Определить мощность трансформатора: Как узнать мощность трансформатора. Определение мощности трансформатора. Способы определения мощности трансформатора

Содержание

Как узнать мощность трансформатора. Определение мощности трансформатора. Способы определения мощности трансформатора

Меня неоднократно спрашивали о том, как определить мощность 50Гц трансформатора не имеющего маркировки, попробую рассказать и показать на паре примеров.

Вообще способов определения мощности 50Гц трансформатора есть довольно много, я перечислю лишь некоторые из них.

1. Маркировка.
Иногда на трансформаторе можно найти явное указание мощности, но при этом данное указание может быть незаметно с первого взгляда.
Вариант конечно ну очень банальный, но следует сначала поискать.

2. Габаритная мощность сердечника.
Есть таблицы, по которым можно найти габаритную мощность определенных сердечников, но так как сердечники выпускались весьма разнообразных конфигураций размеров, а кроме того отличались по качеству изготовления, то таблица не всегда может быть корректна.
Да и найти их не всегда можно быстро. Впрочем косвенно можно использовать таблицы из описаний унифицированных трансформаторов.

3. Унифицированные трансформаторы.
Еще при союзе, да и впрочем после него, было произведено огромное количество унифицированных трансформаторов, их вы можете распознать по маркировке начинающейся на ТПП, ТН, ТА.

Если ТА распространены меньше, то ТПП и ТН встречаются весьма часто.

Например берем трансформатор ТПП270.

Находим описание маркировки данной серии и в описании находим наш трансформатор, там будет и напряжения, и токи и мощность.
В раздел документация я выложил это описание в виде PDF файла. Кстати там же можно посмотреть размеры сердечников трансформаторов и определить мощность по его габаритам, сравнив со своим. Если ваш трансформатор имеет немного больший размер, то вполне можно пересчитать, так как мощность трансформатора прямо пропорциональна его размеру.

На трансформаторе ТН61 маркировка почти не видна, но она есть 🙂

Для него есть отдельное описание, я его также выложил у себя в блоге.

Иногда трансформатор имеет маркировку, но найти по ней что либо вразумительное невозможно, увы, таблицы для таких трансформаторов большая редкость.

4. Расчет мощности по диаметру провода.
Если никаких данных нет, то можно определить мощность исходя из диаметра проводов обмоток.
Можно измерить первичную обмотку, но иногда она бывает недоступна.

В таком случае измеряем диаметр провода вторичной обмотки.
В примере диаметр составляет 1.5мм.
Дальше все просто, сначала узнаем сечение провода.
1.5 делим на 2, получаем 0.75, это радиус.
0.75 умножаем на 0.75, а получившийся результат умножаем на 3.14 (число пи), получаем сечение провода = 1.76мм.кв

Значение плотности тока принято принимать равным 2.5 Ампера на 1мм.кв. В нашем случае 1.76 умножаем на 2.5 и получаем 4.4 Ампера.
Так как трансформатор рассчитан на выходное напряжение 12 Вольт, это мы знаем, а если не знаем, то можем измерить тестером, то 4.4 умножаем на 12, получаем 52.8 Ватта

.
На бумажке указана мощность 60 Ватт, но сейчас часто мотают трансформаторы с заниженным сечением обмоток, потому по ольшому счету все сходится.

Иногда на трансформаторе бывает написано не только количество витков обмоток, а и диаметр провода. но к этому стоит относиться скептически, так как наклейки могут ошибаться.

В этом примере я сначала нашел доступный для измерения участок провода, немного поднял его так, чтобы можно было подлезть штангенциркулем.

А когда измерил, то выяснил что диаметр провода не 0.355, а 0.25мм.
Попробуем применить вариант расчета, который я приводил выше.
0.25/2=0.125
0.125х0.125х3.14=0.05мм.кв
0.05=2.5=0.122 Ампера
0.122х220 (напряжение обмотки) = 26.84 Ватта.

Кроме того вышеописанный способ отлично подходит в случаях, когда вторичных обмоток несколько и измерять каждую просто неудобно.

5. Метод обратного расчета.
В некоторых ситуациях можно использовать программу для расчета трансформаторов. В этих программах есть довольно большая база сердечников, а кроме того они могут считать произвольные конфигурации размеров исходя из того, что мы можем измерить.
Я использую программу Trans50Hz.

Сначала выбираем тип сердечника. в основном это варианты кольцевой, Ш-образный ленточный и Ш-образный из пластин.

Слева направо — Кольцевой, ШЛ, Ш.
В моем примере я буду измерять вариант ШЛ, но таким же способом можно выяснить мощность и других типов трансформаторов.

Шаг 1, измеряем ширину боковой части магнитопровода.

Заносим измеренное значение в программу.

Шаг 2, ширина магнитопровода.

Также заносим в программу.

Шаг 3, ширина окна.
Здесь есть два варианта. Если есть доступ к окну, то просто измеряем его.

Если доступа нет, то измеряем общий размер, затем вычитаем четырехкратное значение, полученное в шаге 1, а остаток делим на 2.
Пример — общая ширина 80мм, в шаге 1 было 10мм, значит из 80 вычитаем 40. Осталось еще 40, делим на 2 и получаем 20, это и есть ширина окна.

Вводим значение.

Шаг 4, длина окна.
По сути это длина каркаса под провод, часто его можно измерить без проблем.

Также вводим это значение.

После этого нажимаем на кнопку — Расчет.

И получаем сообщение об ошибке.

Дело в том, что в программе изначально были заданы значения для расчета мощного трансформатора.
Находим выделенный пункт и меняем его значение на такое, чтобы мощность (напряжение умноженное на ток) не превысило нашу ориентировочную габаритную мощность.
Можно туда вбить хоть 1 Вольт и 1 Ампер, это неважно, я выставил 5 Вольт.

Заново нажимаем на кнопку Расчет и получаем искомое, в данном случае программа посчитала, что мощность нашего магнитопровода составляет 27.88 Ватта..
Полученные данные примерно сходятся с расчетом по диаметру провода, тогда я получил 26.84 Ватта, значит метод вполне работает.

5. Измерение максимальной температуры.
Обычные (железные) трансформаторы в работе не должны нагреваться выше 60 градусов, это можно использовать и в расчете мощности.
Но здесь есть исключения, например трансформатор блока бесперебойного питания может иметь большую мощность при скромных габаритах, это обусловлено тем, что работает он кратковременно и он раньше отключится, чем перегреется. Например в таком варианте его мощность может быть 600 Ватт, а при длительной работе всего 400.
Еще есть китайские производители, которые бывает используют в дешевых адаптерах трансформаторы «маломерки», которые греются как печки, это ненормально, часто реальная мощность трансформатора может быть в 1.2-1.5 раза меньше заявленной.

Чтобы измерить мощность вышеуказанным способом, берем любую нагрузку, лампочки, резисторы и т.п. Как вариант, можно использовать электронную нагрузку, но в этом случае подключаем ее через диодный мост с фильтрующим конденсатором.
Ждем примерно с час, если температура не превысила 60, то увеличиваем нагрузку. Дальше думаю процедура понятна.
Есть правда небольшая оговорка, температура трансформатора может заметно отличаться в зависимости от того, есть ли корпус и насколько он большой, но зато дает весьма точный результат. Единственный минус, тест очень долгий.

Подобные трансформаторы я использую в последние 10-15 лет крайне редко, потому они лежат где нибудь на дальних полках балкона и когда искал, наткнулся на весьма любопытные индикаторы, ИН-13. Покупал для индикатора уровня в усилитель, но так и забросил в итоге. Теперь вот нашел и думаю, что из них можно сделать, возможно у вас есть идеи и предложения. В случае интересной идеи, попробую сделать и показать процесс в виде обзора.

На этом все, а в качестве дополнения видео по определению габаритной мощности трансформатора.

Как узнать мощность трансформатора по габаритам

Габаритную мощность трансформатора можно приблизительно узнать по сечению магнитопровода. Правда, ошибка может составлять до 50%, и это связано с рядом факторов. Габаритная мощность напрямую зависит от конструктивных особенностей магнитопровода, качества и толщины используемой стали, размера окна, величины индукции, сечения провода обмоток и даже качества изоляции между отдельными пластинами.

Чем дешевле трансформатор, тем ниже его относительная габаритная мощность.
Конечно, можно путём экспериментов и расчетов определить максимальную мощность трансформатора с высокой точностью, но смысла большого в этом нет, так как при изготовлении трансформатора, всё это уже учтено и отражено в количестве витков первичной обмотки.

Так что, при определении мощности, можно ориентироваться по площади сечения набора пластин проходящего через каркас или каркасы, если их две штуки.

P = B * S² / 1,69

P – мощность в Ваттах,
B – индукция в Тесла,
S – сечение в см²,
1,69 – постоянный коэффициент.

расчет мощности трансформатора по габаритам

Пример:

Сначала определяем сечение, для чего перемножаем размеры А и Б.

S = 2,5 * 2,5 = 6,25 см²

Затем подставляем размер сечения в формулу и получаем мощность. Индукцию я выбрал 1,5Tc, так как у меня броневой витой магнитопровод.

P = 1,5 * 6,25² / 1,69 = 35 Ватт

Если требуется определить необходимую площадь сечения манитопровода исходя из известной мощности, то можно воспользоваться следующей формулой:

S = ²√ (P * 1,69 / B)

Пример:

Нужно вычислить сечение броневого штампованного магнитопровода для изготовления трансформатора мощностью 50 Ватт.

S = ²√ (50 * 1,69 / 1,3) = 8см²

О величине индукции можно справиться в таблице. Не стоит использовать максимальные значения индукции, так как они могут сильно отличаться для магнитопроводов различного качества.

Максимальные ориентировочные значения индукции

Тип магнитопровода Магнитная индукция мах (Тл) при мощности трансформатора (Вт)
5-10 10-50 50-150 150-300 300-1000
Броневой штампованный 1,2 1,3 1,35 1,35 1,3
Броневой витой 1,55 1,65 1,65 1,65 1,6
Кольцевой витой 1,7 1,7 1,7 1,65 1,6

Видео: Как определить мощность трансформатора, несколько способов

Описание нескольких способов определения мощности 50 Гц трансформаторов.

Поделиться ссылкой:

Как узнать мощность и ток трансформатора по его внешнему виду

Слово “трансформатор” образуется от английского слова “transform”  – преобразовывать, изменяться. Но дело в том, что сам трансформатор не может как-либо измениться либо поменять форму и так далее.

Он обладает еще более удивительный свойством – преобразует переменное напряжение одного значения в переменное напряжение другого значения.

Ну разве это не чудо? В этой статье мы будем рассматривать именно трансформаторы напряжения.

Трансформатор напряжения


Трансформатор напряжения можно отнести больше к электротехнике, чем к электронике. Самый обыкновенный однофазный трансформатор напряжения выглядит вот так.

  • Если откинуть верхнюю защиту трансформатора, то мы можем четко увидеть, то он состоит из какого-то железного каркаса, который собран из металлических пластин, а также из двух катушек, которые намотаны на этот железный каркас. Здесь мы видим, что из одной катушки выходит два черных провода
  • а с другой катушки два красных провода
  • Эти обе катушки одеваются на сердечник трансформатора. То есть в результате мы получаем что-то типа этого
  • Ничего сложного, правда ведь?

Но дальше самое интересное. Если подать на одну из этих катушек переменное напряжение, то в другой катушке тоже появляется переменное напряжение. Но как же так возможно? Ведь эти обмотки абсолютно не касаются друг друга и они изолированы друг от друга. Во чудеса! Все дело, в так называемой электромагнитной индукции.

Если объяснить простым языком, то когда на первичную обмотку подают переменное напряжение, то в сердечнике возникнет переменное магнитное поле с такой же частой. Вторая катушка улавливает это переменное магнитное поле и уже выдает переменное напряжение на своих концах.

Обмотки трансформатора

Эти самые катушки с проводом в трансформаторе называются обмотками. В основном обмотки состоят из медного лакированного провода. Такой провод находится в лаковой изоляции, поэтому, провод в обмотке не коротит друг с другом. Выглядит такой обмоточный трансформаторный провод примерно вот так.

Он может быть разного диаметра. Все зависит от того, на какую нагрузку рассчитан тот или иной трансформатор.

У самого простого однофазного трансформатора можно увидеть две такие обмотки.

Обмотка, на которую подают напряжение называется первичной. В народе ее еще называют “первичка”. Обмотка, с которой уже снимают напряжение называется вторичной или “вторичка”.

Для того, чтобы узнать, где первичная обмотка, а где вторичная, достаточно посмотреть на шильдик трансформатора.

I/P: 220М50Hz (RED-RED) – это говорит нам о том, что два красных провода – это первичная обмотка трансформатора, на которую мы подаем сетевое напряжение 220 Вольт. Почему я думаю, что это первичка? I/P – значит InPut, что в переводе “входной”.

O/P: 12V 0,4A (BLACK, BLACK) – вторичная обмотка трансформатора с выходным напряжением в 12 Вольт (OutPut). Максимальная сила тока, которую может выдать в нагрузку этот трансформатор – это 0,4 Ампера или 400 мА.

Как работает трансформатор

Чтобы разобраться с принципом работы, давайте рассмотрим рисунок.

Здесь мы видим простую модель трансформатора. Подавая на вход переменное напряжение U1 в первичной обмотке возникает ток I1 .

Так как первичная обмотка намотана на замкнутый магнитопровод, то в нем начинает возникать магнитный поток, который возбуждает во вторичной обмотке напряжение U2 и ток I2 .

Как вы можете заметить, между первичной и вторичной обмотками трансформатора нет электрического контакта. В электронике это называется гальванически развязаны.

Формула трансформатора

  1. Главная формула трансформатора выглядит так.
  2. где
  3. U2  – напряжение на вторичной обмотке
  4. U1 – напряжение на первичной обмотке
  5. N1 – количество витков первичной обмотки
  6. N2 – количество витков вторичной обмотки
  7. k – коэффициент трансформации
  8. В трансформаторе соблюдается также закон сохранения энергии, то есть какая мощность заходит в трансформатор, такая мощность выходит из трансформатора:

Эта формула справедлива для идеального трансформатора. Реальный же трансформатор будет выдавать на выходе чуть меньше мощности, чем на его входе. КПД трансформаторов очень высок и порой составляет даже 98%.

Типы трансформаторов по конструкции

Однофазные трансформаторы

Это трансформаторы, которые преобразуют однофазное переменное напряжение одного значения в однофазное переменное напряжение другого значения.

В основном однофазные трансформаторы имеют две обмотки, первичную и вторичную. На первичную обмотку подают одно значение напряжения, а со вторичной снимают нужное нам напряжение. Чаще всего в повседневной жизни можно увидеть так называемые сетевые трансформаторы, у которых первичная обмотка рассчитана на сетевое напряжение, то есть 220 В.

  • На схемах однофазный трансформатор обозначается так:
  • Первичная обмотка слева, а вторичная – справа.

Иногда требуется множество различных напряжений для питания различных приборов.

Зачем ставить на каждый прибор свой трансформатор, если можно с одного трансформатора получить сразу несколько напряжений? Поэтому, иногда вторичных обмоток бывает несколько пар, а иногда даже некоторые обмотки выводят прямо из имеющихся вторичных обмоток. Такой трансформатор называется трансформатором со множеством вторичных обмоток. На схемах можно увидеть что-то подобное:

Трехфазные трансформаторы

Эти трансформаторы в основном используются в промышленности и чаще всего превосходят по габаритам простые однофазные трансформаторы. Почти все трехфазные трансформаторы считаются силовыми. То есть они используются в цепях, где нужно питать мощные нагрузки. Это могут быть станки ЧПУ и другое промышленное оборудование.

  1. На схемах трехфазные трансформаторы обозначаются вот так:
  2. Первичные обмотки обозначаются заглавными буквами, а вторичные обмотки – маленькими буквами.
  3. Здесь мы видим три типа соединения обмоток (слева-направо)
  • звезда-звезда
  • звезда-треугольник
  • треугольник-звезда

В 90% случаев используется именно звезда-звезда.

Типы трансформаторов по напряжению

Понижающий трансформатор

Это трансформатор, которые понижает напряжение. Допустим, на первичную обмотку мы подаем 220 Вольт, а снимаем 12 Вольт. В этом случае коэффициент трансформации (k) будет больше 1.

Повышающий трансформатор

Это трансформатор, который  повышает напряжение. Допустим,  на первичную обмотку мы подаем 10 Вольт, а со вторичной снимаем уже 110 В. То есть мы повысили наше напряжение 11 раз. У повышающих трансформаторов коэффициент трансформации меньше 1.

Разделительный или развязывающий трансформатор

Такой трансформатор используется в целях электробезопасности. В основном это трансформатор с одинаковым числом обмоток на входе и выходе, то есть его напряжение на первичной обмотке будет равняться напряжению на вторичной обмотке.

Нулевой вывод вторичной обмотки такого трансформатора не заземлен. Поэтому, при касании фазы на таком трансформаторе вас не ударит электрическим током. Про его использование можете прочесть в статье про ЛАТР.

У развязывающих трансформаторов коэффициент трансформации равен 1.

Согласующий трансформатор

Такой трансформатор используется для согласования входного и выходного сопротивления между каскадами схем.

Работа понижающего трансформатора на практике

Понижающий трансформатор – это такой трансформатор, который выдает на выходе напряжение меньше, чем на входе. Коэффициент трансформации (k) у таких трансформаторов больше 1 . Понижающие трансформаторы – это самый распространенный класс трансформаторов в электротехнике и электронике. Давайте же рассмотрим, как он работает на примере трансформатора 220 В —> 12 В .

  • Итак, имеем простой однофазный понижающий трансформатор.
  • Именно на нем мы будем проводить различные опыты.

Подключаем красную первичную обмотку к сети 220 Вольт и замеряем напряжение на вторичной обмотке трансформатора без нагрузки. 13, 21 Вольт, хотя на трансформаторе написано, что он должен выдавать 12 Вольт.

  1. Теперь подключаем нагрузку на вторичную обмотку и видим, что напряжение просело.

Интересно, какую силу тока кушает наша лампа накаливания? Вставляем мультиметр в разрыв цепи и замеряем.

Если судить по шильдику, то на нем написано, что он может выдать в нагрузку 400 мА и напряжение будет 12 Вольт, но как вы видите, при нагрузку близкой к 400 мА у нас напряжение просело почти до 11 Вольт. Вот тебе и китайский трансформатор. Нагружать более, чем 400 мА его не следует. В этом случае напряжение просядет еще больше, и трансформатор будет греться, как утюг.

Как проверить трансформатор

Как проверить на короткое замыкание обмоток


Хотя обмотки  прилегают очень плотно к друг другу, их разделяет лаковый диэлектрик, которым покрываются и первичная и вторичная обмотка.

Если где-то возникло короткое замыкание между проводами, то трансформатор будет сильно греться или издавать сильный гул при работе. Также он будет пахнуть горелым лаком.

В этом случае стоит замерить напряжение на вторичной обмотке и сравнить, чтобы оно совпадало с паспортным значением.

Проверка на обрыв обмоток


При  обрыве все намного проще. Для этого с помощью мультиметра мы проверяем целостность первичной и вторичной обмотки. Итак, сопротивление первичной обмотки нашего трансформатора чуть более 1 КОм. Значит обмотка целая.

  • Таким же образом проверяем и вторичную обмотку.
  • Отсюда делаем вывод, что наш трансформатор жив и здоров.

Как прозвонить трансформатор или как определить обмотки трансформатора

Здравствуйте, уважаемые читатели сайта sesaga.ru.

На первых порах занятий радиоэлектроникой у начинающих радиолюбителей, да и не только у радиолюбителей, возникает очень много вопросов, связанных с прозвонкой или определением обмоток трансформатора. Это хорошо, если у трансформатора всего две обмотки.

А если их несколько, да и еще у каждой обмотки несколько выводов. Тут просто караул кричи. В этой статье я расскажу Вам, как можно определить обмотки трансформатора визуальным осмотром и с помощью мультиметра.

Как Вы знаете, трансформаторы предназначены для преобразования переменного напряжения одной величины в переменное напряжение другой величины.

Самый обычный трансформатор имеет одну первичную и одну вторичную обмотки. Питающее напряжение подается на первичную обмотку, а ко вторичной обмотке подключается нагрузка.

На практике же большинство трансформаторов может иметь несколько обмоток, что и вызывает затруднение в их определении.

1. Определение обмоток визуальным осмотром

При визуальном осмотре трансформатора обращают внимание на его внешний защитный слой изоляции, потому как у некоторых моделей на внешнем слое изображают электрическую схему с обозначением всех обмоток и выводов; у некоторых моделей выводы обмоток только маркируют цифрами. Также можно встретить старые отечественные трансформаторы, на внешнем слое которых указывают маркировку в виде цифрового кода, по которому в справочниках для радиолюбителей есть вся информация о конкретном трансформаторе.

Если трансформатор попался без опознавательных знаков, то обращают внимание на диаметр обмоточного провода, которым намотаны обмотки.

Диаметр провода можно определить по выступающим выводам концов обмоток, выпущенных для закрепления на контактных лепестках, расположенных на элементах каркаса трансформатора.

Как правило, первичную обмотку мотают проводом меньшего сечения, по отношению к вторичной. Диаметр провода вторичной обмотки всегда больше.

Исключением могут быть повышающие трансформаторы, работающие в схемах преобразователей напряжения и тока. Их первичная обмотка выполнена толстым проводом, так как генерирует высокое напряжение во вторичной обмотке. Но такие трансформаторы встречаются очень редко.

При изготовлении трансформаторов первичную обмотку, как правило, мотают первой. Ее легко определить по выступающим концам выводов обмотки, расположенных ближе к магнитопроводу. Вторичную обмотку наматывают поверх первичной, и поэтому концы ее выводов расположены ближе к внешнему слою изоляции.

В некоторых моделях сетевых трансформаторов, используемых в блоках питания бытовой радиоаппаратуры, обмотки располагают на пластмассовом каркасе, разделенном на две части: в одной части находится первичная обмотка, а в другой вторичная. К выводам первичной обмотки припаивают гибкий монтажный провод, а выводы вторичной обмотки оставляют в виде обмоточного провода.

2. Определение обмоток по сопротивлению

Когда предварительный анализ обмоток произведен, необходимо убедиться в правильности сделанных выводов, а заодно прозвонить обмотки на отсутствие обрыва. Для этого воспользуемся мультиметром. Если Вы не знаете как измерить сопротивление мультиметром, то прочитайте эту статью.

Вначале прозвоним обычный сетевой трансформатор, у которого всего две обмотки.
Мультиметр переводим в режим «Прозвонка» и производим измерение сопротивления предполагаемых первичной и вторичной обмоток. Здесь все просто: у какой из обмоток величина сопротивления больше, та обмотка и является первичной.

Это объясняется тем, что в маломощных трансформаторах и трансформаторах средней мощности первичная обмотка может содержать 1000…5000 витков, намотанных тонким медным проводом, и при этом может достичь сопротивления до 1,5 кОм. Тогда как вторичная обмотка содержит небольшое количество витков, намотанных толстым проводом, и ее сопротивление может составлять всего несколько десятков ом.

Теперь прозвоним трансформатор, у которого несколько обмоток. Для этого воспользуемся листком бумаги, ручкой и мультиметром. На бумаге будем зарисовывать и записывать величины сопротивлений обмоток.

Делается это так: одним щупом мультиметра садимся на любой крайний вывод, а вторым щупом по очереди касаемся остальных выводов трансформатора и записываем полученное значение сопротивлений.

Выводы, между которыми мультиметр покажет сопротивление, и будут являться выводами одной обмотки. Если обмотка без средних отводов, то сопротивление будет только между двумя выводами.

Если же обмотка имеет один или несколько отводов, то мультиметр покажет сопротивление между всеми этими отводами.

Например. Первичная обмотка может иметь несколько отводов, когда трансформатор рассчитан на работу в сети с напряжениями 110В, 127В и 220В. Вторичная обмотка также может иметь один или несколько отводов, когда хотят от одного трансформатора получить несколько напряжений.

Идем дальше. Когда первая обмотка и ее выводы будут найдены, то переходим к поиску следующей обмотки. Щупом опять садимся на следующий свободный вывод, а другим поочередно касаемся оставшихся выводов и записываем результат. И таким образом производим измерение, пока не будут найдены все обмотки.

Например. Между выводами с номерами 1 и 2 величина сопротивления составила 21 Ом, тогда как между остальными выводами мультиметр показал бесконечность. Из этого следует, что мы нашли обмотку, у которой выводы обозначены номерами 1 и 2. Нарисуем ее так:

Теперь щупом садимся на вывод 3, а другим щупом поочередно касаемся выводов с номерами от 4 до 10. Мультиметр показал сопротивление только между выводами 3, 4 и 5.

Причем между выводами 3 и 4 величина сопротивления составила 6 Ом, а между парой выводов 3, 5 и 4, 5 получилось по 3 Ома. Отсюда делаем вывод, что эта обмотка с отводом посередине, т.е.

пары 3, 5 и 4, 5 намотаны равным количеством витков, и что с этой обмотки снимается два одинаковых напряжения относительно общего вывода 5. Рисуем так:

Производим измерение далее.
Между выводами 6 и 7 величина сопротивления составила 16 Ом. Рисуем так:

Ну и между выводами 9 и 10 сопротивление составило 270 Ом.
А так как среди всех обмоток эта оказалась с самой большой величиной сопротивления, то она и является первичной. Рисуем так:

Вывод 8, к которому припаяна желто-зеленая жилка, ни как не звонился, поэтому смело утверждаем, что это экранирующая обмотка (экран), которую наматывают поверх первичной, чтобы устранить влияние ее магнитного поля на другие обмотки. Как правило, экранирующую обмотку соединяют с корпусом радиоаппаратуры.

В итоге у нас получилось четыре обмотки, из которых одна сетевая и три понижающих. Экранирующая обмотка обозначается пунктирной линией и располагается параллельно с сердечником. И вот на основе полученных результатов нарисуем электрическую схему трансформатора.

Теперь остается подать напряжение на первичную обмотку и измерить выходящие напряжения. Однако тут есть один момент, который необходимо знать, если Вы сомневаетесь в правильности определения первичной (сетевой) обмотки.

Здесь все просто: чтобы не сжечь обмотку трансформатора и ограничить через нее нежелательный ток нужно последовательно с этой обмоткой включить лампу накаливания на напряжение 220В и мощностью 40 – 100 Вт.

Если обмотка определена правильно, то нить накала лампы должна не гореть или еле тлеть.

Если же лампа будет гореть достаточно ярко, то есть вероятность того, что сетевая обмотка трансформатора рассчитана на питающее напряжение 110 — 127В или Вы ее прозвонили неправильно.

Второй момент, по которому можно судить о правильности подключения трансформатора к сети — это сама работа трансформатора. При правильном включении работа трансформатора практически беззвучна и сопровождается слегка ощутимой вибрацией.

Если же он будет громко гудеть и сильно вибрировать, и при этом будет нагреваться обмотка и из нее может пойти дым, то трансформатор однозначно включен неправильно.

В этом случае тут же отключайте трансформатор от сети, чтобы не повредить обмотку.

Однако и тут есть пару нюансов, которые необходимо учитывать, потому как у некоторых трансформаторов каркас с обмотками может неплотно прилегать к сердечнику и от этого работа трансформатора может сопровождаться некоторым гудением и вибрацией, но при этом обмотка греться не будет. В этом случае в зазор между сердечником и каркасом можно вставить кусочек дерева, пластмассы или кусок провода в изоляции и, тем самым, плотно зафиксировать каркас.

Также характерный гул и вибрацию может вызвать плохая стяжка пластин, из которых собран сердечник магнитопровода. Как правило, стягивание сердечника производится металлической скобой, специальными планками, болтами или стяжками, которые обеспечивают необходимую механическую прочность и жесткое соединение деталей сердечника.

Ну вот в принципе и все, что хотел сказать о прозвонке и определению обмоток трансформатора. Если у Вас возникли вопросы по этой теме, то задавайте их в х к статье. Также, в дополнение к статье, можете посмотреть видеоролик.

Удачи!

Как определить мощность трансформатора по сечению сердечника

g84jsm9tB4S

Если на трансформаторе имеется маркировка, то вопрос определения его параметров исчерпывается сам собой, достаточно лишь вбить эти данные в поисковик и мгновенно получить ссылку на документацию для нашего трансформатора. Однако, маркировки может и не быть, тогда нам потребуется самостоятельно эти параметры вычислить.

Для определения номинальных тока и мощности неизвестного трансформатора по его внешнему виду, необходимо в первую очередь понимать, какие физические параметры устройства являются в данном контексте определяющими. А такими параметрами прежде всего выступают: эффективная площадь сечения магнитопровода (сердечника) и площадь сечения проводов первичной и вторичной обмоток.

Речь будем вести об однофазных трансформаторах, магнитопроводы которых изготовлены из трансформаторной стали, и спроектированы специально для работы от сети 220 вольт 50 Гц. Итак, допустим что с материалом сердечника трансформатора нам все ясно. Движемся дальше.

Сердечники бывают трех основных форм: броневой, стержневой, тороидальный. У броневого сердечника эффективной площадью сечения магнитопровода является площадь сечения центрального керна. У стержневого — площадь сечения стержня, ведь именно на нем и расположены обмотки. У тороидального — площадь сечения тела тороида (именно его обвивает каждый из витков).

Для определения эффективной площади сечения, измерьте размеры a и b в сантиметрах, затем перемножьте их — так вы получите значение площади Sс в квадратных сантиметрах.

Суть в том, что от эффективной площади сечения сердечника зависит величина амплитуды магнитного потока, создаваемого обмотками. Магнитный поток Ф включает в себя одним из сомножителей магнитную индукцию В, а вот магнитная индукция как раз и связана с ЭДС в витках. Именно поэтому площадь рабочего сечения сердечника так важна для нахождения мощности.

Далее необходимо найти площадь окна сердечника — того места, где располагаются провода обмоток. В зависимости от площади окна, от того насколько плотно оно заполнено проводниками обмоток, от плотности тока в обмотках — также будет зависеть мощность трансформатора.

Если бы, к примеру, окно было полностью заполнено только проводами обмоток (это невероятный гипотетический пример), то приняв произвольной среднюю плотность тока, умножив ее потом на площадь окна, мы получили бы общий ток в окне магнитопровода, и если бы затем разделили его на 2, а после — умножили на напряжение первичной обмотки — можно было бы сказать, что это и есть мощность трансформатора. Но такой пример невероятен, поэтому нам необходимо оперировать реальными значениями.

Итак, давайте найдем площадь сечения окна.

Наиболее простой способ определить теперь приблизительную мощность трансформатора по магнитопроводу — перемножить площадь эффективного сечения сердечника и площадь его окна (все в кв.см), а затем подставить их в приведенную выше формулу, после чего выразить габаритную мощность Pтр.

В этой формуле: j — плотность тока в А/кв.мм, f — частота тока в обмотках, n – КПД, Вm – амплитуда магнитной индукции в сердечнике, Кс — коэффициент заполнения сердечника сталью, Км — коэффициент заполнения окна магнитопровода медью.

Но мы поступим проще: примем сразу частоту равной 50 Гц, плотность тока j= 3А/кв.мм, КПД = 0,90, максимальную индукцию в сердечнике — ни много ни мало 1,2 Тл, Км = 0,95, Кс=0,35. Тогда формула значительно упростится и примет следующий вид:

  Как подключить свечи накала через реле схема

Если же есть потребность узнать оптимальный ток обмоток трансформатора, то задавшись плотностью тока j, скажем теми же 3 А на кв.мм, можно умножить площадь сечения провода обмотки в квадратных миллиметрах на эту плотность тока. Так вы получите оптимальный ток. Или через диаметр провода d обмотки:

Узнав по сечению проводников обмоток оптимальный ток каждой из обмоток, разделите полученную по габаритам мощность трансформатора на каждый из этих токов — так вы узнаете соответствующие найденным параметрам напряжения обмоток.

Одно из этих напряжений окажется близким к 220 вольтам — это с высокой степенью вероятности и будет первичная обмотка. Далее вольтметр вам в помощь. Трансформатор может быть повышающим либо понижающим, поэтому будьте предельно внимательны и аккуратны если решите включить его в сеть.

Кроме того, перед вами может оказаться выходной трансформатор от акустического усилителя. Данные трансформаторы рассчитываются немного иначе чем сетевые, но это уже совсем другая и более глубокая история.

Габаритную мощность трансформатора можно приблизительно узнать по сечению магнитопровода. Правда, ошибка может составлять до 50%, и это связано с рядом факторов.

Габаритная мощность напрямую зависит от конструктивных особенностей магнитопровода, качества и толщины используемой стали, размера окна, величины индукции, сечения провода обмоток и даже качества изоляции между отдельными пластинами.

Чем дешевле трансформатор, тем ниже его относительная габаритная мощность. Конечно, можно путём экспериментов и расчетов определить максимальную мощность трансформатора с высокой точностью, но смысла большого в этом нет, так как при изготовлении трансформатора, всё это уже учтено и отражено в количестве витков первичной обмотки.

  • Так что, при определении мощности, можно ориентироваться по площади сечения набора пластин проходящего через каркас или каркасы, если их две штуки.
  • P – мощность в Ваттах, B – индукция в Тесла, S – сечение в см²,
  • 1,69 – постоянный коэффициент.

Сначала определяем сечение, для чего перемножаем размеры А и Б.

S = 2,5 * 2,5 = 6,25 см²

Затем подставляем размер сечения в формулу и получаем мощность. Индукцию я выбрал 1,5Tc, так как у меня броневой витой магнитопровод.

  1. P = 1,5 * 6,25² / 1,69 = 35 Ватт
  2. Если требуется определить необходимую площадь сечения манитопровода исходя из известной мощности, то можно воспользоваться следующей формулой:
  3. Нужно вычислить сечение броневого штампованного магнитопровода для изготовления трансформатора мощностью 50 Ватт.
  4. S = ²√ (50 * 1,69 / 1,3) = 8см²

О величине индукции можно справиться в таблице. Не стоит использовать максимальные значения индукции, так как они могут сильно отличаться для магнитопроводов различного качества.

Максимальные ориентировочные значения индукции

Тип магнитопровода Магнитная индукция мах (Тл) при мощности трансформатора (Вт)
5-10 10-50 50-150 150-300 300-1000
Броневой штампованный 1,2 1,3 1,35 1,35 1,3
Броневой витой 1,55 1,65 1,65 1,65 1,6
Кольцевой витой 1,7 1,7 1,7 1,65 1,6

  Как выделить зону коридора

Видео: Как определить мощность трансформатора, несколько способов

  • Описание нескольких способов определения мощности 50 Гц трансформаторов.
  • Классический теоретический расчет трансформатора достаточно сложен Для его выполнения необходимо знать такие характеристики, как магнитная проницаемость используемых для сердечника пластин трансформаторной стали, длина магнитных силовых линий в сердечнике, средняя длина витка обмотки и другие параметры Профессиональному разработчику НИИ все эти параметры известны, так как он обладает сертификатами применяемых в трансформаторе материалов Радиолюбитель же вынужден использовать для трансформатора совершенно случайно попавший к нему сердечник, характеристики которого ему неизвестны
  • По указанной причине для расчета трансформатора предлагается эмпирический метод, многократно проверенный радиолюбителями и основанный на практическом опыте Расчет элементарно прост и требует лишь знания простейших основ арифметикиПринцип действия трансформатора

  1. Рис 61 Трансформатор: а – общий вид б – условное обозначение
  2. Трансформатор был изобретен П Н Яблочковым в 1876 году Устройство трансформатора показано на рис 61а, а его схематическое обозначение – на рис 616
  3. Трансформатор состоит из стального сердечника и обмоток, намотанных изолированным обмоточным проводом
  4. Сердечник собирается из тонких пластин специальной электротехнической стали для снижения потерь энергии
  5. Обмотка, предназначенная для подключения к сети переменного тока, называется первичной Нагрузка подключается к вторичной обмотке, которых в трансформаторе может быть несколько Номера обмоток обычно проставляются римскими цифрами Часто обмоткам присваивают номера их выводов
  6. Работа трансформатора основана на магнитном свойстве электрического тока При подключении концов первичной обмотки к электросети по этой обмотке протекает переменный ток, который создает вокруг ее витков и в сердечнике трансформатора переменное магнитное поле Пронизывая витки вторичной обмотки, переменное магнитное поле индуцирует в них ЭДС Соотношение количества витков первичной и вторичной обмоток определяет получаемое напряжение на выходе трансформатора Если количество витков вторичной обмотки больше, чем первичной, выходное напряжение трансформатора будет больше напряжения сети Такая обмотка называется повышающей Если же вторичная обмотка содержит меньше витков, чем первичная, выходное напряжение окажется меньше сетевого (понижающая обмотка)
  7. Трансформатор – это пассивный преобразователь энергии Его коэффициент полезного действия (КПД) всегда меньше единицы Это означает, что мощность, потребляемая нагрузкой, которая подключена к вторичной обмотке трансформатора, меньше, чем мощность, потребляемая нагруженным трансформатором от сети Известно, что мощность равна произведению силы тока на напряжение, следовательно, в повышающих обмотках сила тока меньше, а в понижающих – больше силы тока, потребляемого трансформатором от сети
  8. Параметры и характеристики трансформатора
  9. Два разных трансформатора при одинаковом напряжении сети могут быть рассчитаны на получение одинаковых напряжений вторичных обмоток Но если нагрузка первого трансформатора потребляет большой ток, а второго – маленький, значит, первый трансформатор характеризуется по сравнению со вторым большей мощностью Чем больше сила тока в обмотках трансформатора, тем больше и магнитный поток в его сердечнике, поэтому сердечник должен быть толще Кроме того, чем больше сила тока в обмотке, тем более толстым проводом она должна быть намотана, а это требует увеличения окна сердечника Поэтому габариты трансформатора зависят от его мощности И наоборот, сердечник определенного размера пригоден для изготовления трансформатора только до определенной мощности, которая называется габаритной мощностью трансформатора

  Как почистить турку внутри

  • Количество витков вторичной обмотки трансформатора определяет напряжение на ее выводах Но это напряжение зависит также и от количества витков первичной обмотки При определенном значении напряжения питания первичной обмотки напряжение вторичной зависит от отношения количества витков вторичной обмотки к количеству витков первичной Это отношение и называется коэффициентом трансформации
  • Если напряжение на вторичной обмотке зависит от коэффициента трансформации, можно ли выбирать количество витков одной из обмоток, например первичной, произвольно Оказывается, нельзя Дело в том, что чем меньше габариты сердечника, тем больше должно быть количество витков каждой обмотки Поэтому размеру сердечника трансформатора соответствует вполне определенное количество витков его обмоток, приходящееся на один вольт напряжения, меньше которого брать нельзя Эта характеристика называется количеством витков на один вольт
  • Как и всякий преобразователь энергии, трансформатор обладает коэффициентом полезного действия – отношением мощности, потребляемой нагрузкой трансформатора, к мощности, которую нагруженный трансформатор потребляет от сети
  • КПД маломощных трансформаторов, которые обычно применяются для питания бытовой электронной аппаратуры, колеблется в пределах от 0,8 до 0,95 Более высокие значения имеют трансформаторы большей мощности
  • Электрический расчет трансформатора
  • Прежде чем начать электрический расчет силового трансформатора, необходимо сформулировать требования, которым он должен удовлетворять Они и будут являться исходными данными для расчета Технические требования к трансформатору определяются также путем расчета, в результате которого определяются те напряжения и токи, которые должны быть обеспечены вторичными обмотками Поэтому перед расчетом трансформатора производится расчет выпрямителя для определения напряжений каждой из вторичных обмоток и потребляемых от этих обмоток токов Если же напряжения и токи каждой из обмоток трансформатора уже известны, то они и являются техническими требованиями к трансформатору
  • Для определения габаритной мощности трансформатора необходимо определить мощности, потребляемые от каждой вторичной обмотки, и сложить их, учитывая также КПД трансформатора Мощность, потребляемую от любой обмотки, определяют умножением напряжения между выводами этой обмотки на силу потребляемого от нее тока:
  1. где Р – мощность, потребляемая от обмотки, Вт
  2. U – эффективное значение напряжения, снимаемого с этой обмотки, В
  3. I – эффективное значение силы тока, протекающего в этой же обмотке, А
  4. Суммарная мощность, потребляемая, например, тремя вторичными обмотками, вычисляется по формуле:

  • Для определения габаритной мощности трансформатора полученное значение суммарной мощности Ps нужно разделить на КПД трансформатора:
  • где Рг – габаритная мощность трансформатора
  • η – КПД трансформатора
  • Заранее рассчитать КПД трансформатора нельзя, так как для этого нужно знать величину потерь энергии в обмотках и в сердечнике, которые зависят от параметров самих обмоток (диаметры проводов и их длина) и параметров сердечника (длина магнитной силовой линии и марка стали) И те и другие параметры становятся известны только после расчета трансформатора Поэтому с достаточной для практического расчета точностью КПД трансформатора можно определить из табл 61

Как узнать мощность трансформатора по железу — MOREREMONTA

Определение мощности силового трансформатора

Для изготовления трансформаторных блоков питания необходим силовой однофазный трансформатор, который понижает переменное напряжение электросети 220 вольт до необходимых 12-30 вольт, которое затем выпрямляется диодным мостом и фильтруется электролитическим конденсатором.

Эти преобразования электрического тока необходимы, поскольку любая электронная аппаратура собрана на транзисторах и микросхемах, которым обычно требуется напряжение не более 5-12 вольт.

Чтобы самостоятельно собрать блок питания, начинающему радиолюбителю требуется найти или приобрести подходящий трансформатор для будущего блока питания. В исключительных случаях можно изготовить силовой трансформатор самостоятельно. Такие рекомендации можно встретить на страницах старых книг по радиоэлектронике.

Но в настоящее время проще найти или купить готовый трансформатор и использовать его для изготовления своего блока питания.

Полный расчёт и самостоятельное изготовление трансформатора для начинающего радиолюбителя довольно сложная задача. Но есть иной путь. Можно использовать бывший в употреблении, но исправный трансформатор. Для питания большинства самодельных конструкций хватит и маломощного блока питания, мощностью 7-15 Ватт.

Если трансформатор приобретается в магазине, то особых проблем с подбором нужного трансформатора, как правило, не возникает. У нового изделия обозначены все его главные параметры, такие как мощность, входное напряжение, выходное напряжение, а также количество вторичных обмоток, если их больше одной.

Но если в ваши руки попал трансформатор, который уже поработал в каком-либо приборе и вы хотите его вторично использовать для конструирования своего блока питания? Как определить мощность трансформатора хотя бы приблизительно? Мощность трансформатора весьма важный параметр, поскольку от него напрямую будет зависеть надёжность собранного вами блока питания или другого устройства. Как известно, потребляемая электронным прибором мощность зависит от потребляемого им тока и напряжения, которое требуется для его нормальной работы. Ориентировочно эту мощность можно определить, умножив потребляемый прибором ток (Iн на напряжение питания прибора (Uн). Думаю, многие знакомы с этой формулой ещё по школе.

,где Uн – напряжение в вольтах; Iн – ток в амперах; P – мощность в ваттах.

Рассмотрим определение мощности трансформатора на реальном примере. Тренироваться будем на трансформаторе ТП114-163М. Это трансформатор броневого типа, который собран из штампованных Ш-образных и прямых пластин. Стоит отметить, что трансформаторы такого типа не самые лучшие с точки зрения коэффициента полезного действия (КПД). Но радует то, что такие трансформаторы широко распространены, часто применяются в электронике и их легко найти на прилавках радиомагазинов или же в старой и неисправной радиоаппаратуре. К тому же стоят они дешевле тороидальных (или, по-другому, кольцевых) трансформаторов, которые обладают большим КПД и используются в достаточно мощной радиоаппаратуре.

Итак, перед нами трансформатор ТП114-163М. Попробуем ориентировочно определить его мощность. За основу расчётов примем рекомендации из популярной книги В.Г. Борисова «Юный радиолюбитель».

Для определения мощности трансформатора необходимо рассчитать сечение его магнитопровода. Применительно к трансформатору ТП114-163М, магнитопровод – это набор штампованных Ш-образных и прямых пластин выполненных из электротехнической стали. Так вот, для определения сечения необходимо умножить толщину набора пластин (см. фото) на ширину центрального лепестка Ш-образной пластины.

При вычислениях нужно соблюдать размерность. Толщину набора и ширину центрального лепестка лучше мерить в сантиметрах. Вычисления также нужно производить в сантиметрах. Итак, толщина набора изучаемого трансформатора составила около 2 сантиметров.

Далее замеряем линейкой ширину центрального лепестка. Это уже задача посложнее. Дело в том, что трансформатор ТП114-163М имеет плотный набор и пластмассовый каркас. Поэтому центральный лепесток Ш-образной пластины практически не видно, он закрыт пластиной, и определить его ширину довольно трудно.

Ширину центрального лепестка можно замерить у боковой, самой первой Ш-образной пластины в зазоре между пластмассовым каркасом. Первая пластина не дополняется прямой пластиной и поэтому виден край центрального лепестка Ш-образной пластины. Ширина его составила около 1,7 сантиметра. Хотя приводимый расчёт и является ориентировочным, но всё же желательно как можно точнее проводить измерения.

Перемножаем толщину набора магнитопровода (2 см.) и ширину центрального лепестка пластины (1,7 см.). Получаем сечение магнитопровода – 3,4 см 2 . Далее нам понадобиться следующая формула.

,где S – площадь сечения магнитопровода; Pтр – мощность трансформатора; 1,3 – усреднённый коэффициент.

После нехитрых преобразований получаем упрощённую формулу для расчёта мощности трансформатора по сечению его магнитопровода. Вот она.

Подставим в формулу значение сечения S = 3,4 см 2 , которое мы получили ранее.

В результате расчётов получаем ориентировочное значение мощности трансформатора

7 Ватт. Такого трансформатора вполне достаточно, чтобы собрать блок питания для монофонического усилителя звуковой частоты на 3-5 ватт, например, на базе микросхемы усилителя TDA2003.

Вот ещё один из трансформаторов. Маркирован как PDPC24-35. Это один из представителей трансформаторов – «малюток». Трансформатор очень миниатюрный и, естественно, маломощный. Ширина центрального лепестка Ш-образной пластины составляет всего 6 миллиметров (0,6 см.).

Толщина набора пластин всего магнитопровода – 2 сантиметра. По формуле мощность данного мини-трансформатора получается равной около 1 Вт.

Данный трансформатор имеет две вторичные обмотки, максимально допустимый ток которых достаточно мал, и составляет десятки миллиампер. Такой трансформатор можно использовать только лишь для питания схем с малым потреблением тока.

Габаритную мощность трансформатора можно приблизительно узнать по сечению магнитопровода. Правда, ошибка может составлять до 50%, и это связано с рядом факторов. Габаритная мощность напрямую зависит от конструктивных особенностей магнитопровода, качества и толщины используемой стали, размера окна, величины индукции, сечения провода обмоток и даже качества изоляции между отдельными пластинами.

Чем дешевле трансформатор, тем ниже его относительная габаритная мощность.
Конечно, можно путём экспериментов и расчетов определить максимальную мощность трансформатора с высокой точностью, но смысла большого в этом нет, так как при изготовлении трансформатора, всё это уже учтено и отражено в количестве витков первичной обмотки.

Так что, при определении мощности, можно ориентироваться по площади сечения набора пластин проходящего через каркас или каркасы, если их две штуки.

P – мощность в Ваттах,
B – индукция в Тесла,
S – сечение в см²,
1,69 – постоянный коэффициент.

расчет мощности трансформатора по габаритам

Сначала определяем сечение, для чего перемножаем размеры А и Б.

S = 2,5 * 2,5 = 6,25 см²

Затем подставляем размер сечения в формулу и получаем мощность. Индукцию я выбрал 1,5Tc, так как у меня броневой витой магнитопровод.

P = 1,5 * 6,25² / 1,69 = 35 Ватт

Если требуется определить необходимую площадь сечения манитопровода исходя из известной мощности, то можно воспользоваться следующей формулой:

Нужно вычислить сечение броневого штампованного магнитопровода для изготовления трансформатора мощностью 50 Ватт.

S = ²√ (50 * 1,69 / 1,3) = 8см²

О величине индукции можно справиться в таблице. Не стоит использовать максимальные значения индукции, так как они могут сильно отличаться для магнитопроводов различного качества.

Максимальные ориентировочные значения индукции

Тип магнитопровода Магнитная индукция мах (Тл) при мощности трансформатора (Вт)
5-10 10-50 50-150 150-300 300-1000
Броневой штампованный 1,2 1,3 1,35 1,35 1,3
Броневой витой 1,55 1,65 1,65 1,65 1,6
Кольцевой витой 1,7 1,7 1,7 1,65 1,6

Видео: Как определить мощность трансформатора, несколько способов

Описание нескольких способов определения мощности 50 Гц трансформаторов.

Простейший расчет силового трансформатора позволяет найти сечение сердечника, число витков в обмотках и диаметр провода. Переменное напряжение в сети бывает 220 В, реже 127 В и совсем редко 110 В. Для транзисторных схем нужно постоянное напряжение 10 — 15 В, в некоторых случаях, например для мощных выходных каскадов усилителей НЧ — 25÷50 В. Для питания анодных и экранных цепей электронных ламп чаще всего используют постоянное напряжение 150 — 300 В, для питания накальных цепей ламп переменное напряжение 6,3 В. Все напряжения, необходимые для какого-либо устройства, получают от одного трансформатора, который называют силовым.

Силовой трансформатор выполняется на разборном стальном сердечнике из изолированных друг от друга тонких Ш-образных, реже П-образных пластин, а так же вытыми ленточными сердечниками типа ШЛ и ПЛ (Рис. 1).

Его размеры, а точнее, площадь сечения средней части сердечника выбираются с учетом общей мощности, которую трансформатор должен передать из сети всем своим потребителям.

Упрощенный расчет устанавливает такую зависимость: сечение сердечника S в см², возведенное в квадрат, дает общую мощность трансформатора в Вт.

Например, трансформатор с сердечником, имеющим стороны 3 см и 2 см (пластины типа Ш-20, толщина набора 30 мм), то есть с площадью сечения сердечника 6 см², может потреблять от сети и «перерабатывать» мощность 36 Вт. Это упрощенный расчет дает вполне приемлемые результаты. И наоборот, если для питания электрического устройства нужна мощность 36 Вт, то извлекая квадратный корень из 36, узнаем, что сечение сердечника должно быть 6 см².

Например, должен быть собран из пластин Ш-20 при толщине набора 30 мм, или из пластин Ш-30 при толщине набора 20 мм, или из пластин Ш-24 при толщине набора 25 мм и так далее.

Сечение сердечника нужно согласовать с мощностью для того, чтобы сталь сердечника не попадала в область магнитного насыщения. А отсюда вывод: сечение всегда можно брать с избытком, скажем, вместо 6 см² взять сердечник сечением 8 см² или 10 см². Хуже от этого не будет. А вот взять сердечник с сечением меньше расчетного уже нельзя т. к. сердечник попадет в область насыщения, а индуктивность его обмоток уменьшится, упадет их индуктивное сопротивление, увеличатся токи, трансформатор перегреется и выйдет из строя.

В силовом трансформаторе несколько обмоток. Во-первых, сетевая, включаемая в сеть с напряжением 220 В, она же первичная.

Кроме сетевых обмоток, в сетевом трансформаторе может быть несколько вторичных, каждая на свое напряжение. В трансформаторе для питания ламповых схем обычно две обмотки — накальная на 6,3 В и повышающая для анодного выпрямителя. В трансформаторе для питания транзисторных схем чаще всего одна обмотка, которая питает один выпрямитель. Если на какой-либо каскад или узел схемы нужно подать пониженное напряжение, то его получают от того же выпрямителя с помощью гасящего резистора или делителя напряжения.

Число витков в обмотках определяется по важной характеристике трансформатора, которая называется «число витков на вольт», и зависит от сечения сердечника, его материала, от сорта стали. Для распространенных типов стали можно найти «число витков на вольт», разделив 50—70 на сечение сердечника в см:

Так, если взять сердечник с сечением 6 см², то для него получится «число витков на вольт» примерно 10.

Число витков первичной обмотки трансформатора определяется по формуле:

Это значит, что первичная обмотка на напряжение 220 В будет иметь 2200 витков.

Число витков вторичной обмотки определяется формулой:

Если понадобится вторичная обмотка на 20 В, то в ней будет 240 витков.

Теперь выбираем намоточный провод. Для трансформаторов используют медный провод с тонкой эмалевой изоляцией (ПЭЛ или ПЭВ). Диаметр провода рассчитывается из соображений малых потерь энергии в самом трансформаторе и хорошего отвода тепла по формуле:

Если взять слишком тонкий провод, то он, во-первых, будет обладать большим сопротивлением и выделять значительную тепловую мощность.

Так, если принять ток первичной обмотки 0,15 А, то провод нужно взять 0,29 мм.

формула для нахождения сечения магнитопровода, как рассчитать обмотки

Простейший расчет силовых трансформаторов и автотрансформаторов

Иногда приходится самостоятельно изготовлять силовой трансформатор для выпрямителя. В этом случае простейший расчет силовых трансформаторов мощностью до 100—200 Вт проводится следующим образом.

Зная напряжение и наибольший ток, который должна давать вторичная обмотка (U2 и I2), находим мощность вторичной цепи: При наличии нескольких вторичных обмоток мощность подсчитывают путем сложения мощностей отдельных обмоток.

Далее, принимая КПД трансформатора небольшой мощности, равным около 80 %, определяем первичную мощность:

Мощность передается из первичной обмотки во вторичную через магнитный поток в сердечнике. Поэтому от значения мощности Р1 зависит площадь поперечного сечения сердечника S, которая возрастает при увеличении мощности. Для сердечника из нормальной трансформаторной стали можно рассчитать S по формуле:

где s — в квадратных сантиметрах, а Р1 — в ваттах.

По значению S определяется число витков w’ на один вольт. При использовании трансформаторной стали

Если приходится делать сердечник из стали худшего качества, например из жести, кровельного железа, стальной или железной проволоки (их надо предварительно отжечь, чтобы они стали мягкими), то следует увеличить S и w’ на 20—30 %.

Теперь можно рассчитать число витков обмоток

В режиме нагрузки может быть заметная потеря части напряжения на сопротивлении вторичных обмоток. Поэтому для них рекомендуется число витков брать на 5—10 % больше рассчитанного.

Ток первичной обмотки

Диаметры проводов обмоток определяются по значениям токов и исходя из допустимой плотности тока, которая для трансформаторов принимается в среднем 2 А/мм2. При такой плотности тока диаметр провода без изоляции любой обмотки в миллиметрах определяется по табл. 1 или вычисляется по формуле:

Когда нет провода нужного диаметра, то можно взять несколько соединенных параллельно более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу. Площадь поперечного сечения провода определяется по табл. 1 или рассчитывается по формуле:

Для обмоток низкого напряжения, имеющих небольшое число витков толстого провода и расположенных поверх других обмоток, плотность тока можно увеличить до 2,5 и даже 3 А/мм2, так как эти обмотки имеют лучшее охлаждение. Тогда в формуле для диаметра провода постоянный коэффициент вместо 0,8 должен быть соответственно 0,7 или 0,65.

В заключение следует проверить размещение обмоток в окне сердечника. Общая площадь сечения витков каждой обмотки находится (умножением числа витков w на площадь сечения провода, равную 0,8d2из, где dиз — диаметр провода в изоляции. Его можно определить по табл. 1, в которой также указана масса провода. Площади сечения всех обмоток складываются. Чтобы учесть ориентировочно неплотность намотки, влияние каркаса изоляционных прокладок между обмотками и их слоями, нужно найденную площадь увеличить в 2—3 раза. Площадь окна сердечника не должна быть меньше значения, полученного из расчета.

В качестве примера рассчитаем силовой трансформатор для выпрямителя, питающего некоторое устройство с электронными лампами. Пусть трансформатор должен иметь обмотку высокого напряжения, рассчитанную на напряжение 600 В и ток 50 мА, а также обмотку для накала ламп, имеющую U = 6,3 В и I = 3 А. Сетевое напряжение 220 В.

Определяем общую мощность вторичных обмоток:

Мощность первичной цепи

Находим площадь сечения сердечника из трансформаторной стали:

Число витков на один вольт

Ток первичной обмотки

Число витков и диаметр проводов обмоток равны:

• для первичной обмотки

• для повышающей обмотки

• для обмотки накала ламп

Предположим, что окно сердечника имеет площадь сечения 5×3 = 15 см2 или 1500 мм2, а у выбранных проводов диаметры с изоляцией следующие: d1из = 0,44 мм; d2из = 0,2 мм; d3из = 1,2 мм.

Проверим размещение обмоток в окне сердечника. Находим площади сечения обмоток:

• для первичной обмотки

• для повышающей обмотки

• для обмотки накала ламп

Общая площадь сечения обмоток составляет примерно 430 мм2.

Как видно, она в три с лишним раза меньше площади окна и, следовательно, обмотки разместятся.

Расчет автотрансформатора имеет некоторые особенности. Его сердечник надо рассчитывать не на полную вторичную мощность Р2, а только на ту ее часть, которая передается магнитным потоком и может быть названа трансформируемой мощностью Рт.

Эта мощность определяется по формулам:

— для повышающего автотрансформатора

— для понижающего автотрансформатора, причем

Если автотрансформатор имеет отводы и будет работать при различных значениях n, то в расчете надо брать значение п, наиболее отличающееся от единицы, так как в этом случае значение Рт будет наибольшее и надо, чтобы сердечник мог передать такую мощность.

Затем определяется расчетная мощность Р, которая может быть принята равной 1,15•Рт. Множитель 1,15 здесь учитывает КПД автотрансформатора, который обычно несколько выше, чем у трансформатора. Д

алее применяются формулы расчета площади сечения сердечника (по мощности Р), числа витков на вольт, диаметров проводов, указанные выше для трансформатора. При этом надо иметь в виду, что в части обмотки, являющейся общей для первичной и вторичной цепей, ток равен I1 — I2, если автотрансформатор повышающий, и I2 — I1 если он понижающий.

KOMITART – развлекательно-познавательный портал

Разделы сайта

DirectAdvert NEWS

Друзья сайта

Осциллографы

Мультиметры

Купить паяльник

Купить Микшер

Купить Караоке

Статистика

Простой расчет понижающего трансформатора.

Магнитопровод низкочастотного трансформатора состоит из стальных пластин. Использование пластин вместо монолитного сердечника уменьшает вихревые токи, что повышает КПД и снижает нагрев.

Магнитопроводы вида 1, 2 или 3 получают методом штамповки.
Магнитопроводы вида 4, 5 или 6 получают путём навивки стальной ленты на шаблон, причём магнитопроводы типа 4 и 5 затем разрезаются пополам.

1, 4 – броневые,
2, 5 – стержневые,
6, 7 – кольцевые.

Чтобы определить сечение магнитопровода, нужно перемножить размеры «А» и «В». Для расчётов в этой статье используется размер сечения в сантиметрах.

Трансформаторы с витыми стержневым поз.1 и броневым поз.2 магнитопроводами.

Трансформаторы с штампованными броневым поз.1 и стержневым поз.2 магнитопроводами.

Трансформаторы с витыми кольцевыми магнитопроводами.

Габаритную мощность трансформатора можно приблизительно определить по сечению магнитопровода. Правда, ошибка может составлять до 50%, и это связано с рядом факторов. Габаритная мощность напрямую зависит от конструктивных особенностей магнитопровода, качества и толщины используемой стали, размера окна, величины индукции, сечения провода обмоток и даже качества изоляции между отдельными пластинами.

Чем дешевле трансформатор, тем ниже его относительная габаритная мощность.
Конечно, можно путём экспериментов и расчетов определить максимальную мощность трансформатора с высокой точностью, но смысла большого в этом нет, так как при изготовлении трансформатора, всё это уже учтено и отражено в количестве витков первичной обмотки.
Так что, при определении мощности, можно ориентироваться по площади сечения набора пластин проходящего через каркас или каркасы, если их две штуки.

Где:
P – мощность в Ваттах,
B – индукция в Тесла,
S – сечение в см²,
1,69 – постоянный коэффициент.

Сначала определяем сечение, для чего перемножаем размеры А и Б.

Затем подставляем размер сечения в формулу и получаем мощность. Индукцию я выбрал 1,5Tc, так как у меня броневой витой магнитопровод.

Если требуется определить необходимую площадь сечения манитопровода исходя из известной мощности, то можно воспользоваться следующей формулой:

Нужно вычислить сечение броневого штампованного магнитопровода для изготовления трансформатора мощностью 50 Ватт.

О величине индукции можно справиться в таблице. Не стоит использовать максимальные значения индукции, так как они могут сильно отличаться для магнитопроводов различного качества.

Максимальные ориентировочные значения индукции.

КАК РАССЧИТАТЬ ПОНИЖАЮЩИЙ ТРАНСФОРМАТОР.

В домашнем хозяйстве бывает необходимо оборудовать освещение в сырых помещениях: подвале или погребе и т.д. Эти помещения имеют повышенную степень опасности поражения электрическим током.

В этих случаях следует пользоваться электрооборудованием, рассчитанным на пониженное напряжение питания, не более 42 вольт .
Можно пользоваться электрическим фонарем с батарейным питанием или воспользоваться понижающим трансформатором с 220 вольт на 36 вольт .

В качестве примера давайте рассчитаем и изготовим однофазный силовой трансформатор 220/36 вольт.
Для освещения таких помещений подойдет электрическая лампочка на 36 Вольт и мощностью 25 — 60 Ватт . Такие лампочки с цоколем под стандартный патрон продаются в магазинах электро-товаров.

Если вы найдете лампочку другой мощности, например на 40 ватт , нет ничего страшного — подойдет и она. Просто наш трансформатор будет выполнен с запасом по мощности.

Мощность во вторичной цепи: Р2 = U2 • I2 = 60 ватт

Где:
Р2 – мощность на выходе трансформатора, нами задана 60 ватт ;
U2 — напряжение на выходе трансформатора, нами задано 36 вольт ;
I2 — ток во вторичной цепи, в нагрузке.

КПД трансформатора мощностью до 100 ватт обычно равно не более η = 0,8 .
КПД определяет, какая часть мощности потребляемой от сети идет в нагрузку. Оставшаяся часть идет на нагрев проводов и сердечника. Эта мощность безвозвратно теряется.

Определим мощность потребляемую трансформатором от сети с учетом потерь:

Мощность передается из первичной обмотки во вторичную через магнитный поток в магнитопроводе. Поэтому от значения Р1 , мощности потребляемой от сети 220 вольт , зависит площадь поперечного сечения магнитопровода S .

Магнитопровод – это сердечник Ш – образной или О – образной формы, набранный из листов трансформаторной стали. На сердечнике будет располагаться каркас с первичной и вторичной обмотками.

Площадь поперечного сечения магнитопровода рассчитывается по формуле:

Где:
S — площадь в квадратных сантиметрах,
P1 — мощность первичной сети в ваттах.

По значению S определяется число витков w на один вольт по формуле:

В нашем случае площадь сечения сердечника равна S = 10,4 см.кв .

Рассчитаем число витков в первичной и вторичной обмотках.

Число витков в первичной обмотке на 220 вольт:

Число витков во вторичной обмотке на 36 вольт:

В режиме нагрузки может быть заметная потеря части напряжения на активном сопротивлении провода вторичной обмотки. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного. Возьмем W2 = 180 витков .

Величина тока в первичной обмотке трансформатора:

Ток во вторичной обмотке трансформатора:

Диаметры проводов первичной и вторичной обмоток определяются по значениям токов в них исходя из допустимой плотности тока, количества ампер на 1 квадратный миллиметр площади проводника. Для трансформаторов плотность тока, для медного провода, принимается 2 А/мм² .

При такой плотности тока диаметр провода без изоляции в миллиметрах определяется по формуле:

Для первичной обмотки диаметр провода будет:

Диаметр провода для вторичной обмотки:

ЕСЛИ НЕТ ПРОВОДА НУЖНОГО ДИАМЕТРА , то можно взять несколько, соединенных параллельно, более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу.

Площадь поперечного сечения провода определяется по формуле:

где: d — диаметр провода.

Например: мы не смогли найти провод для вторичной обмотки диаметром 1,1 мм .

Площадь поперечного сечения провода диаметром 1,1 мм равна:

Округлим до 1,0 мм² .

Из таблицы выбираем диаметры двух проводов сумма площадей поперечного сечения которых равна 1.0 мм² .

Например, это два провода диаметром по 0,8 мм . и площадью по 0,5 мм² .

Или два провода:

— первый диаметром 1,0 мм . и площадью сечения 0,79 мм² ,
— второй диаметром 0,5 мм . и площадью сечения 0,196 мм² .
что в сумме дает: 0,79 + 0,196 = 0,986 мм² .

Намотка катушки ведется двумя проводами одновременно, строго выдерживается равное количество витков обоих проводов. Начала этих проводов соединяются между собой. Концы этих проводов также соединяются.
Получается как бы один провод с суммарным поперечным сечением двух проводов.

Расчет трансформатора: онлайн калькулятор или дедовский метод для дома — выбери сам

Ремонт современных электрических приборов и изготовление самодельных конструкций часто связаны с блоками питания, пускозарядными и другими устройствами, использующими трансформаторное преобразование энергии. Их состояние надо уметь анализировать и оценивать.

Считаю, что вам поможет выполнить расчет трансформатора онлайн калькулятор, работающий по подготовленному алгоритму, или старый проверенный дедовский метод с формулами, требующий вдумчивого отношения. Испытайте оба способа, используйте лучший.

Сразу заостряю ваше внимание на том вопросе, что приводимые методики не способны точно учесть магнитные свойства сердечника, который может быть выполнен из разных сортов электротехнических стали.

Поэтому реальные электрические характеристики собранного трансформатора могут отличаться на сколько-то вольт или число ампер от полученного расчетного значения. На практике это обычно не критично, но, всегда может быть откорректировано изменением числа количества в одной из обмоток.

Поперечное сечение магнитопровода передает первичную энергию магнитным потоком во вторичную обмотку. Обладая определенным магнитным сопротивлением, оно ограничивает процесс трансформации.

От формы, материала и сечения сердечника зависит мощность, которую можно преобразовывать и нормально передавать во вторичную цепь.

Как пользоваться онлайн калькулятором для расчета трансформатора пошагово

Подготовка исходных данных за 6 простых шагов

Шаг №1. Указание формы сердечника и его поперечного сечения

Лучшим распределением магнитного потока обладают сердечники, набранные из Ш-образных пластин. Кольцевая форма из П-образных составляющих деталей обладает большим сопротивлением.

Для проведения расчета надо указать форму сердечника по виду пластины (кликом по точке) и его измеренные линейные размеры:

  1. Ширину пластины под катушкой с обмоткой.
  2. Толщину набранного пакета.

Вставьте эти данные в соответствующие ячейки таблицы.

Шаг №2. Выбор напряжений

Трансформатор создается как повышающей, понижающей (что в принципе обратимо) или разделительной конструкцией. В любом случае вам необходимо указать, какие напряжения вам нужны на его первичной и вторичной обмотке в вольтах.

Заполните указанные ячейки.

Шаг №3. Частота сигнала переменного тока

По умолчанию выставлена стандартная величина бытовой сети 50 герц. При необходимости ее нужно изменить на требуемую по другому расчету. Но, для высокочастотных трансформаторов, используемых в импульсных блоках питания, эта методика не предназначена.

Их создают из других материалов сердечника и рассчитывают иными способами.

Шаг №4. Коэффициент полезного действия

У обычных моделей сухих трансформаторов КПД зависит от приложенной электрической мощности и вычисляется усредненным значением.

Но, вы можете откорректировать его значение вручную.

Шаг №5. Магнитная индуктивность

Параметр определяет зависимость магнитного потока от геометрических размеров и формы проводника, по которому протекает ток.

По умолчанию для расчета трансформаторов принят усредненный параметр в 1,3 тесла. Его можно корректировать.

Шаг №6. Плотность тока

Термин используется для выбора провода обмотки по условиям эксплуатации. Среднее значение для меди принято 3,5 ампера на квадратный миллиметр поперечного сечения.

Для работы трансформатора в условиях повышенного нагрева его следует уменьшить. При принудительном охлаждении или пониженных нагрузках допустимо увеличить. Однако 3,5 А/мм кв вполне подходит для бытовых устройств.

Выполнение онлайн расчета трансформатора

После заполнения ячеек с исходными данными нажимаете на кнопку «Рассчитать». Программа автоматически обрабатывает введенные данные и показывает результаты расчета таблицей.

Как рассчитать силовой трансформатор по формулам за 5 этапов

Привожу упрощенную методику, которой пользуюсь уже несколько десятков лет для создания и проверки самодельных трансформаторных устройств из железа неизвестной марки по мощности нагрузки.

По ней мне практически всегда получалось намотать схему с первой попытки. Очень редко приходилось добавлять или уменьшать некоторое количество витков.

Этап №1. Как мощность сухого трансформатора влияет на форму и поперечное сечение магнитопровода

В основу расчета положено среднее соотношение коэффициента полезного действия ŋ, как отношение электрической мощности S2, преобразованной во вторичной обмотке к приложенной полной S1 в первичной.

Потери мощности во вторичной обмотке оценивают по статистической таблице.

Мощность трансформатора, ваттыКоэффициент полезного действия ŋ
15÷500,50÷0,80
50÷1500,80÷0,90
150÷3000,90÷0,93
300÷10000,93÷0,95
>10000.95÷0,98

Электрическая мощность устройства определяется произведением номинального тока, протекающего по первичной обмотке в амперах, на напряжение бытовой проводки в вольтах.

Она преобразуется в магнитную энергию, протекающую по сердечнику, полноценно распределяясь в нем в зависимости от формы распределения потоков:

  1. для кольцевой фигуры из П-образных пластин площадь поперечного сечения под катушкой магнитопровода рассчитывается как Qc=√S1;
  2. у сердечника из Ш-образных пластин Qc=0,7√S1.

Этап №2. Особенности вычисления коэффициента трансформации и токов внутри обмоток

Силовой трансформатор создается для преобразования электрической энергии одной величины напряжения в другое, например, U1=220 вольт на входе и U2=24 V — на выходе.

Коэффициент трансформации в приведенном примере записывается как выражение 220/24 или дробь с первичной величиной напряжения в числителе, а вторичной — знаменателе. Он же позволяет определить соотношение числа витков между обмотками.

На первом этапе мы уже определили электрические мощности каждой обмотки. По ним и величине напряжения необходимо рассчитать силу электрического тока I=S/U внутри любой катушки.

Этап №3. Как вычислить диаметры медного провода для каждой обмотки

При определении поперечного сечения проводника катушки используется эмпирическое выражение, учитывающее, что плотность тока лежит в пределах 1,8÷3 ампера на квадратный миллиметр.

Величину тока в амперах для каждой обмотки мы определили на предыдущем шаге.

Теперь просто извлекаем из нее квадратный корень и умножаем на коэффициент 0,8. Полученное число записываем в миллиметрах. Это расчетный диаметр провода для катушки.

Он подобран с учетом выделения допустимого тепла из-за протекающего по нему тока. Если место в окне сердечника позволяет, то диаметр можно немного увеличить. Тогда эти обмотки будут лучше приспособлены к тепловым нагрузкам.

Когда даже при плотной намотке все витки провода не вмещаются в окне магнитопровода, то его поперечное сечение допустимо чуть уменьшить. Но, такой трансформатор следует использовать для кратковременной работы и последующего охлаждения.

Этап №4. Определение числа витков обмоток по характеристикам электротехнической стали: важные моменты

Вычисление основано на использовании магнитных свойств железа сердечника. Промышленные трансформаторы собираются из разных сортов электротехнической стали, подбираемые под конкретные условия работы. Они рассчитываются по сложным, индивидуальным алгоритмам.

Домашнему мастеру достаются магнитопроводы неизвестной марки, определить электротехнические характеристики которой ему практически не реально. Поэтому формулы учитывают усредненные параметры, которые не сложно откорректировать при наладке.

Для расчета вводится эмпирический коэффициент ω’. Он учитывает величину напряжения в вольтах, которое наводится в одном витке катушки и связан с поперечным сечением магнитопровода Qc (см кв).

В первичной обмотке число витков вычислим, как W1= ω’∙U1, а во вторичной — W2= ω’∙U2.

Этап №5. Учет свободного места внутри окна магнитопровода

На этом шаге требуется прикинуть: войдут ли все обмотки в свободное пространство окна сердечника с учетом габаритов катушки.

Для этого допускаем, что провод имеет сечение не круглое, а квадрата со стороной одного диаметра. Тогда при совершенно идеальной плотной укладке он займет площадь, равную произведению единичного сечения на количество витков.

Увеличиваем эту площадь процентов на 30, ибо так идеально намотать витки не получится. Это будет место внутри полостей катушки, а она еще займет определенное пространство.

Далее сравниваем полученные площади для катушек каждой обмотки с окном магнитопровода и делаем выводы.

Второй способ оценки — мотать витки «на удачу». Им можно пользоваться, если новая конструкция перематывается проводом со старых рабочих катушек на том же сердечнике.

4 практических совета по наладке и сборке трансформатора: личный опыт

Сборка магнитопровода

Степень сжатия пластин влияет на шумы, издаваемые железом сердечника при вибрациях от протекающего по нему магнитного потока.

Одновременно не плотное прилегание железа с воздушными зазорами увеличивает магнитное сопротивление, вызывает дополнительные потери энергии.

Если для стягивания пластин используются металлические шпильки, то их надо изолировать от железа сердечника бумажными вставками и картонными шайбами.

Иначе по этому креплению возникнет искусственно созданный короткозамкнутый виток. В нем станет наводиться дополнительная ЭДС, значительно снижающая коэффициент полезного действия.

Состояние изоляции крепежных болтов относительно железа сердечника проверяют мегаомметром с напряжением от 1000 вольт. Показание должно быть не менее 0,5 Мом.

Расчет провода по плотности тока

Оптимальные размеры трансформатора играют важную роль для устройств, работающих при экстремальных нагрузках.

Для питающей обмотки, подключенной к бытовой проводке лучше выбирать плотность тока из расчета 2 А/мм кв, а для остальных — 2,5.

Способы намотки витков

Быстрая навивка на станке «внавал» занимает повышенный объем и нормально работает при относительно небольших диаметрах провода.

Качественную укладку обеспечивает намотка плотными витками один возле другого с расположением их рядами и прокладкой ровными слоями изоляции из конденсаторной бумаги, лакоткани, других материалов.

Хорошо подходят для создания диэлектрического слоя целлофановые (не из полиэтилена) ленты. Можно резать их от упаковок сигарет. Отлично справляется с задачами слоя изоляции кулинарная пленка для запекания мясных продуктов и выпечек.

Она же придает красивый вид внешнему покрытию катушки, одновременно обеспечивая ее защиту от механических повреждений.

Обмотки сварочных и пускозарядных устройств, работающие в экстремальных условиях с высокими нагрузками, желательно дополнительно пропитывать между рядами слоями силикатного клея (жидкое стекло).

Ему требуется дать время, чтобы засох. После этого наматывают очередной слой, что значительно удлиняет сроки сборки. Зато созданный по такой технологии трансформатор хорошо выдерживает высокие температурные нагрузки без создания межвитковых замыканий.

Как вариант такой защиты работает пропитка рядов провода разогретым воском, но, жидкое стекло обладает лучшей изоляцией.

Когда длины провода не хватает для всей обмотки, то его соединяют. Подключение следует делать не внутри катушки, а снаружи. Это позволит регулировать выходное напряжение и силу тока.

Замер тока на холостом ходу трансформатора

Мощные сварочные аппараты требуют точного подбора объема пластин и количества витков под рабочее напряжение, что взаимосвязано.

Выполнить качественную наладку позволяет замер тока холостого хода при оптимальной величине напряжения на входной обмотке питания.

Его значение должно укладываться в предел 100÷150 миллиампер из расчета на каждые 100 ватт приложенной мощности для трансформаторных изделий длительного включения. Когда используется режим кратковременной работы с частыми остановками, то его можно увеличить до 400÷500 мА.

Выполняя расчет трансформатора онлайн калькулятором или проверку его вычислений дедовскими формулами, вам придется собирать всю конструкцию в железе и проводах. При первых сборках своими руками можно наделать много досадных ошибок.

Чтобы их избежать рекомендую посмотреть видеоролик владельца Юность Ru. Он очень подробно и понятно объясняет технологию сборки и расчета. Под видео расположено много полезных комментариев, с которыми тоже следует ознакомиться.

Если заметите в ролике некоторые моменты, которые немного отличаются от моих рекомендаций, то можете задавать вопросы в комментариях. Обязательно обсудим.

Расчет трансформатора

Многие электронные и радиотехнические устройства получают питание от нескольких источников постоянного напряжения. Они относятся к так называемым вторичным источникам питания. В качестве первичных источников выступают сети переменного тока, напряжением 127 и 220 вольт, с частотой 50 Гц. Для обеспечения аппаратуры постоянным напряжением, вначале требуется выполнить повышение или понижение сетевого напряжения до необходимого значения. Чтобы получить требуемые параметры, необходимо произвести расчет трансформатора, который выполняет функцию посредника между электрическими сетями и приборам, работающими при постоянном напряжении.

Расчет силового трансформатора

Для точного расчета трансформатора требуются довольно сложные вычисления. Тем не менее, существуют упрощенные варианты формул, используемые радиолюбителями при создании силовых трансформаторов с заданными параметрами.

В начале нужно заранее рассчитать величину силы тока и напряжения для каждой обмотки. С этой целью на первом этапе определяется мощность каждой повышающей или понижающей вторичной обмотки. Расчет выполняется с помощью формул: P2 = I2xU2; P3 = I3xU3;P4 = I4xU4, и так далее. Здесь P2, P3, P4 являются мощностями, которые выдают обмотки трансформатора, I2, I3, I4 – сила тока, возникающая в каждой обмотке, а U2, U3, U4 – напряжение в соответствующих обмотках.

Определить общую мощность трансформатора (Р) необходимо отдельные мощности обмоток сложить и полученную сумму умножить на коэффициент потерь трансформатора 1,25. В виде формулы это выглядит как: Р = 1,25 (Р2 + Р3 + Р4 + …).

Исходя из полученной мощности, выполняется расчет сечения сердечника Q (в см2). Для этого необходимо извлечь квадратный корень из общей мощности и полученное значение умножить на 1,2: . С помощью сечения сердечника необходимо определить количество витков n , соответствующее 1 вольту напряжения: n = 50/Q.

На следующем этапе определяется количество витков для каждой обмотки. Вначале рассчитывается первичная сетевая обмотка, в которой количество витков с учетом потерь напряжения составит: n1 = 0,97 xn xU1. Вторичные обмотки рассчитываются по следующим формулам: n2 = 1,03 x n x U2; n3 = 1,03 x n x U3;n4 = 1,03 x n x U4;…

Любая обмотка трансформатора имеет следующий диаметр проводов:
где I – сила тока, проходящего через обмотку в амперах, d – диаметр медного провода в мм. Определить силу тока в первичной (сетевой) обмотке можно по формуле: I1 = P/U1.Здесь используется общая мощность трансформатора.

Далее выбираются пластины для сердечника с соответствующими типоразмерами. В связи с этим, вычисляется площадь, необходимая для размещения всей обмотки в окне сердечника. Необходимо воспользоваться формулой: Sм = 4 x (d1 2 n1 + d2 2 n2 +d3 2 n3 + d4 2 n4 + …), в которой d1, d2, d3 и d4 – диаметр провода в мм, n1, n2, n3 и n4 – количество витков в обмотках. В этой формуле берется в расчет толщина изоляции проводников, их неравномерная намотка, место расположения каркаса в окне сердечника.

Полученная площадь Sм позволяет выбрать типоразмер пластины таким образом, чтобы обмотка свободно размещалась в ее окне. Не рекомендуется выбирать окно, размеры которого больше, чем это необходимо, поскольку это снижает нормальную работоспособность трансформатора.

Заключительным этапом расчетов будет определение толщины набора сердечника (b), осуществляемое по следующей формуле: b = (100 xQ)/a, в которой «а» – ширина средней части пластины. После выполненных расчетов можно выбирать сердечник с необходимыми параметрами.

Как рассчитать мощность трансформатора

Чаще всего необходимость расчета мощности трансформатора возникает при работе со сварочной аппаратурой, особенно когда технические характеристики заранее неизвестны.

Мощность трансформатора тесно связана с силой тока и напряжением, при которых аппаратура будет нормально функционировать. Самым простым вариантом расчета мощности будет умножение значения напряжения на величину силы тока, потребляемого устройством. Однако на практике не все так просто, прежде всего из-за различия в типах устройств и применяемых в них сердечников. В качестве примера рекомендуется рассматривать Ш-образные сердечники, получившие наиболее широкое распространение, благодаря своей доступности и сравнительно невысокой стоимости.

Для расчета мощности трансформатора понадобятся параметры его обмотки. Эти вычисления проводятся по такой же методике, которая рассматривалась ранее. Наиболее простым вариантом считается практическое измерение обмотки трансформатора. Показания нужно снимать аккуратно и максимально точно. После получения всех необходимых данных можно приступать к расчету мощности.

Ранее, для определения площади сердечника применялась формула: S=1,3*√Pтр. Теперь же, зная площадь сечения магнитопровода, эту формулу можно преобразовать в другой вариант: Ртр = (S/1,3)/2. В обеих формулах число 1,3 является коэффициентом с усредненным значением.

Расчёт трансформатора по сечению сердечника

Конструкция трансформатора зависят от формы магнитопровода. Они бывают стержневыми, броневыми и тороидальными. В стержневых трансформаторах обмотки наматываются на стержни сердечника. В броневых – магнитопроводом только частично обхватываются обмотки. В тороидальных конструкциях выполняется равномерное распределение обмоток по магнитопроводу.

Для изготовления стержневых и броневых сердечников используются отдельные тонкие пластины из трансформаторной стали, изолированные между собой. Тороидальные магнитопроводы представляют собой намотанные рулоны из ленты, для изготовления которых также используется трансформаторная сталь.

Важнейшим параметром каждого сердечника считается площадь поперечного сечения, оказывающая большое влияние на мощность трансформатора. КПД стержневых трансформаторов значительно превышает такие же показатели у броневых устройств. Их обмотки лучше охлаждаются, оказывая влияние на допустимую плотность тока. Поэтому в качестве примера для расчетов рекомендуется рассматривать именно эту конструкцию.

В зависимости от параметров сердечника, определяется значение габаритной мощности трансформатора. Она должна превышать электрическую, поскольку возможности сердечника связаны именно с габаритной мощностью. Эта взаимная связь отражается и в расчетной формуле: Sо хSс = 100 хРг /(2,22 * Вс х j х f х kох kc). Здесь Sо и Sс являются соответственно площадями окна и поперечного сечения сердечника, Рг – значение габаритной мощности, Вс – показатель магнитной индукции в сердечнике, j – плотность тока в проводниках обмоток, f – частота переменного тока, kо и kc – коэффициенты заполнения окна и сердечника.

Как определить число витков обмотки трансформатора не разматывая катушку

При отсутствии данных о конкретной модели трансформатора, количество витков в обмотках определяется при помощи одной из функций мультиметра.

Мультиметр следует перевести в режим омметра. Затем определяются выводы всех имеющихся обмоток. Если между магнитопроводом и катушкой имеется зазор, то сверху всех обмоток наматывается дополнительная обмотка из тонкого провода. От количества витков будет зависеть точность результатов измерений.

Один щуп прибора подключается к концу основной обмотки, а другой щуп – к дополнительной обмотке. По очереди выполняются измерения всех обмоток. Та из них, у которой наибольшее сопротивление, считается первичной. Полученные данные позволяют выполнить расчет трансформатора и вместе с другими параметрами выбрать наиболее оптимальную конструкцию для конкретной электрической цепи.

Силовые трансформаторы, простой расчет

В статье на конкретном примере приводится простой метод расчета силового трансформатора для блока питания или зарядного устройства.

  1. Перед тем, как использовать силовой трансформатор необходимо определиться с его мощностью.

Например, нужно рассчитать силовой трансформатор для зарядного устройства, которым будем заряжать автомобильные аккумуляторы емкостью до 60 А/час.

Как известно, ток заряда равен 0,1 от емкости аккумулятора, в нашем случае это 6 Ампер.

Напряжение для заряда аккумулятора должно быть не менее 15 В, плюс падение напряжения на диодах и токоограничивающем резисторе, примем его около 5 В.

Итого, напряжение вторичной обмотки должно быть около 20 В, при токе до 6 А. Мощность при этом, будет равна Р = 6 А х 20 В = 120 Вт.

К.п.д. силового трансформатора при мощности до 60 Вт составляет 0,75. При мощности до 150 Вт 0,8 и при больших мощностях 0,85.

В нашем случае принимаем к.п.д. равным 0,8.

При мощности вторичной обмотки 120 Вт, с учетом к.п.д. мощность первичной обмотки равна:

120 Вт : 0,8 = 150 Вт.

  1. По этой мощности определяем площадь поперечного сечения сердечника, на котором будут расположены обмотки.

S (см 2 ) = (1,0 ÷1,2) √Р

Коэффициент перед корнем квадратным из мощности зависит от качества электротехнической стали сердечника.

Принимаем его равным среднему значению 1,1 и получаем площадь сердечника равной 13,5 см 2 .

  1. Теперь нужно определить дополнительную величину – количество витков на вольт. Обозначим ее N.

Коэффициент от 50 до 70 зависит от качества стали. Возьмем среднее значение 60. Получаем количество витков на вольт равным:

Округлим это значение до 4,5 витка на вольт.

Первичная обмотка будет работать от 220 В. Ее количество витков равно 220 х 4,5 = 990 витков.

Вторичная обмотка должна выдавать 20 В. Ее количество витков равно 20 х 4,5 = 90 витков.

  1. Осталось определить диаметр провода обмоток.

Для этого нужно знать ток каждой обмотки. Для вторичной обмотки ток нам известен, его величина 6 А.

Ток первичной обмотки определим, как мощность, деленную на напряжение. (Сдвиг фаз для упрощения расчета учитывать не будем).

I1 = 150 Вт / 220 В = 0,7 А

Диаметр провода определяем по формуле:

Коэффициент перед корнем квадратным влияет на плотность тока в проводе. Чем больше его значение, тем меньше будет греться провод при работе. Примем среднее значение.

Для меди плотность тока до 3,2 А/мм кв, для алюминиевых проводов до 2А/мм кв.

Диаметр провода первичной обмотки:

D1 = 0,75 √0,7 = 0,63 мм

Диаметр провода вторичной обмотки:

D2 = 0,75 √6 = 1,84 мм

Для намотки выбираем ближайший больший диаметр. Если нет толстого провода для вторичной обмотки, можно намотать ее в два провода. При этом суммарная площадь сечения проводов должна быть не меньше площади сечения для рассчитанного диаметра провода. Как известно, площадь сечения равна πr² , где π это 3,14, а r — радиус провода.

Вот и весь расчет.

Если вторичных обмоток несколько, сумма их мощностей не должна превышать величину, равную мощности первичной обмотки, умноженной на к.п.д. Количество витков на вольт одинаково для всех обмоток конкретного трансформатора. Если известно количество витков на вольт, можно намотать обмотку на любое напряжение, главное, чтобы она влезла в окно магнитопровода. Диаметр провода каждой обмотки определяется исходя из величины тока этой обмотки.

Овладев этой простой методикой, вы сможете не только изготовить нужный вам силовой трансформатор, но и подобрать уже готовый.

Материал статьи продублирован на видео:

Расчет трансформатора

В раздел : Советы → Расcчитать силовой трансформатор

Как рассчитать силовой трансформатор и намотать самому.
Можно подобрать готовый трансформатор из числа унифицированных типа ТН, ТА, ТНА, ТПП и других. А если Вам необходимо намотать или перемотать трансформатор под нужное напряжение, что тогда делать?
Тогда необходимо подобрать подходящий по мощности силовой трансформатор от старого телевизора, к примеру, трансформатор ТС-180 и ему подобные.
Надо четко понимать, что чем больше количества витков в первичной обмотке тем больше её сопротивление и поэтому меньше нагрев и второе, чем толще провод, тем больше можно получить силу тока, но это зависит от размеров сердечника – сможете ли разместить обмотку.
Что делаем далее, если неизвестно количество витков на вольт? Для этого необходим ЛАТР, мультиметр (тестер) и прибор измеряющий переменный ток – амперметр. Наматываем по вашему усмотрению обмотку поверх имеющейся, диаметр провода любой, для удобства можем намотать и просто монтажным проводом в изоляции.

Формула для расчета витков трансформатора

Сопутствующие формулы: P=U2*I2 Sсерд(см2)= √ P(ва) N=50/S I1(a)=P/220 W1=220*N W2=U*N D1=0,02*√i1(ma) D2=0,02*√i2(ma) K=Sокна/(W1*s1+W2*s2)

50/S – это эмпирическая формула, где S – площадь сердечника трансформатора в см2 (ширину х толщину), считается, что она справедлива до мощности порядка 1кВт.
Измерив площадь сердечника, прикидываем сколько надо витков намотать на 10 вольт, если это не очень трудно, не разбирая трансформатора наматываем контрольную обмотку через свободное пространство (щель). Подключаем лабораторный автотрансформатор к первичной обмотке и подаёте на неё напряжение, последовательно включаем контрольный амперметр, постепенно повышаем напряжение ЛАТР-ом, до начала появления тока холостого хода.
Если вы планируете намотать трансформатор с достаточно “жёсткой” характеристикой, к примеру, это может быть усилитель мощности передатчика в режиме SSB, телеграфном, где происходят довольно резкие броски тока нагрузки при высоком напряжении ( 2500 -3000 в), например, тогда ток холостого хода трансформатора устанавливаем порядка 10% от максимального тока, при максимальной нагрузке трансформатора. Замерив полученное напряжение, намотанной вторичной контрольной обмотки, делаем расчет количества витков на вольт.
Пример: входное напряжение 220вольт, измеренное напряжение вторичной обмотки 7,8 вольта, количество витков 14.

Рассчитываем количества витков на вольт
14/7,8=1,8 витка на вольт.

Если нет под рукой амперметра, то вместо него можно использовать вольтметр, замеряя падение напряжение на резисторе, включенного в разрыв подачи напряжения к первичной обмотке, потом рассчитать ток из полученных измерений.

Вариант 2 расчета трансформатора.
Зная необходимое напряжение на вторичной обмотке (U2) и максимальный ток нагрузки (Iн), трансформатор рассчитывают в такой последовательности:

1. Определяют значение тока, протекающего через вторичную обмотку трансформатора:
I2 = 1,5 Iн ,
где: I2 – ток через обмотку II трансформатора, А;
Iн – максимальный ток нагрузки, А.
2. Определяем мощность, потребляемую выпрямителем от вторичной обмотки трансформатора:
P2 = U2 * I2 ,
где: P2 – максимальная мощность, потребляемая от вторичной обмотки, Вт;
U2 – напряжение на вторичной обмотке, В;
I2 – максимальный ток через вторичную обмотку трансформатора, А.
3. Подсчитываем мощность трансформатора:
Pтр = 1,25 P2 ,
где: Pтр – мощность трансформатора, Вт;
P2 – максимальная мощность, потребляемая от вторичной обмотки трансформатора, Вт.
Если трансформатор должен иметь несколько вторичных обмоток, то сначала подсчитывают их суммарную мощность, а затем мощность самого трансформатора.
4. Определяют значение тока, текущего в первичной обмотке:
I1 = Pтр / U1 ,
где: I1 – ток через обмотку I, А;
Ртр – подсчитанная мощность трансформатора, Вт;
U1 – напряжение на первичной обмотке трансформатора (сетевое напряжение).
5. Рассчитываем необходимую площадь сечения сердечника магнитопровода:
S = 1,3 Pтр ,
где: S – сечение сердечника магнитопровода, см2;
Ртр – мощность трансформатора, Вт.
6. Определяем число витков первичной (сетевой) обмотки:
w1 = 50 U1 / S ,
где: w1 – число витков обмотки;
U1 – напряжение на первичной обмотке, В;
S – сечение сердечника магнитопровода, см2.
7. Подсчитывают число витков вторичной обмотки:
w2 = 55 U2 / S ,
где: w2 – число витков вторичной обмотки;
U2 – напряжение на вторичной обмотке, В;
S-сечение сердечника магнитопровода, см2.
8. Высчитываем диаметр проводов обмоток трансформатора:
d = 0,02 I ,
где: d-диаметр провода, мм;
I-ток через обмотку, мА.

Ориентировочный диаметр провода для намотки обмоток трансформатора в таблице 1.

Таблица 1
Iобм, maЕще один способ расчета мощности трансформатора по габаритам.
Ориентировочно посчитать мощность трансформатора можно используя формулу:
P=0.022*S*С*H*Bm*F*J*Кcu*КПД;
P – мощность трансформатора, В*А;
S – сечение сердечника, см²
L, W – размеры окна сердечника, см;
Bm – максимальная магнитная индукция в сердечнике, Тл;
F – частота, Гц;
Кcu – коэффициент заполнения окна сердечника медью;
КПД – коэффициент полезного действия трансформатора;
Имея в виду что для железа максимальная индукция составляет 1 Тл.
Варианты значений для подсчета мощности трансформатора КПД = 0,9, f =50, B = 1 – магнитная индукция [T], j =2.5 – плотность тока в проводе обмоток [A/кв.мм] для непрерывной работы, KПД =0,45 – 0,33.

Если вы располагаете достаточно распространенным железом – трансформатор ОСМ-0,63 У3 и им подобным, можно его перемотать?
Расшифровка обозначений ОСМ: О – однофазный, С – сухой, М – многоцелевого назначения.
По техническим характеристикам он не подходит в для включения однофазную сеть 220 вольт т.к. рассчитан на напряжение первичной обмотки 380 вольт.
Что же в этом случае делать?
Имеется два пути решения.
1. Смотать все обмотки и намотать заново.
2. Смотать только вторичные обмотки и оставить первичную обмотку, но так как она рассчитана на 380В, то с нее необходимо смотать только часть обмотки оставив на напряжение 220в.
При сматывании первичной обмотки получается примерно 440 витков (380В) когда сердечник Ш-образной формы, а когда сердечник трансформатора ОСМ намотан на ШЛ данные другие – количество витков меньше.
Данные первичных обмоток на 220в трансформаторов ОСМ Минского электротехнического завода 1980 год.

  • 0,063 – 998 витков, диаметр провода 0,33 мм
  • 0,1 – 616 витков, диаметр провода 0,41 мм
  • 0,16 – 490 витков, диаметр провода 0,59 мм
  • 0,25 – 393 витка, диаметр провода 0,77 мм
  • 0,4 – 316 витков, диаметр провода 1,04 мм
  • 0,63 – 255 витков, диаметр провода 1,56 мм
  • 1,0 – 160 витков, диаметр провода 1,88 мм

ОСМ 1,0 (мощность 1 кВт), вес 14,4кг. Сердечник 50х80мм. Iхх-300ма

Подключение обмоток трансформаторов ТПП

Рассмотрим на примере ТПП-312-127/220-50 броневой конструкции, параллельное включение вторичных обмоток.

В зависимости от напряжения в сети подавать напряжение на первичную обмотку можно на выводы 2-7, соединив между собой выводы 3-9, если повышенное – то на 1-7 (3-9 соединить) и т.д. На схеме подключение показано случае пониженного напряжение в сети.
Часто возникает необходимость применять унифицированные трансформаторы типа ТАН, ТН, ТА, ТПП на нужное напряжение и для получения необходимой нагрузочной способности, а простым языком нам надо подобрать, к примеру, трансформатор со вторичной обмоткой 36 вольт и чтобы он отдавал 4 ампера под нагрузкой, первичная конечно 220 вольт.
Как подобрать трансформатор?
С начало определяем необходимую мощность трансформатора, нам необходим трансформатор мощностью 150 Вт.
Входное напряжение однофазное 220 вольт, выходное напряжение 36 вольт.
После подбора по техническим данным определяем, что в данном случае нам больше всего подходит трансформатор марки ТПП-312-127/220-50 с габаритной мощностью 160 Вт (ближайшее значение в большую сторону ), трансформаторы марки ТН и ТАН в данном случае не подходят.
Вторичные обмотки ТПП-312 имеют по три раздельные обмотки напряжением 10,1в 20,2в и 5,05в, если соединить их последовательно 10,1+20,2+5,05=35,35 вольт, то получаем напряжение на выходе почти 36 вольт. Ток вторичных обмоток по паспорту составляет 2,29А, если соединить две одинаковые обмотки параллельно, то получим нагрузочную способность 4,58А (2,29+2,29).
После выбора нам только остается правильно соединить выходные обмотки параллельно и последовательно.
Последовательно соединяем обмотки для включения в сеть 220 вольт. Последовательно включаем вторичные обмотки, набирая нужное напряжение по 36В на обеих половинках трансформатора и соединяем их параллельно для получения удвоенного значения нагрузочной способности.
Самое важное, правильно соединить обмотки при параллельном и последовательном включении, как первичной так и вторичной обмоток.

Если неправильно включить обмотки трансформатора, то он будет гудеть и перегреваться, что потом приведет его к преждевременному выходу из строя.

По такому же принципу можно подобрать готовый трансформатор на практически любое напряжение и ток, на мощность до 200 Вт, конечно, если напряжение и ток имеют более или менее стандартные величины.
Разные вопросы и советы.
1. Проверяем готовый трансформатор, а у него ток первичной обмотки оказывается завышенным, что делать? Чтобы не перематывать и не тратить лишнее время домотайте поверх еще одну обмотку, включив ее последовательно с первичной.
2. При намотке первичной обмотки когда мы делаем большой запас, чтобы уменьшить ток холостого хода, то учитывайте, что соответственно уменьшается и КПД транса.
3. Для качественной намотки, если применен провод диаметром от 0,6 и выше , то его обязательно надо выпрямить, чтоб он не имел малейшего изгиба и плотно ложился при намотке, зажмите один конец провода в тиски и протяните его с усилием через сухую тряпку, далее наматывайте с нужным усилием, постепенно наматывая слой за слоем. Если приходится делать перерыв, то предусмотрите фиксацию катушки и провода, иначе придется делать все заново. Порой подготовительные работы занимают много времени, но это того стоит для получения качественного результата.
4. Для практического определения количества витков на вольт, для попавшегося железа в сарае, можно намотать на сердечник проводом обмотку. Для удобства лучше наматывать кратное 10, т.е. 10 витков, 20 витков или 30 витков, больше наматывать не имеет большого смысла. Далее от ЛАТРа постепенно подаем напряжение его увеличивая от 0 и пока не начнет гудеть испытываемый сердечник, вот это и является пределом. Далее делим полученное напряжение подаваемое от ЛАТРа на количество намотанных витков и получаем число витков на вольт, но это значение немного увеличиваем. На практике лучше домотать дополнительную обмотку с отводами для подбора напряжения и тока холостого хода.
5. При разборке – сборке броневых сердечников обязательно помечайте половинки, как они прилегают друг к другу и собирайте их в обратном порядке, иначе гудение и дребезжание вам обеспечено. Иногда гудения избежать не удается даже при правильной сборке, поэтому рекомендуется собрать сердечник и скрепить чем либо (или собрать на столе, а сверху через кусок доски приложить тяжелый груз), подать напряжение и попробовать найти удачное положение половинок и только потом окончательно закрепить. Помогает и такой совет, поместить готовый собранный трансформатор в лак и потом хорошо просушить при температуре до полного высыхания (иногда используют эпоксидную смолу, склеивая торцы и просушка до полной полимеризации под тяжестью).

Соединение обмоток отдельных трансформаторов

Иногда необходимо получить напряжение нужной величины или ток большей величины, а в наличии имеются готовые отдельные унифицированные трансформаторы, но на меньшее напряжение чем нужно, встает вопрос: а можно ли отдельные трансформаторы включать вместе, чтобы получить нужный ток или величину напряжения?
Для того чтобы получить от двух трансформаторов постоянное напряжение, к примеру 600 вольт постоянного тока, то необходимо иметь два трансформатора которые бы после выпрямителя выдавали бы 300 вольт и после соединив их последовательно два источника постоянного напряжения получим на выходе 600 вольт.

Как измерить мощность трансформатора с помощью мультиметра. | Электроник

Когда то давно я делал себе зарядное устройство из трансформатора. Его я взял из старого черно белого телевизора ВЭЛС. Убрал все вторичные обмотки и намотал одну на 16 вольт. Мощности этого трансформатора хватало даже для зарядки 190 аккумуляторов.

Как измерить мощность трансформатора с помощью мультиметра.

Когда этот трансформатор у меня появился, обмотка его была обернута бумагой. На ней было написано напряжение, которое выдают вторичные обмотки. Их там было много, наверное, 7 или 8. Но вот мощности трансформатора на ней написано не было.

Как измерить мощность трансформатора с помощью мультиметра.

Для того, что бы определить мощность трансформатора нужно измерить ток и напряжение в нагрузке. Проверять буду 2 способами. С начало посмотрю ток короткого замыкания.

Для этого беру провод по толще и устанавливаю на него токовые клещи. Замыкаю вторичную обмотку.

Ток, короткого замыкания составляет 93 ампера.

Как измерить мощность трансформатора с помощью мультиметра.

Напряжение без нагрузки составляет 16,5 вольт.

Как измерить мощность трансформатора с помощью мультиметра.

Теперь нужно нагрузить трансформатор до такого уровня, при котором напряжение во вторичной обмотке просядет. Это делается для того, что бы можно было определить, какую максимальную мощность может выдать трансформатор. Нагружать буду стартером.

Нагружать нужно до такого уровня, при котором напряжение во вторичной обмотке просядет не менее чем на 15% от напряжения без нагрузки. Именно 15% будет оптимально. Но можно нагрузить и больше.
Как измерить мощность трансформатора с помощью мультиметра.

Напряжение просело до 8,5 вольт, а ток составил 55 ампер. Теперь для того, что бы вычислить мощность трансформатора нужно напряжение умножить на ток.

Получается, что мощность данного трансформатора составляет около 467 ватт.

Из этого трансформатора можно сделать зарядное устройство. Статья об этом находится здесь.

На этом все, спасибо за прочтение статьи, если она была вам полезна, ставьте лайк, и подписывайтесь на канал.

Можете еще прочитать следующие статьи.

Снял клемму с аккумулятора при работающем двигателе.

Подрезал боковой электрод свечи болгаркой и вкрутил ее в двигатель.

Как определить мощность трансформатора по сердечнику

  • Смоежете ли вы сделать трансформатор под наше техническое задание?

    Конечно, у нас собстевенное производство, поэтому мы можем производить не стандартные транс р с боковым подключением вводов и выводов высокого и низкого напряжения. Вправо и влево — вверх и вниз, типа НН и ВН и дополнительными опциями! Сборка любых технических параметров первичной и вторичной обмотки

  • Есть ли у вас силовые трансформаторы других заводом производителей?

    Да, мы сотрудничаем с официальными дилерами, представительство в России, список таких заводов:
    Казахстан — Кентауский трансформаторный завод Белоруссия Минск — Минский электротехнический завод им Козлова Украина Богдано Хмельницчкий (Запорожский) — Укрэлектроаппарат Алтайский Барнаул — Барнаульский Алттранс Тольяттинский Самарский — Самара ЗАО Электрощит СЭЩ Санкт Петербург СПБ Невский — Волхов Великий Новгород Подольский — ЗАО Трансформер Чеховский Электрощит Георгиевский ОАО ГТЗ Компания кубань электрощит

  • Высоковольные трансформаторы каких марок представлены у вас в каталоге?

    Марки трансформаторов с естественной масляной системой охлаждения обмоток серии ТМ ТМГ ТМЗ ТМФ ТМГФ. Виды баков гофро (гофрированный) и с радиаторами (радиаторный) А так же доступны линейки сухих трансформаторов ТС ТСЗ ТСЛ ТСЛЗ

  • Высоковольтные силовые трансформаторы каких мощностей Вы можете изготовить?

    Производим повышающие и понажающие напряжение заземление тока, большие цеховые, производственные, промышленные и общепромышленные трансформаторы собственных нужд общего назначения внутренней встроенные в помещение ТП и наружной установки закрытого типа. Выбор наминалы мощности 25 40 63 100 160 250 400 630 1000 (1 мВа) 1250 (1 25 мВа) 1600 (1 6 мВа) 2500 4000 6300 кВа и напряжением 6 10 35 110 0.4 кВ кВт. Можем сделать испытание напряжением под заказ, например компоновка новые типовые проекты из аморфной стали или с глухозаземлённой нейтралью каскадные, разделительные, фланцевые с боковыми вводами выводами. Строительство соответствует нормам ПУЭ и ТУ сертификация систем охлаждения. С необходимыми параметрами и тех характеристиками габаритами размерами весом высотой шириной и доп описание из образеца технического задания справочные данные документация условия работы. Прайс каталог с ценами завода производителя. Производство в России! Фото состав (из чего состоит) и чертежи принципиальная однолинейная электрическая схема по запросу. Срок эксплуатации 25 лет

  • В какие города поставляете оборудвание?

    Поставляем в дачный посёлок коттеджные дачи коттеджи, садовые СНТ товарищества, сельские деревенские местности деревни

  • Transformer Formula

    Трансформатор — это электрическое устройство, которое позволяет увеличивать или уменьшать напряжение в электрической цепи переменного тока, сохраняя при этом мощность. Мощность, которая поступает в оборудование, в случае идеального трансформатора равна мощности, получаемой на выходе. Реальные машины имеют небольшой процент потерь. Это устройство, которое преобразует переменную электрическую энергию определенного уровня напряжения в переменную энергию другого уровня напряжения на основе явления электромагнитной индукции.Он состоит из двух катушек из проводящего материала, намотанных на замкнутое ядро ​​из ферромагнитного материала, но электрически изолированных друг от друга. Единственная связь между катушками — это общий магнитный поток, установленный в сердечнике. Катушки называются первичными и вторичными в соответствии с входом или выходом рассматриваемой системы соответственно.

    Значение мощности для электрической цепи — это значение напряжения, равное значению силы тока. Как и в случае с трансформатором, значение мощности первичной обмотки такое же, как и мощность вторичной обмотки:

    входное напряжение первичной катушки * входной ток первичной катушки = выходное напряжение вторичной катушки * выходной ток вторичной катушки.

    Уравнение записано

    Мы также можем рассчитать выходное напряжение трансформатора, если мы знаем входное напряжение и количество витков (катушек) на первичной и вторичной катушках, используя приведенное ниже уравнение;

    входное напряжение на первичной обмотке / выходное напряжение на вторичной обмотке = количество витков провода на первичной обмотке / количество витков провода на вторичной обмотке

    Уравнение записано

    имеем:

    В p = входное напряжение на первичной катушке.

    В с = входное напряжение на вторичной обмотке.

    I p = входной ток первичной обмотки.

    I с = входной ток вторичной обмотки.

    n p = количество витков провода на первичной обмотке.

    n с = количество витков провода на катушке вторичной обмотки.

    Trasnformer Вопросы:

    1) У нас есть трансформатор с током в первичной катушке 10 А и входным напряжением в первичной катушке 120 В, если напряжение на выходе вторичной катушки 50 В, рассчитайте ток на выходе вторичная обмотка.

    Ответ: Поскольку мы хотим определить выходной ток во вторичной катушке, мы используем первое уравнение

    , →,

    = 2,4 * 10 А = 24 А.

    I с = 24 А.

    2) Имеем трансформатор с выходным током на вторичной катушке 30 А и входным током на первичной катушке 2000 витков 6 А, определяем количество витков на вторичной катушке.

    Ответ: Мы будем использовать два уравнения: первое уравнение для определения выходного напряжения на вторичной катушке и второе уравнение для определения количества витков на вторичной катушке.

    , →,

    , →,

    Замещающий,

    n s = 400

    Руководство по номинальным характеристикам трансформатора, кВА

    Перейти к:

    Во многих отраслях промышленности, включая здравоохранение, производство, заключение контрактов на электрооборудование, высшее образование и исправительные учреждения, надежные высококачественные трансформаторы необходимы для обеспечения эффективной работы. Крупные объекты и производственные процессы требуют значительного количества энергии, и им нужны надежные трансформаторы для преобразования энергии, поступающей от электростанции, в форму, которую они могут использовать для своего оборудования и инженерных сетей.

    Как трансформаторы помогают коммерческим и промышленным предприятиям достичь этих целей?

    Трансформаторы преобразуют энергию источника в мощность, необходимую для нагрузки. Чтобы использовать свои трансформаторы эффективно, предприятиям необходимо знать, какую мощность могут дать им их трансформаторы. Эту информацию предоставляет рейтинг трансформатора.

    Трансформатор обычно состоит из двух обмоток, первичной и вторичной обмоток. Входная мощность проходит через первичную обмотку.Затем вторичная обмотка преобразует мощность и отправляет ее на нагрузку через свои входные провода. Номинал трансформатора или его размер — это уровень его мощности в киловольт-амперах.

    Когда какое-либо электрическое оборудование выходит из строя, часто виноват трансформатор. В этом случае вам, вероятно, потребуется заменить трансформатор, а когда вы это сделаете, вам нужно будет выбрать трансформатор с правильной кВА для ваших нужд. В противном случае вы рискуете поджарить свое ценное снаряжение.

    Как выбрать размер трансформатора? К счастью, подобрать трансформатор относительно просто.Он включает в себя использование простой формулы для расчета требований кВА на основе тока и напряжения вашей электрической нагрузки. В приведенном ниже руководстве по номинальной мощности трансформатора кВА мы более подробно объясним, как рассчитать требуемую номинальную мощность в кВА.

    Для получения дополнительной информации позвоните в ELSCO

    Как определить мощность в кВА

    Когда вы рассчитываете мощность в кВА, полезно иметь терминологию и сокращения прямо перед тем, как вы начнете. Иногда можно встретить трансформаторы, особенно меньшего размера, измеряемые в ВА.ВА расшифровывается как вольт-амперы. Например, трансформатор с номинальной мощностью 100 ВА может выдерживать напряжение 100 В при токе в один ампер (ампер).

    Единица измерения кВА представляет собой киловольт-ампер или 1000 вольт-ампер. Трансформатор с номинальной мощностью 1,0 кВА аналогичен трансформатору с номинальной мощностью 1000 ВА и может выдерживать напряжение 100 В при токе 10 ампер.

    Расчет кВА Типоразмер

    Чтобы определить мощность в кВА, вам необходимо выполнить ряд расчетов на основе вашей электрической схемы.

    Электрическая нагрузка, которая подключается к вторичной обмотке, требует определенного входного напряжения или напряжения нагрузки. Назовем это напряжение V. Вам нужно знать, что это за напряжение — вы можете найти его, посмотрев на электрическую схему. Можно сказать, что в примере напряжение нагрузки V должно составлять 150 вольт.

    Затем вам нужно будет определить конкретный ток, необходимый для вашей электрической нагрузки. Вы также можете посмотреть на электрическую схему, чтобы определить это число. Если вы не можете определить требуемый ток, его можно рассчитать, разделив входное напряжение на входное сопротивление.Допустим, требуемый ток фазы нагрузки, который мы назовем l, составляет 50 ампер.

    После того, как вы нашли или рассчитали эти две цифры, вы можете использовать их для определения требований к мощности нагрузки в киловаттах. Для этого вам нужно умножить требуемое входное напряжение (В) на требуемую токовую нагрузку в амперах (л), а затем разделить это число на 1000:

    .

    В приведенном выше примере вы должны умножить 150 на 50, чтобы получить 7 500, а затем разделить это число на 1000, чтобы получить 7,5 киловатт.

    Последний шаг — преобразовать цифру в киловаттах в киловольт-амперы. Когда вы это сделаете, вам нужно будет разделить на 0,8, что представляет собой типичный коэффициент мощности нагрузки. В приведенном выше примере вы разделите 7,5 на 0,8, чтобы получить 9,375 кВА.

    Однако, выбирая трансформатор, вы не найдете трансформатора мощностью 9,375 кВА. Большинство номинальных значений кВА являются целыми числами, а многие, особенно в более высоких диапазонах, кратны пяти или 10–15 кВА, 150 кВА, 1000 кВА и так далее. В большинстве случаев вам нужно выбрать трансформатор с номинальной мощностью, немного превышающей рассчитанную вами — в данном случае, вероятно, 10 или 15 кВА.

    Вы также можете работать в обратном направлении и использовать известную мощность трансформатора в кВА для расчета силы тока, которую вы можете использовать. Если ваш трансформатор рассчитан на 1,5 кВА, и вы хотите, чтобы он работал на 25 вольт, умножьте 1,5 на 1000, чтобы получить 1500, а затем разделите 1500 на 25, чтобы получить 60. Ваш трансформатор позволит вам работать с током до 60 ампер. Текущий.

    Если идея выполнения расчетов, когда вам нужно вычислить кВА, кажется устрашающей или непривлекательной, вы всегда можете обратиться к диаграммам. Многие производители предоставляют диаграммы, чтобы упростить определение правильной мощности в кВА.Если вы используете диаграмму, вы найдете напряжение и силу тока вашей системы в строках и столбцах, а затем найдете в списке кВА, где пересекаются выбранные вами строка и столбец.

    Запрос цены на трансформатор

    Стартовый фактор и особенности специализации

    В приведенном выше примере мы разделили на 0,8, чтобы немного увеличить кВА трансформатора. Почему мы это сделали?

    Для запуска устройства обычно требуется больше тока, чем для запуска. Чтобы учесть это дополнительное текущее требование, часто бывает полезно включить в свои расчеты начальный фактор.Хорошее практическое правило — умножить напряжение на силу тока, а затем умножить на дополнительный пусковой коэффициент 125%. Деление на 0,8, конечно, то же самое, что умножение на 1,25.

    Однако, если вы запускаете трансформатор часто — скажем, чаще, чем один раз в час — вам может потребоваться кВА даже больше, чем рассчитанный вами размер. А если вы работаете со специализированными нагрузками, например, с двигателями или медицинским оборудованием, ваши требования кВА могут существенно отличаться. Для специализированных приложений вам, вероятно, захочется проконсультироваться с профессиональной компанией по производству трансформаторов, чтобы узнать, какая кВА вам нужна.

    Уравнение для трехфазных трансформаторов, которое мы обсудим более подробно ниже, также немного отличается. Когда вы выполняете расчеты с трехфазными трансформаторами, вам нужно включить константу, чтобы убедиться, что ваша работа работает правильно.

    Стандартные размеры трансформатора

    Легко говорить о расчетах размеров трансформаторов абстрактно и придумать массив чисел. Но каковы стандартные размеры трансформаторов, которые вы могли бы купить?

    Наиболее распространенными размерами трансформаторов, особенно для коммерческих зданий, являются:

    • 3 кВА
    • 6 кВА
    • 9 кВА
    • 15 кВА
    • 30 кВА
    • 37.5 кВА
    • 45 кВА
    • 75 кВА
    • 112,5 кВА
    • 150 кВА
    • 225 кВА
    • 300 кВА
    • 500 кВА
    • 750 кВА
    • 1000 кВА

    Как определить напряжение нагрузки

    Прежде чем вы сможете рассчитать необходимую кВА для вашего трансформатора, вам нужно вычислить напряжение нагрузки, которое является напряжением, необходимым для работы электрической нагрузки. Чтобы определить напряжение нагрузки, вы можете взглянуть на свою электрическую схему.

    В качестве альтернативы, у вас может быть кВА вашего трансформатора и вы хотите рассчитать необходимое напряжение. В этом случае вы можете скорректировать уравнение, которое мы использовали выше. Поскольку вы знаете, что кВА = V * 1/1000, мы можем решить для V, чтобы получить V = kVA * 1000 / л.

    Итак, вы умножите свою номинальную мощность в кВА на 1000, а затем разделите на силу тока. Если ваш трансформатор имеет номинальную мощность 75 кВА, а ваша сила тока 312,5, вы подставите эти числа в уравнение — 75 * 1000 / 312,5 = 240 вольт.

    Как определить вторичное напряжение

    Первичная и вторичная цепи наматываются вокруг магнитной части трансформатора.Пара различных факторов определяет вторичное напряжение — количество витков в катушках, а также напряжение и ток первичной цепи.

    Вы можете рассчитать напряжение вторичной цепи, используя соотношение падений напряжения в первичной и вторичной цепях, а также количество витков цепи вокруг магнитной части трансформатора. Мы будем использовать уравнение t 1 / t 2 = V 1 / V 2 , где t 1 — количество витков в катушке первичной цепи, t 2 — количество витков витков в катушке вторичной цепи, V 1 — падение напряжения в катушке первичной цепи, а V 2 — падение напряжения в катушке вторичной цепи.

    Допустим, у вас есть трансформатор с 300 витками первичной обмотки и 150 витками вторичной обмотки. Вы также знаете, что падение напряжения на первой катушке составляет 10 вольт. Подставляя эти числа в приведенное выше уравнение, получаем 300/150 = 10 / t 2 , так что вы знаете, что t 2 , падение напряжения на вторичной катушке, составляет 5 вольт.

    Как определить первичное напряжение

    Помните, что у каждого трансформатора есть первичная и вторичная стороны. Во многих случаях вам нужно рассчитать первичное напряжение, то есть напряжение, которое трансформатор получает от источника питания.

    Вы можете определить это первичное напряжение, используя соотношение тока и напряжения на первичной и вторичной обмотках трансформатора. Возможно, вы знаете, что ваш трансформатор имеет ток 4 ампера и падение напряжения на вторичной обмотке 10 вольт. Вы также знаете, что ваш трансформатор пропускает через первичную обмотку ток 6 ампер. Каким должно быть падение напряжения на первичной обмотке?

    Пусть i 1 и i 2 равны токам через две катушки. Вы можете использовать формулу i 1 / i 2 = V 2 / V 1 .В этом случае i 1 равно 6, i 2 равно 4, а V 2 равно 10, и если вы подставите эти числа в формулу, вы получите 6/4 = 10 / V 1 . Решение для V 1 дает V 1 = 10 * 4/6, поэтому падение напряжения в первичной цепи должно составлять 6,667 В.

    Запрос цены на трансформатор

    Однофазный номинальный ток, кВА

    Однофазный трансформатор использует однофазный переменный ток. Он имеет две линии переменного тока (AC).Ниже приведены несколько распространенных типов:

    • залитый: Однофазный залитый трансформатор полезен для различных общих нагрузок, включая как внутренние, так и внешние нагрузки. Эти трансформаторы широко используются в промышленных и коммерческих операциях, включая многие типы осветительных приборов. При желании предприятия могут объединить эти блоки для создания трехфазных трансформаторов. Эти трансформаторы имеют относительно низкие номиналы, часто от 50 ВА до 25 кВА.
    • вентилируемый: вентилируемый однофазный трансформатор полезен для нескольких однофазных внутренних и наружных нагрузок.Эти трансформаторы широко используются в коммерческих и промышленных приложениях, включая системы освещения. Они часто имеют номиналы от 25 до 100 кВА.
    • Полностью закрытые невентилируемые трансформаторы : Полностью закрытые невентилируемые трансформаторы могут быть однофазными или трехфазными. Они идеально подходят для сред, содержащих большое количество грязи и мусора. Их номинальные характеристики обычно варьируются от 25 до 500 кВА.

    Трехфазная мощность, кВА

    Трехфазный трансформатор может иметь одну из нескольких различных форм.Обычно он имеет три линии питания, каждая из которых сдвинута по фазе с двумя другими на 120 градусов.

    По сравнению с однофазными трансформаторами, трехфазные трансформаторы бывают аналогичных типов:

    • залитый: Трехфазный залитый трансформатор полезен для многочисленных общих нагрузок, как наружных, так и внутренних, коммерческих и промышленных, включая системы освещения. Эти трансформаторы часто имеют номинальные характеристики от 3 до 75 кВА.
    • Вентилируемый: Трехфазный вентилируемый трансформатор полезен для многих типов общих внутренних и внешних нагрузок, как промышленных, так и коммерческих, включая системы освещения.Эти трансформаторы могут иметь огромные мощности, до 1000 кВА.
    • Полностью закрытые, без вентиляции: как и однофазные блоки, эти трехфазные системы идеальны для сред, содержащих большое количество грязи и мусора. Их номинальные характеристики обычно варьируются от 25 до 500 кВА.

    Расчет для трехфазного трансформатора кВА немного отличается от расчета для однофазного кВА. После того, как вы умножите свое напряжение и силу тока, вам также нужно будет умножить его на константу — 1.732, который представляет собой квадратный корень из 3, усеченный до трех десятичных знаков:

    Итак, если вы работаете с трехфазным трансформатором, вместо того, чтобы умножать напряжение на силу тока и делить на 1000, чтобы получить кВА, вы умножаете напряжение на силу тока на 1,732 и все равно делите на 1000, чтобы получить кВА.

    Обратитесь в компанию ELSCO Transformers, чтобы получить помощь с трансформатором

    Чтобы увидеть преимущества качественных, высокопроизводительных трансформаторов для вашего бизнеса, станьте партнером ELSCO Transformers.Мы предоставляем ряд услуг по обслуживанию трансформаторов, чтобы обеспечить бесперебойную работу вашего бизнеса, включая ремонт трансформаторов, реконструкцию, модернизацию, перемотку и аварийную замену.

    Мы также предлагаем несколько различных типов новейших трансформаторов среднего напряжения, в том числе сухие трансформаторы, трансформаторы для установки на площадках, блочные подстанции и трансформаторы подстанционного типа. Мы также рады разработать трансформаторы, изготовленные по индивидуальному заказу, в соответствии с уникальными потребностями и спецификациями вашего предприятия. У нас есть многолетний опыт поставок трансформаторов для различных отраслей промышленности, включая подрядчиков по электротехнике, дома электроснабжения, больницы, медицинские клиники и производственные предприятия, а также многие другие.

    Неисправный или неисправный трансформатор может привести к дорогостоящим задержкам и снизить прибыльность вашего бизнеса. Поддерживайте эффективную работу своей работы, следя за ремонтом трансформатора или приобретая новую систему от ELSCO Transformers. Наши основные сотрудники имеют более чем двадцатилетний опыт работы в отрасли, и мы используем этот обширный опыт, знания и опыт, чтобы предоставить вам надежные устройства, которые будут надежно работать и работать в течение многих лет.

    Свяжитесь с нами сегодня, чтобы узнать больше.

    Запрос цены на трансформатор

    Расчет мощности трансформатора с использованием только тока и сопротивления

    Предполагая, что ток намагничивания на первичной стороне пренебрежимо мал, сначала определите:

    P p : Питание первичной стороны, подаваемое на трансформатор.
    В p : Напряжение на первичной стороне.
    I p : Ток на первичной стороне.
    P s : Питание вторичной стороны подается на трансформатор.
    I с : Ток вторичной обмотки.2) * R для вторичной обмотки скажет ли это эффективную рассеиваемую мощность?

    Да. \ $ P_s = V_s I_s \ $ верно.

    , если я разделю вторичную мощность на первичную и умножу на 100%, скажет ли это эффективность трансформатора?

    Совершенно верно. Это определение эффективности трансформатора.

    $$ \ text {Эффективность} \ overset {\ треугольник} {=} \ dfrac {P_s} {P_p} $$

    индуктивный импеданс позволяет энергии возвращаться к источнику

    Следует учитывать, что трансформаторы работают иначе, чем индукторы.Идеалистический трансформатор с очень высоким индуктивным сопротивлением первичной обмотки вообще не ведет себя как индуктивный. Потому что трансформатор спроектирован таким образом, что индуктор первичной стороны отводит только небольшое количество тока от источника питания с номинальной частотой, когда вторичная сторона разомкнута.

    Идентификация

    — простой способ оценить мощность неизвестного трансформатора

    IIRC Я слышал кое-что о взвешивании трансформатора и применении некоторого коэффициента пропорциональности (кВА / кг).Это надежный способ?

    Есть

    А что это за фактор? То же самое для любого размера / веса (я думаю, что более тяжелый, который у меня есть, весит около 10 кг)? Работает ли этот метод также для тороидов? Есть ли более или менее простые методы получше?

    Зайдите в онлайн-каталог, например, в RS, и посмотрите их страницы-трансформеры. Коэффициент ВА / кг будет варьироваться между E-сердечником и тороидальным сердечником и будет медленно меняться в зависимости от веса, поэтому убедитесь, что вы сравниваете один и тот же тип и аналогичный вес трансформатора.2 / R \ $. Это измерение R и V аккуратно объединяет эффективную длину провода и измерения площади.

    Насколько надежен этот метод?

    Это приблизительная оценка, чтобы подвести вас к нужному уровню. Номинальная мощность трансформатора и есть мощность при определенных условиях . По умолчанию типичный силовой трансформатор в онлайн-каталоге будет рассчитан на повышение температуры при непрерывном использовании с резистивной нагрузкой, и если вы хотите, чтобы ваши трансформаторы тоже были рассчитаны таким образом, то оценка будет разумной.

    К сожалению, мы не можем изучить трансформаторы, необходимые для определения номинальной максимальной рабочей температуры изолирующей эмали на фактическом используемом медном проводе. Может быть 75C, может быть 105C, может быть больше. Что касается повышения температуры выше 25 ° C, разница между повышением температуры на 50 ° C и повышением на 80 ° C соответствует sqrt (8/5) = 26% тока.

    Есть ли у кого-нибудь из трансформаторов, которые у вас есть или которые вы видите в списках, есть «лишний вес»? Кронштейны, изоляция из смолы, вес, не влияющий на медь и железо с VA? Это вызовет систематическую ошибку в оценке.

    После того, как вы получите оценку ВА трансформатора, запустите трансформатор на эту нагрузку и почувствуйте ее через несколько минут, если она не слишком горячая, запустите ее еще раз. Отключите его и снова измерьте сопротивление обмоток. Медь имеет температурный коэффициент сопротивления 0,4% / C, что означает, что сопротивление будет увеличиваться примерно на 10% при повышении температуры на 25 ° C. Это означает, что вы можете точно оценить превышение температуры каждой отдельной обмотки. Лично я склонен быть консервативным и придерживаюсь максимального повышения температуры на 50 ° C, исходя из самой дешевой эмалевой изоляции.

    Как найти точное количество витков силового трансформатора

    Я собираюсь нанести удар по этому поводу, и, может быть, если я ошибаюсь насчет характеристик материала слоистых пластиков из кремнистой стали, кто-то может указать на это. В вопросе почти достаточно информации, чтобы понять это, учитывая, что вам нужно сделать некоторые оценки размера трансформатора . 1 \ $ должна быть ограничена примерно 2 тесла, H можно рассчитать из оценки ток намагничивания, вероятный для однофазного силового трансформатора 100 кВА.{-7} \ times 40 000} \ $ и для B = 2 тесла, H = 39,8 ампер-витков на метр.

    Что такое ампер-витки на метр — «амперы» все знают, «витки» все знают, а «на метр» относится к средней магнитной длине сердечника. Для тороида это средний диаметр кольца, умноженный на \ $ \ pi \ $. Для силового трансформатора это может легко быть 3 метра (на самом деле удар в темноте, потому что кВА вне моей лиги !!)

    Итак, у нас H = около 40 А / м, и мы знаем амперы (пик) примерно при 0.2 \ $ / 597 = 49 генри.

    Тогда я мог бы оценить реактивное сопротивление, принимая 50 Гц, и получить 15,4 кОм

    Тогда я мог бы рассчитать ток намагничивания на основе 11кВ = \ $ \ dfrac {11,000} {15,400} \ $ = 0,71 ампера.

    Это недалеко от того места, где я начал, когда предполагал ток намагничивания 0,5 А, поэтому я предполагаю, что первичные витки будут около 171 витка, а если вторичное напряжение составляет 400 В, то вторичные витки будут около 6.218, поэтому, если я предполагаю, вторичных витков 7, первичных будет около 193 витков.1 \ $ Кремниевая сталь является вероятным кандидатом на роль сердечника большого силового трансформатора, и этот материал имеет относительную проницаемость, \ $ \ mu_R \ $ 40 000. См. Таблицу в середине страницы. Я не специалист по силовым трансформаторам, так что не стреляйте в меня, если что-то не так !!

    РЕДАКТИРОВАТЬ — вопреки сайту, который заявляет, что относительная проницаемость составляет 40 000, вики заявляет, что \ $ \ mu_R \ $ для «электротехнической стали» больше похоже на 4000. Это сделало бы H, рассчитанную выше напряженность магнитного поля, больше похожей на 398 А / м. Это сделало бы количество витков первичной обмотки примерно 1700.Кто-нибудь знает, что будет \ $ \ mu_R \ $?

    Расчет силовых трансформаторов сетевой частоты

    Расчет силовых трансформаторов сетевой частоты

    Введение

    На этой странице простая методика расчета частоты сети с закрытым сердечником. силовые трансформаторы. Он предназначен для домашнего пивоварения, ремонта и модификации трансформаторов. Обратите внимание, что даже если этот метод и некоторые уравнения могут быть Обобщенно, только классические сердечники, составленные из стальных листов, принимаются учетная запись.


    Размер ядра

    При проектировании трансформатора питания с замкнутым сердечником первым шагом является чтобы выбрать подходящий сердечник по мощности, устройство должно ручка. Обычно для большой мощности требуются большие жилы. На самом деле, нет никаких теоретических или физических причин, препятствующих маленькому ядру. от обработки большой мощности, но по практическим соображениям на малом ядре, не хватает места для всех обмоток: большой сердечник — единственный выбор.Чтобы с самого начала выбрать довольно хорошее ядро, следующие эмпирическая формула (для рабочей частоты 50 Гц) может помочь:

    Это уравнение связывает (полную) мощность P с поперечным сечением жилы. поверхность A с учетом КПД сердечника η (греч. «эта»). При измерении поперечного сечения жилы следует удалить около 5%, чтобы учесть толщину лака на ферромагнитных пластинах составляя ядро.Сечение A — это минимальное сечение магнитного цепь, обычно измеряемая там, где расположены обмотки, как показано на рисунок ниже:

    На приведенной выше диаграмме показан сердечник с двойной петлей, который на сегодняшний день является наиболее распространенным. тип сердечника из-за его низкого потока утечки и небольших размеров. Это называется «двойной петлей», потому что магнитное поле, создаваемое катушки в середине сердечника петляют половину на левой части сердечника и половина в правой части.В этом случае важно измерить поперечное сечение жилы внутри обмотки (как показано), где поток не делится пополам. Если ваш трансформатор имеет одну магнитную петлю, например тороидальный трансформатор, чем поперечное сечение одинаковое по всему сердечнику и не имеет значения, где вы это измеряете.

    Эффективность зависит от материала, из которого изготовлен сердечник; если неизвестно, таблица ниже даст общее представление:

    Материал опорной плиты Плотность магнитного потока φ
    [Вт / м 2 ]
    КПД сердечника η
    [1/1]
    Текстурированная кремнистая сталь (C-образная), M5 1.3 0,88
    Текстурированная кремнистая сталь (пластины 0,35 мм), M6 1,2 0,84
    Кремнистая сталь без ориентированной зернистости (пластины 0,5 мм), M7 1,1 0,82
    Стандартная кремниевая сталь без ориентированной зернистости (или для тяжелых условий эксплуатации) 1,0 0,80
    Низкоуглеродистая сталь 0,8 0,70

    Чтобы упростить эту операцию, вам может пригодиться следующий калькулятор:

    В этом калькуляторе уже учтено уменьшение ядра на 5%. поперечное сечение.


    Плотность потока в активной зоне

    Затем необходимо определить плотность потока сердечника φ (греч. «фи»). Опять же, это зависит от материала, и, если он не известен, та же таблица будет помощь. Если трансформатор должен работать непрерывно или в плохо вентилируемом помещении. окружающей среде, небольшое уменьшение плотности потока (например, на 10%) приведет к уменьшите потери и сохраните трансформатор в холодном состоянии за счет большего количества железа и больше меди. Обратное можно рассматривать для снижения стоимости материалов в трансформаторах. используется только в течение коротких периодов времени или не предназначен для работы на полной мощности непрерывно.

    После определения плотности потока можно рассчитать трансформатор постоянная γ , выражающая количество витков на вольт всех обмотки по следующей формуле:

    Фактор 10 6 учитывает, что поперечное сечение жилы равно выражено в мм 2 . Об этой формуле следует отметить еще несколько моментов: например, низкий частоты требуют больше витков, и вы могли заметить, что 60 Гц трансформаторы, которые обычно немного меньше, чем эквивалентные 50 Гц единицы.Более того, низкая магнитная индукция также требует большего количества витков, а это означает, что для уменьшения потока в сердечнике (и уменьшения потерь) приходится наматывать больше витков, даже если это кажется нелогичным. Последнее замечание: для больших сердечников требуется несколько оборотов: если вы когда-нибудь смотрели внутри огромных высоковольтных трансформаторов, используемых энергетическими компаниями для своих высоковольтные линии электропередач, у них всего несколько сотен витков для многих киловольт, в то время как небольшой трансформатор 230 В внутри вашего будильника имеет тысячи поворотов.


    Расчет обмоток

    Теперь, когда мы знаем постоянную трансформатора γ , легко рассчитайте количество витков N для каждой обмотки по формуле:

    Обратите внимание, что все напряжения и токи являются среднеквадратичными значениями, а плотность потока выражается его пиковым значением, чтобы избежать насыщения: это объясняет член √2 в уравнении постоянной трансформатора.

    Для вторичных обмоток рекомендуется немного увеличить количество витков, скажем, на 5% или около того, чтобы компенсировать потери в трансформаторе.

    Чтобы упростить эту операцию, вам может пригодиться следующий калькулятор:

    Этот калькулятор уже учитывает фактор 5% для вторичного повороты.

    Вы могли заметить, что количество витков зависит от размера сердечника и магнитного потока. плотность, но не по мощности. Итак, если вашему трансформатору требуется более одной вторичной обмотки, просто повторите расчет обмоток на каждую вторичную.Но в этом случае выбирайте сердечник достаточно большой, чтобы вместить все обмотки или, в Другими словами, выберите размер сердечника в соответствии с общей мощностью всех вторичные обмотки. Также используйте первичный провод с поперечным сечением, достаточно большим, чтобы выдержать общую мощность.


    Выбор правильного провода

    Последний шаг — рассчитать диаметр провода для каждой обмотки. Для этого необходимо выбрать плотность тока проводника c . Хороший компромисс — 2,5 А / мм 2 .Более низкое значение потребует больше меди, но приведет к меньшим потерям: это подходит для тяжелых трансформаторов. Более высокое значение потребует меньше меди и сделает трансформатор более дешевым, но из-за повышенного нагрева это будет приемлемо только при кратковременном использовании. время работы на полной мощности или может потребоваться охлаждение. Стандартные значения составляют от 2 до 3 А / мм 2 . После определения плотности тока можно рассчитать диаметр проволоки. используя следующее уравнение:

    Или для c = 2.5 А / мм 2 :

    Чтобы упростить эту операцию, вам может пригодиться следующий калькулятор:


    Практически

    Теперь, когда вычисления завершены, начинается самое сложное: будет ли рассчитанные обмотки подходят на выбранный сердечник? Что ж, ответ непростой и зависит от большого количества факторов: сечение и форма проволоки, радиус изгиба проволоки, качество намотки, наличие изолирующей фольги между слоями обмотки и т. д.С другой стороны, некоторый опыт будет полезнее, чем много уравнения.

    Купить пустой сердечник трансформатора сложно, и обычно начинаются домашние проекты. от старого трансформатора, чтобы раскрутить и восстановить. Не все трансформаторы можно разобрать: некоторые склеены смола, которая слишком сильна, чтобы удалить ее без изгиба основных пластин. К счастью, многие трансформаторы можно разобрать, сняв крышку. который удерживает все пластины вместе или шлифуя два сварных шва поперек все тарелки.Затем каждую пластину необходимо осторожно снять, чтобы получить доступ к обмотки. Погнутые или поцарапанные пластины следует выбросить.

    Если повезет, можно повторно использовать первичную обмотку и восстановить только вторичный, если первичный не наматывается на вторичный или не имеет неподходящее количество оборотов. Решая, следует ли оставить обмотку как есть или нет, полезно определить его количество витков, но подсчитать их без разматывая катушку.К счастью, есть способ определить количество витков: до разбирая сердечник, просто намотайте несколько витков (скажем, 5 или около того) изолированного провода вокруг обмоток и измерьте напряжение, наведенное в этом самодельном вторичный при нормальном питании трансформатора. По этой величине легко рассчитать количество витков на вольт трансформатора. и подсчитайте количество витков каждой обмотки без фактического подсчета их.

    После того, как новые обмотки намотаны, самое время восстановить сердечник, ставим все пластины на место.Без силового пресса их все вернуть будет сложно, но если на в конце остается одна-две пластины, трансформатор все равно будет работать нормально. Но по этой причине при выполнении расчеты, выбрав меньшее поперечное сечение жилы. Когда трансформатор запитан, сила на пластинах сердечника значительна. и важно их крепко держать или склеивать; в противном случае ядро будет вибрировать и будет очень шумно.

    Многие трансформаторы имеют пластины сердечника E-I, как показано на рисунке выше.При восстановлении сердечника пластины должны быть скрещены: E-I для одной слой и I-E для следующего, и так далее. Это минимизирует воздушный зазор и помогает поддерживать высокий коэффициент связи.

    Всегда используйте эмалированный медный провод для всех обмоток. Изолированный провод из ПВХ (обычный электрический провод) — очень плохая идея, потому что слой изоляции очень толстый, занимает много места в сердечнике и является очень плохой проводник тепла: ваш трансформатор очень быстро перегреется.

    Всегда кладите слой изолирующей фольги между первичной и вторичной обмотками. если они расположены близко друг к другу, чтобы предотвратить опасность поражения электрическим током в случае нарушение изоляции провода.Используйте что-нибудь тонкое, не горит, и это хороший изолятор. Я использую каптоновую ленту, но может подойти и обычная изолента.

    Изоляция эмалированного медного провода обычно составляет до 1000 В (пиковое напряжение). ценить). Если возможно, ознакомьтесь со спецификациями проводов, предоставленными его производитель. Если напряжение на крыле превышает это значение, лучше разделить намотка на два или более слоев, разделенных изолирующей фольгой между ними.


    Заключение

    Представлен простой метод расчета сетевых силовых трансформаторов. и я надеюсь, что это поможет домашним пивоварам в разработке собственных трансформаторов. в соответствии с их конкретными потребностями.Намотка собственных трансформаторов часто является единственным доступным выбором, когда требуются необычные напряжения. Но разобрав трансформатор, сделайте новые обмотки и верните обратно вместе — это много работы, поэтому лучше провести некоторые расчеты, прежде чем получится сразу с первой попытки.


    Используемые символы

    Символ Описание Установка
    A Поперечное сечение жил мм 2
    д Диаметр проволоки мм
    f Рабочая частота Гц
    I Среднеквадратичный ток обмотки A
    N Количество витков 1/1
    П Полная мощность трансформатора ВА
    U Действующее значение напряжения обмотки В
    γ Число оборотов на V оборотов / В
    η Эффективность сердечника 1/1
    φ Плотность магнитного потока сердечника Вт / м 2

    Примечание: 1 Вт / м 2 = 1 T = 10’000 Гаусс


    Библиография

    • Nuova Elettronica, Vol.6, с.134
    • Nuova Elettronica, Riv 179, p66


    Советы по выбору и покупке трансформаторов

    • Что такое трансформатор и почему он используется?
    • Как выбрать лучший трансформатор для моего приложения?
    • Определите номер модели трансформатора Marcus
    • Когда вам нужен нестандартный трансформатор?

    Что такое трансформатор и зачем он нужен?

    Трансформатор — это статическое электрическое оборудование, которое передает мощность от одной системы напряжения к другой посредством электромагнитной индукции.На базовом уровне все трансформаторы состоят из металлической катушки, по которой проходит электрический ток, и сердечника из железа, который создает магнитное поле. Причина использования трансформатора состоит в том, чтобы согласовать напряжение нагрузки с линейным напряжением, подаваемым электросетью. Трансферы сухого типа с воздушным охлаждением не содержат летучих или легковоспламеняющихся материалов и зависят только от естественного потока воздуха над змеевиками и излучения тепла через кожух для охлаждения. Поэтому он может располагаться прямо у груза и не требует специального хранилища.

    Как выбрать лучший трансформатор для моего приложения?

    купить ксанакс онлайн Трансформаторы

    доступны в широком диапазоне напряжений. Емкость (вольт-амперы) определяет, какую мощность может выдержать конкретное устройство до перегрузки.

    Приложение играет ключевую роль в выборе правильного трансформатора. При выборе конкретного трансформатора необходимо учитывать случаи, когда типичная нагрузка может резко возрасти.

    Определите номер модели трансформатора Marcus

    Шаг 1: Определите кВА, амперы или мощность, требуемые нагрузкой.

    Определите кВА, амперы или мощность, необходимую для нагрузки. Размер трансформатора определяется кВА нагрузки. Не забудьте добавить общее количество задействованного оборудования. Следующие формулы могут быть использованы для расчета кВА, (ВА) или требуемых ампер для одно- или трехфазных установок:

    Однофазный

    кВА

    =

    Вольт x Ампер

    (ВА)

    1000

    AMPS

    =

    кВА (ВА) x 1000

    Вольт

    Трехфазный

    кВА

    =

    1.73 x вольт x ампер

    (ВА)

    1000

    AMPS

    =

    кВА (ВА) x 1000

    1.73 x Вольт

    КВА означает киловольт-ампер или тысячу вольт-ампер. Меньшие блоки 500 ВА = 0,5 кВА. Однофазный имеет две линии переменного тока. Трехфазный имеет три линии переменного тока, каждая из которых на 120 градусов не совпадает по фазе с двумя другими.

    Важно: КВА трансформатора должна быть равна или больше, чем кВА нагрузки, чтобы удовлетворить текущие потребности и учесть будущее расширение.

    Шаг 2: Узнайте напряжение питания

    Узнайте, какое напряжение питания (или доступное напряжение) должно быть подключено к первичной обмотке трансформатора.Напряжение сети или первичное напряжение — это доступная мощность от вашей электросети или местного источника питания.

    Шаг 3: Определите напряжение, необходимое для нагрузки

    Определите напряжение, необходимое для нагрузки. Это вторичное напряжение или выходное напряжение трансформатора. Напряжение нагрузки или вторичное напряжение — это напряжение, необходимое для работы нагрузки (фонарей, двигателя и других устройств).

    Шаг 4: Какова частота источника питания?

    Какая частота источника питания и оборудования (обычно 60 или 50 Гц)? Частота источника питания и нагрузки должны быть одинаковыми.

    Для выбора требуемого размера трансформатора можно использовать следующие таблицы.

    Шаг 5: Определите номер модели трансформатора Marcus

    Определите номер модели трансформатора Marcus. Для этого сначала необходимо учесть несколько факторов:

    https://www.ambienpharmacy.org/
    • Требуется ли для вашего оборудования электрическая изоляция от источника питания, или автомобильный трансформатор без изоляции подойдет?
    • Для управляющих трансформаторов: если требуется предохранитель, необходима модель клеммной колодки.
    • Если требуется экспортировать управляющий трансформатор, может потребоваться модель с защитой от прикосновения.
    • Место, где будет установлен трансформатор, будет определять, нужен ли вам корпус (открытый тип), корпус с внутренней вентиляцией или различные типы корпусов, которые защищают обмотки от влаги, частиц, пыли или загрязнений.
    http://www.cabreracoastalteam.com/anxiety/buy-xanax-no-prescription.php

    Далее выберите нужный вам тип трансформатора.Его номинальная мощность в кВА, первичное напряжение, вторичное напряжение и суффикс из таблицы ниже.

    ТИП кВА
    РЕЙТИНГ
    ПЕРВИЧНЫЙ
    НАПРЯЖЕНИЕ
    ВТОРИЧНЫЙ
    НАПРЯЖЕНИЕ
    СУФФИКС
    MS- Однофазный А — 600 1 — 208/120 EUR — 50 Гц
    MT — трехфазный Б — 480 2 — 120/240 S — Электр.Щит
    MSWP — Однофазный наружный блок С — 416 3–240 F — 115 ° C Подъем
    MTWP — трехфазный открытый Д — 380 4–480/277 N — 130 ° C Подъем
    RES — однофазное эпоксидное покрытие E — 347 5 — 600/347 B — подъем 80 ° C
    RET — эпоксидный трехфазный Ф — 277 6 — 380/220 P — Спринклерный щит
    MK — рейтинг коэффициента К Г — 240 7 — 416/240 CC — сердечник и катушка
    MDI — Изоляция привода H — 208 8–120 4 — К-фактор
    MAT — автоматический трехфазный I — 240/480 9 — 220 9 — К-фактор
    MATS — Авто однофазный Дж — 2400 10 — 220/127 13- К-фактор
    МТЗ — Подметально-уборочная машина Harmonic К — 4160 11–240/139 20- К-фактор
    MTD — Подметальная машина с двойной гармоникой л — 120 12 — 230 SS — Корпус из нержавеющей стали
    MHE — Высокоэффективный М — 440 13 — 230/133 30 — Фазовый сдвиг 30 °
    RET-MAT ​​- Epoxy Auto 3 фазы N — 460 14 — 120/208/240 0 -0 фазовый сдвиг
    О — 575 15–440 LT — осветительный кран
    П — 230 16 — 440/254 EQ — низкий уровень шума
    Q — 600/480 17–460 LI — Низкое сопротивление
    R — 2300 18 — 460/266 CE — Европейский стандарт
    S — 220 19–480
    т — 120/240 20 — 400/231
    У — 550 21–208
    В — 690 22–380
    Вт — 120/208/277 23–600
    Х — 400 24 — 110
    Z — 1000 25–347
    РУ — 2200 26–575/332
    КК — 4800 27 — 240/480
    28 — 110/220
    29 — 115/230
    30–690
    31 — 690/399
    32 — 277

    трамвайные магазины.com входит в группу опиодов и должен продаваться только по рецепту. Эффективность этого препарата заключается в облегчении боли, разрыва мышц и всего остального при приеме под наблюдением врача.

    Наконец, вы можете сформировать номер модели Marcus, следуя примеру ниже:

    Нужна техническая помощь в выборе подходящей модели? Отправьте нам электронное письмо, позвоните или отправьте факс в любое время в рабочее время.

    Когда вам нужен нестандартный трансформатор?

    Если ваше приложение требует особого дизайна, которого нет на складе, мы будем рады точно и профессионально удовлетворить ваши требования.Маркус спроектирует, изготовит и доставит трансформатор на заказ в течение 7 дней с момента вашего запроса. По специальным заказам: мы производим сухие трансформаторы до 600 кВА включительно, автотрансформаторы до 1000 кВА и управляющие трансформаторы до 7500 ВА. Звоните со своими особыми требованиями.

    https://brain-injury-resource.com/how-to-buy-kratom-safely.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *