Постоянный ток это: AC, DC — что это такое?

Содержание

Постоянный электрический ток

 на главную   

 

Официальный сайт АНО ДО Центра «Логос», г.Глазов

http://logos-glz.ucoz.net/

 

ГОТОВИМСЯ К УРОКУ

Кинематика

Динамика

МКТ

Термодинамика 

Электростатика

Электрический ток

Электрический ток в средах

Магнитное поле Электромагнитная индукция

Оптика

Методы познания

постоянный электрический ток                                                      немного о физике:   

 

Что называют электрическим током?

 

Электрический ток — упорядоченное движение заряженных частиц под действием сил электрического поля или сторонних сил.

За направление тока выбрано направление движения положительно заряженных частиц.

Электрический ток называют постоянным, если сила тока и его направление не меняются с течением времени.

 

Условия существования постоянного электрического тока.

 

Для существования постоянного электрического тока необходимо наличие свободных заряженных частиц и наличие источника тока. в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля.

Источник тока — устройство, в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля. В источнике тока на заряженные частицы в замкнутой цепи действуют сторонние силы. Причины возникновения сторонних сил в различных источниках тока различны. Например в аккумуляторах и гальванических элементах сторонние силы возникают благодаря протеканию химических реакций, в генераторах электростанций они возникают  при движении проводника в магнитном поле, в фотоэлементах — при действия света на электроны в металлах и полупроводниках.

Электродвижущей силой источника тока называют отношение работы сторонних сил к величине положительного заряда, переносимого от отрицательного полюса источника тока к положительному.

 

Основные понятия.

 

Сила тока — скалярная физическая величина, равная отношению заряда, прошедшего через проводник, ко времени, за которое этот заряд прошел.

где I — сила тока, q — величина заряда (количество электричества), t — время прохождения заряда.

Плотность тока — векторная физическая величина, равная отношению силы тока к площади поперечного сечения проводника.

где j плотность токаS площадь сечения проводника.

Направление вектора плотности тока совпадает с направлением движения положительно заряженных частиц.

Напряжение скалярная физическая величина, равная отношению полной работе кулоновских и сторонних сил при перемещении положительного заряда на участке к значению этого заряда.

где A — полная работа сторонних и кулоновских сил,  q — электрический заряд.

Электрическое сопротивление — физическая величина, характеризующая  электрические свойства участка цепи.

где ρ — удельное сопротивление проводника, l — длина участка проводника,  S — площадь поперечного сечения проводника.

 

Проводимостью называется величина, обратная сопротивлению

где  G — проводимость.

 

 

Законы Ома.

 

Закон Ома для однородного участка цепи.

Сила тока в однородном участке цепи прямо пропорциональна напряжению при постоянном сопротивлении участка  и обратно пропорциональна сопротивлению участка при постоянном напряжении.

где U — напряжение на участке,  R — сопротивление участка.

 

 

Закон Ома для произвольного участка цепи, содержащего источник постоянного тока.

где   φ1— φ2 + ε = U напряжение на заданном участке цепи, R — электрическое сопротивление  заданного участка цепи.

 

 

Закон Ома для полной цепи.

Сила тока в полной цепи равна отношению электродвижущей силы источника к сумме сопротивлений внешнего и внутреннего участка цепи.

где R — электрическое сопротивление внешнего участка цепи,  r — электрическое сопротивление внутреннего участка цепи.

 

Короткое замыкание.

Из закона Ома для полной цепи следует, что сила тока в цепи  с заданным источником тока зависит только от сопротивления внешней цепи R.

Если к полюсам источника тока подсоединить проводник с сопротивлением  R<< r, то тогда только  ЭДС источника тока и его сопротивление будут определять  значение силы тока в цепи.

Такое значение силы тока будет являться предельным для данного источника тока и называется током короткого замыкания. 

 

Последовательное и параллельное

соединение проводников.

 

Электрическая цепь включает в себя источника тока и проводники (потребители, резисторы и др), которые могут соединятся  последовательно или параллельно.

 

При последовательном соединении конец предыдущего проводника соединяется с началом следующего.

 

 

Во всех  последовательно соединенных проводниках сила тока одинакова:

I1= I2=I

 

Сопротивление всего участка равно сумме сопротивлений всех отдельно взятых проводников:

R = R1+ R2

 

 

 

Падение напряжения на всем участке равно сумме паданий напряжений на всех отдельно взятых проводниках:

U= U1 +U2

 

Напряжения на последовательно соединенных проводниках пропорциональны их сопротивлениям.

При параллельном соединении проводники подсоединяются к одним и тем же точкам цепи.

Сила тока в неразветвленной части цепи равна сумме токов, текущих в каждом проводнике:

I = I1+ I2

 

Величина, обратная сопротивлению разветвленного участка,  равна сумме обратных величин обратных сопротивлениям каждого отдельно взятого проводника:

 

    

Падение напряжения во всех проводниках одинаково:

U= U1 = U2

 

 

Силы тока в проводниках обратно пропорциональны их сопротивлениям

 

 

Смешанное соединение — комбинация  параллельного и последовательного  соединений.

 

 

Правила Кирхгофа.

Для расчета разветвленных цепей, содержащих неоднородные участки, используют правила Кирхгофа. Расчет сложных цепей состоит в отыскании токов в различных участках цепей.

Узел — точка разветвленной цепи, в которой сходится более двух проводников.

1 правило Кирхгофа: алгебраическая сумма сил токов, сходящихся в узле, равна нулю;

где n — число проводников, сходящихся в узле, Ii— сила тока в проводнике.

токи, входящие в узел считают положительными, токи, отходящие из узла — отрицательными.

2 правило Кирхгофа: в любом произвольно выбранном замкнутом контуре разветвленной цепи алгебраическая сумма произведений сил токов и сопротивлений каждого из участков этого контура равна алгебраической сумме ЭДС в контуре.

 

Чтобы учесть знаки сил токов и ЭДС выбирается определенное направление обхода контура(по часовой стрелке или против нее). Положительными считают токи, направление которых совпадает с направлением обхода контура, отрицательными считают  токи противоположного направления. ЭДС источников  электрической энергии считают положительными если они создают токи, направление которых совпадает с направлением обхода контура, в противном случае — отрицательными.

 

Порядок расчета сложной цепи постоянного тока.

  1. Произвольно выбирают направление токов во всех участках цепи.

  2. Первое правило Кирхгофа  записывают  для  (m-1)  узла, где m — число узлов в цепи.

  3. Выбирают произвольные замкнутые контуры, и после выбора направления обхода записывают второе правило Кирхгофа.

  4. Система из составленных уравнений должна быть разрешимой: число уравнений должно соответствовать количеству неизвестных.

Шунты и добавочные сопротивления.

Шунт — сопротивление, подключаемое параллельно к амперметру (гальванометру), для расширения его шкалы при измерении силы тока.

Если  амперметр рассчитан на силу тока I0, а с помощью него необходимо измерить силу тока, превышающую в n раз допустимое значение, то сопротивление, подключаемого шунта должно удовлетворять следующему условию:

 

 

Добавочное сопротивление — сопротивление, подключаемое последовательно с вольтметром (гальванометром),  для расширения его шкалы при измерении напряжения.

Если  вольтметр рассчитан на напряжение U0, а с помощью него необходимо измерить напряжение, превышающее в n раз допустимое значение, то добавочное сопротивление должно удовлетворять следующему условию:

 

 

Что такое ток: основные понятия

Что же такое ток и напряжение на пальцах

Что называют силой тока? Такой вопрос не раз и не два возникал у нас в процессе обсуждения различных вопросов. Поэтому мы решили разобраться с ним более подробно, и постараемся сделать это максимально доступным языком без огромного количества формул и непонятных терминов.

Что такое электрический ток

Итак, что называется электрическим током? Это направленный поток заряженных частиц. Но что это за частицы, с чего это вдруг они двигаются, и куда? Это все не очень понятно. Поэтому давайте разберемся в этом вопросе подробнее.

Носители электрического заряда в различных материалах

  • Начнем с вопроса про заряженные частицы, которые, по сути, являются носителями электрического тока. В разных веществах они разные. Например, что представляет собой электрический ток в металлах? Это электроны. В газах — электроны и ионы; в полупроводниках – дырки; а в электролитах — это катионы и анионы.

Строение атома

  • Эти частицы имеют определенный заряд. Он может быть положительным или отрицательным. Определение положительного и отрицательного заряда дано условно. Частицы, имеющие одинаковый заряд, отталкиваются, а разноименный — притягиваются.

Электрический ток

  • Исходя из этого, получается логичным, что движение будет происходить от положительного полюса к отрицательному. И чем большее количество заряженных частиц имеется на одном заряженном полюсе, тем большее их количество будет перемещаться к полюсу с другим знаком.
  • Но все это глубокая теория, поэтому давайте возьмем конкретный пример. Допустим, у нас имеется розетка, к которой не подключено ни одного прибора. Есть ли там ток?
  • Для ответа на этот вопрос нам необходимо знать, что такое напряжение и ток. Дабы это было понятнее, давайте разберем это на примере трубы с водой. Если говорить упрощенно, то труба — это наш провод. Сечение этой трубы — это напряжение электрической сети, а скорость потока — это и есть наш электрический ток.
  • Возвращаемся к нашей розетке. Если проводить аналогию с трубой, то розетка без подключенных к ней электроприборов, это труба, закрытая вентилем. То есть электрического тока там нет.

Электрический ток появится тогда, когда появится нагрузка, а для этого нужно вставить вилку в розетку

  • Но зато там есть напряжение. И если в трубе, для того чтоб появился поток, необходимо открыть вентиль, то чтобы создать электрический ток в проводнике, надо подключить нагрузку. Сделать это можно путем включения вилки в розетку.
  • Конечно, это весьма упрощенное представление вопроса, и некоторые профессионалы будут меня хаять и указывать на неточности. Но оно дает представление о том, что называют электрическим током.

Постоянный и переменный ток

Виды электрического тока

Следующим вопросом, в котором мы предлагаем разобраться – это: что такое переменный ток и постоянный ток. Ведь многие не совсем правильно понимают эти понятия.

Постоянный ток

Постоянным называется ток, который в течение времени не изменяет своей величине и направлению. Достаточно часто к постоянному еще относят пульсирующий ток, но давайте обо всем по порядку.

Постоянный ток

  • Постоянный ток характеризуется тем, что одинаковое количество электрических зарядов постоянно сменяет друг друга в одном направлении. Направление — это от одного полюса, к другому.
  • Получается, что проводник всегда имеет либо положительный, либо отрицательный заряд. И в течение времени это неизменно.

Обратите внимание! При определении направления постоянного тока, могут быть несогласности. Если ток образуется движением положительно заряженных частиц, то его направление соответствует движению частиц. Если же ток образован движением отрицательно заряженных частиц, то его направление принято считать противоположным движению частиц.

Виды пульсирующего тока

  • Но под понятие, что такое постоянный ток достаточно часто относят и так называемый пульсирующий ток. От постоянного он отличается только тем, что его значение в течение времени изменяется, но при этом он не меняет своего знака.
  • Допустим, мы имеем ток в 5А. Для постоянного тока эта величина будет неизменной в течении всего периода времени. Для пульсирующего тока, в один отрезок времени она будет 5, в другой 4, а в третий 4,5. Но при этом он ни в коем случае не снижается ниже нуля, и не меняет своего знака.

Вариант преобразованного из переменного, постоянного пульсирующего тока

  • Такой пульсирующий ток очень распространен при преобразовании переменного тока в постоянный. Именно такой пульсирующий ток выдает ваш инвертор или диодный мост в электронике.
  • Одним из главных преимуществ постоянного тока является то, что его можно накапливать. Сделать это можно своими руками, при помощи аккумуляторных батарей или конденсаторов.

Переменный ток

Чтобы понять, что такое переменный ток, нам необходимо представить себе синусоиду. Именно эта плоская кривая лучше всего характеризует изменение постоянного тока, и является стандартом.

Синусоида переменного тока

Как и синусоида, переменный ток с постоянной частотой меняет свою полярность. В один период времени он положительный, а в другой период времени он отрицательный.

 

На фото основные параметры синусоиды

Поэтому, непосредственно в проводнике передвижения, носителей заряда, как такового, нет. Дабы понять это, представьте себе волну, набегающую на берег. Она движется в одну сторону, а затем — в обратную. В итоге, вода вроде движется, но остается на месте.

Частота переменного тока

Исходя из этого, для переменного тока очень важным фактором становится его скорость изменения полярности. Этот фактор называют частотой.

Чем выше эта частота, тем чаще за секунду меняется полярность переменного тока. В нашей стране для этого значения есть стандарт – он равен 50Гц.

То есть, переменный ток меняет свое значение от крайнего положительного, до крайнего отрицательного 50 раз в секунду.

Формула частоты переменного тока

Но существует не только переменный ток частотой в 50Гц. Многое оборудование работает на переменном токе отличных частот.

Ведь за счет изменения частоты переменного тока, можно изменять скорость вращения двигателей.

Можно так же получать более высокие показатели обработки данных – как например в чипсетах ваших компьютеров, и многое другое.

Обратите внимание! Наглядно увидеть, что такое переменный и постоянный ток, можно на примере обычной лампочки. Особенно хорошо это видно на некачественных диодных лампах, но присмотревшись, можно увидеть и на обычной лампе накаливания. При работе на постоянном токе они горят ровным светом, а при работе на переменном токе едва заметно мерцают.

Что такое мощность и плотность тока?

Ну вот, мы выяснили, что такое ток постоянный, а что такое переменный. Но у вас наверняка осталось еще масса вопросов. Их-то мы и постараемся рассмотреть в этом разделе нашей статьи.

Из этого видео Вы подробнее сможете узнать о том, что же такое мощность.

  • И первым из этих вопросов будет: что такое напряжение электрического тока? Напряжением называется разность потенциалов между двумя точками.

Что является электрическим напряжением

  • Сразу возникает вопрос, а что такое потенциал? Сейчас меня вновь будут хаять профессионалы, но скажем так: это избыток заряженных частиц. То есть, имеется одна точка, в которой избыток заряженных частиц — и есть вторая точка, где этих заряженных частиц или больше, или меньше. Вот эта разница и называется напряжением. Измеряется она в вольтах (В).

Напряжение в розетке

  • В качестве примера возьмем обычную розетку. Все вы наверняка знаете, что ее напряжение составляет 220В. В розетке у нас имеется два провода, и напряжение в 220В обозначает, что потенциал одного провода больше чем потенциал второго провода как раз на эти 220В.
  • Понимание понятия напряжения нам необходимо для того, чтоб понять, что такое мощность электрического тока. Хотя с профессиональной точки зрения, это высказывание не совсем верное. Электрический ток не обладает мощностью, но является ее производной.

Плотность электрического тока в проводнике

  • Дабы понять этот момент, давайте вновь вернемся к нашей аналогии с водяной трубой. Как вы помните сечение этой трубы — это напряжение, а скорость потока в трубе — это ток. Так вот: мощность — это то количество воды, которое протекает через эту трубу.
  • Логично предположить, что при равных сечениях, то есть напряжениях — чем сильнее поток, то есть электрический ток, тем больший поток воды переместиться через трубу. Соответственно, тем большая мощность передастся потребителю.
  • Но если в аналогии с водой мы через трубу определенного сечения можем передать строго определенное количество воды, так как вода не сжимается, то с электрическим током все не так. Через любой проводник мы теоретически можем передать любой ток. Но практически, проводник небольшого сечения при высокой плотности тока просто перегорит.

Формула плотности тока

  • В связи с этим, нам необходимо разобраться с тем, что такое плотность тока. Грубо говоря — это то количество электронов, которое перемещается через определенное сечение проводника за единицу времени.
  • Это число должно быть оптимальным. Ведь если мы возьмем проводник большого сечения, и будем передавать через него небольшой ток, то цена такой электроустановки будет велика. В то же время, если мы возьмем проводник небольшого сечения, то из-за высокой плотности тока он будет перегреваться и быстро перегорит.
  • В связи с этим, в ПУЭ есть соответствующий раздел, который позволяет выбрать проводники исходя из экономической плотности тока.

Таблица выбора проводников по экономической плотности тока

  • Но вернемся к понятию, что такое мощность тока? Как мы поняли по нашей аналогии, при одинаковом сечении трубы передаваемая мощность зависит только от силы тока. Но если сечение нашей трубы увеличить, то есть увеличить напряжение, в этом случае, при одинаковых значениях скорости потока, будут передаваться совершенно разные объемы воды. То же самое и в электрике.

Передача мощностей через лини разных напряжений и видов электрического тока

  • Чем выше напряжение, тем меньший ток необходим для передачи одинаковой мощности. Именно поэтому, для передачи на большие расстояния больших мощностей используют высоковольтные линии электропередач.

Ведь линия сечением провода в 120 мм2 на напряжение в 330кВ, способна передать в разы большую мощность в сравнении с линией такого же сечения, но напряжением в 35кВ. Хотя то, что называется силой тока, в них будет одинаковой.

Способы передачи электрического тока

Что такое ток и напряжение мы разобрались. Пришла пора разобраться со способами распределения электрического тока. Это позволит в дальнейшем более уверено чувствовать себя в общении с электроприборами.

Постоянный ток

Как мы уже говорили, ток может быть переменным и постоянным. В промышленности, и у вас в розетках используется переменный ток. Он более распространен, так как его легче передавать по проводам. Дело в том, что изменять напряжение постоянного тока достаточно сложно и дорогостояще, а изменять напряжение переменного тока можно при помощи обыкновенных трансформаторов.

Обратите внимание! Ни один трансформатор переменного тока не будет работать на постоянном токе. Так как свойства, которые он использует, присущи только переменному току.

Аккумуляторная батарея

  • Но это совсем не обозначает, что постоянный ток нигде не используется. Он обладает другим полезным свойством, которое не присуще переменному. Его можно накапливать и хранить.
  • В связи с этим, постоянный ток используют во всех портативных электроприборах, в железнодорожном транспорте, а также на некоторых промышленных объектах где необходимо сохранить работоспособность даже после полного прекращения электроснабжения.

Промышленная аккумуляторная батарея

  • Самым распространенным способом хранения электрической энергии, являются аккумуляторные батареи. Они обладают специальными химическими свойствами, позволяющими накапливать, а затем при необходимости отдавать постоянный ток.
  • Каждый аккумулятор обладает строго ограниченным объемом накапливаемой энергии. Ее называют емкостью батареи, и отчасти она определяется пусковым током аккумулятора.
  • Что такое пусковой ток аккумулятора? Это то количество энергии, которое аккумулятор способен отдать в самый первоначальный момент подключения нагрузки. Дело в том, что в зависимости от физико-химических свойств, аккумуляторы отличаются по способу отдачи накопленной энергии.

Графики разряда аккумуляторной батареи

  • Одни могут отдать сразу и много. Из-за этого они, понятное дело, быстро разрядятся. А вторые отдают долго, но по чуть-чуть. Кроме того, важным аспектом аккумулятора является возможность поддержания напряжения.
  • Дело в том, что как говорит инструкция, у одних аккумуляторов по мере отдачи емкости, плавно снижается и их напряжение. А другие аккумуляторы способны отдать практически всю емкость с одинаковым напряжением. Исходя из этих основных свойств, и выбирают эти хранилища для электроэнергии.
  • Для передачи постоянного тока, во всех случаях используется два провода. Это положительная и отрицательная жила. Красного и синего цвета.

Переменный ток

А вот с переменным током все намного сложнее. Он может передаваться по одному, двум, трем или четырем проводам. Чтоб объяснить это, нам необходимо разобраться с вопросом: что такое трехфазный ток?

  • Переменный ток у нас вырабатывается генератором. Обычно почти все их них имеют трёхфазную структуру. Это значит, что генератор имеет три вывода и в каждый из этих выводов выдается электрический ток, отличающийся от предыдущих на угол в 120⁰.

Синусоиды трехфазной сети переменного тока

  • Дабы это понять, давайте вспомним нашу синусоиду, которая является образцом для описания переменного тока, и согласно законам которой он изменяется. Возьмем три фазы – «А», «В» и «С», и возьмем определенную точку во времени. В этой точке синусоида фазы «А» находится в нулевой точке, синусоида фазы «В» находится в крайней положительной точке, а синусоида фазы «С» — в крайней отрицательной точке.
  • Каждую последующую единицу времени переменный ток в этих фазах будет изменяться, но синхронно. То есть, через определенное время, в фазе «А» будет отрицательный максимум. В фазе «В» будет ноль, а в фазе «С» — положительный максимум. А еще через некоторое время, они вновь сменятся.

Фазные и линейные напряжения трехфазной сети

  • В итоге получается, что каждая из этих фаз имеет собственный потенциал, отличный от потенциала соседней фазы. Поэтому между ними обязательно должно быть что-то, что не проводит электрический ток.
  • Такая разность потенциалов между двумя фазами называется линейным напряжением. Кроме того, они имеют разность потенциалов относительно земли – это напряжение называется фазным.
  • И вот, если линейное напряжение между этими фазами составляет 380В, то фазное напряжение равно 220В. Оно отличается на значение в √3. Это правило действует всегда и для любых напряжений.

Величины фазных и линейных напряжений

  • Исходя из этого, если нам необходимо напряжение в 220В, то можно взять один фазный провод, и провод, жестко подключенный к земле. И у нас получится однофазная сеть 220В. Если нам необходима сеть 380В, то мы можем взять только 2 любые фазы, и подключить какой-то нагревательный прибор как на видео.

Цветовое обозначение проводников трехфазной сети в разных странах мира

Но в большинстве случаев, используются все три фазы. Все мощные потребители подключаются именно к трехфазной сети.

Вывод

Что такое индукционный ток, емкостной ток, пусковой ток, ток холостого хода, токи обратной последовательности, блуждающие токи и многое другое, мы просто не можем рассмотреть в рамках одной статьи.

Ведь вопрос электрического тока достаточно объемен, и для его рассмотрения создана целая наука электротехника. Но мы очень надеемся, что смогли объяснить доступным языком основные аспекты данного вопроса, и теперь электрический ток не будет для вас чем-то страшным и непонятным.

Постоянный ток — общие понятия, определение, единица измерения, обозначение, параметры. Параметры постоянного электрического тока

Что такое dc ток

Специфическое название создано из английского словосочетания «Direct Current» (dc – аббревиатура). Это обозначение в буквальном переводе подтверждает главную особенность такого тока – постоянное направление.

Для практического применения подходит постоянное питание либо синусоидальный сигнал. В этих ситуациях несложно стабилизировать параметры источника и рассчитать корректно электрическую схему, силовой агрегат или другое подключаемое оборудование. Периодически повторяющиеся помехи (пульсации) устраняют фильтрацией. Гораздо сложнее обеспечить длительный рабочий процесс, когда ток и напряжение изменяются произвольным образом.

Определение постоянного тока

Созданием разницы потенциалов на концах металлического проводника обеспечивают перемещение свободных электронов. Аналогичные процессы с иными носителями зарядов (ионами, дырками) происходят в газах, электролитах и полупроводниках. Необходимая для процесса энергия вырабатывается химическим способом в аккумуляторах и гальванических элементах. Ее создают преобразованием механической силы в электромагнитное поле с применением генератора. Вне зависимости от природы источника, ток в цепи будет стабильным, если поддерживать определенное dc напряжение.

Причины непостоянства

Экономичный переносной аппарат для измерения артериального давления выполняет свои функции на протяжении нескольких лет без установки новых батареек. Мощность потребления светодиодного освещения зала значительно больше. Такие устройства подключают к стандартной сети 220V через адаптер, который выравнивает напряжение и уменьшает амплитуду до необходимого уровня. Однако даже качественные преобразователи выполняют свои функции с допустимыми погрешностями. Постепенно уменьшается энергетический потенциал электрохимического источника. Отмеченные факторы объясняют действительное непостоянство измеряемых параметров в контрольной цепи.

По классическому определению, DC подразумевает неизменное направление движения заряженных частиц. Это значит, что показанный результат трансформации (б) с полуволнами одной полярности также соответствует заданному условию.

Важно! Постоянный ток – это частный случай однонаправленного тока, когда дополнительно обеспечивается стабилизация параметра с определенной точностью.

Основные характеристики тока

Принято обозначать рассматриваемый параметр через силу. Однако следует понимать, что в действительности речь идет об интенсивности перемещения заряженных частиц в определенном проводящем материале. Величина тока выражается в амперах. Для расчетов применяют формулы, которые могут означать взаимные связи основных электрических параметров и сопротивления цепи.

Направление постоянного тока и обозначения на электроприборах и схемах

Чтобы упростить расчеты и создание электрических схем, принимают направленность этого параметра по направлению к точке с меньшим потенциалом (от плюса к минусу). В действительности частицы перемещаются именно таким образом только при положительном заряде. В металле направление потока электронов обратное, однако для исключения путаницы применяют обозначенный базовый принцип.

Изоляция положительных выводов (щупов, кабелей) обозначается красным цветом, отрицательных – черным или синим. Если в сопроводительном тексте указано dc напряжение, это значит, что и ток в соответствующей цепи будет постоянный. На чертежах и корпусах изделий применяют условные обозначения в виде параллельных линий (сплошной и прерывистой).

Для измерения постоянного тока переключатель мультиметра нужно перевести в соответствующее положение

К сведению. Анод (катод) – это выводы электронной лампы или другой детали, которые подключают к положительному (отрицательному) электроду аккумуляторной батареи.

Также можно встретить обозначение a c что это такое, подробно описано в заключительном разделе статьи. Прямая расшифровка сокращения от «alternating current» не всегда корректна. Однако в узком смысле подразумевают синусоиду с переменной полярностью, которая обозначается латинскими буквами «AC», характерным одиночным волнистым символом либо стандартным математическим знаком примерного равенства «≈».

Величина постоянного тока

Определение «сила» не является корректным. Тем не менее, его применяют с учетом общепринятых норм. Вернувшись к сути явления, можно определить силу тока (I) по количеству перемещенных за определенный временной интервал (t) зарядов:

I = Q/t.

По международным стандартам СИ подразумеваются единичные величины: ампер, кулон и секунда. Для работы с большими токами удобнее пользоваться производной (ампер-часом) с повышающим множителем 3 600.

К сведению. Измерения выполняются с помощью универсального мультиметра или специализированного амперметра. Прибор включают непосредственно в цепь либо используют вспомогательный шунт.

Взаимосвязь параметров электрического тока

Элементарная электроцепь постоянного тока включает в себя источник электроэнергии, отрицательный и положительный контакты которого связаны шунтом или проводником. Движение заряда по проводнику осуществляется под воздействием электрического поля. Однако, этот перенос электронов не приводит к уравниванию потенциалов, т. к. в любой отрезок времени, к первому концу цепи поступает абсолютно такое же количество заряженных частиц какое из него переместилось к противоположному контакту. Таким образом разность потенциалов, которую принято называть напряжением, остается неизменяемой величиной.

Перемещению электрических зарядов в цепи, препятствует внутреннее сопротивление материала проводника. Взаимосвязь параметров электротока была выведена опытным путем Г. Омом. В математическом виде закон Ома можно представить так: I=U/R, где собственно I – сила тока, U – напряжение (разность потенциалов) и R – сопротивление на соответствующем участке цепи.

Собственно, из уравнения видно, что напряжение имеет прямую зависимость от силы тока и сопротивления (U=I х R), а величина силы тока обратно пропорциональна сопротивлению.

Последовательное соединение элементов электрической сети постоянного тока

Параметры электроцепи постоянного тока, в случае последовательного соединения устройств, имеют некоторые особенности. Так, например, сила тока (I) остается постоянной на всех элементах электрической схемы, а вот напряжение (U) является суммой напряжений на каждом участке схемы. Рассмотрим пример электрической цепи с последовательно включенными тремя проводниками с сопротивлением R1, R2 и R3. Согласно закону Ома, напряжение U1 = IxR1, U2 = IxR2, U3 = IxR3. Следовательно, U общ = U1+U2+U3= IxR1+ IxR2= IxR3 = I (R1+R2+R3).

Из уравнения видно, что такой параметр электрической цепи как общее сопротивление (R общ), при последовательном соединении, будет равен сопротивлению каждого отдельно взятого проводника. Последовательное подключение электрических устройств позволяет снизить нагрузку на отдельный элемент, что продлевает срок службы, но при этом теряется мощность.

Параметры электрической цепи. Параллельное соединение элементов

Параллельная цепь характеризуются общими контактами в местах ввода и вывода основного провода. В данной ситуации напряжение на всех элементах цепи остается одинаковым, т. е. U1=U2=U3. А вот для силы тока, будет характерна обратная зависимость от сопротивления каждого участка, т.е. I х=U/Rx. Параллельное соединение электроприборов является наиболее распространенным способом в бытовых условиях.

Параметры цепи при смешанном соединении в электрической цепи

Смешанное подключение проводников представляет собой электрическую цепь, в которой элементы включены комбинировано, т.е. как последовательно, так и параллельно друг другу. Для определения конкретных параметров, в этом случае, вся схема разбивается на самостоятельные участки в соответствии со способом подключения. Индивидуальные параметры рассчитываются для каждого участка отдельно. Необходимо отметить, что параллельно включенные участки, могут состоять из ряда последовательно соединенных элементов.

Понятие мощности электрического тока и ее параметры

Прохождение электротока по цепи, по своей сути, представляет собой работу (А) по перемещению свободного заряда от одного потенциала к другому. Чем больше электронов пересекает плоскость сечения электропроводящего элемента за единицу времени, тем выше мощность электрического тока. Общее количество работы можно определить по формуле – А=U∆q=IU∆t=I2R∆t.

Мощность электротока имеет обратно пропорциональную зависимость от отрезка времени за который была осуществлена работа – Р=A/∆t и прямо зависит от разности потенциалов и силы тока – Р=UxI. В том случае, если на участке цепи не осуществляется механическая работа под воздействием электрического тока, энергия тратится только на нагрев токопроводящего элемента. Общее количество выделяемого тепла, в этом варианте, будет равно работе, которую совершает электрической ток. Определить количество теплоты можно применив формулу Q=I2R∆t. Это соответствие было получено опытным путем Джоулем и Ленцем, а закон назван их именем.

Что такое электричество

Появление электричества – это определенная совокупность явлений, которые обусловлены существованием электрических зарядов со знаком «+» и «-», их взаимодействием между собой и возможностью движения. За счет того, что совокупность зарядов может перемещаться по проводнику, обладать притягивающими и отталкивающими свойствами, было открыто явление магнетизма и электричества. Одним из первых это описал Фалес, а позже в 1600 году английский физик Уильям Гилберт. С течением времени знания об этом явлении только увеличивались и прогрессировали.


Виды тока и их графики относительно времени

С точки зрения физики, электричество – это упорядоченное движение положительно и отрицательно заряженных частиц по материалу проводникового типа под действием электрического поля. В качестве частиц выступают ионы, протоны, нейтроны и электроны.


Направленное движение частиц

Какое отличие между переменным и постоянным током

Ток – это движение заряженных электронов в определенном направлении. Это перемещение необходимо для того, чтобы бытовые и профессиональные электроприборы могли работать с установленной номинальной мощностью. В домашней розетке ток появляется из электростанции, где кинетическая энергия электронов преобразуется в электрическую.

Электроток постоянного характера – электричество, получаемое из аккумулятора телефона или батарейки. Он называется так, потому что направление движения электронов в нем не меняется. На таком принципе основана работа зарядных устройств: они конвертируют переменное электричество сети в постоянное и в таком виде оно накапливается в аккумуляторных батареях.

Переменный ток – электричество в любой домашней электросети. Он называется так из-за того, что направление движения электронов постоянно меняется. Количество изменений направления задается частотой, которая для домашних сетей в СНГ равно 50 Гц. Это значит, что за одну секунду электроток меняет направление движения целых 50 раз. Напряжение же в сети – это максимальный «напор», который заставляет двигаться электроны.

Как обозначается постоянное и переменное напряжение

Постоянное напряжение или ток обозначаются аббревиатурой DC, что означает Direct current. На схемах и электроприборах принято также указывать постоянное напряжение простой ровной линией (—).

Значок переменного напряжения записывается в виде несколько иной аббревиатуры ( – AC. Если расшифровать, то получится «Alternating current». На клеммах электроприборов и распределительных щитков, а также на схемах она может изображаться как волнистая линия (~).

Важно! Если в сеть рассчитана для пропуска и того, и другого видов электроэнергии, она маркируется как «AC/DC» и обозначается на схеме двойной линией (верхняя линия прямая и сплошная, а нижняя прямая и пунктирная).


Альтернативное обозначение видов тока и напряжения на схемах

Какой значок напряжения

Напряжение означает поток электрических заряженных частиц по проводнику определенного сечения и  обычно обозначается как «U». Если напряжение в сети постоянное, то около латинской буквы ставится символ прямой линии или двух линий (верхняя сплошная прямая, а нижняя пунктирная). Для мультиметров и прочих приборов, связанных с измерением напряжения, используют латинскую букву «V», которая обозначает единицу измерения напряжения – Вольт (Volt). Значение линий при этом сохраняется.

Вам это будет интересно  Переход с 380 на 220 вольт

Важно! Многие обыватели полагают, что напряжение обозначается как «E», но это не так. «Е» — это электродинамическая сила (ЭДС) источника питания проводника.


Обозначение вида тока на мультиметре

Таким образом, маркировка проводов, клемм электроприборов и схем имеет совершенно четкий и понятный характер. Она указывает на силу тока и напряжение, с которыми работает та или иная сеть или прибор. Каждый взрослый человек может научиться читать электротехнические схемы буквально за несколько дней, так как для этого достаточно лишь изучить основные маркировки, а также обозначения постоянного и переменного напряжения.

Как обозначаются различные токи

По своим специфическим качествам электрический ток разделяется на два основных типа:

  • Постоянный ток. Обозначается прямой линией (—). Кроме того, используются символы DC – Direct Current, которые переводятся как постоянный ток.
  • Переменный ток. Известен под собственным обозначением в виде змейки (~) и символов АС, означающих Alternating Current.

Отличительной особенностью постоянного тока является его направленность. Он протекает лишь в одном определенном направлении, условно принимаемое от положительного контакта «+» к отрицательному контакту «-». От этого свойства и происходит наименование этого тока DC, который присутствует в солнечных панелях, всех типах сухих батареек и аккумуляторах, предназначенных для питания маломощных потребителей.


В некоторых технологических процессах, таких как дуговая электросварка, электролиз алюминия или электрифицированный железнодорожный транспорт, необходим постоянный ток DC с высоким значением силы. Чтобы его создать, необходимо выпрямить переменный или воспользоваться любым из генераторов постоянного тока.

Переменный ток AC, в отличие от постоянного, способен к изменению своего направления и величины. Существует параметр, известный как мгновенное значение переменного тока, определяемое в конкретный момент времени. Частота, с которой изменяется направление тока, составляет 50 Гц, то есть данная перемена происходит 50 раз в течение одной секунды.

Переменный ток AC может быть однофазным или трехфазным. В первом случае необходимо только два провода: основной и дополнительный, он же обратный. Именно по основному проводнику протекает электрический ток, а обратный считается нулевым проводом.

Читайте также:Что такое фидер

Трехфазное переменное напряжение вырабатывается соответствующим генератором тока AC. В этом процессе участвуют три обмотки, каждая из которых является своеобразной однофазной электрической цепью. Между собой они сдвинуты по фазе под углом 120 градусов. Благодаря данной системе электроэнергией могут быть обеспечены сразу три сети, независимые друг от друга. Для этого понадобится уже порядка шести проводов – трех прямых и трех обратных.

При необходимости дополнительные провода возможно соединить между собой и получить в итоге общий проводник, называемый нулевым или нейтральным. В этом случае проводники переменного тока на схемах обозначаются символами L1, L2, L3, а нулевой провод – буквой N.

Обозначения токов в измерительных приборах

Общепринятое обозначение постоянного и переменного тока нашло свое отражение в различных измерительных приборах, в том числе и на мультиметре. Вся необходимая символика наносится на лицевую панель того или иного устройства. Это позволяет измерить именно тот параметр, который необходим в данный момент.

Например, если на шкале выставлено положение АС, в этом случае можно проводить измерение значения переменного тока. Как правило, такие приборы предназначены для работы в электросетях с обычными напряжениями 220 или 380 вольт. Существуют модели с рабочими режимами в пределах 600 В и выше.

Если же мультиметр выставлен напротив отметки DC, то рабочий режим аппарата станет соответствовать постоянному току. В этом положении замеряется ток на аккумуляторах, батарейках и других источниках питания, вырабатывающих постоянный ток. В данном режиме требуется непременно соблюдать полярность полюсов. Диапазон измерений обычно составляет от нуля до нескольких тысяч вольт, в зависимости от характеристик конкретной модификации устройства.

Обозначение на схемах радиодеталей

Буквенные обозначения элементов на электрических схемах

Обозначения на электрических схемах выключателей, розеток и лампочек

Маркировка диодов и схема обозначений

Обозначение трансформатора на схеме

Какой ток в розетке постоянный или переменный? Обозначение постоянного и переменного тока

Несмотря на внешнюю странность, вопрос далеко не праздный, хотя мы и привыкли больше к тому, что в типовых розетках наших домов переменный ток .

Именно поэтому на вопрос, какой ток в розетке постоянный или переменный не задумываясь, ответим – конечно, переменный! Ну а мы решили разобраться так ли это и заодно в стандартах розеток, обозначениях постоянного и переменного тока, и некоторых попутных вопросах.

Аббревиатуры AC и DC – что они означают?

Напряжение с точки зрения гидравлики

Все вы видели и представляете, как выглядит водонапорная башня или просто водобашня. Грубо говоря, это большой высокий “бокал”, заполненный водой.


водоносная башня

Так вот, представим себе, что башня доверху наполнена водой. Получается, в данный момент на дне башни ого-го какое давление!


водобашня, заполненная водой

А что, если слить из башни воду хотя бы наполовину? Давление на дно башни уменьшится вдвое. А давайте-ка нальем в пустую башню одно ведро воды! Давление на дно башни будет мизерное.

Представьте такую ситуацию. У нас есть водонос, а шланг мы закупорили пробкой.

Вода вроде бы готова бежать, но бежать то некуда! Пробка туго закупоривает шланг. Но на саму пробку сейчас оказывается давление, которое создает насосная станция. От чего зависит давление на пробку? Думаю понятно, что от мощности насоса. Если мощность насоса будет большая, то пробка вылетит со скоростью пули, или давление порвет шланг, если пробка туго сидит в шланге. В данном случае давление создается с помощью насоса. То есть можно сказать, что это модель башни с водой в горизонтальном положении.

Все то же самое можно сказать и про водобашню. Здесь давление на дно создается уже гравитационной силой. Как я уже говорил,  давление на дне башни зависит от того, сколько воды в башне в данный момент. Если башня наполнена водой под завязку, то и давление на дне башни будет большое, и наоборот.

А теперь представьте себе какое давление на дне океана, особенно в Марианской впадине! Что можно сказать про давление в этих двух случаях? Оно вроде как есть, но молекулы воды стоят на месте и никуда не двигаются. Запомните этот момент. Давление есть, а движухи – нет.

Формула напряжения

В физике есть формула, хотя практического применения она не имеет. Официальная формула записывается так.


формула напряжения

где

A – это работа электрического поля по перемещению заряда по участку цепи, Джоули

q – заряд, Кулон

U – напряжение на участке электрической цепи, Вольты

На практике напряжение на участке цепи выводится через закон Ома.


напряжение из закона Ома

где

I – сила тока, Амперы

R – сопротивление, Омы

Осциллограммы постоянного и переменного напряжения

Давайте рассмотрим, как выглядит переменное и постоянное напряжение на экране осциллографа. Как вы знаете, осциллограф показывает изменение напряжения во времени. Если на щуп осциллографа не подавать никакое напряжение, то на осциллограмме мы увидим простую прямую линию на нулевом уровне по оси Y. Ось Y – это значение напряжения, а ось Х – это время.


осциллограмма нулевого напряжения

Давайте подадим постоянное напряжение. Как вы могли заметить, осциллограмма постоянного напряжения  – это также прямая линия, параллельная оси времени. Это говорит нам о том, что с течением времени значение постоянного напряжение не меняется, о чем нам лишний раз доказывает осциллограмма.


осциллограмма постоянного напряжения

А вот так выглядит осциллограмма переменного напряжения. Как вы видите, напряжение со временем меняет свое значение. То оно больше нуля, то оно меньше нуля.


осциллограмма переменного напряжения

Война токов

Активное использование постоянного тока началось в конце 19 века. Тогда Эдисон довел до ума лампочку (1890) и основал первые в Нью-Йорке электростанции, которые производили постоянный ток напряжением 110 Вольт.

Использование постоянного тока было связано с существенными потерями при его передаче на большие расстояния. Переменный ток нельзя было использовать из-за того, что не было соответствующих счетчиков и моторов, работавших на переменном токе. Так же был затруднен процесс преобразования постоянного тока в переменный. При этом переменный ток можно было без потерь передавать на большие расстояния.

В то время в Америку из Сербии приехал Никола Тесла, который устроился на работу в компанию к Эдисону. Тесла изобрел электродвигатель переменного тока, понял все выгоды и предложил Эдисону его использование.


Тесла и Эдисон

Эдисон не послушал Теслу и к тому же не выплатил ему зарплату. Так и началось знаменитое противостояние изобретателей – война токов.

Она длилась более ста лет и закончилась в 2007 году. Тогда Нью-Йорк полностью перешел на электроснабжение переменным током.

Почему переменный ток опаснее постоянного

В войне токов, чтобы не потерпеть убытки и финансовый крах от внедрения и использования идей Теслы, Эдисон публично демонстрировал, как переменный ток убивает животных. Случай, когда какой-то американский гражданин погиб от удара переменным током, был очень подробно и широко освещен в прессе.


Для человека переменный ток в общем случае действительно опаснее постоянного. Хотя всегда нужно учитывать величину тока, его частоту, напряжение, сопротивление человека, которого бьет током. Рассмотрим эти нюансы:

  1. Переменный ток частотой 50 Герц в три-четыре раза опаснее для жизни, чем постоянный ток. Если частота тока более 1000 Герц, то он считается менее опасным.
  2. При напряжениях около 400-600 Вольт переменный и постоянный токи считаются одинаково опасными. При напряжении более 600 Вольт более опасен постоянный ток.
  3. Переменный ток в силу своей природы и частоты сильнее возбуждает нервы, стимулируя мышцы и сердце. Именно поэтому он несет большую опасность для жизни.

С каким бы током вы не работали, соблюдайте осторожность и будьте бдительны! Берегите себя и свои нервы, а также помните: сделать это эффективно поможет профессиональный студенческий сервис с лучшими экспертами.

Преобразователь постоянного тока в переменный


Если с преобразованием переменного тока в постоянный не возникает сложностей, то со обратным преобразованием все гораздо сложнее. В домашних условиях для этого используется инвертор — это генератор периодического напряжения из постоянного, по форме приближённого к синусоиде.

Инвертор технически сложное устройство, поэтому и цены на него не маленькие. Стоимость зависит напрямую от выходной максимальной мощности переменного тока.

Как правило, преобразование постоянного тока требуется в редких случаях. Например, для подключения от бортовой электросети автомобиля домашних электроприборов, инструмента и т. п. в походе, на даче и т. д.

 

[spoiler title=”Источники”]

  • https://amperof.ru/teoriya/dc-tok-ponyatie-vidy.html
  • https://vse-elektrichestvo.ru/elektroprovodka/parametry-postoyannogo-elektricheskogo-toka.html
  • https://rusenergetics.ru/polezno-znat/oboznachenie-postoyannogo-i-peremennogo-toka
  • https://electric-220.ru/news/oboznachenie_postojannogo_i_peremennogo_toka/2018-03-21-1475
  • https://orenburgelectro.ru/drugoe/oboznachenie-peremennogo-i-postoyannogo-toka-sovety-elektrika.html
  • https://www.RusElectronic.com/naprjazhjenije/
  • https://Zaochnik.ru/blog/peremennyj-i-postoyannyj-tok-v-chem-raznica-istoriya-razvitiya-primenenie/
  • http://jelektro.ru/elektricheskie-terminy/postojannyj-peremennyj-tok.html

[/spoiler]

Предыдущая

ТеорияЧто такое плотность тока?

Следующая

ТеорияЧто такое элемент Пельтье и как его сделать своими руками?

Пульсирующий ток — Основы электроники

  

Мы познакомились с постоянным и переменным токами. Постоянным током мы называем ток, который не изменяется ни по величине, ни по направлению. Переменный же ток, наоборот, все время изменяется и по величине, и по направлению.

Изучая переменный ток, была принята синусоида как основная форма его изменения.

Однако в радиотехнике приходится иметь дело и с несинусоидальными переменными токами, ЭДС и напряжениями, графики которых отличаются от графика синусоиды.

Существуют токи, направление которых постоянно, а величина все время изменяется.

Одним из примеров такого несинусоидального тока может служить пульсирующий ток, график которого изображен на рисунке 1.

Согласно ГОСТ 19880-74 ЭЛЕКТРОТЕХНИКА. ОСНОВНЫЕ ПОНЯТИЯ. Термины и определения:пульсирующий ток — это периодический электрический ток, не изменяющий своего направления.

Рисунок 1. Изображение пульсирующего тока. 

Как видно из графика, такой ток непрерывно изменяется по величине, но проходит по цепи в одном направлении. Действительно, кривая тока расположена выше оси времени, нигде не пересекая ее, а следовательно, и направление тока в цепи не изменяется.

При пульсирующем токе электроны в проводнике движутся все время в одном направлении, но их движение то убыстряется, то замедляется. Движение каждого отдельного электрона в этом случае походит на движение пассажира, прогуливающегося взад и вперед по вагону движущегося поезда. Пассажир движется вместе с поездом все время вперед, но скорость его движения убыстряется, когда он идет по ходу поезда, и замедляется, когда он идет обратно.

Примером цепи, в которой создается пульсирующий ток, может служить любое выпрямительное устройство.

Пульсирующий ток можно также получить, если одновременно пропускать по цепи постоянный и переменный токи. То есть всякий пульсирующий ток можно представить в виде суммы двух токов — постоянного и переменного. Необходимым условием является только, чтобы постоянный ток был больше амплитудного значения переменного тока.

На рисунке 2 изображен график пульсирующего тока, а также графики постоянного и переменного токов, из которых он состоит.

Рисунок 2. Создание пульсирующего тока. а) направление пульсирующего тока не именяется, изменяется только его величина; б) переменная составляющая пульсирующего тока; в) постоянная составляющая пульсирующего тока.

Проверим графически процесс возникновения пульсирующего тока, путем сложения двух графиков — постоянного и переменного синусоидального токов (рисунок 3).

Рисунок 3. Результирующая кривая, полученная от сложения потоянного и синусоидального токов.

На рисунке 3 кривая переменного тока и складываемая с ней прямая постоянного тока нанесены пунктиром, при этом амплитуда переменного тока взята чуть меньше величины постоянного тока.

В начальный момент времени, когда величина переменного тока равна, нулю, сумма токов будет равна величине постоянного тока. Следовательно, точка 1 будет начальной точкой графика результирующего тока.

Так как в течение первой четверти периода своего изменения переменный ток возрастает, совпадая по направлению с постоянным током, то общий ток в цепи будет также возрастать и достигнет своего максимального значения в тот момент, когда переменный ток достигнет наибольшей величины (точка 2).

По истечении времени, равного половине периода T/2, переменный ток уменьшится до нуля и общий ток в цепи станет равным постоянному току (точка 3). В следующую половину периода переменный ток начнет проходить в обратном направлении, т. е. навстречу постоянному току. Общий ток в цепи станет меньше постоянного и его значение станет минимальным, когда переменный ток достигнет своего максимального отрицательного значения (точка 4).

К концу последней четверти периода уменьшение величины переменного тока приведет к тому, что в цепи на мгновение установится величина постоянного тока (точка 5), после чего весь процесс повторится.

Итак, сложив графически постоянный и переменный токи,, мы получили график пульсирующего тока. Следовательно, пульсирующий ток, графически изображенный на рисунке 3— это сложный ток, состоящий из двух простых токов: постоянного, называемого постоянной составляющей пульсирующего тока, и переменного синусоидального тока, называемого переменной составляющей пульсирующего тока.

Постоянную и переменную составляющие пульсирующего тока можно легко отделить друг от друга, т. е. получить отдельно переменный ток и отдельно постоянный.

Пример такого разделения показан на рисунке 4.

Рисунок 4. Схема для разделения переменной и постоянной составляющих пульсирующего тока.

Переменная составляющая направляется по наиболее легкому для нее пути через конденсатор, а постоянная составляющая — через дроссель.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Постоянный и переменный токи

Мы завершаем изучение темы «Постоянный электрический ток». Тем не менее, в этом параграфе мы рассмотрим и переменный ток. С чем это связано? Причина в самих терминах «постоянный ток» и «переменный ток», названия которых не вполне удачны, поскольку могут трактоваться по-разному в физике и электротехнике: так сложилось исторически. Обратимся к определениям.

В физике постоянным током называют электрический ток, не изменяющийся по силе и направлению с течением времени. Графиком такого «истинно постоянного» тока должна быть прямая, параллельная оси времени (см. рис. «а»). Тем не менее, в электротехнике постоянным током считают ток, который постоянен только по направлению, но может меняться по силе. Такой ток можно получить «выпрямлением» синусоидального переменного тока, например, того, который существует в домашней осветительной сети (см. рис. «б»). В результате получается пульсирующий однонаправленный ток (см. рис. «в»).

В физике переменным током называют электрический ток, изменяющийся с течением времени: по силе и/или направлению. С точки зрения физики, «пульсирующий» ток на рисунке «в» является переменным, поскольку меняется по силе (оставаясь постоянным по направлению). Такой однонаправленный ток в электротехнике считают «постоянным», так как по своим действиям он похож на настоящий постоянный ток. Например, он будет пригоден для зарядки аккумуляторов, работы электродвигателей, проведения электролиза. Переменный по направлению ток для этих целей непригоден.

Примечание. Почему ток в электрических сетях является именно синусоидальным и меняет своё направление 100 раз в секунду, мы расскажем позднее (см. § 10-ж). А пока рассмотрим, как из него можно получить однонаправленный пульсирующий ток – «постоянный» с точки зрения электротехники. Другими словами, как «перебросить» нижние части синусоиды вверх, то есть преобразовать форму тока без потери мощности этого тока? Для этого служат различные приборы, один из которых – полупроводниковый диод, пропускающий через себя ток лишь в одном направлении (см. § 09-и).

Ниже на левой схеме показано включение двух диодов в цепь переменного тока. При этом верхние части синусоиды проходят через верхний диод (по направлению его «стрелочки»), а нижние части синусоиды не проходят через нижний диод (против его «стрелочки»). Таким образом получается пульсирующий однонаправленный ток, и ровно половина исходной мощности не попадает к потребителю, так как образуются «равнины» с нулевым значением силы тока. Для особо интересующихся физикой заметим, что точно такой же результат будет, если оставить только один диод, причём, любой.

На правой схеме показано включение четырёх диодов по так называемой мостовой схеме. Она более выигрышна по сравнению с предыдущей: диоды попарно пропускают как верхние, так и нижние части синусоиды соответственно к клеммам «+» и «–». В результате из исходного переменного тока, на графике кторого можно условно выделить «холмы и овраги», на графике получающегося однонаправленного тока образуются «не холмы и равнины», а «удвоенные холмы». Это означает, что теперь к потребителю попадает вся мощность исходного тока.

И в заключение рассмотрим, как к непостоянному току можно применить закон Джоуля-Ленца Q=I²Rt, описывающий тепловое действие тока. Как быть, если сила тока постоянно меняется? Нужно её заменить на условно-постоянную силу тока, которая производит такое же тепловое действие. Такое условно-постоянное значение силы тока в физике называют эквивалентным (эффективным, действующим) значением силы непостоянного тока.

Определение: эквивалентное значение непостоянного тока равно значению такого постоянного тока, который, проходя через то же сопротивление, выделяет в нём то же количество теплоты за то же время. Именно эквивалентное значение тока показывают нам все амперметры. Аналогично и по отношению к напряжению и вольтметрам. Итак, определить эквивалентные значения непостоянных токов позволяют калориметрические измерения (см. § 06-в).

 

постоянный ток — это… Что такое постоянный ток?

электрический ток, не изменяющийся во времени.

ПОСТОЯ́ННЫЙ ТОК, электрический ток (см. ЭЛЕКТРИЧЕСКИЙ ТОК), величина и направление которого не изменяются с течением времени.
Постоянный электрический ток может возникнуть только при наличии свободных заряженных частиц, на которые действуют силы, обеспечивающие их упорядоченное перемещение в течение конечного промежутка времени. Электрический ток характеризуется силой тока (см. СИЛА ТОКА) и плотностью тока (см. ПЛОТНОСТЬ ТОКА). Во всех сечениях неразветвлённой замкнутой цепи сила постоянного тока одинакова. За направление тока условно принимают направленное движение положительных зарядов, которое соответствует переходу от большего потенциала (см. ПОТЕНЦИАЛ (в физике)) к меньшему. Если через любое сечение проводника в одни и те же промежутки времени проходит одно и то же количество электричества, ток называют установившимся (стационарным).
Для протекания постоянного тока в проводнике необходимо, чтобы цепь постоянного тока проводимости была замкнутой, напряженность электрического поля в проводнике была постоянной, на свободные электрические заряды, помимо кулоновских сил, действовали неэлектростатические сторонние силы (см. СТОРОННИЕ СИЛЫ).
Цепь постоянного тока можно разбить на определенные участки. Те участки, на которых не действуют сторонние силы (т. е. участки, не содержащие источников тока), называются однородными. Участки, включающие источники тока, называются неоднородными.
Основными законами для постоянного тока являются Ома закон (см. ОМА ЗАКОН), устанавливающий зависимость силы тока от напряжения, и Джоуля — Ленца закон (см. ДЖОУЛЯ — ЛЕНЦА ЗАКОН), определяющий количество тепла, выделяемого током в проводнике. Расчет разветвленных цепей постоянного тока производится с помощью Кирхгофа правил (см. КИРХГОФА ПРАВИЛА).
В технике установками постоянного тока принято считать такие установки, в которых ток не меняет своего направления, но может меняться по величине.

Отличие переменного тока от постоянного простыми словами. Чем отличается постоянный электрический ток от переменного

Электрическим током называют направленное, упорядоченное движение заряженных частиц.

Постоянный ток имеет устойчивые свойства и направление движения заряженных частиц, которые не изменяются со временем. Он используется многими электрическими устройствами в домах, а также в автомобилях. От постоянного тока работают современные компьютеры, ноутбуки, телевизоры и многие другие устройства. Для преобразования переменного тока в постоянный используются специальные блоки питания и трансформаторы напряжения .

Все электрические устройства и электрические инструменты, работающие от батарей и аккумуляторов считаются потребителями постоянного тока, так как батарея – это источник постоянного тока, который может быть преобразован в переменный с помощью инверторов.

Разница переменного тока от постоянного

Переменным называют электрический ток, который может изменяться по направлению движения заряженных частиц и величине с течением времени. Важнейшими параметрами переменного тока считаются его частота и напряжение. В современных электрических сетях на разных объектах используется именно переменный ток, имеющий определенное напряжение и частоту. В России в бытовых электросетях ток имеет напряжение 220 В и частоту равную 50 Гц. Частота электрического переменного тока – это число изменений направления движения заряженных частиц за 1 секунду, то есть, при частоте в 50 Гц он меняет направление 50 раз в секунду. Таким образом, отличие переменного тока от постоянного заключается в том, что в переменном заряженные частицы могут менять направление движения.

Источниками переменного тока на объектах различного назначения являются розетки . К розеткам мы подключаем различные бытовые приборы, получающие необходимое напряжение. Переменный ток используется в электрических сетях потому, что величина напряжения может быть преобразована до необходимых значений с помощью трансформаторного оборудования с минимальными потерями. Другими словами, его гораздо проще и дешевле транспортировать от источников электроснабжения до конечных потребителей.

Передача переменного тока потребителям

Путь переменного тока начинается с электростанций, на которых устанавливаются мощнейшие электрические генераторы, из которых выходит электрический ток с напряжением на уровне 220-330 кВ. Через электрические кабели ток идет к трансформаторным подстанциям, устанавливаемым в непосредственной близости от объектов электрического потребления – домов, квартир, предприятий и других сооружений.

Подстанции получают электрический ток с напряжением около 10 кВ и преобразуют его в трехфазное напряжение 380 В. В некоторых случаях на питание объектов идет ток с напряжением 380 В, этого требуют мощные бытовые и производственные приборы, но чаще всего в месте ввода электричества в дом или квартиру, напряжение снижается до привычных нам 220 В.

Преобразование переменного тока в постоянный

Мы уже разобрались с тем, что в розетках бытовых электрических систем находится переменный ток, однако многие современные потребители электричества нуждаются в постоянном. Преобразование переменного тока в постоянный осуществляется с помощью специальных выпрямителей. Весь процесс преобразования включает в себя три этапа:

  1. Подключение диодного моста с 4-мя диодами необходимой мощности. Такой мост может «срезать» верхние значения синусоид переменного тока или делать движение заряженных частиц однонаправленным.
  2. Подключение сглаживающего фильтра или специального конденсатора на выход с диодного моста. Фильтр способен исправить провалы между пиками синусоид переменного тока. Подключение конденсатора серьезно уменьшает пульсации и может довести их до минимальных значений.
  3. Подключение стабилизаторов напряжения для снижения пульсаций.

Преобразование тока может осуществляться в обоих направлениях, то есть, из постоянного тоже можно сделать переменный. Но этот процесс значительно сложнее и осуществляется он за счет использования специальных инверторов, которые отличаются высокой стоимостью.

Современный мир уже сложно представить без электричества. Освещение помещений, работа бытовых приборов, компьютеров, телевизоров – все это давно стало привычными атрибутами жизни человека. Но одни электроприборы питаются от переменного тока, тогда как другие – от постоянного.

Электрический ток представляет собой направленный поток электронов от одного полюса источника тока к другому. Если это направление постоянно и не меняется во времени, говорят о постоянном токе. Один вывод источника тока при этом считается плюсовым, второй – минусовым. Принято считать, что ток течет от плюса к минусу.

Классическим примером источника постоянного тока является обычная пальчиковая батарейка. Такие батарейки широко применяются в качестве источника питания в малогабаритной электронной аппаратуре – например, в пультах дистанционного управления, в фотоаппаратах, радиоприемниках и т.д. и т.п.

Переменный ток, в свою очередь, характеризуется тем, что периодически меняет свое направление. Например, в России принят стандарт, согласно которому напряжение в электрической сети равно 220 В, а частота тока составляет 50 Гц. Именно второй параметр и характеризует, с какой частотой изменяется направление электрического тока. Если частота тока равна 50 Гц, то он меняет свое направление 50 раз в секунду.

Значит ли это, что в обычной электрической розетке, имеющей два контакта, периодически меняются плюс с минусом? То есть сначала на одном контакте плюс, на другом минус, потом наоборот и т.д. и т.п.? На самом деле все обстоит немного иначе. Электрические розетки в электросети имеют два вывода: фазовый и заземляющий. Обычно их называют «фазой» и «землей». Заземляющий вывод безопасен, напряжения на нем нет. На фазовом же выводе с частотой 50 Гц в секунду меняются плюс и минус. Если коснуться «земли», ничего не произойдет. Фазового же провода лучше не касаться, так как он всегда находится под напряжением 220 В.

Одни приборы питаются от постоянного тока, другие от переменного. Зачем вообще потребовалось такое разделение? На самом деле большинство электронных приборов используют именно постоянное напряжение, даже если включаются в сеть переменного тока. В этом случае переменный ток преобразуется в постоянный в выпрямителе, в простейшем случае состоящем из диода, срезающего одну полуволну, и конденсатора для сглаживания пульсаций.

Переменный же ток используется только потому, что его очень удобно передавать на большие расстояния, потери в этом случае сводятся к минимуму. Кроме того, он легко поддается трансформации – то есть изменению напряжения. Постоянный ток трансформировать нельзя. Чем выше напряжение, тем ниже потери при передаче переменного тока, поэтому на магистральных линиях напряжение достигает нескольких десятков, а то и сотен тысяч вольт. Для подачи в населенные пункты высокое напряжение снижается на подстанциях, в результате в дома поступает уже достаточно низкое напряжение 220 В.

В разных странах приняты неодинаковые стандарты питающего напряжения. Так, если в европейских странах это 220 В, то в США – 110 В. Интересен и тот факт, что знаменитый изобретатель Томас Эдисон не смог в свое время оценить все преимущества переменного тока и отстаивал необходимость использования в электрических сетях именно постоянного тока. Лишь позже он был вынужден признать, что ошибся.

Июл 22 2017

Изначально люди вообще не знали, что такое ток. Был просто статический заряд, но никто не понимал и не осознавал самой природы электричества.

Понадобились долгие века, пока Кулон разработал свою теорию, а немецкий священник фон Клейн обнаружил, что банка может запасать энергию.

К тому времени, как Ван де Грааф создал свой первый генератор, каждый уже знал, в чем отличие постоянного тока от переменного. А теперь пришла пора и наших читателей обрести для личного пользования эти сведения.

Когда Господь убедился, что бесполезно пугать стадо баранов молниями и громом, он решил продвигать историю несколько другим путём.

В результате человеческое общество пыталось произвести людей путём:

  • Занятий физической культурой.
  • Развитием искусства.
  • Логикой, положившей начало всем наукам.

Так постепенно, шаг за шагом, из зверей получилось нечто более разумное. Сегодня, например, многих шокирует, что в США полицейский может грубо обойтись с негритянкой при аресте, а каких-нибудь 100-200 лет назад африканцев вешали штабелями и считали это примером для подражания.

Нужно сказать, что нравственное развитие общества началось именно в последние десятилетия, когда общество открыто признало фашистов преступниками и начало проповедовать и внедрять так называемые права человека. Наука же развилась гораздо ранее.

Издревле, к примеру, люди видели, что кристалл турмалина притягивает пепел.

Почему так происходит? Следует сказать, что свойства пьезоэлектричества были впервые описаны именно на примере турмалина.

В начала 19-го века было показано, что кристалл, будучи нагрет, приобретает электрический заряд.

За счёт того, что произошла деформация, образовались два полюса:

  • Южный (аналогический).
  • Северный (антилогический).

Причём, если температура после нагрева остаётся постоянной, то электричество исчезает. Затем появление полюсов наблюдается уже при охлаждении.

Иначе говоря, кристалл турмалина при изменении температуры вырабатывает электричество.


Дальнейшие исследования показали, что размер потенциала зависит от:

  1. Поперечного сечения кристалла (среза поперёк полюсов).
  2. Разницы температур.

Прочие же факторы никакого влияния на величину заряда не оказывают.

Благодаря чему это происходит? Данное явление получило название пироэлектричества. Являясь диэлектриком, турмалин потихоньку заряжался от тока, текущего внутри. А заряд оставался на месте (определённые участки поверхности) из-за изолирующих свойств.

Таким образом, пока не замкнуть полюса турмалина проводником, кристалл будет копить заряд по мере изменения температуры. Линию, объединяющую полюса назвали пироэлектрической осью.

Пьезоэлектричество было открыто известной парой Кюри на основе того же турмалина в 1880 году.

Было понятно, что при изменении размеров кристалла будут вырабатываться заряды, осталось только придумать методику для проведения опыта.

Кюри использовал для этого статическое давление обычной массы.

Понятно, что весь эксперимент проводится на изолирующей поверхности.

Так например, масса в 1 кг вызывает появление в кристалле турмалина электрического заряда порядка пяти сотых статических единиц.

Как появляется электрический ток

Любопытно, что стройная теория по данному вопросу ещё не создана. Для нас же важно то, что в природе существуют заряды, и разными методами можно их получать.

Во время грозы это получается за счёт сил трения воздушных масс, молекул влаги и некоторых других явлений.

Земля заряжена отрицательно, и вверх постоянно течёт ток через атмосферу.

То есть током называется движение носителей заряда в силу каких-либо причин. И одной из них является разница потенциалов – перепад в уровне носителей между двумя точками пространства.

Можно сравнить это с напором воды. И как только преграда устраняется, поток хлынет в том направлении, где меньше давление.

Теперь возьмём аналогию с кристаллом турмалина

Допустим, появились на его концах заряды, что делать дальше? Нужно вызвать движение, например, медной жилкой провода.

Объединим полюса, и потечёт электрический ток. Движение носителей будет продолжаться до тех пор, пока потенциал не уравняется.

При этом кристалл разряжается. Но постоянный у нас в этом случае ток или переменный? В данном случае нельзя ничего подобного сказать о ходе процесса.

Переменный и постоянный ток являются физическими идеалами, а используются в силу относительной простоты получения математических моделей и управления при помощи них технологическим оборудованием.

Что представляют собой означенные выше понятия?

1. Под постоянным током понимается такой, когда носители текут в одном направлении.

Это не значит, что их количество через сечение среды одинаково. Нет. В более широком смысле постоянным (выпрямленным) током называется именно движения носителей заряда в одном направлении.

Но исходное понятие именно в физике требует более строгих услови

Ток должен быть образован именно постоянным количеством носителей, движущихся в одном направлении.

Причём носители эти положительные (что противоречит практике, где в качестве таковых рассматриваются электроны по большей части).

2. Переменным током называется не просто тот, где носители двигаются то в одном, то в другом направлении, а делают это в такт.

То есть половину периода волна бежит влево, а вторую вправо.

Это образно говоря. Плотность носителей меняется по закону синусоиды.

Собственно, это и есть график, отображающий поведение процесса. В точках перехода через нуль ток отсутствует вовсе.

И происходит это в нашей сети 100 раз в секунду. Следовательно, половина периода выпадает на движение носителей в положительном направлении, а вторая – в отрицательном.

Всего полных циклов в секунду образуется 50, что и соответствует сетевой частоте 50 Гц.

Как дело обстоит на самом деле с электрическим током

На практике форма тока (зависимость плотности зарядов от времени) не является синусоидальной. По разным причинам вид графика искажается.

Это, например, происходит при запуске оборудования и остановке, из-за наведённых помех различной природы.

Таким образом, форма переменного и постоянного тока искажается. Причём давно установлено, что это вредит аппаратуре.

Поскольку для борьбы с подобной напастью требовались какие-то методы, то математики придумали так называемый спектральный анализ.

Многие слышали о чем-то подобном на фондовом рынке, но в данном случае речь скорее о другом: учёные ищут математическую модель, которая относительно легко бы поддавалась расчёту и предсказанию результатов.

Такой способ действительно был найден, и имя ему – спектральный анализ. В этом случае колебание любой формы можно представить в виде суммы с различным удельным весом простейших синусоид разной частоты.

Получается, что по цепи двигается одновременно много-много составляющих. И целом они дают ток.

Причём не обязательно все составляющие двигаются туда же, куда и основная масса.

Можно это представить, как группу муравьёв, каждый из которых тащит в свою сторону, а результирующий эффект заставляет груз перемещаться лишь в одну.

Мы полагаем, нашим читателям это только забьёт голову.

Поэтому, упомянем, что помимо коэффициента (амплитуды) каждая составляющая обладает и фазой (направлением), а именуется гармоникой.

Так вот, каскады техники устроены так, чтобы полезные частоты (прежде всего 50 Гц) проходили внутрь прибора, а все прочее уходило на землю.

Это и есть тот признак для решения проблемы, о которой мы говорили в начале. Любое колебание можно представить в виде набора полезных и вредных сигналов и, исходя из этого, аппаратуру конструировать надлежащим образом.

Например, на этом принципе работают все приёмники: они избирательно пропускают только ток нужной частоты. За счёт этого удаётся отрезать помехи, а волна передаётся с минимальными искажениями на большие расстояния.

Мы могли бы долго говорить на эту тему, но пришла пора привести примеры того, где используются виды токов.

Примеры использования переменного и постоянного тока

Но, в общем и целом, происходит это достаточно плавно. А ток течёт в одном направлении и имеет примерно постоянную плотность.

Аналогично работают:

  1. Аккумулятор сотового телефона.
  2. Батарейка любого типа.
  3. Аккумулятор питания ноутбуков.

Но это все ёмкости, а как же генераторы?

В природе источников постоянного тока за исключением матушки-Земли не имеется.

Человеку гораздо удобнее создавать роторы, которые вращаясь с некоторой частотой, создают условия для образования в катушках статора переменного электрического тока.

Затем промышленная частота 50 Гц проходит по проводам и через подстанцию подаётся на потребителя.

Как бы то ни было, источником постоянного тока можно считать адаптеры. Это устройства, которые выполняют преобразование переменного тока в постоянный.

Допустим, у сотовых телефонов это обычно порядка +5 В, тогда как для мобильных раций существует большой разброс.

В общем и целом нужно понимать, что устройство постоянного тока может функционировать только от того номинала, для которого сконструировано.

В противном случае, либо работоспособность нарушается, либо – при больших отклонениях – возможен полный выход из строя.

Это касается и переменного, и постоянного тока.

Теперь пришла пора сказать, что в промышленности преобразование постоянного тока в переменный и обратно не практикуется.

Из соображений экономии все двигатели работают от трёх фаз. Каждая из них является переменным током частоты 50 Гц.

Но мы говорили выше, что у каждой гармоники имеется фаза. В нашем случае она равна 120 градусов. А круг образуется за счёт 360 градусов. Получается, что все три фазы равно отстоят друг от друга.

Лишь немногие способны реально осознать, что переменный и постоянный ток чем-то отличаются. Не говоря уже о том, чтобы назвать конкретные различия. Цель данной статьи — объяснить основные характеристики этих физических величин в терминах, понятных людям без багажа технических знаний, а также предоставить некоторые базовые понятия, касающиеся данного вопроса.

Сложности визуализации

Большинству людей не составляет труда разобраться с такими понятиями, как «давление», «количество» и «поток», поскольку в своей повседневной жизни они постоянно сталкиваются с ними. Например, легко понять, что увеличение потока при поливе цветов увеличит количество воды, выходящей из поливочного шланга, в то время как увеличение давления воды заставит ее двигаться быстрее и с большей силой.

Электрические термины, такие как «напряжение» и «ток», обычно трудно понять, поскольку нельзя увидеть или почувствовать электричество, движущееся по кабелям и электрическим контурам. Даже начинающему электрику чрезвычайно сложно визуализировать происходящее на молекулярном уровне или даже четко понять, что собой представляет, например, электрон. Эта частица находятся вне пределов сенсорных возможностей человека, ее невозможно увидеть и к ней нельзя прикоснуться, за исключением случаев, когда определенное количество их не пройдет через тело человека. Только тогда пострадавший определенно ощутит их и испытывает то, что обычно называют электрическим шоком.

Тем не менее, открытые кабели и провода большинству людей кажутся совершенно безвредными только потому, что они не могут увидеть электронов, только и ждущих того, чтобы пойти по пути наименьшего сопротивления, которым обычно является земля.

Аналогия

Понятно, почему большинство людей не могут визуализировать то, что происходит внутри обычных проводников и кабелей. Попытка объяснить, что что-то движется через металл, идет вразрез со здравым смыслом. На самом базовом уровне электричество не так сильно отличается от воды, поэтому его основные понятия довольно легко освоить, если сравнить электрическую цепь с водопроводной системой. Основное различие между водой и электричеством заключается в том, что первая заполняет что-либо, если ей удастся вырваться из трубы, в то время как второе для передвижения электронов нуждается в проводнике. Визуализируя систему труб, большинству легче понять специальную терминологию.

Напряжение как давление

Напряжение очень похоже на давление электронов и указывает, как быстро и с какой силой они движутся через проводник. Эти физические величины эквивалентны во многих отношениях, включая их отношение к прочности трубопровода-кабеля. Подобно тому, как слишком большое давление разрывает трубу, слишком высокое напряжение разрушает экранирование проводника или пробивает его.


Ток как поток

Ток представляет собой расход электронов, указывающий на то, какое их количество движется по кабелю. Чем он выше, тем больше электронов проходит через проводник. Подобно тому, как большое количество воды требует более толстых труб, большие токи требуют более толстых кабелей.

Использование модели водяного контура позволяет объяснить и множество других терминов. Например, силовые генераторы можно представить как водяные насосы, а электрическую нагрузку — как водяную мельницу, для вращения которой требуется поток и давление воды. Даже электронные диоды можно рассматривать как водяные клапаны, которые позволяют воде течь только в одну сторону.

Постоянный ток

Какая разница между постоянным и переменным током, становится ясно уже из названия. Первый представляет собой движение электронов в одном направлении. Очень просто визуализировать его с использованием модели водяного контура. Достаточно представить, что вода течет по трубе в одном направлении. Обычными устройствами, создающими постоянный ток, являются солнечные элементы, батареи и динамо-машины. Практически любое устройство можно спроектировать так, чтобы оно питалось от такого источника. Это почти исключительная прерогатива низковольтной и портативной электроники.

Постоянный ток довольно прост, и подчиняется закону Ома: U = I × R. измеряется в ваттах и ​​равна: P = U × I.


Из-за простых уравнений и поведения постоянный ток относительно легко осмыслить. Первые системы передачи электроэнергии, разработанные Томасом Эдисоном еще в XIX веке, использовали только его. Однако вскоре разница в переменном токе и постоянном стала очевидной. Передача последнего на значительные расстояния сопровождалась большими потерями, поэтому через несколько десятилетий он был заменен более выгодной (тогда) системой, разработанной Николой Теслой.

Несмотря на то что коммерческие силовые сети всей планеты в настоящее время используют переменный ток, ирония заключается в том, что развитие технологии сделало передачу постоянного тока высокого напряжения на очень больших расстояниях и при экстремальных нагрузках более эффективной. Что, например, используется при соединении отдельных систем, таких как целые страны или даже континенты. В этом заключается еще одна разница в переменном токе и постоянном. Однако первый по-прежнему используется в низковольтных коммерческих сетях.


Постоянный и переменный ток: разница в производстве и использовании

Если переменный ток намного проще производить с помощью генератора, используя кинетическую энергию, то батареи могут создавать только постоянный. Поэтому последний доминирует в схемах питания низковольтных устройств и электроники. Аккумуляторы могут заряжаться только от постоянного тока, поэтому переменный ток сети выпрямляется, когда аккумулятор является основной частью системы.

Широко распространенным примером может служить любое транспортное средство — мотоцикл, автомобиль и грузовик. Генератор, устанавливаемый на них, создает переменный ток, который мгновенно преобразуется в постоянный с помощью выпрямителя, поскольку в системе электроснабжения присутствует аккумулятор, и большинству электроники для работы требуется постоянное напряжение. Солнечные элементы и топливные ячейки также производят только постоянный ток, который затем при необходимости можно преобразовать в переменный с помощью устройства, называемого инвертором.


Направление движения

Это еще один пример разницы постоянного тока и переменного тока. Как следует из названия, последний представляет собой поток электронов, который постоянно меняет свое направление. С конца XIX века почти во всех бытовых и промышленных электрических всего мира используется синусоидальный переменный ток, поскольку его легче получить и гораздо дешевле распределять, за исключением очень немногих случаев передачи на большие расстояния, когда потери мощности вынуждают использовать новейшие высоковольтные системы постоянного тока.

У переменного тока есть еще одно большое преимущество: он позволяет возвращать энергию из точки потребления обратно в сеть. Это очень выгодно в зданиях и сооружениях, которые производят больше энергии, чем потребляют, что вполне возможно при использовании альтернативных источников, таких как солнечные батареи и ветряные турбины. Тот факт, что переменный ток позволяет обеспечить двунаправленный поток энергии, является основной причиной популярности и доступности альтернативных источников питания.


Частота

Когда дело доходит до технического уровня, к сожалению, объяснить, как работает переменный ток, становится сложно, поскольку модель водяного контура к нему не совсем подходит. Однако можно визуализировать систему, в которой вода быстро меняет направление потока, хотя не понятно, как она при этом будет делать что-то полезное. Переменный ток и напряжение постоянно меняют свое направление. Скорость изменения зависит от частоты (измеряемой в герцах) и для бытовых электрических сетей обычно составляет 50 Гц. Это означает, что напряжение и ток меняют свое направление 50 раз в секунду. Вычислить активную составляющую в синусоидальных системах довольно просто. Достаточно разделить их пиковое значение на √2.

Когда переменный ток меняет направление 50 раз в секунду, это означает, что лампы накаливания включаются и выключаются 50 раз в секунду. Человеческий глаз не может это заметить, и мозг просто верит, что освещение работает постоянно. В этом заключается еще одна разница в переменном токе и постоянном.

Векторная математика

Ток и напряжение не только постоянно меняются — их фазы не совпадают (они несинхронизированные). Подавляющее большинство силовых нагрузок переменного тока вызывает разность фаз. Это означает, что даже для самых простых вычислений нужно применять векторную математику. При работе с векторами невозможно просто складывать, вычитать или выполнять любые другие операции скалярной математики. При постоянном токе, если по одному кабелю в некоторую точку поступает 5A, а по другому — 2A, то результат равен 7A. В случае переменного это не так, потому что итог будет зависеть от направления векторов.

Коэффициент мощности

Активная мощность нагрузки с питанием от сети переменного тока может быть рассчитана с помощью простой формулы P = U × I × cos (φ), где φ — угол между напряжением и током, cos (φ) также называется коэффициентом мощности. Это то, чем отличаются постоянный и переменный ток: у первого cos (φ) всегда равен 1. Активная мощность необходима (и оплачивается) бытовыми и промышленными потребителями, но она не равна комплексной, проходящей через проводники (кабели) к нагрузке, которая может быть рассчитана по формуле S = U × I и измеряется в вольт-амперах (ВА).

Разница между постоянным и переменным током в расчетах очевидна — они становятся более сложными. Даже для выполнения самых простых вычислений требуется, по крайней мере, посредственное знание векторной математики.


Сварочные аппараты

Разница между постоянным и переменным током проявляется и при сварке. Полярность дуги оказывает большое влияние на ее качество. Электрод-позитивная сварка проникает глубже, чем электрод-негативная, но последняя ускоряет наплавление металла. При постоянном токе полярность всегда постоянная. При переменном она меняется 100 раз в секунду (при 50 Гц). Сварка при постоянном предпочтительнее, так как она производится более ровно. Разница в сварке переменным и постоянным током заключается в том, что в первом случае движение электронов на долю секунды прерывается, что приводит к пульсации, неустойчивости и пропаданию дуги. Этот вид сварки используется редко, например, для устранения блуждания дуги в случае электродов большого диаметра.

В чём разница переменного и постоянного тока

Общее понятие электрического тока можно выразить как движение различных заряженных частиц (электронов, ионов) в некотором направлении. А его величину охарактеризовать числом заряженных частиц, которые прошли через проводник за определенный промежуток времени.

Если величина заряженных частиц в 1 кулон проходит через определенное сечение проводника за время в 1 секунду, тогда можно говорить о силе тока в 1 ампер протекающего через проводник. Таким образом определяется количество ампер или сила тока. Это общее понятие тока. А теперь рассмотрим понятие переменного и постоянного тока и их различие.

Постоянный электрический ток по определению — это ток, который течёт только в одном направлением и не меняет его со временем. Переменный ток характерен тем, что меняет свое направление и величину со временем. Если графически постоянный ток отображается как прямая линия, то переменный ток течет по проводнику по закону синуса и графически отображается как синусоида.

Так как переменный ток меняется по закону синусоиды, то он имеет такие параметры как период полного цикла, время которого обозначается буквой Т. Частота переменного тока обратна периоду полного цикла. Частота переменного тока выражается числом полных периодов в определенный промежуток времени (1 сек).


Таких периодов в нашей электросети переменного тока равно 50, что соответствует частоте 50 Гц. F = 1/Т, где период для 50 Гц равен 0,02 сек. F =1/0,02 = 50 Гц. Обозначается переменный ток английскими буквами AC и знаком «~». Постоянный ток имеет обозначение DC и значок «-». Кроме того переменный ток может быть однофазным или многофазным. В основном используется трехфазная сеть.

Почему в сети переменное напряжение, а не постоянное

Переменный ток имеет много преимуществ перед постоянным током. Низкие потери при передаче переменного тока в линиях электропередач (ЛЭП) по сравнению с постоянным током. Генераторы переменного тока простые и дешевые. При передаче на большие расстояния по ЛЭП высокое напряжение достигает 330 тысяч вольт с минимальным током.

Чем меньше ток в ЛЭП, тем меньше потерь. Передача постоянного тока на большие расстояния понесет немалые потери. Также высоковольтные генераторы переменного тока значительно проще и дешевле. Из переменного напряжения легко получить более низкое напряжение через простые трансформаторы.

Также, значительно дешевле получить постоянное напряжение из переменного, чем наоборот, использовать дорогие преобразователи постоянного напряжения в переменное. Такие преобразователи имеют низкий КПД и большие потери. По пути передачи переменного тока используют двойное преобразование.

Сначала с генератора получает 220 — 330 Кв, и передают на большие расстояния до трансформаторов, которые понижают высокое напряжение до 10 Кв и далее идут подстанции которые понижают высокое напряжение до 380 В. С этих подстанций электроэнергия расходится по потребителям и поступает в дома и на электрощиты многоквартирного дома.


Три фазы трехфазного тока сдвинутые на 120 градусов

Для однофазного напряжения характерна одна синусоида, а для трехфазного три синусоиды, смещенные на 120 градусов относительно друг друга. Трехфазная сеть также имеет свои преимущества перед однофазными сетями. Это меньше габариты трансформаторов, электродвигатели также конструктивно меньших размеров.

Имеется возможность изменить направление вращения ротора асинхронного электродвигателя. В трехфазной сети можно получить 2 напряжения — это 380 В и 220 В, которые используются для изменения мощности двигателя и регулировки температуры нагревательных элементов. Используя трехфазное напряжение в освещении можно устранить мерцание люминесцентных ламп, для чего их подключают к разным фазам.

Постоянный ток используется в электронике и во всех бытовых приборах, так как он легко преобразуется из переменного за счёт его деления на трансформаторе до нужной величины и дальнейшего выправления. Источником постоянного тока являются аккумуляторы, батареи, генераторы постоянного тока, светодиодные панели. Как видно различие в переменном и постоянном токе немалое. Теперь мы узнали — Почему в нашей розетки течет переменный ток, а не постоянный?

Постоянный ток — Energy Education

Рисунок 1: Анимация из моделирования PhET [1] постоянного тока, который был значительно замедлен. См. Переменный ток для сравнения.

Постоянный ток (DC) — это электрический ток, который является однонаправленным, поэтому поток заряда всегда в одном и том же направлении. [2] В отличие от переменного тока направление и сила постоянного тока не меняются. Он используется во многих бытовых приборах и во всех устройствах, в которых используются батарейки. [3]

Недвижимость

Постоянный ток определяется постоянным потоком электронов (см. Рисунок 1) из области с высокой электронной плотностью в область с низкой электронной плотностью. В схемах, включающих батареи, это иллюстрируется постоянным потоком заряда от отрицательной клеммы батареи к положительной клемме батареи. Изменять напряжение постоянного тока гораздо дороже и труднее, чем переменного, что делает его плохим выбором для передачи электроэнергии под высоким напряжением.Однако на очень большие расстояния передача HVDC может быть более эффективной, чем переменный ток [2] .

Использует

Постоянный ток используется в любом электронном устройстве с батареей в качестве источника питания. Он также используется для зарядки аккумуляторов, поэтому перезаряжаемые устройства, такие как ноутбуки и сотовые телефоны, поставляются с адаптером переменного тока, который преобразует переменный ток в постоянный [2] .

Моделирование PhET

Университет Колорадо любезно разрешил нам использовать следующее моделирование PhET.Это моделирование можно использовать для изучения того, как работают постоянный и переменный ток.

Для дальнейшего чтения

Для получения дополнительной информации см. Соответствующие страницы ниже:

Список литературы

Произошла ошибка: SQLSTATE [42000]: синтаксическая ошибка или нарушение прав доступа: 1064 У вас есть ошибка в синтаксисе SQL; проверьте руководство, соответствующее вашей версии сервера MySQL, чтобы найти правильный синтаксис рядом с ‘)’ в строке 1

В чем разница между питанием переменного и постоянного тока?

Электричество В чем разница между питанием постоянного и переменного тока?

| Обновлено 27.04.2021Автор / Редактор: Люк Джеймс / Erika Granath

Электроэнергия бывает двух видов — переменного тока (AC) и постоянного тока (DC). Оба они необходимы для функционирования нашей электроники, но знаете ли вы разницу между ними и то, к чему они применяются?

Связанные компании

И переменный, и постоянный ток описывают типы протекания тока в цепи.В постоянном токе (DC) электрический заряд (ток) течет только в одном направлении. Напротив, электрический заряд переменного тока периодически меняет направление.

(Источник: Unsplash)

Что такое переменный ток?

Электропитание переменного тока (AC) — это стандартное электричество, которое выходит из электрических розеток и определяется как поток заряда, который демонстрирует периодическое изменение направления.

Поток переменного тока изменяется с положительного на отрицательный из-за электронов — электрические токи возникают из-за потока этих электронов, который может двигаться в положительном (вверх) или отрицательном (вниз) направлении.Это известно как синусоидальная волна переменного тока, и эта волна возникает, когда генераторы переменного тока на электростанциях создают мощность переменного тока.

Ключевой доклад на PCIM Digital Days 2021

Не пропустите ключевой доклад «HVDC Grid Challenges Locks and Opportunities» от Седдика Бача, научного директора программы, SuperGrid Institute, на PCIM Digital Days с 3 по 7 мая 2021 года. вся программа!

Генераторы переменного тока вырабатывают переменный ток путем вращения проволочной петли внутри магнитного поля.Волны переменного тока образуются, когда провод движется в области с разной магнитной полярностью — например, ток меняет направление, когда провод вращается от одного полюса магнитного поля к другому. Это волнообразное движение означает, что мощность переменного тока может распространяться дальше, чем мощность постоянного тока, что является огромным преимуществом, когда речь идет о доставке энергии потребителям через розетки.

Что такое мощность постоянного тока?

Электропитание постоянного тока (DC), как можно понять из названия, представляет собой линейный электрический ток — он движется по прямой линии.

Постоянный ток может поступать из нескольких источников, включая батареи, солнечные элементы, топливные элементы и некоторые модифицированные генераторы переменного тока. Электропитание постоянного тока также может быть «получено» из переменного тока с помощью выпрямителя, преобразующего переменный ток в постоянный.

Питание

постоянного тока гораздо более стабильно с точки зрения подачи напряжения, а это означает, что большая часть электроники полагается на него и использует источники питания постоянного тока, такие как батареи. Электронные устройства также могут преобразовывать мощность переменного тока из розеток в мощность постоянного тока с помощью выпрямителя, часто встроенного в источник питания устройства.Трансформатор также будет использоваться для повышения или понижения напряжения до уровня, подходящего для рассматриваемого устройства.

Однако не все электрические устройства используют питание постоянного тока. Многие устройства, особенно бытовые приборы, такие как лампы, стиральные машины и холодильники, используют переменный ток, который подается непосредственно из электросети через розетки.

Зачем нужны два разных типа питания?

Хотя многие современные электронные и электрические устройства предпочитают питание постоянного тока из-за его плавного потока и равномерного напряжения, мы не могли бы обойтись без переменного тока.Оба типа власти важны; одно не «лучше» другого.

Фактически, AC доминирует на рынке электроэнергии; все электрические розетки подают питание в здания в виде переменного тока, даже если может потребоваться немедленное преобразование тока в мощность постоянного тока. Это связано с тем, что постоянный ток не способен преодолевать такие же большие расстояния от электростанций до зданий, как переменный ток. Также намного проще генерировать переменный ток, чем постоянный, из-за того, как работают генераторы, и система в целом дешевле в эксплуатации — с переменным током мощность может легко передаваться по национальным сетям через мили и мили проводов и опор.

DC в первую очередь вступает в игру, когда устройству необходимо сохранять энергию в батареях для будущего использования. Смартфоны, ноутбуки, портативные генераторы, фонарики, системы наружных камер видеонаблюдения… вы называете это, все, что работает от батарей, требует хранения постоянного тока. Когда батареи заряжаются от сети, переменный ток преобразуется в постоянный ток выпрямителем и сохраняется в батарее.

Однако это не единственный используемый метод зарядки. Если вы когда-либо заряжали свой телефон с помощью блока питания, например, вы используете источник питания постоянного тока, а не переменного тока.В этих ситуациях источникам питания постоянного и постоянного тока может потребоваться изменить выходное напряжение (в данном случае, блок питания) для использования устройства (в данном случае телефона).

Следуйте за нами в LinkedIn

Вам понравилось читать эту статью? Тогда подпишитесь на нас в LinkedIn и будьте в курсе последних событий в отрасли, продуктов и приложений, инструментов и программного обеспечения, а также исследований и разработок.

Следуйте за нами здесь!

(ID: 46408650)

переменного и постоянного тока | Электричество переменного и постоянного тока

Переменный ток, переменный ток и постоянный ток, постоянный ток — это две формы электрического тока, каждая из которых имеет свои преимущества и недостатки.Выбор переменного или постоянного тока зависит от применения и свойств переменного и постоянного тока.


Учебное пособие по электрическому току Включает:
Что такое электрический ток Единица измерения тока — Ампер ПЕРЕМЕННЫЙ ТОК


Одно из основных различий в типе тока, протекающего в цепи, заключается в том, является ли ток переменным током, переменным или постоянным током, постоянным током.

Электричество переменного и постоянного тока широко используются в электрических и электронных схемах, каждая из которых используется для разных целей.

И переменный, и постоянный ток имеют свои особенности и дают разные преимущества, которые можно использовать в разных ситуациях.

Что такое постоянный ток, DC

Поскольку название подразумевает постоянный ток, постоянный ток — это форма электричества, которое течет в одном направлении — оно прямое, и это дало ему название.

Постоянный ток в базовой схеме

Характеристика постоянного тока, DC может быть отображена на графике. Здесь видно, что ток может быть либо положительным, либо отрицательным.

График, показывающий атрибуты постоянного тока

Применения постоянный ток, постоянный ток

Постоянный ток, DC используется во многих сферах:

  • Батареи: Батареи, как неперезаряжаемые, так и перезаряжаемые, могут подавать только постоянный ток. Аккумуляторные батареи также нуждаются в подзарядке постоянным током.
  • Электронное оборудование: Все оборудование, такое как компьютеры, радио, мобильные телефоны, и фактически все электронное оборудование использует постоянный ток для питания электронных схем.Биполярные транзисторы, полевые транзисторы и интегральные схемы, в которых используются эти компоненты, нуждаются в постоянном токе для питания их и будут повреждены при обратной полярности. Хотя многие из этих элементов питаются от сети переменного тока, внутри устройства есть блок, называемый источником питания, который преобразует входящий переменный ток в постоянный ток с правильным напряжением (-ями) внутри электронного элемента.
  • Некоторое электрическое оборудование: Хотя во многих электрооборудовании используется переменный ток, в некоторых используется постоянный ток.
  • Солнечные панели: Солнечные панели, используемые для выработки электроэнергии, вырабатывают постоянный ток непосредственно от самих солнечных панелей. При использовании с сетью переменного тока для подачи в сеть или подачи местного питания переменного тока для источников переменного тока требуется блок, известный как инвертор, для обеспечения постоянного тока, постоянного тока от солнечных панелей для преобразования в переменный ток.

Что такое переменный ток, АС

Переменный ток, переменный ток отличается от постоянного.Как следует из названия, он течет сначала в одном направлении, а затем в другом.

График, поясняющий переменный ток

На приведенном выше графике показано изменение формы волны тока в виде синусоидальной волны, при этом ток сначала движется в одном направлении, а затем в другом.

Чаще всего наблюдаются колебания напряжения. Опять же, для переменного сигнала напряжение будет изменяться в положительную и отрицательную сторону.

Как для тока, так и для напряжения видно, что форма волны меняется, становясь в этом примере сначала положительной, а затем отрицательной.

Напряжение для синусоидального сигнала переменного тока

Синусоидальный сигнал легко представить и понять, но большое количество других сигналов также может представлять собой переменный сигнал с переменным током.

Есть несколько важных моментов в отношении чередующихся сигналов. Первый — это период времени для сигнала. Это время от точки в одном цикле формы волны до идентичной пинты в следующем цикле. Часто пик легче всего увидеть, как показано, но можно взять любую точку — например, когда определенное напряжение достигается в заданном направлении — это может быть точка срабатывания напряжения и т. Д.Нулевые переходы — еще одна возможность, которую легко идентифицировать.

Еще одна особенность переменного сигнала — его частота. Это количество раз, когда заданная точка формы сигнала видна в течение секунды, и измеряется в герцах, Гц, где 1 Гц — это один цикл в секунду. Показанный пример имеет частоту 3 Гц, так как в течение секунды наблюдаются три цикла.

В качестве других примеров частота электросети составляет 50 или 60 Гц в зависимости от страны. В Европе и многих других странах используется 50 Гц, тогда как в Северной Америке, странах Карибского бассейна и некоторых странах Южной Америки используется 60 Гц.

Приложения переменного тока

Переменный ток обычно используется для распределения энергии. Его преимущество состоит в том, что его можно легко преобразовать в другие напряжения с помощью простого трансформатора — трансформаторы не работают с постоянным током.

Если мощность распределяется при высоком напряжении, потери намного ниже. Возьмем, к примеру, источник питания на 250 В, ток 4 А и сопротивление провода 1 Ом. В качестве мощности, Вт = вольт x ампер, передаваемая мощность составляет 1000 Вт.Потери мощности составляют I 2 x R = 16 Вт.

При передаче электроэнергии высокого напряжения используется переменный ток

Если линия напряжения передает 4 А, но имеет напряжение 250 000 вольт, т. Е. 250 кВ, и линия передает 4 А, тогда потери мощности остаются такими же, но в целом Система передачи несет 1 МВт, а 16 Вт — это почти незначительные потери.

Именно по этой причине для передачи энергии используются высокие напряжения, которые затем снижаются до относительно безопасного уровня для использования в жилых и коммерческих помещениях.

Ввиду того, что в системе питания используется переменный ток, он также используется в двигателях, для отопления и во многих других изделиях без необходимости его преобразования в постоянный ток.

переменного тока и постоянного тока

Во многих областях может быть принято решение о выборе переменного или постоянного тока и о том, какая форма питания лучше всего подходит для данного приложения.

Переменный ток, переменный и постоянный ток, постоянный ток имеют свои преимущества и недостатки, но это означает, что есть возможность выбрать лучший вариант для любого конкретного использования или применения.Переменный ток, переменный ток, как правило, используется для распределения электроэнергии, поэтому сетевые розетки в наших домах и на работе обеспечивают переменный ток для питания всего, что необходимо, но постоянный ток более широко используется для самих плат электроники и для многих другие приложения.

Источники как переменного, так и постоянного тока широко используются в электротехнической и электронной промышленности, каждый в своей области.

И переменный, и постоянный ток могут обеспечивать передачу электроэнергии, но с немного разными преимуществами.

Другие основные концепции электроники:
Напряжение Текущий Мощность Сопротивление Емкость Индуктивность Трансформеры Децибел, дБ Законы Кирхгофа Q, добротность Радиочастотный шум
Вернуться в меню «Основные понятия электроники». . .

Основные определения — постоянный ток

Постоянный ток (DC) — это однонаправленный поток электрического заряда.Постоянный ток вырабатывается такими источниками, как батареи, термопары, солнечные элементы и электрические машины коммутаторного типа динамо-типа. Постоянный ток может течь в проводнике, таком как провод, но также может проходить через полупроводники, изоляторы или даже через вакуум, как в электронных или ионных пучках. Электрический заряд течет в постоянном направлении, что отличает его от переменного тока. Термин, ранее используемый для обозначения постоянного тока, был гальваническим током.

Постоянный ток может быть получен от источника переменного тока с помощью устройства переключения тока, называемого выпрямителем, которое содержит электронные элементы (обычно) или электромеханические элементы (исторически), которые позволяют току течь только в одном направлении.Постоянный ток может быть преобразован в переменный ток с помощью инвертора или мотор-генераторной установки.

Первая коммерческая передача электроэнергии (разработанная Томасом Эдисоном в конце девятнадцатого века) использовала постоянный ток. Поскольку раньше было преимущество переменного тока перед постоянным при преобразовании и передаче, распределение электроэнергии до нескольких лет назад было почти полностью переменным током. В середине 1950-х годов была разработана система передачи постоянного тока высокого напряжения, которая теперь заменяет старые высоковольтные системы переменного тока.Для приложений, требующих постоянного тока, таких как энергосистемы третьего рельса, переменный ток распределяется на подстанцию, которая использует выпрямитель для преобразования мощности в постоянный ток. См. Войну течений.

Постоянный ток используется для зарядки аккумуляторов и почти во всех электронных системах в качестве источника питания. Очень большие количества энергии постоянного тока используются в производстве алюминия и других электрохимических процессах. Постоянный ток используется для некоторых железнодорожных движителей, особенно в городских районах.Постоянный ток высокого напряжения используется для передачи большого количества энергии от удаленных объектов генерации или для соединения электрических сетей переменного тока.

Различные определения

В области электротехники термин «постоянный ток» используется для обозначения энергосистем, в которых используется только одна полярность напряжения или тока, и для обозначения постоянного, нулевого или медленно меняющегося местного среднего значения напряжения или тока. Например, напряжение на источнике постоянного напряжения постоянно, как и ток через источник постоянного тока.Решение для электрической цепи постоянного тока — это решение, в котором все напряжения и токи постоянны. Можно показать, что любую стационарную форму волны напряжения или тока можно разложить на сумму составляющей постоянного тока и изменяющейся во времени составляющей с нулевым средним значением; составляющая постоянного тока определяется как ожидаемое значение или среднее значение напряжения или тока за все время.

Хотя «постоянный ток» означает «постоянный ток», «постоянный ток» иногда означает «постоянная полярность». Согласно этому определению, напряжения постоянного тока могут изменяться во времени, например, необработанный выходной сигнал выпрямителя или колеблющийся голосовой сигнал в телефонной линии.

Некоторые формы постоянного тока (например, вырабатываемые регулятором напряжения) почти не имеют изменений напряжения, но могут иметь изменения в выходной мощности и токе.

Приложения

Установки постоянного тока обычно имеют разные типы розеток, выключателей и приспособлений, в основном из-за используемых низких напряжений, от тех, которые подходят для переменного тока. Обычно важно, чтобы при работе с электроприбором постоянного тока полярность не изменялась, если в устройстве нет диодного моста для исправления этого положения (в большинстве устройств с батарейным питанием этого нет).

DC обычно используется во многих низковольтных приложениях, особенно там, где они питаются от батарей, которые могут производить только постоянный ток, или в системах солнечной энергии, поскольку солнечные элементы могут производить только постоянный ток. В большинстве автомобильных приложений используется постоянный ток, хотя генератор переменного тока — это устройство переменного тока, которое использует выпрямитель для производства постоянного тока. Для большинства электронных схем требуется источник питания постоянного тока. Приложения, использующие топливные элементы (смешивание водорода и кислорода вместе с катализатором для производства электроэнергии и воды в качестве побочных продуктов), также производят только постоянный ток.

Многие телефоны подключаются к витой паре проводов и внутренне отделяют переменную составляющую напряжения между двумя проводами (аудиосигнал) от составляющей постоянного напряжения между двумя проводами (используемой для питания телефона).

Коммуникационное оборудование телефонной станции, такое как DSLAM, использует стандартный источник питания -48 В постоянного тока. Отрицательная полярность достигается заземлением положительной клеммы системы питания и аккумуляторной батареи. Это сделано для предотвращения отложения электролиза.

Электрифицированный третий рельс может использоваться как для подземных (метро), так и для надземных поездов.

Позвоните в Defined Electric по телефону 505-269-9861 или напишите по электронной почте одному из наших квалифицированных электриков в Альбукерке сегодня, чтобы получить бесплатную смету для вашего следующего электрического проекта.

Постоянный ток | Инжиниринг | Фэндом

Постоянный ток ( DC или « непрерывный ток ») — это постоянный поток электрического заряда от более высокого к более низкому потенциалу.

Этот постоянный поток электрического заряда от высокого к низкому электрическому потенциалу обычно происходит в проводнике, таком как провод, но также может проходить через полупроводники, изоляторы или даже через вакуум, как в электронных или ионных пучках. В постоянном токе электрические заряды текут в одном и том же направлении, что отличает его от переменного тока (AC). Термин, ранее использовавшийся для постоянного тока , был Гальванический ток .

Виды постоянного тока

Первая коммерческая передача электроэнергии (разработанная Томасом Эдисоном в конце девятнадцатого века) использовала постоянный ток.Поскольку было обнаружено, что переменный ток более удобен для распределения и передачи электроэнергии, чем постоянный, сегодня почти во всех передачах электроэнергии используется переменный ток. См. War of Currents . Однако для передачи очень высокого напряжения на большие расстояния и между двумя точками внедрение постоянного тока является текущей тенденцией.

В области электротехники термин DC является синонимом константы. Например, напряжение на источнике постоянного напряжения постоянно, как и ток через источник постоянного тока.Решение для электрической цепи постоянного тока — это решение, в котором все напряжения и токи постоянны. Можно показать, что любая форма волны напряжения или тока может быть разложена на сумму составляющей постоянного тока и изменяющейся во времени составляющей. Составляющая постоянного тока определяется как среднее значение напряжения или тока за все время. Среднее значение изменяющейся во времени составляющей равно нулю.

Хотя «постоянный ток» означает «постоянный ток , », «постоянный ток» иногда означает «постоянная полярность». Согласно этому определению, напряжения постоянного тока могут изменяться во времени, например, необработанный выходной сигнал выпрямителя.

Некоторые формы постоянного тока (например, вырабатываемые регулятором напряжения) почти не имеют изменений напряжения, но могут иметь изменения в выходной мощности и токе.

Установки постоянного тока обычно имеют разные типы розеток, выключателей и приспособлений, в основном из-за используемых низких напряжений, от тех, которые подходят для переменного тока. Обычно важно, чтобы при использовании устройства постоянного тока полярность не менялась, если устройство не имеет диодного моста для исправления этого.(Большинство устройств с батарейным питанием этого не делают.)

Высоковольтный постоянный ток используется для передачи электроэнергии между двумя точками на большие расстояния и для подводных кабелей с напряжением от нескольких киловольт до примерно одного мегавольта.

DC обычно используется во многих низковольтных приложениях, особенно там, где они питаются от батарей, которые могут производить только постоянный ток, или в системах солнечной энергии, поскольку солнечные элементы могут производить только постоянный ток. В большинстве автомобильных приложений используется постоянный ток, хотя генератор представляет собой устройство переменного тока, которое использует выпрямитель для производства постоянного тока.Для большинства электронных схем требуется источник питания постоянного тока.

Большинство телефонов подключаются к витой паре проводов и внутренне отделяют переменную составляющую напряжения между двумя проводами (аудиосигнал) от составляющей постоянного напряжения между двумя проводами (используемой для питания телефона).

« AC / DC: в чем разница? «.

Чудо света Эдисона, американский опыт. (PBS)

переменного и постоянного тока

Электроэнергия в Великобритании — это переменный ток (230 В).Но что такое переменный ток и чем он отличается от постоянного тока (DC)?

AC вырабатывает напряжения с переменной полярностью, перемещаясь вперед и назад в цепи с течением времени, либо за счет полярности переключения напряжения, либо за счет изменения направления тока и назад и вперед. Он присутствует в различных источниках электричества, в первую очередь во вращающихся электромеханических генераторах. Переменный ток повышается до максимального значения в одном направлении, а затем падает до нуля, прежде чем процесс повторяется в противоположном направлении.

Время, необходимое для того, чтобы переменный ток поднялся с нуля, достиг своего пика, вернулся к нулю и повторил процесс в обратном направлении, называется одним циклом . Количество циклов, происходящих каждую секунду, называется частотой .

В Великобритании электричество подается в виде переменного тока с частотой 50 циклов в секунду или 50 герц (Гц).

В чем разница между переменным и постоянным током?

Если переменный ток меняет полярность взад и вперед, постоянный ток или DC — это электричество, которое течет в одном постоянном направлении по цепи и / или имеет напряжение с постоянной полярностью.

Для приложений с большим током необходимы генераторы постоянного тока, в которых генератор преобразует механическое вращение в электрическую мощность. Генераторы переменного тока менее сложны и дешевле в эксплуатации.

AC легче транспортировать на большие расстояния с минимальными потерями мощности. Для изменения напряжения можно использовать трансформаторы, а переменный ток можно легко преобразовать в постоянный (но постоянный ток не так легко преобразовать в переменный).

Примеры операций постоянного и переменного тока

Работа постоянного тока:

Работа переменного тока:

Форма сигнала напряжения переменного тока постоянно меняется по величине и периодически меняет направление.На диаграмме ниже (a) изменяется около опорного напряжения, а (b) обычно составляет 0 вольт, но не всегда так.

Что такое генерация напряжения?

Когда существует относительное движение между проводником и магнитным полем, в результате чего силовые линии обрезаются, в проводнике индуцируется напряжение. Величина этого напряжения зависит от скорости движения.

Можно перемещать либо проводник, либо магнитное поле, пока между ними существует относительное движение, индуцируется напряжение.

Величина наведенного напряжения зависит от количества линий магнитного потока, обрезанных за определенный период. Чем быстрее движение, тем больше обрезается линий и, следовательно, индуцируется большее напряжение. Завершение цепи между концами проводника позволяет току течь.

Полярность наведенного напряжения зависит от направления относительного движения между проводником и магнитным полем. Когда относительное движение параллельно магнитному полю, напряжение не индуцируется. Это потому, что нет относительного движения и поэтому линии потока не пересекаются.

Это простейшая форма генератора переменного тока. Проволочная петля вращается в магнитном поле, и когда петля вращается, индуцируется напряжение, которое перерезает силовые линии. Контактные кольца снимают индуцированное напряжение, заставляя ток течь через нагрузку.

Поскольку петля вращается через точки A и C (ниже), она параллельна магнитным линиям, поэтому напряжение не индуцируется. Когда он движется через точки B и D, он перпендикулярен линиям потока. В этот момент индуцируется максимальное напряжение.

Почему в домах не используется постоянный ток: все недостатки

Ответ на вопрос, почему в домах не используется постоянный ток, кроется в характеристиках, присущих постоянным токам, и их недостатках по сравнению с переменными токами (AC). Фактически, переменные токи могут легко передаваться на большие расстояния без больших потерь. Они также более безопасны при прямом контакте при равном напряжении. В этой статье мы пытаемся разобраться в этом вопросе.

Характеристики постоянного и переменного тока

Электричество определяется как ток электронов в проводнике, таком как проволока.Поток электроэнергии устанавливается двумя способами, включая переменный и постоянный ток. Принципиальная разница между переменным и постоянным токами заключается в направлении движения электронов.

DC относится к постоянному току. Постоянный ток определяется как однонаправленный ток электричества. В постоянном токе электроны перемещаются из зоны отрицательного заряда в зону положительного заряда без какого-либо изменения направления. Это состояние несмотря на переменные токи, при которых ток может двигаться в обоих направлениях. Постоянный ток может проходить как через проводящие, так и через полупроводниковые материалы.

При постоянном токе сила тока изменяется со временем, но направление тока остается неизменным. Согласно определению, постоянный ток — это ток, полярность которого никогда не меняется.

символов переменного и постоянного тока (Ссылка: quora.com )

Переменный ток — это поток заряда, который периодически меняет свое направление. Следовательно, уровень напряжения меняется вместе с током. Переменный ток — это тип тока, который используется для передачи энергии в места, где люди живут или путешествуют, например, дома, промышленные предприятия или другие здания.

Генератор переменного тока вырабатывает переменный ток. В магнитном поле индуцированный ток течет по петле из вращающейся проволоки. Вращение проволоки осуществляется разными способами, например, от любых турбин (ветряных, водяных, паровых и т. Д.).

Из-за того, что провод закручивается и периодически проникает в различные магнитные поля, напряжение и ток внутри провода меняются. Следовательно, ток может иметь разные формы, такие как синусоидальная, квадратная, треугольная или другие формы волны.Наиболее распространенной формой тока является синусоида.

Синусоидальная форма напряжения переменного тока выражается следующим уравнением.

V \ left (t \ right) = V_p {\ mathrm {sin} \ left (2 \ pi ft + \ mathrm {\ Phi} \ right) \}

В (t) — это напряжение, которое является функцией времени, а V p — амплитуда. Переменная f — частота волны. Кроме того, t — независимая переменная. Наконец, Φ — это фаза синусоидальной волны.

Например, аккумулятор использует постоянный ток для передачи тока в электрическую цепь, в которой он присутствует. В аккумуляторной системе электрическая энергия вырабатывается из химической энергии, хранящейся в батарее. При подключении аккумулятора к электрической цепи обеспечивается постоянный ток заряда от отрицательного полюса аккумулятора к положительному.

На следующем рисунке показана разница между формами сигналов переменного и постоянного тока.

осциллограмм переменного и постоянного тока (Артикул: elprocus.com )

DC и AC токи могут быть преобразованы друг в друга. Инвертор используется для преобразования постоянного тока в переменный, а выпрямитель используется для преобразования переменного тока в постоянный.

Объяснение причины, почему DC C Текущее значение N или U sed in H Omes

Обычно первичный источник постоянного тока генерируется батареями, электрохимическими или фотоэлектрическими элементами.Однако наиболее предпочтительным в мире является AC. В соответствии с этим сценарием переменный ток преобразуется в постоянный.

Переменный ток обычно применяется в системах распределения электроэнергии по разным причинам. Самая значимая причина — готовность перейти с одного напряжения на другое. Сделать это с помощью DC значительно сложнее и дороже. Таким образом, чтобы преобразовать постоянный ток, переменный ток генерируется электронными схемами, а затем преобразуется с помощью трансформатора и выпрямителя в постоянный ток.

Процесс преобразования переменного тока в постоянный происходит последовательно. Сначала в блок питания входит трансформатор, который позже преобразуется в постоянный ток с помощью выпрямителя. Он ограничивает реверсирование тока, а фильтр используется для удаления пульсаций тока на выходе выпрямителя.

Огромное количество энергии переменного тока может быть преобразовано практически в любое желаемое напряжение с очень небольшой потерей энергии с использованием электрического трансформатора, включая катушки с соединенными генерируемыми магнитными полями.2

Для уменьшения потерь энергии важно поддерживать на низком уровне как сопротивление, так и электрический ток. Более низкий ток значительно важнее сопротивления из-за экспоненциального влияния на потери.

Мощность рассчитывается путем умножения вольт на амперы.

P = VI

Таким образом, для удельной мощности напряжение должно быть высоким при низком токе. В следующем уравнении числитель дроби постоянный, но знаменатель становится больше, поэтому произведение дроби уменьшается.

В = \ frac {P} {I}

Огромные трансформаторы используются в линиях электропередачи для контроля высоких значений напряжения с целью минимизации потерь.

Однако высокое напряжение небезопасно, особенно для жизни человека, поэтому вводить ток высокого напряжения в дом — недопустимое действие.

Затем мощность

переменного тока быстро и эффективно преобразуется в почти безопасное напряжение на местных трансформаторах по месту жительства. Сделать это с DC не так просто и дешево.

Генератор энергосистемы дома (Ссылка: windows2universe.org )

Итак, здесь мы можем обобщить все причины, по которым постоянный ток не используется в домах.

  • Функционально напряжение постоянного тока не может перемещаться очень далеко, если оно не начинает терять энергию.
  • Переменный ток надежно передается на большие расстояния в городах и генерирует больше энергии.
  • Постоянный ток более вреден, чем переменный, для того же напряжения, поскольку его проблематично высвободить при прикосновении, поскольку напряжение не превышает нуля.Мышцы сокращаются с постоянной силой в случае постоянного тока.
  • Электролитическая коррозия более вероятна при постоянном токе, чем при переменном токе.
  • Дуги постоянного тока гаснут не так быстро, потому что напряжение не проходит через ноль.
  • Асинхронные двигатели
  • переменного тока несложны в изготовлении и хранении. Двигатели постоянного тока нуждаются в коммутаторе и щетках или сложной электронной системе переключения.
  • С помощью трансформатора переменный ток можно легко преобразовать из высокого напряжения в низкое и наоборот.Таким образом, замечательным преимуществом переменного напряжения перед постоянным является повышение и понижение напряжения в зависимости от требований.
  • Производство переменного тока и связь могут выполняться с использованием меньшего количества подстанций, чем постоянного тока.
  • Если человеческое тело поражено переменным током, переменный ток входит в человеческое тело и выходит из него через определенные промежутки времени. Однако постоянный ток постоянно доставляет неудобства человеческому организму.
  • Место, окруженное переменным током, больше постоянного.

Передача электроэнергии высокого напряжения на большие расстояния (Артикул: peoi.орг )

Сравнение приложений переменного и постоянного тока

Переменный ток в основном используется в производстве и транспортировке электроэнергии. AC обеспечивает электричеством почти каждое домашнее хозяйство по всему миру. ДК в основном не применяется для этих целей по ряду причин. Например, выделение тепла из-за больших потерь мощности по сравнению с переменным током, более значительная опасность возникновения пожара, большие затраты и проблемы, связанные с преобразованием высокого напряжения и низкого тока в низкое напряжение и высокий ток с помощью трансформаторов.

переменного тока — более популярный ток в электродвигателях, машинах, преобразующих электрическую энергию в механическую. Постоянный ток часто встречается в устройствах, содержащих батареи, которые заряжаются путем подключения адаптера переменного тока к постоянному току в розетку или с помощью кабеля USB для зарядки. Примеры включают мобильные телефоны, фонарики, современные телевизоры и гибридные автомобили.

В Китае был реализован проект, согласно которому по линиям электропередачи постоянного тока подается энергия в дома с меньшими потерями энергии, чем по линиям переменного тока. Это показывает, что использование постоянного тока в домашних условиях становится все более популярным.Кроме того, компания Siemens установила линию постоянного тока высокого напряжения (HVDC) протяженностью 65 миль. Такие проекты могут беспрецедентно использовать возобновляемые источники энергии.

Тем не менее, хотя более высокие напряжения постоянного тока обычно вызывают более опасную передачу энергии и мониторинг сетей постоянного тока может быть сложной задачей, большие напряжения переменного тока могут быть снижены до более надежных уровней, когда они передаются от электростанции.

Заключение

С учетом всех вышеперечисленных описаний эксперты тестируют и представляют самый простой способ передачи энергии.Передача энергии переменным током зарекомендовала себя неоднократно. Кроме того, напряжение постоянного тока достигает точки, которая больше не считается неэффективным методом. Однако переменное напряжение по-прежнему остается самым надежным способом подачи энергии.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *