большого сигнала , обычно обозначаемое как AVD, представляет собой отношение изменения выходного напряжения к дифференциальному изменению напряжения на входе, измеренное при постоянном токе — на низкой частоте — с усилителем, производящим большое выходное напряжение. Обычно его предпочитают коэффициенту усиления по напряжению разомкнутого контура, как правило, в В / мВ. Разница в том, что он измеряется при выходной нагрузке и, следовательно, учитывает эффекты нагрузки.

3. Входное сопротивление

Это отношение входного напряжения к входному току. В идеале это значение бесконечно, но большинство операционных усилителей, которые сейчас производятся, имеют типичные значения порядка миллионов Ом. Желательно, чтобы входное сопротивление операционного усилителя было достаточно высоким, чтобы передавать все напряжение от входа к цели без потерь. Типичный входной ток утечки составляет несколько пико-миллиампер.

4. Выходное сопротивление

Это полное сопротивление слабого сигнала между выходной клеммой и землей.Обычно он идет последовательно с нагрузкой, тем самым увеличивая выходную мощность, доступную для нагрузки. Выходное сопротивление для идеального усилителя предполагается равным нулю, следовательно, для реальных значений оно должно быть небольшим.

5. Шум

Операционные усилители

имеют внутренние источники паразитного шума. Обычно они измеряются на выходе и ссылаются на вход. Наиболее важным из них является эквивалентное входное шумовое напряжение, часто указываемое e n. Он задается как напряжение, В n , на корень герц на определенной частоте.Желательно, чтобы это значение было как можно меньше.

6. Пропускная способность

Полоса пропускания операционного усилителя — это допустимый диапазон частот входного сигнала, который он может воспроизводить. Идеальный операционный усилитель допускает любую частоту, следовательно, его полоса пропускания бесконечна и может усиливать любой частотный сигнал от постоянного до самых высоких частот переменного тока.

Это не относится к практическим операционным усилителям, которые ограничены определенным диапазоном и плохо работают выше определенной частоты.

Параметр Gain Bandwidth Product (GBP) часто используется для описания предела полосы пропускания операционного усилителя по отношению к его усилению. Он равен частоте, на которой коэффициент усиления усилителя становится равным единице.

7. Номинальная скорость нарастания

Скорость нарастания операционного усилителя — это скорость изменения выходного напряжения, вызванная скачком на входе. Он измеряется как изменение напряжения за заданное время — обычно В / мкс или В / мс. В идеале скорость нарастания операционного усилителя должна быть бесконечной, что позволяет выходу быть точной усиленной копией входа без каких-либо искажений.В реальных приложениях, чем выше значение скорости нарастания, тем быстрее может изменяться выходной сигнал и тем легче воспроизводятся высокочастотные сигналы.

8. Максимальное входное напряжение смещения

Это максимальное дифференциальное напряжение, необходимое на входе для получения выходного напряжения 0 В. В идеале он равен нулю, когда оба входа операционного усилителя равны нулю. Следовательно, он должен быть достаточно маленьким.

9. Максимальное напряжение питания

Следует учитывать допустимый диапазон рабочего напряжения операционного усилителя, следовательно, его максимальное напряжение питания не должно превышаться.

А теперь давайте погрузимся в топ-10 самых загружаемых операционных усилителей на SnapEDA! *

10 лучших операционных усилителей на SnapEDA

# 10 LM741 от Texas Instruments

LM741 — это старый, но классический операционный усилитель общего назначения, выпущенный в 1981 году в 8-выводном корпусе PDIP, CDIP или TO-99 с максимальным напряжением питания ± 22 В. Он имеет большое усиление сигнала по напряжению 200 В / мВ и полосу пропускания до 1 МГц. Его вход и выход имеют защиту от перегрузки.Этот операционный усилитель также не имеет фиксации при превышении синфазного диапазона. Это прямая подключаемая замена для других операционных усилителей, таких как 709C, LM201, MC1439 и 748, в большинстве приложений.

Средняя цена у дистрибьюторов на момент публикации: 0,50 доллара США

Загрузите символ, след и 3D-модель на SnapEDA.

# 9 LM358-N от Texas Instruments

LM358-N — это 2-канальный операционный усилитель промышленного стандарта, доступный в 4 различных 8-выводных корпусах (DSBGA, TO-CAN, SOIC, PDIP) с широким диапазоном напряжения питания от 3 В (± 1.5 В) до 32 В (± 16 В) и полосе усиления 1 МГц. Он имеет низкое входное напряжение смещения 2 мВ и большое усиление напряжения сигнала 100 В / мВ, а его диапазон рабочих температур составляет от 0 до 70 ° C. Этот операционный усилитель очень популярен благодаря своей гибкости, доступности и экономической эффективности.

Средняя цена у дистрибьюторов на момент публикации: 0,48 доллара США

Загрузите символ, след и 3D-модель на SnapEDA.

# 8 LM324 от Texas Instruments

LM324 поставляется с четырьмя операционными усилителями с внутренней компенсацией, все в 14-выводном корпусе SOIC, PDIP или TSSOP.Это маломощный операционный усилитель общего назначения с большим коэффициентом усиления сигнала по напряжению около 100 В / мВ, широкой полосой усиления 1 МГц и входным током смещения не более 250 нА. Он работает от одного источника питания в широком диапазоне от 3 В до 32 В, а также поддерживает двойные источники питания в диапазоне от ± 1,5 В до ± 16 В. Он подходит для усилителей преобразователей, блоков усиления постоянного тока и обычных операционных усилителей.

Средняя цена у дистрибьюторов на момент публикации: 0,21 доллара США

Загрузить Symbol & Footprint на SnapEDA.

# 7 RC4558 от Texas Instruments

RC4558, электрически подобный uA741, представляет собой двойной операционный усилитель общего назначения. Он поставляется в 8-выводном корпусе PDIP, SOIC, SOP, SSOP, TSSOP или VSSOP, имеет низкий входной ток смещения не более 500 нА и диапазон температур от 0 ° C до 70 ° C или от -40 ° C до 85 ° C для RC4558I. Это устройство предназначено для работы и имеет типичное произведение коэффициента усиления на полосу пропускания 3 МГц. Его особенности делают его подходящим для приложений с повторителем напряжения.

Средняя цена у дистрибьюторов на момент публикации: 0,20 доллара США

Загрузить Symbol & Footprint на SnapEDA.

# 6 NE5532 от Texas Instruments

NE5532 (5534 также довольно популярен) — это 2-канальный высокоскоростной звуковой операционный усилитель с низким уровнем шума, который поставляется в 8-контактном корпусе PDIP, SOIC или SOP с широкой полосой усиления 10 МГц и высоким постоянным током. коэффициент усиления по напряжению 100 В / мВ, CMRR этого устройства составляет 100 дБ, а его скорость нарастания составляет 9 В / мс.

Средняя цена у дистрибьюторов на момент публикации: 0,29 доллара США

Загрузить Symbol & Footprint на SnapEDA.

# 5 TL072 от Texas Instruments

TL072 представляет собой двойной малошумящий операционный усилитель общего назначения с полевым транзистором и входом JFET в 8-выводном корпусе PDIP, SOIC, SOP или TSSOP. Он имеет низкий входной ток смещения 200 пА в диапазоне рабочих температур окружающего воздуха от 0 ° C до 70 ° C или от -40 ° C до 85 ° C для TL07xI. Работает от одного источника питания с диапазоном -0.От 3 В до 36 В, а также поддерживает два источника питания с диапазоном ± 18 В. Он имеет широкую полосу усиления 3 МГц. Подходит для высококачественных аудиоустройств и предварительных усилителей звука.

Средняя цена у дистрибьюторов на момент публикации: 0,40 доллара США

Загрузить Symbol & Footprint на SnapEDA.

# 4 OPA2134 от Texas Instruments

OPA2134 — это операционный усилитель с низким уровнем искажений и шума для аудиоприложений, который поставляется в 8-контактном корпусе PDIP или SOIC.Он предназначен для работы от 5 В до 36 В (от ± 2,5 В до ± 18 В) и имеет высокий коэффициент усиления без обратной связи 120 дБ (600 Ом). Этот операционный усилитель на полевых транзисторах с диапазоном рабочих температур окружающего воздуха от 40 ° C до 85 ° C имеет широкую полосу усиления 8 МГц и скорость нарастания напряжения 20 В / мкс. Этот усилитель идеально подходит для обеспечения превосходного качества звука и скорости для исключительного качества звука.

Средняя цена у дистрибьюторов на момент публикации: 3,15 доллара США

Загрузить Symbol & Footprint на SnapEDA.

# 3 LM339 от Texas Instruments

LM339 является наиболее часто используемым четырехканальным дифференциальным компаратором, он поставляется в 14-выводном корпусе PDIP, SOIC, SOP, SSOP или TSSOP, рассчитан на работу в диапазоне от 0 ° C до 70 ° C и имеет типичное входное смещение. напряжение и ток 2 мВ и 3 нА соответственно. Он имеет типичный входной ток смещения 25 нА. Подходит для промышленных устройств, генераторов, приложений преобразования логического напряжения и т. Д.

Средняя цена у дистрибьюторов на момент публикации: 0 долларов США.17 долларов США

Загрузить Symbol & Footprint на SnapEDA.

# 2 OP07 от Analog Devices

OP07 — это операционный усилитель со сверхнизким напряжением смещения (макс. 75 мкВ для OP07E), который поставляется в корпусе типа PDIP-8 или SOIC-8 с низким входным током смещения ± 4 нА и высоким коэффициентом усиления без обратной связи 200 В / мВ. Обычно он имеет полосу усиления 0,6 МГц и диапазон входного напряжения ± 13 В. OP07 является прямой заменой усилителей 725, 108A и OP05 и подходит для измерительных приборов с высоким коэффициентом усиления.

Средняя цена у дистрибьюторов на момент публикации: 0,94 доллара США

Загрузите символ, след и 3D-модель на SnapEDA.

# 1 LMH6629 от Texas Instruments

LMH6629 — быстродействующий операционный усилитель с обратной связью по напряжению со сверхмалым шумом. Это очень особенное устройство, поскольку оно может работать с большим коэффициентом усиления и при этом обеспечивать исключительную скорость и низкий уровень шума. Поставляется в 8-выводном корпусе WSON или SOT-23. Он имеет полосу пропускания –3 дБ при 900 МГц и скорость нарастания 1600 В / мкс.Он отлично подходит для коммуникационных, контрольно-измерительных, оптических и ультразвуковых систем.

Средняя цена у дистрибьюторов на момент публикации: 4,16 доллара США

Загрузите символ, след и 3D-модель на SnapEDA.

Вот и наш список 10 лучших.

Если вы хотите увидеть другую категорию компонентов, сообщите нам об этом в разделе комментариев.

Есть ли у вас другой набор операционных усилителей, которые входят в ваш список? Мы также хотели бы услышать ваши мысли о том, какие факторы вы учитываете при выборе операционного усилителя ниже.

* Эти данные были собраны с помощью аналитики SnapEDA путем просмотра загрузок из библиотеки моделей деталей (символы, контуры и 3D-модели). Ежегодно в SnapEDA оцениваются миллионы деталей, однако, если детали нет в нашей базе данных, она не будет отображаться в этом списке. Мы постоянно увеличиваем охват и периодически обновляем этот список!

Создавайте электронные устройства в мгновение ока. Начать сейчас.

4.3: Смещение однополярного источника питания — Разработка LibreTexts

До этого момента во всех схемах в качестве примера использовался биполярный источник питания, обычно \ (\ pm \) 15 В. Иногда это нецелесообразно. Например, небольшое количество аналоговой схемы может использоваться вместе с преимущественно цифровой схемой, которая работает от униполярного источника питания. Создание отрицательного источника питания для одного или двух операционных усилителей может оказаться неэкономичным. Хотя можно купить операционные усилители, специально разработанные для работы с униполярными источниками питания 1 , добавление простой схемы смещения позволит практически любому операционному усилителю работать от униполярного источника питания.Этот источник питания может быть в два раза больше, чем у биполярного аналога. Другими словами, схема, которая обычно работает от источника питания \ (\ pm \) 15 В, может быть сконфигурирована для работы от униполярного источника питания +30 В, обеспечивая аналогичные характеристики. Мы рассмотрим примеры использования как неинвертирующего, так и инвертирующего усилителей напряжения

.

Идея состоит в том, чтобы смещать вход на половину общего потенциала предложения. Это можно сделать с помощью простого делителя напряжения. Конденсатор связи может использоваться, чтобы изолировать этот потенциал постоянного тока от каскада возбуждения.Для правильной работы выход операционного усилителя также должен находиться на половине напряжения питания. Этот факт означает, что коэффициент усиления схемы должен быть равен единице. Это может показаться очень ограничивающим фактором, но на самом деле это не так. Следует помнить, что для постоянного тока коэффициент усиления должен быть равен единице. Коэффициент усиления по переменному току может быть практически любым, каким вы хотите.

Рисунок \ (\ PageIndex {1} \): Смещение однополярного питания в неинвертирующем усилителе.

Пример использования неинвертирующего усилителя напряжения показан на рисунке \ (\ PageIndex {1} \).Чтобы установить усиление постоянного тока на единицу, не влияя на усиление переменного тока, конденсатор \ (C_3 \) помещается последовательно с \ (R_i \). \ (R_1 \) и \ (R_2 \) устанавливают точку смещения 50%. Их параллельная комбинация также устанавливает входное сопротивление. Резисторы \ (R_3 \) и \ (R_4 \) используются для предотвращения деструктивного разряда конденсаторов связи \ (C_1 \) и \ (C_2 \) в операционный усилитель. Они могут не требоваться, но если они есть, обычно имеют размер около 1 k \ (\ Omega \) и 100 \ (\ Omega \) соответственно.

Включение конденсаторов дает трехпроводную сеть.Стандартный частотный анализ и упрощение схемы показывают, что приблизительные критические частоты составляют

\ [f_ {i n} = \ frac {1} {2 \ pi C_1 R_1 || R_2} \ notag \]

\ [f_ {out} = \ frac {1} {2 \ pi C_2 R_ {load}} \ notag \]

\ [f_ {fdbk} = \ frac {1} {2 \ pi C_3 R_i} \ notag \]

Входную сеть смещения можно улучшить, используя схему на рисунке \ (\ PageIndex {2} \). Это уменьшает гудение и шум, передаваемые от источника питания на вход операционного усилителя. Это достигается за счет создания низкого импеданса в узле A.Это, конечно, не влияет на потенциал постоянного тока. \ (R_5 \) теперь устанавливает входное сопротивление цепи.

Рисунок \ (\ PageIndex {2} \): улучшенное смещение для схемы на рисунке \ (\ PageIndex {1} \).

Здесь важно помнить, что усиление по напряжению все еще равно \ (1 + R_f / R_i \) в средней полосе, \ (Z_ {in} \) теперь устанавливается резисторами смещения \ (R_1 \) и \ (R_2 \) или \ (R_5 \) (если используется), и эта частотная характеристика больше не плоская до нуля Герц.

Версия инвертирующего усилителя напряжения с однополярным питанием показана на рисунке \ (\ PageIndex {3} \).Он использует те же основные методы, что и неинвертирующая форма. В настройке смещения используется оптимизированная форма с низким уровнем шума. Обратите внимание, что входной импеданс не изменился, он по-прежнему установлен в \ (R_i \). Приблизительные критические частоты свинцовой сети находятся через

.

\ [f_ {in} = \ frac {1} {2 \ pi C_1 R_i} \ notag \]

\ [f_ {out} = \ frac {1} {2 \ pi C_2 R_ {load}} \ notag \]

\ [f_ {bias} = \ frac {1} {2 \ pi C_3 R_1 || R_2} \ notag \]

Обратите внимание на общее сходство между схемами на рисунках \ (\ PageIndex {3} \) и \ (\ PageIndex {1} \).Простое перенаправление входного сигнала создает одну форму из другой.

Рисунок \ (\ PageIndex {3} \): Инвертирующий усилитель с однополярным питанием.

Мостовые усилители для приложений с однополярным питанием

В этой статье описывается конфигурация мост-усилитель и объясняется, почему это особенно удобно, когда у вас нет источника отрицательного напряжения.

Дополнительная информация

Почему единая поставка?

Существует несколько различных терминов, используемых для обозначения системы, в которой разработчик имеет доступ к шинам положительного и отрицательного напряжения: биполярный, симметричный, с двойным питанием, раздельное питание.Как бы вы их ни называли, они мне нравятся; аналоговые схемы более просты и (на мой взгляд) математически более когерентны, когда сигнал действительно может идти под землей.

Однако неизбежным фактом является то, что система с двойным питанием обычно является персоной нон грата в мире современной электроники. Причина этого достаточно проста: создание источника отрицательного напряжения требует дополнительных схем, что означает больше времени на разработку, более высокую стоимость и большую печатную плату; таким образом, если системные требования могут быть удовлетворены без использования отрицательной шины питания, тем лучше.Альтернатива дополнительной схеме — вторая батарея; Помимо того, что этот подход применим только к оборудованию с батарейным питанием, этот подход все же привносит стоимость и громоздкость, которые можно устранить с помощью продуманной конструкции схемы с одним источником питания. Тенденция в пользу систем с однополярным питанием наглядно демонстрируется тем фактом, что у Texas Instruments есть 46-страничная публикация (PDF), посвященная исключительно схемам операционных усилителей с однополярным питанием.

Примечание: нет закона, устанавливающего, что система с двойным питанием должна иметь положительное и отрицательное напряжение питания, равное по величине (т.е., симметричный). Однако симметричные источники питания являются нормой для схем усилителей, и обсуждение систем с двойным или раздельным питанием может включать предположение, что напряжения питания симметричны.

Мостовой усилитель

Одна вещь, которая может быть сложной в среде с одним источником питания, — это генерация мощных выходных сигналов переменного тока. Давайте взглянем на схему, которая может помочь в решении этой задачи:

Как видите, входной сигнал подается на две схемы операционного усилителя, одна неинвертирующая, а другая инвертирующая; резисторы выбраны так, чтобы оба усилителя имели одинаковую величину усиления.Нагрузка подключается между выходами двух усилителей; Обратите внимание, что нагрузка является «плавающей», т. е. не имеет прямого подключения к заземляющему узлу. Как вы, наверное, уже догадались, мостовой усилитель приводит к увеличению напряжения на нагрузке в два раза:

Показанный здесь стандартный мостовой усилитель не является схемой с однополярным питанием. Оба операционных усилителя имеют входную клемму, которая заземлена; таким образом, для синусоидального входного сигнала с привязкой к земле потребовалось бы, чтобы оба операционных усилителя генерировали отрицательное выходное напряжение, и это, конечно, совершенно невозможно, когда вывод отрицательного питания операционного усилителя подключен к земле.

Версия с одним источником питания

Следующая схема адаптирует конфигурацию моста к среде с одним источником питания:

Существенной характеристикой схемы операционного усилителя с однополярным питанием является напряжение смещения, которое создает опорный сигнал среднего источника (так же, как потенциал земли служит опорным сигналом среднего источника в системах с двумя источниками питания). Напряжение смещения не имеет значения для среднего напряжения питания, но это обычный выбор при работе с синусоидальными сигналами, поскольку смещение среднего напряжения питания гарантирует, что выходной сигнал имеет одинаковую способность колебаться «положительно» и «отрицательно». («Положительный» означает выше напряжения смещения и «отрицательный» означает ниже напряжения смещения).

Существуют различные способы смещения схемы операционного усилителя с однополярным питанием. На мой взгляд, наиболее простой подход — это тот, который показан на приведенной выше схеме: вы настраиваете схему как инвертирующий усилитель и подаете V BIAS на положительный входной вывод. Вот почему мостовой усилитель с однополярным питанием использует два инвертирующих усилителя, тогда как стандартный мостовой усилитель использует неинвертирующий усилитель и инвертирующий усилитель.

Смещение неинвертирующего усилителя неудобно — независимо от того, прикладываете ли вы смещение к положительной или отрицательной входной клемме, соотношение между напряжением смещения и выходным напряжением будет более сложным по сравнению с таковой в инвертирующей конфигурации.Кроме того, если вы используете резистивный делитель для генерации напряжения смещения, резисторы в неинвертирующем усилителе взаимодействуют с резисторами в делителе и тем самым усложняют вашу жизнь, чем она есть. Инвертирующая конфигурация позволяет вам подключать напряжение смещения непосредственно к входной клемме операционного усилителя с очень высоким импедансом, и, таким образом, вы можете использовать резистивный делитель, не опасаясь испуга:

Наконец, вы, вероятно, заметили, что вход в один из операционных усилителей берется не из самого входного сигнала, а из выхода другого операционного усилителя.Вся суть мостового усилителя состоит в том, чтобы генерировать как инвертированный, так и неинвертированный выходной сигнал, и, таким образом, схема каскадного усилителя является простым решением проблемы наличия двух инвертирующих усилителей.

Больше напряжения → Больше мощности

Мостовой усилитель дает два важных преимущества. {2} \ times \ frac {1} {R} \]

Таким образом, мощность пропорциональна квадрату пикового напряжения.Мостовая конфигурация удваивает напряжение на нагрузке; следовательно, он предлагает четырехкратное увеличение мощности, подаваемой на нагрузку. Может быть, вам интересно, почему мы не можем просто использовать один операционный усилитель, а затем увеличить усиление, чтобы получить большее напряжение? Зачем беспокоиться о конфигурации моста? Это хорошие вопросы, и ответ будет следующим: мостовой усилитель в четыре раза увеличивает максимальную P НАГРУЗКА , которую вы можете достичь для данного напряжения питания . Другими словами, мостовой усилитель особенно полезен, когда вы пытаетесь получить как можно больше мощности от шины питания.

В наш век низковольтных систем вы можете обнаружить, что напряжение питания является ограничивающим фактором в том, сколько мощности вы можете послать на нагрузку. Предположим, что сопротивление нагрузки фиксировано, поэтому вы не можете увеличить мощность за счет уменьшения R НАГРУЗКА , а также предположим, что у вас есть большой ток, доступный от вашего источника питания. В этом случае источник питания 3,3 В сдерживает вас — вы могли бы легко выдать больше энергии, если бы у вас было немного больше напряжения питания. Вот тут-то и пригодится мостовой усилитель: та же шина напряжения, в четыре раза больше мощности.

Не требуется соединительный колпачок

Больше всего мне нравится в мостовом усилителе то, что он позволяет устранить смещение постоянного тока без устранения смещения постоянного тока. . . или что-то вроде того. Допустим, у вас есть динамик, который нужно управлять от однополярной цепи. Все аудиосигналы имеют смещение постоянного тока, которое удерживает отрицательные части синусоиды над землей. Но сигнал, который мы посылаем говорящему, должен быть чистым переменным током; смещение постоянного тока в аудиосигнале уменьшает динамический диапазон и способствует искажению.Это часто достигается с помощью конденсатора блокировки по постоянному току (также известного как связь по переменному току), но у этого подхода есть недостатки: во-первых, конденсатор может потребоваться довольно большого размера — до сотен микрофарад — во избежание ослабления низкочастотных компонентов сигнала. . Во-вторых, вы должны беспокоиться о переходных эффектах, связанных с зарядкой или разрядкой колпачка, блокирующего постоянный ток, таких как артефакты «щелчок и щелчок», влияющие на воспроизведение звука.

К счастью, при использовании мостового усилителя блокирующий колпачок не требуется.Комплементарный характер инвертированных и неинвертированных сигналов таков, что смещение постоянного тока одного сигнала может компенсировать смещение постоянного тока другого:

Заключение

Мы рассмотрели стандартный мостовой усилитель, а также вариант, совместимый с одним источником питания, и обсудили два основных преимущества, предлагаемых конфигурацией моста. Как однажды сказал один из моих профессоров, имея в виду некую математическую концепцию, которую я не совсем могу вспомнить, сложите ее и держите в набедренном кармане; мостовой усилитель может оказаться весьма полезным, когда вам нужно обеспечить значительную мощность переменного тока от низковольтной системы или системы с однополярным питанием.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *