Прибор тесла: Катушка тесла — это… Что такое Катушка тесла?

Содержание

Катушка тесла — это… Что такое Катушка тесла?

Разряды с провода на терминале

Трансформа́тор Те́сла — единственное из изобретений Николы Тесла, носящих его имя сегодня. Это классический резонансный трансформатор, производящий высокое напряжение при высокой частоте. Оно использовалось Теслой в нескольких размерах и вариациях для его экспериментов. «Трансформатор Тесла» также известен под названием «катушка Теслы» (англ. Tesla coil). В России часто используют следующие сокращения: ТС (от Tesla coil), КТ (катушка Тесла), просто тесла и даже ласкательно — катька. Прибор был заявлен патентом № 568176 от 22 сентября 1896 года, как «Аппарат для производства электрических токов высокой частоты и потенциала».

Описание конструкции

Схема простейшего трансформатора Теслы

В элементарной форме трансформатор Теслы состоит из двух катушек, первичной и вторичной, и обвязки, состоящей из разрядника (прерывателя, часто встречается английский вариант Spark Gap), конденсатора, тороида (используется не всегда) и терминала (на схеме показан как «выход»).

Первичная катушка построена из 5—30 (для VTTC — катушки Теслы на лампе — число витков может достигать 60) витков провода большого диаметра или медной трубки, а вторичная из многих витков провода меньшего диаметра. Первичная катушка может быть плоской (горизонтальной), конической или цилиндрической (вертикальной). В отличие от многих других трансформаторов, здесь нет никакого ферромагнитного сердечника. Таким образом, взаимоиндукция между двумя катушками гораздо меньше, чем у обычных трансформаторов с ферромагнитным сердечником. У данного трансформатора также практически отсутствует магнитный гистерезис, явления задержки изменения магнитной индукции относительно изменения тока и другие недостатки, вносимые присутствием в поле трансформатора ферромагнетика.

Первичная катушка вместе с конденсатором образует колебательный контур, в который включён нелинейный элемент — разрядник (искровой промежуток). Разрядник, в простейшем случае, обыкновенный газовый; выполненный обычно из массивных электродов (иногда с радиаторами), что сделано для большей износостойкости при протекании больших токов через электрическую дугу между ними.

Вторичная катушка также образует колебательный контур, где роль конденсатора выполняет ёмкостная связь между тороидом, оконечным устройством, витками самой катушки и другими электропроводящими элементами контура с Землей. Оконечное устройство (терминал) может быть выполнено в виде диска, заточенного штыря или сферы. Терминал предназначен для получения предсказуемых искровых разрядов большой длины. Геометрия и взаимное положение частей трансформатора Теслы сильно влияет на его работоспособность, что аналогично проблематике проектирования любых высоковольтных и высокочастотных устройств.

Функционирование

Трансформатор Теслы рассматриваемой простейшей конструкции, показанной на схеме, работает в импульсном режиме. Первая фаза — это заряд конденсатора до напряжения пробоя разрядника. Вторая фаза — генерация высокочастотных колебаний.

Заряд

Заряд конденсатора производится внешним источником высокого напряжения, защищённым дросселями и построенным обычно на базе повышающего низкочастотного трансформатора. Так как часть электрической энергии, накопленной в конденсаторе, уйдёт на генерацию высокочастотных колебаний, то ёмкость и максимальное напряжение на конденсаторе пытаются максимизировать. Напряжение заряда ограничено напряжением пробоя разрядника, которое (в случае воздушного разрядника) можно регулировать, изменяя расстояние между электродами или их форму. Типовое максимальное напряжение заряда конденсатора — 2-20 киловольт. Знак напряжения для заряда обычно не важен, так как в высокочастотных колебательных контурах электролитические конденсаторы не применяются. Более того, во многих конструкциях знак заряда меняется с частотой бытовой сети электроснабжения (50 или 60 Гц).

Генерация

После достижения между электродами разрядника напряжения пробоя в нём возникает лавинообразный электрический пробой газа. Конденсатор разряжается через разрядник на катушку. После разряда конденсатора напряжение пробоя разрядника резко уменьшается из-за оставшихся в газе носителей заряда. Практически, цепь колебательного контура первичной катушки остаётся замкнутой через разрядник, до тех пор, пока ток создаёт достаточное количество носителей заряда для поддержания напряжения пробоя существенно меньшего, чем амплитуда напряжения колебаний в LC контуре. Колебания постепенно затухают, в основном из-за потерь в разряднике и ухода электромагнитной энергии на вторичную катушку. Во вторичной цепи возникают резонансные колебания, что приводит к появлению на терминале высоковольтного высокочастотного напряжения!

Модификации

Для мощных трансформаторов Теслы наряду с обычными разрядниками (статическими) используются более сложные конструкции разрядника. Например, RSG (от англ. Rotary Spark Gap, можно перевести как роторный/вращающийся искровой промежуток) или статический искровой промежуток с дополнительными дугогасительными устройствами. В конструкции роторного искрового промежутка используется двигатель (обычно это электродвигатель), вращающий диск с электродами, которые приближаются (или просто замыкают) к ответным электродам для замыкания первичного контура.

Скорость вращения вала и расположение контактов выбираются исходя из необходимой частоты следования пачек колебаний. Различают синхронные и асинхронные роторные искровые промежутки в зависимости от управления двигателем. Также использование вращающегося искрового промежутка сильно снижает вероятность возникновения паразитной дуги между электродами. Иногда обычный статический разрядник заменяют многоступенчатым статическим разрядником. Для охлаждения разрядников их иногда помещают в жидкие или газообразные диэлектрики (например, в масло). Типовой прием для гашения дуги в статическом разряднике — это продувка электродов мощной струей воздуха. Иногда классическую конструкцию дополняют вторым, защитным разрядником. Его задача — защита питающей (низковольтной части) от высоковольтных выбросов.

В качестве генератора ВЧ напряжения, в современных трансформаторах Теслы используют ламповые (VTTC — Vacuum Tube Tesla Coil) и транзисторные (SSTC — Solid State Tesla Coil, DRSSTC — Dual Resonance SSTC) генераторы. Это даёт возможность уменьшить габариты установки, повысить управляемость, снизить уровень шума и избавиться от искрового промежутка. Также существует разновидность трансформаторов Теслы, питаемая постоянным током. В аббревиатурах названий таких катушек присутствуют буквы DC, например DCDRSSTC. В отдельную категорию также относят магниферные катушки Теслы.

Многие разработчики в качестве прерывателя (разрядника) используют управляемые электронные компоненты, такие как транзисторы, модули на MOSFET транзисторах, электронные лампы, тиристоры.

Использование трансформатора Теслы

Разряд трансформатора Теслы

Разряд с конца провода

Выходное напряжение трансформатора Теслы может достигать нескольких миллионов вольт. Это напряжение в резонансной частоте способно создавать внушительные электрические разряды в воздухе, которые могут иметь многометровую длину. Эти явления очаровывают людей по разным причинам, поэтому трансформатор Теслы используется как декоративное изделие.

Трансформатор использовался Теслой для генерации и распространения электрических колебаний, направленных на управление устройствами на расстоянии без проводов (радиоуправление), беспроводной передачи данных (радио) и беспроводной передачи энергии. В начале XX века трансформатор Теслы также нашёл популярное использование в медицине. Пациентов обрабатывали слабыми высокочастотными токами, которые протекая по тонкому слою поверхности кожи не причиняют вреда внутренним органам (см. Скин-эффект), оказывая при этом тонизирующее и оздоравливающее влияние.

[1] Последние исследования механизма воздействия мощных ВЧ токов на живой организм показали негативность их влияния.[2]

В наши дни трансформатор Теслы не имеет широкого практического применения. Он изготовляется многими любителями высоковольтной техники и сопровождающих её работу эффектов. Также он иногда используется для поджига газоразрядных ламп и для поиска течей в вакуумных системах.

  1. Однако необходимо знать, какие напряжения и диапазоны частот безвредны для организма
  2. Появление злокачественных опухолей (рака)

Трансформатор Теслы используется военными для быстрого уничтожения всей электроники в здании,танке,корабле.

Создается на доли секунды мощный электромагнитный импульс в радиусе нескольких десятков метров.В результате перегорают все микросхемы и транзисторы,полупроводниковая электроника.Данное устройство работает совершенно бесшумно.В прессе появилось сообщение, что частота тока при этом достигает 1 Терагерц.

Эффекты, наблюдаемые при работе трансформатора Теслы

Во время работы катушка Теслы создаёт красивые эффекты, связанные с образованием различных видов газовых разрядов. Многие люди собирают трансформаторы Теслы ради того, чтобы посмотреть на эти впечатляющие, красивые явления. В целом катушка Теслы производит 4 вида разрядов:

  1. Стримеры (от англ. Streamer) — тускло светящиеся тонкие разветвлённые каналы, которые содержат ионизированные атомы газа и отщеплённые от них свободные электроны. Протекает от терминала (или от наиболее острых, искривлённых ВВ-частей) катушки прямо в воздух, не уходя в землю, так как заряд равномерно стекает с поверхности разряда через воздух в землю.
    Стример — это, по сути дела, видимая ионизация воздуха (свечение ионов), создаваемая ВВ-полем трансформатора.
  2. Спарк (от англ. Spark) — это искровой разряд. Идёт с терминала (или с наиболее острых, искривлённых ВВ частей) непосредственно в землю или в заземлённый предмет. Представляет собой пучок ярких, быстро исчезающих или сменяющих друг друга нитевидных, часто сильно разветвлённых полосок — искровых каналов. Также имеет место быть особый вид искрового разряда — скользящий искровой разряд.
  3. Коронный разряд — свечение ионов воздуха в электрическом поле высокого напряжения. Создаёт красивое голубоватое свечение вокруг ВВ-частей конструкции с сильной кривизной поверхности.
  4. Дуговой разряд — образуется во многих случаях. Например, при достаточной мощности трансформатора, если к его терминалу близко поднести заземлённый предмет, между ним и терминалом может загореться дуга (иногда нужно непосредственно прикоснуться предметом к терминалу и потом растянуть дугу, отводя предмет на большее расстояние). Особенно это свойственно ламповым катушкам Теслы. Если катушка недостаточно мощна и надёжна, то спровоцированный дуговой разряд может повредить её компоненты.

Часто можно наблюдать (особенно вблизи мощных катушек), как разряды идут не только от самой катушки (её терминала и т. д.), но и в её сторону от заземлённых предметов. Также на таких предметах может возникать и коронный разряд. Редко можно наблюдать также тлеющий разряд. Интересно заметить, что разные химические вещества, нанесённые на разрядный терминал, способны менять цвет разряда. Например, натрий меняет обычный окрас спарка на оранжевый, а бром — на зелёный.

Работа резонансного трансформатора сопровождается характерным электрическим треском. Появление этого явления связано с превращением стримеров в искровые каналы (см. статью искровой разряд), который сопровождается резким возрастанием силы тока и количества энергии, выделяющегося в них. Каждый канал быстро расширяется, в нём скачкообразно повышается давление, в результате чего на его границах возникает ударная волна. Совокупность ударных волн от расширяющихся искровых каналов порождает звук, воспринимаемый как «треск» искры.

Неизвестные эффекты трансформатора Теслы

Многие люди считают, что катушки Теслы — это особенные артефакты с исключительными свойствами. Существует мнение, что трансформатор Теслы может быть генератором свободной энергии и является вечным двигателем, исходя из того, что сам Тесла считал, что его генератор берёт энергию из эфира (особой невидимой материи в которой распространяются электромагнитные волны) через искровой промежуток. Иногда можно услышать, что с помощью «Катушки Теслы» можно создать антигравитацию и эффективно передавать электроэнергию на большие расстояния без проводов. Данные свойства пока никак не проверены и не подтверждены наукой. Однако, сам Тесла говорил о том, что такие способности скоро будут доступны человечеству с помощью его изобретений. Но впоследствии посчитал, что люди не готовы к этому.

Также очень распространён тезис о том, что разряды, испускаемые трансформаторами Теслы, полностью безопасны, и их можно трогать руками. Это не совсем так. В медицине также используют «катушки Теслы» для оздоровления кожи. Это лечение имеет положительные плоды и благотворно действует на кожу, но конструкция медицинских трансформаторов сильно разнится с конструкцией обычных. Лечебные генераторы отличает очень высокая частота выходного тока, при которой толщина скин-слоя (см. Скин-эффект) безопасно мала, и крайне малая мощность. А толщина скин-слоя для среднестатистической катушки Теслы составляет от 1 мм до 5 мм и её мощности хватит для того, чтобы разогреть этот слой кожи, нарушить естественные химические процессы. При долгом воздействии подобных токов могут развиться серьёзные хронические заболевания, злокачественные опухоли и другие негативные последствия. Кроме того, надо отметить, что нахождение в ВЧ ВВ поле катушки (даже без непосредственного контакта с током) может негативно влиять на здоровье. Важно отметить, что нервная система человека не воспринимает высокочастотный ток и боль не чувствуется, но тем не менее это может положить начало губительным для человека процессам. Также существует опасность отравления газами, образующимися во время работы трансформатора в закрытом помещении без притока свежего воздуха. Плюс ко всему, можно обжечься, так как температуры разряда обычно достаточно для небольшого ожога (а иногда и для большого), и если человек всё же захочет «поймать» разряд, то это следует делать через какой-нибудь проводник (например, металлический прут). В этом случае непосредственного контакта горячего разряда с кожей не будет, и ток сначала потечет через проводник и только потом через тело.

Трансформатор Теслы в культуре

В фильме Джима Джармуша «Кофе и сигареты» один из эпизодов строится на демонстрации трансформатора Теслы. По сюжету, Джек Уайт, гитарист и вокалист группы «The White Stripes» рассказывает Мег Уайт, барабанщице группы о том, что земля является проводником акустического резонанса (теория электромагнитного резонанса — идея, которая занимала ум Теслы многие годы), а затем «Джек демонстрирует Мэг машину Теслы».

В игре Command & Conquer: Red Alert советская сторона может строить оборонительное сооружение в виде башни со спиралевидным проводом, которая поражает противника мощными электрическими разрядами. Еще в игре присутствуют танки и пехотинцы, использующие эту технологию. Tesla coil (в одном из переводов — башня Тесла) является в игре исключительно точным, мощным и дальнобойным оружием, однако потребляет относительно высокое количество энергии. Для увеличения мощности и дальности поражения можно «заряжать» башни. Для этого отдайте приказ Воину Тесла (это пехотинец) подойти и постоять рядом с башней. Когда воин дойдет до места, он начнет зарядку башни. При этом анимация будет как при атаке, но молнии из его рук будут желтого цвета.

Также в игре

В игре Return to Castle Wolfenstein есть оружие, именуемое «Тесла», поражающее противника электрическим разрядом на большом расстоянии.

В игре Tomb Raider: Legend на одном из уровней есть статичные «Установки Тесла» их можно использовать для притягивания и поднятия тяжелых объектов (почти также, как в Half-Life 2). А также с помощью одной из них можно умертвить огромного монстра-босса.

В первой редакции игры

Ссылки

См.

также

Wikimedia Foundation. 2010.

Ламповая катушка Теслы / Хабр

Хомяки приветствуют вас, друзья.

Сегодняшний пост будет посвящен высокому напряжению. Ламповый трансформатор Тесла является самой тихой конструкцией из всех существующих вариантов. Тут, в качестве генератора высокочастотных колебаний используется мощный пентод ГК-71, благодаря которому можно получать красивые, достаточно длинные разряды в воздухе. В ходе данной работы рассмотрим основные элементы конструкции, узнаем секреты по настройки схемы и визуализируем сигнал с высоковольтной обмотки на экран советского осциллографа. Дальнейшая работа будет заключаться в компактном размещении всех элементов в одном корпусе. В общем всё как вы любите. Простота, надежность и небольшая стоимость делает данную катушку доступной каждому, кто захочет её собрать.

Прелесть ламповой катушки Тесла заключается в том, что одну часть деталей для неё можно достать из обычной микроволновки, а вторую из ближайшего магазина электрики. С пентодом может возникнуть проблема, вещь старая и давно не выпускается, но тот кто ищет — тот всегда найдет. В дальнейшем вы поймете, что его можно заменить на любую другую лампу похожей конструкции.

ГК-71 выбран из-за эстетической красоты и небольшой стоимости. Кто не обратил внимания, анод в этой вакуумированной пробирке полностью состоит из графита, хорошая реализация для рассеивания больших мощностей, по паспортным данным эта цифра составляет 250 Вт. Номинальное анодное напряжение составляет 1.5 киловольта. Максимальная частота 20 МГц.

Данный экземпляр был выпущен в 1981 году. Достался новым прямо из коробки. Непрерывное время работы по документам, составляет 1000 часов. Это примерно 42 дня. В год, на постоянно работающем устройстве, необходимо сменить 8 таких товарищей. По некоторым подсчётам, выпущенных в свое время Ламп ГК-71 хватит еще минимум лет на 200.

Накал — это та часть которая вдыхает жизнь в любую радиолампу. Напряжение для пентода ГК-71 составляет 20 вольт, но ток при этом должен быть не меньше 3. 5 ампер.В общем накал жрет 70 Вт. На рынке за символическую сумму был приобретен отечественный трансформатор ТН54-220-50. При правильном подключении обмоток с него можно получить 85 Вт без каких-либо финансовых затрат.

Следующий элемент — это высоковольтный трансформатор от микроволновки, буржуи называют его МОТ. Напряжение на его выходе составляет 2 киловольта, ток порядка 1 ампера. Довольно мощная и опасная вещь, может отправить вас на встречу к создателю, потому не стоит увлекаться.

Дальше идёт краткий перечень элементов, необходимых для сборки конструкции:
2 масляных конденсатора от той же микроволновки, напряжение 2.1 кВ, емкость 0.95 мкФ. Диодная сборка HYR-1x, её максимально допустимое напряжение 12 кВ, ток 500 мА, по паспорту способен выдержать импульсный ток до 30 ампер. Настоящий зверь в своем роде. Резисторы типа ПЭВ-на 10-20 Вт, можно использовать любые другие аналоги буржуйского производства.

Резонансный высокочастотный конденсатор типа КВИ-3, напряжение может варьироваться от 5 до 20 кВ, для настройки было закуплено несколько таких товарищей с разным номиналом ёмкости на борту. Для намотки индуктора был приобретен многожильный медный провод типа ПВС, сечение 1.5 квадрата. Длина порядка 16 метров. Катушка связи имеет другой цвет и длину 10 метров. Все провода взяты по длине с запасом.

Рубильники коммутирующие силовые части, взяли с допустимым током до 15 ампер, не спрашивайте зачем так много, запас карман не жмёт.

Теперь вторичная высоковольтная обмотка, она же «резонатор». Намотка этой детали требует много времени и терпения. Тут использован медный лакированный провод толщиной 0.2 мм, мотается виток к витку на картонной основе от пищевой пленки. Диаметр трубы 55 мм. Высота намотки получилась 35 см. Витки при этом не должны пересекаться и накладываться друг на друга.

После намоточных процедур результат следует покрыть слоем диэлектрика во избежание пробоя обмотки. Эпоксид наносится в два слоя для надёжности. В результате выйдет глянцевая, переливающаяся на свету труба, которая отнимет часть вашей драгоценной жизни. Второй дубликат катушки был намотан на пластиковой канализационной трубе диаметром 50 мм. ПВХ более надежный диэлектрик, в этом скоро убедимся. Каркас для индуктора был взят из того же картона только большего диаметра, примерно 80 мм.

Для проведения дальнейших работ, необходимо как можно компактней разместить трансформаторы, конденсаторы и прочую ерунду на какой-то крепкой основе. Листы ДСП давно валяются без дела, потому следует разметить их, и пустить в ход электролобзик, работа и звуки которого благородно влияют на жизнь ваших соседей, особенно это актуально по выходным дням.

Конструкция будет двухэтажная. Снизу разместятся трансформаторы с конденсаторами, а сверху разместим Пентод и саму катушку Тесла. Долго думал как скрепить первый этаж со вторым, решил использовать деревянные чепки. Надёжность тут конечно покраснела и пошла выпивать вслед за совестью. Желе какое-то. Надеваем розовые очки и выпиливаем отверстие под радио лампу. Затем с обратной стороны делаем отверстия под провода.

Теперь про индуктор. Сейчас мы точно не знаем сколько нужно витков, мотаем 40, при настройке его всё равно придётся отматывать в меньшую сторону для поиска резонанса. Обмотка обратной связи мотается в одну сторону с индуктором. Количество витков в два раза меньше, то есть 20. Такое соотношение встречается во многих ламповых катушках Тесла.

Момент который не очень понял. В некоторых схемах обмотка связи располагается в нижней части трансформатора Тесла, где развиваются наибольшие токи, а в некоторых сверху над индуктором. Какой вариант расположения лучше мне не известно, но в данной схеме она размещается сверху.

Панельку для установки пентода нам найти не удалось, довольно редкая вещь, потому альтернатива крепления — клеммная колодка для провода с диаметром отверстий 4 мм. Зажимы в ней отлично фиксируют ножки пентода. В качестве декоративной подставки использована фанера, которая была магнитом на двери холодильника.

Теперь время подсоединить провода к накальному трансформатору, и посмотреть всё ли работает. Подаем питание и наблюдаем за показаниями амперметра. 3 ампера, как и паспорт предписывал. По мере прогрева, потребление тока незначительно падает. Камера увы не смогла передать всей красоты раскаленных ниточек внутри этого стеклянного баклажана. Здоровенное лампище… Вот же ж умели делать!

Вся схема устройства довольно простая и выглядит примерно так: переменное высокое напряжение с мота выпрямляется через диод и заряжает конденсаторы от микроволновки, соединены они последовательно для увеличения рабочего напряжения. В этом случае суммарная ёмкость выходит пол микрофарада. Колебательный контур индуктора подключён к аноду лампы через дроссель, состоящий из 10 витков. Все управляющие сетки лампы ГК71 соединены вместе, с этого момента пентод превращается в триод. Схема автогенератора начинает работать при очень малых напряжениях на входе мота. Конденсатор в 2.2 нФ на выходе накального трансформатора служит для фильтрации наводок и высокочастотных выбросов, хотя первое = второе, второе = первое, как-то так. Обращаем внимание на подключение обмоток в первичном контуре. Точка — это нижний вывод обмотки.

В принципе сборка получилась довольно компактной. Её работу запросто можно демонстрировать на уроках физики, вспоминая жизнь того чувака, благодаря которому у нас в розетках переменное напряжение.

Трансформатор Тесла требует хорошего заземления. Батарея не самое лучшее решение для этих дел, но за неимением ничего более подходящего и это сойдет. Контакт должен быть надежным, три метра провода должно хватить, чтобы дотянутся куда угодно в пределах одной комнаты.

В новых домах такой фокус может не пройти из-за металлопластиковых труб в системе отопления. Потому проверяем наличие напряжения между фазой и землей, должно быть 220 вольт. Некоторые пускают заземление через зануление, тоже годный вариант. Между нулем и землей существует потенциал в 3.7 вольта, Креосан недавно рассказывал как можно воровать электричество подобным способом, заряжать телефон и зажигать лампочки, вот только забыл упомянуть тот факт, что современные цифровые счетчики считают потребление энергии как по фазе, так и по нулю. Максимум что вы выиграете, так это визит инспектора к себе в гости.

Итак, включаем питание накальной цепи. Лампа выходит на режим достаточно быстро, секунд 5 хватает для этого дела. Второй рубильник подает питание на мот. Ни в коем случае нельзя подавать высокое напряжение на анод лампы, без включенного накала. Входное напряжения на моте, регулируется с помощью ЛАТР-а, он дает напряжение от нуля до 220 вольт. Незаменимая вещь в работе с подобными схемами. Повышаем напряжение и видим, что генератор заработал. С появлением высокочастотного электрического поля светодиодный светильник закрепленный под полкой начинает немного светится и мигать.

На кончике отвертки, что служит терминалом для выхода молний появился небольшой стример. По мере повышения напряжения размер его растет, но разряды какие-то тонкие и не внушительные. Изменим положение обмотки связи, сместим её чуть вниз. Смотрим что поменялось в работе. Постепенно повышаем напряжение… видим что разряды стали более уверенными, толще, длинней и ярче. Звук довольно внушительный, похож на глухой рёв спортивного автомобиля.

Поиск резонанса осуществлялся либо отматыванием витков, либо подбором резонансного конденсатора. Начал отматывать витки. Увеличение мощности разрядов говорит от том, что мы на правильном пути. Разряды мощней, толще, длинней, самое интересное произошло тогда, когда начал увеличивать емкость резонансного конденсатора. Разряд увеличился, и на глазах начал уменьшатся. Запахло горелой бумагой.

При детальном осмотре выявилось, что картон начал прогорать. А если появился маленький прогар, то он постепенно превращается в большой, так как углерод получившийся в результате сгорания чего-либо становится отличным проводником. В общем это гангрена, которую необходимо немедленно ампутировать. Избавляемся от проблемного участка с помощью ножовки по металлу. Пару минут, проблема решена, а рука подкачана.

Так как резонансный контур изменил свои характеристики путем уменьшения длины вторичной катушки, снова доматываем и отматываем витки первички. Мощность увеличивается. Настроение превосходное, пару секунд радости и конструкция начинает подводить. Вторичку пробивает на первичку. Слишком близко размещены обмотки друг к другу. Предположения были что такое может произойти, но не так быстро. Первый день настройки, и многочасовая работа отправляется на помойку. При желании, эту трубу можно разрезать надвое, и сделать к примеру качер Бровина на транзисторе.

Поначалу хотел изолировать вторичку с помощью пластиковой бутылки, но как показывает практика — этот колхоз ни к чему хорошему не приводит. Одеваем кроссовки и выдвигаемся в ближайший сантехнический магазин за сливной 10-сантиметровой трубой. Такой диаметр уменьшит коэффициент связи обмоток, что есть хорошо в данной конструкции. Диэлектрические способности у такого цилиндра куда лучше чем у обычного картона.

Поверх трубы намотаем слой бумаги, на нее укладываем витки индуктора и обмотки связи. Бумага позволяет спокойно передвигать обмотки по всей длине трубы. Устанавливать катушки удобно на заглушки, они родом из того же магазина сантехники и позволяют соблюдать центровку всего резонансного контура. Немного усилий и конструкция снова готова к работе. Повторяем процедуру включения. В начале подаем питание на накал, ждём пару секунд, а затем включаем анодное напряжение. Оно сейчас в нуле и регулируется лабораторным автотрансформатором. Включаем его и постепенно поднимаем напряжение.

Разряды с увеличением коэффициента связи стали больше и красивей. На этом моменте наверное стоило завершить пост, схема заработала, разряд мы увидели. Но по традициям на этом, всё только начинается.

Для окончательной и более правильной работы, автогенератор необходимо настроить на осциллографе. Настраивать систему будем по максимальной амплитуде сигнала. Щуп осциллографа подключать напрямую к схеме не будем, для настройки разместим его на уровне тора и будем смотреть эфирный сигнал. Вся наводка, форма, частота и амплитуда сигнала отобразится на экране осциллографа. В данной схеме, этой информации для настройки будет более чем достаточно. Включаем накал. Подаем анодное напряжение. Регулируем напряжение автотрансформатором… но почему-то ничего не происходит… разбираемся что не так!? Ага, забыли подключить заземление, бывает, прикручиваем его на свое место и повторяем процедуру включения. Крутим ручку и сигнал оживает. Это наш индикатор в мире настройки. Входное напряжение на моте всего 50 вольт, отлично, нам сейчас разряды в воздухе не нужны.

Альтернативой обнаружения высокочастотных полей может служить обыкновенная неоновая лампочка. Амплитуду сигнала ею определить не выйдет, но зато можно судить о работоспособности устройства в целом, правильной или нет — это уже другое дело.

Итак, в процессе настройки удалось выделить два интересных режима работы. Первый это плавно затухающий импульс с небольшой амплитудой в отличии от второго режима. Сейчас мы перекидываем провода на разные витки индуктора и наблюдаем как меняется сигнал. Внимание вопрос знатокам. Какой режим автогенератора дает наибольшие разряды: вариант «а»- с плавно затухающим сигналом, но малой амплитудой, или вариант «б»- с большой амплитудой, но коротким импульсом?

Настройка резонанса с помощью конденсаторов. У этих образцов разная емкость, как выбрать нужную? Всё просто, поочередно соединяем конденсаторы параллельно индуктору и смотрим на сигнал. Нужно быть при этом осторожным, тут развиваются большие токи, которые могут нанести фаталити вашей руке. Дохлые электронщики никому не нужны. Если емкость будет слишком большая, она попросту погасит всю амплитуду сигнала.

В начале выпуска я обещал рассказать зачем нужны такие массивные контакты на конденсаторах. Во время работы, особенно на резонансе, в индукторе развиваются огромные токи, порядка нескольких сотен ампер, если такой ток пойдет через тонкие ножки обычного конденсатора, они попросту перегорят как перемычка в предохранителе. В данной схеме хорошо прижился конденсатор КВИ3 на 1500 пФ 10 кВ. Год выпуска 1978, раритет в своем роде, старше меня лет на 10.

Схема автогенератора работает в принудительном режиме прерывания с частотой сети 50 Гц, если растянуть во времени затухающие колебания, можно высчитать частоту работы автогенератора. Синхронизируем эту старую рухлядь и приступаем к расчетам.

Сейчас, переключатель времени деления на осциллографе стоит в положении 0.5 мкс. Это означает, что одна клетка на шкале экрана равна 0.5 мкс. Один период синусоиды занимает 5 клеток, следовательно 5 умножаем на 0.5 равно 2.5 мкс. Частота находится по формуле: 1 деленная на период. Считаем. 1/2.5 мкс равняется 0.4 мГц, что равняется 400 кГц. Отсюда вывод, резонансная частота настроенной катушки Тесла, ровняется 400 кГц.

Расчеты могли быть более точными при наличии современного оборудования, но для данной схемы оно попросту не нужно. После настройки регулируем положения индуктора и обмотки связи так, чтобы амплитуда сигнала на осциллографе была максимальной. На этом этапе настройку ламповой катушки тесла, можно считай исчерпывающей. Потребление силовой части схемы без цепи накала, составляет 720 Вт.

В работе ламп есть что- то удивительное, когда берешь их в руки, возвращаешься в те далекие теплые времена. Транзисторы и прочая современная электроника со временем приедается, становится скучной. На лампу можно смотреть вечно, ну или 1000 часов пока не пропадет электронная эмиссия и катод не обеднеет. Теперь время посмотреть как это всё работает.

В процессе работы схемы, лампа не перегревается и может работать продолжительное время, скажем 10 минут без перерыва. Но находятся умельцы, которые ставят на выходе мота много-количественные сборки из микроволновочных конденсаторов, мощь схемы увеличивается, лампа начинает работать на пределе своих возможностей. Естественно графитовый анод лампы нагревается до красна, катод расходует свой ресурс. Такой режим работать будет, но не долго.

Для увеличения срока службы лампы на больших мощностях используют прерыватели. Это грубо говоря переключатель, который на короткое время запускает генератор на Тесле. Секунда работы, секунда отдыха, как-то так. Режимы естественно можно менять.

Свечение различных лампочек в высокочастотных электрических полях это вообще отдельная тема, некоторые образцы настолько красивы, что претендуют на отдельный пост.

Слыхали про то, что различными солями можно подкрашивать цвет огня, сейчас проверим это на практике. Для этого берем обыкновенную поваренную соль и разбавляем ее небольшим количеством воды. Получившуюся кашу наносим на электрод. Ионы натрия должны подкрасить молнию в оранжевый цвет, это сейчас и посмотрим.

Данная конструкция проста в повторении, и элементарна в настройке. В ней нет дорогих деталей, хотя цена — дело относительное, стоимость всех элементов составляет примерно 65 баксов не включая ЛАТР для регулировки входного напряжения в анодной цепи.

В одном из следующих постов мы рассмотрим полупроводниковую систему, там узнаем как рассчитывается резонанс, как управлять железом и прочую малоизвестную нормальному человеку ерунду.

Для справки. Съемка сегодняшнего выпуска вместе с пост обработкой, написанием текста и прочими процессами заняла 2 месяца. Это можно назвать быстрым выпуском. В комментариях вы часто пишете чтобы мы снимали материал в сфере физики и электроники, сейчас так и происходит, но тут есть обратная сторона медали, время. Теперь выпуски будут выходить реже чем обычно, надеюсь вы всё понимаете.

Как гласит народная мудрость: работа и труд — всё перетрут.



Полное видео проекта на YouTube
Наш Instagram

Катушка тесла. Как работает, схема, применение. Конструкция

Трансформатор (катушка) Тесла (Tesla Coil, TC) — это повышающий высокочастотный резонансный трансформатор — два колебательных контура, настроенных на одинаковую резонансную частоту. В сети можно найти множество примеров ярких реализаций этого необычного устройства.

Катушка без ферромагнитного сердечника, состоящая из множества витков тонкого провода, увенчанная тором, испускает настоящие молнии, впечатляя изумленных зрителей.

С точки зрения электротехники в нашем примитивном понимании, трансформатор Теслы — это первичная и вторичная обмотка, простейшая схема, которая обеспечивает питание первичной обмотки на резонансной частоте вторичной обмотки, но выходное напряжение возрастает в сотни раз. В это сложно поверить, но каждый может убедиться в этом сам.

Как работает трансформатор тесла

Катушка Тесла названа так в честь ее изобретателя Николы Тесла (около 1891 года). История данного изобретения начинается с конца 19 века, когда гениальный ученый-экспериментатор Никола Тесла, работая в США, только поставил перед собой задачу научиться передавать электрическую энергию на большие расстояния без проводов. Аппарат для получения токов высокой частоты и высокого потенциала был запатентован Теслой в 1896 году.

Не смотря на то, что существует несколько видов катушек тесла, у всех них есть общие черты.

Трансформатор Тесла – прекрасная игрушка для тех, кто хочет сделать что-то эдакое. Это устройство не перестает поражать окружающих мощью своих огромных разрядов. Более того, сам процесс конструирования трансформатора очень увлекателен – не часто так много физических эффектов сочетаются в одной несложной конструкции.

Несмотря на то, что сама по себе “Тесла” очень проста, многие из тех, кто пытаются ее сконструировать не понимают как работает трансформатор Тесла.

катушка тесла

Принцип действия трансформатора Тесла похож на работу обычного  трансформатора.  Трансформатор Тела состоит из двух обмоток – первичной (Lp) и вторичной (Ls) (их чаще называют “первичка” и “вторичка”). К первичной обмотке подводится переменное напряжение и она создает магнитное поле. При помощи этого поля энергия из первичной обмотки передается во вторичную.

трансформатор тесла схема

Вторичная обмотка вместе с собственной паразитной (Cs) емкостью образуют колебательный контур, который накапливает переданную ему энергию. Часть времени вся энергия в колебательном контуре храниться в виде напряжения. Таким образом, чем больше энергии мы вкачаем в контур, тем больше напряжения получим.

колебания напряжения в трансформаторе Тесла

Тесла обладает тремя основными характеристиками:

  1. резонансной частотой вторичного контура,
  2. коэффициентом связи первичной и вторичной обмоток,
  3. добротностью вторичного контура.

Коэффициент связи определяет насколько быстро энергия из первичной обмотки передается во вторичную, а добротность – насколько долго колебательный контур может сохранять энергию.

Основные детали  и конструкции трансформатора Тесла

Конструкция трансформатора тесла

Тороид

Тороид – выполняет три функции.

Первая – уменьшение резонансной частоты – это актуально для SSTC и DRSSTC, так как силовые полупроводники плохо работают на высоких частотах.

Вторая – накопление энергии перед образованием стримера.

Стример — это, по сути дела, видимая ионизация воздуха (свечение ионов), создаваемая ВВ-полем трансформатора.

Чем больше тороид, тем больше в нем накоплено энергии  и, в момент, когда воздух пробивается, тороид отдает эту энергию в стример, таким образом,  увеличивая его. Для того, чтобы извлечь выгоду из этого явления в теслах с непрерывной накачкой энергии, используют прерыватель.

Третья – формирование электростатического поля, которое отталкивает стример от вторичной обмотки теслы. От части, эту функцию выполняет сама вторичная обмотка, но тороид может ей хорошо помочь. Именно по причине электростатического отталкивания стримера, он не бьет по кратчайшему пути во вторичку.

От использования тороидоа больше всего выиграют теслы с импульсной накачкой – SGTC, DRSSTC и теслы с прерывателями. Типичный внешний диаметр тороида – два диаметра вторички.

Тороиды обычно изготавливают из алюминиевой гофры, хотя есть множество других технологий,

Вторичная обмотка – основная деталь Теслы

Типичное отношение длинны обмотки теслы к ее диаметру намотки 4:1 – 5:1.

Диаметр провода для намотки теслы обычно выбирают так, чтобы на вторичке помещалось 800-1200 витков.

ВНИМАНИЕ!

Не стоит мотать слишком много витков на вторичке тонким проводом. Витки на вторичке нужно распологать как можно плотнее друг к другу.

Для защиты от царапин и от разлезания витков, вторичные обмотки обычно покрывают лаками. Чаще всего для этого применяются эпоксидная смола и полиуретановый лак. Лакировать стоит очень тонкими слоями. Обычно, на вторичку, наносят минимум 3-5 тонких слоев лака.

Мотают вторичную обмотку на воздуховодных (белых) или, что хуже, канализационных (серых) ПВХ трубах. Найти эти трубы можно в любом строительном магазине.

Защитное кольцо

Защитное кольцо – предназначено для того, чтобы стример, попав в первичную обмотку не вывел электронику из строя. Эта деталь устанавливается на теслу, если длинна стримера больше длинны вторичной обмотки. Представляет собой незамкнутый виток медного провода (чаще всего, немного толще, чем тот из которого изготавливается первичная обмотка трансформатора тесла). Защитное кольцо заземляется на общее заземление отдельным проводом.

Первичная обмотка

Первичная обмотка – обычно изготавливается из медной трубы для кондиционеров. Должна обладать очень маленьким сопротивлением для того, чтобы по ней можно было пропускать большой ток. Толщину трубки обычно выбирают на глаз, в подавляющем большинстве случаев, выбор падает на 6 мм трубку. Так-же в качестве первички используют провода большего сечения.

Относительно вторичной обмотки устанавливается так, чтобы обеспечить нужный коэффициент связи.

Часто играет роль построечного элемента в тех теслах, где первичный контур является резонансным. Точку подключения к первичке делают подвижной и ее перемещением изменяют резонансную частоту первичного контура.

Первичные обмотки обычно делают цилиндрическими, плоскими или  коническим. Обычно, плоские первички используются в SGTC, конические- в SGTC  и DRSSTC, а цилиндрические — в SSTC, DRSSTC и VTTC.

первичные обмотки трансформатора тесла

Заземление

Заземление – как не странно, тоже очень важная деталь теслы. Очень часто задаются вопросом – куда же бьют стримеры? — стримеры бьют в землю!

Стримеры замыкают ток, показанный на картинке синим цветом

Таким образом, если заземление будет плохое, стримерам будет некуда деваться и им придется бить в теслу (замыкать свой ток), вместо того, чтобы извергаться  в воздух.

Поэтому задавая вопрос обязательно ли заземлять теслу?

Заземление для теслы – обязательно.

Существуют трансформаторы Тесла без первичной обмотки. У них питание подается прямо на “земляной” конец вторички. Такой метод питания называется “бэйзфид” (basefeed).

Иногда, в качестве источника бэйзфидного питания используется другой трансформатор Тесла, такой метод питания называют “магниферным” (Magnifier).

Существуют так называемые биполярные теслы, они отличаются тем, что разряд происходит не в в воздух, а между двумя концами вторичной обмотки. Таким образом, путь тока легко может замкнуться и заземление не нужно.

Вот самые распространенные типы катушек Тесла в зависимости от способа управления ими:

  1. SGTC (СГТЦ, Spark Gap Tesla Coil) – трансформатор Тесла на искровом промежутке. Это классическая конструкция, подобную схему изначально применял сам Тесла. В качестве коммутирующего элемента здесь используется разрядник. В конструкциях малой мощности разрядник представляет собой два куска толстого провода, расположенных на некотором расстоянии, а в более мощных применяются сложные вращающиеся разрядники с использованием двигателей. Трансформаторы этого типа изготавливают если требуется лишь большая длинна стримера, и не важна эффективность.
  2. VTTC (ВТТЦ, Vacuum Tube Tesla Coil) – трансформатор Тесла на электронной лампе. В качестве коммутирующего элемента здесь используется мощная радиолампа, например ГУ-81. Такие трансформаторы могут работать в непрерывном режиме и производить довольно толстые разряды. Данный тип питания чаще всего используют для построения высокочастотных катушек, которые из-за типичного вида своих стримеров получили название “факельники”.
  3. SSTC (ССТЦ, Solid State Tesla Coil) – трансформатор Тесла, в котором в качестве ключевого элемента применяются полупроводники. Обычно это IGBT или MOSFET транзисторы. Данный тип трансформаторов может работать в непрерывном режиме. Внешний вид стримеров, создаваемых такой катушкой может быть самым разным. Этим типом трансформаторов Тесла проще управлять, например можно играть на них музыку.
  4. DRSSTC (ДРССТЦ, Dual Resonant Solid State Tesla Coil) – трансформатор Тесла с двумя резонансными контурами, здесь в качестве ключей используются, как и в SSTC, полупроводники. ДРССТЦ – наиболее сложный в управлении и настройке тип трансформаторов Тесла.

Для получения более эффективной и эффектной работы трансформатора Тесла применяют именно схемы топологии DRSSTC, когда мощный резонанс достигается и в самом первичном контуре, а во вторичном соответственно — более яркая картина, более длинные и толстые молнии (стримеры).

Виды эффектов от катушки Тесла

  • Дуговой разряд – возникает во многих случаях. Он характерен ламповым трансформаторам.
    Коронный разряд является свечением воздушных ионов в электрическом поле повышенного напряжения, образует голубоватое красивое свечение вокруг элементов устройства с высоким напряжением, а также имеющим большую кривизну поверхности.
  • Спарк по-другому называют искровым разрядом. Он протекает от терминала на землю, либо на заземленный предмет, в виде пучка ярких разветвленных полосок, быстро исчезающих или меняющихся.
  • Стримеры – это тонкие слабо светящиеся разветвляющиеся каналы, содержащие ионизированные атомы газа и свободные электроны. Они не уходят в землю, а протекают в воздух. Стримером называют ионизацию воздуха, образуемую полем трансформатора высокого напряжения.

Действие катушки Тесла сопровождается треском электрического тока. Стримеры могут превращаться в искровые каналы. Это сопровождается большим увеличением тока и энергии. Канал стримера быстро расширяется, давление резко повышается, поэтому образуется ударная волна. Совокупность таких волн подобен треску искр.

Практическое  применение трансформатор тесла

Величина напряжения на выходе трансформатора Тесла иногда достигает миллионов вольт, что формирует значительные воздушные электрические разряды длиной в несколько метров. Поэтому такие эффекты применяют в качестве создания показательных шоу.

Катушка Тесла нашла практическое применение в медицине в начале прошлого века. Больных обрабатывали маломощными токами высокой частоты. Такие токи протекают по поверхности кожи, оказывают оздоравливающее и тонизирующее влияние, не причиняя при этом никакого вреда организму человека. Однако мощные токи высокой частоты оказывают негативное влияние.

Трансформатор Тесла применяется в военной технике для оперативного уничтожения электронной техники в здании, на корабле, танке. При этом на короткий промежуток времени создается мощный импульс электромагнитных волн. В результате в радиусе нескольких десятков метров сгорают транзисторы, микросхемы и другие электронные компоненты. Это устройство действует абсолютно бесшумно. Существуют такие данные, что частота тока при функционировании такого устройства может достигать 1 ТГц.

Иногда на практике такой трансформатор применяется для розжига газоразрядных ламп, а также поиска течи в вакууме.

Эффекты катушки Тесла иногда используют в съемках фильмов, компьютерных играх.

В настоящее время катушка Тесла не нашла широкого применения на практике в быту.

Новое в трансформаторах тесла

В настоящее время остаются актуальными вопросы, которыми занимался ученый Тесла. Рассмотрение этих проблемных вопросов дает возможность студентам и инженерам институтов взглянуть на проблемы науки более широко, структурировать и обобщать материал, отказаться от шаблонных мыслей. Взгляды Тесла актуальны сегодня не только в технике и науке, но и для работ в новых изобретениях, применения новых технологий на производстве. Наше будущее даст объяснение явлениям и эффектам, открытым Теслой. Он заложил для третьего тысячелетия основы новейшей цивилизации.

схема трансформатора тесла на транзисторе

Схема трансформатора тесла выглядит невероятно просто и состоит из:

  1. первичной катушки, выполненной из провода сечением не менее 6 мм², около 5-7 витков;
  2. вторичной катушки, намотанной на диэлектрик, это провод диаметром до 0,3 мм, 700-1000 витков;
  3. разрядника;
  4. конденсатора;
  5. излучателя искрового свечения.

Главное отличие трансформатора Теслы от всех остальных приборов — в нем не применяются ферросплавы в качестве сердечника, а мощность прибора, независимо от мощности источника питания, ограничена только электрической прочностью воздуха. Суть и принцип действия прибора в создании колебательного контура, который может реализовываться несколькими методами:

  1. Генератор колебаний частоты, построенный на основе разрядника, искрового промежутка.
  2. Генератор колебания на лампах.
  3.  На транзисторах.

 

Видео: Стоячие волны в Трансформаторе Тесла, резонанс, коэффициент трансформации

Видео: Трансформатор ТЕСЛА своими руками

Фаулер: Думаю, да. И в этом суть моей статьи. Возможно, нам нужно начать этот разговор сейчас, а не ждать 10 лет.И для меня самая большая проблема, которая, как мне кажется, является наиболее неотложной и которую нам действительно нужно решить сейчас, — это вопрос, который отвлекает. Итак, теперь у нас много вопросов о том, заставляет ли мой iPhone терять сон или моих детей превращает в зомби? Что ж, проведенное на данный момент исследование показало, что эти сенсорные интерфейсы в автомобилях очень отвлекают и создают довольно высокую когнитивную нагрузку на водителей. Проблема в том, что с Tesla вы должны взаимодействовать с этой штукой, пока находитесь в дороге.Он скрывает некоторые довольно важные части автомобиля, функции автомобиля. Если вы хотите переместить зеркала, вам нужно щелкнуть там. Если вы хотите поменять кондиционер, у вас есть кран. Если вы даже хотите открыть перчаточный ящик, у вас есть кран. Самой по себе ручки для перчаточного ящика нет.

Ryssdal: Это глупо, чувак, что ты должен это делать. Потому что я имею в виду, верно? Не спускайте глаз с дороги.

Fowler: Итак, вы знаете, я думаю, что Tesla действительно должна уделять первостепенное внимание тому, как они проектируют этот интерфейс, чтобы быть более безопасным, но на самом деле это не так.И действительно, на прошлой неделе Илон Маск написал в Твиттере, что хочет нанять разработчиков видеоигр, чтобы они разработали игры для этой центральной панели.

Если вы занимаетесь разработкой видеоигр, подайте заявку в Tesla. Мы хотим делать супер веселые игры, в которых интегрирован центральный сенсорный экран, телефон и автомобиль.

— Илон Маск (@elonmusk) 1 августа 2018 г.

И я подумал, что это не вселяет доверия к этой машине и к тому направлению, в котором эта компания собирается вести всех нас.

ученых исследуют неизведанные дороги Тесла и находят потенциально новую полезность в изобретении столетней давности

Фотография Николы Теслы в декабре 1899 года с двойной экспозицией, сидящей в своей лаборатории в Колорадо-Спрингс рядом с генератором высокого напряжения с увеличительным передатчиком, в то время как машина вырабатывала огромные электрические разряды.

Исследование проверяет жизнеспособность запатентованного изобретателем устройства 100-летней давности.

Клапан, изобретенный инженером Николой Тесла столетие назад, не только более функциональный, чем предполагалось ранее, но и имеет другие потенциальные применения сегодня, как обнаружила группа исследователей после проведения серии экспериментов по копированию конструкции начала 20-го века.

Его результаты, опубликованные в журнале Nature Communications , предполагают, что устройство Теслы, которое он назвал «клапанным каналом», могло использовать вибрации в двигателях и другом оборудовании для перекачки топлива, охлаждающей жидкости, смазочных материалов и других газов и жидкостей.

Теперь известное как Tesla Valve, запатентованное устройство вдохновило стратегии для направления потоков внутри потоковых сетей и контуров.

«Примечательно, что это 100-летнее изобретение до сих пор не до конца изучено и может быть использовано в современных технологиях способами, которые еще не рассматривались», — объясняет Лейф Ристроф, доцент Института математических наук Куранта при Нью-Йоркском университете, и старший автор.«Хотя Тесла известен как волшебник электрических токов и электрических цепей, его менее известная работа по управлению потоками или токами жидкости действительно опередила свое время».

Сравнение потоков в обратном направлении (справа налево) на трех разных скоростях. Течение воды визуализируется зелеными и синими красками, показывая, что потоки все больше нарушаются на более высоких скоростях. Предоставлено: Лаборатория прикладной математики Нью-Йоркского университета

.

Клапан Тесла — серия взаимосвязанных петель в форме капли — был разработан для пропускания потоков жидкости только в одном направлении и без движущихся частей.Устройство обеспечивает четкий путь для прямых потоков, но для обратных потоков маршрут медленнее — но этот последний недостаток фактически указывает на потенциальную нереализованную выгоду в обстоятельствах, когда потоки необходимо контролировать, а не высвобождать.

Чтобы понять функциональность клапана, Ристроф и его соавторы, Куин Нгуен, аспирант по физике Нью-Йоркского университета, и Джоанна Абуэцци, студентка Нью-Йоркского университета на момент исследования, провели серию экспериментов в лаборатории прикладной математики Нью-Йоркского университета.Здесь они скопировали конструкцию клапана Tesla и подвергли его испытаниям, в ходе которых было измерено его сопротивление проходящему потоку в двух направлениях.

В целом, они обнаружили, что устройство работает как переключатель. При низких расходах нет разницы в сопротивлении для прямого и обратного потоков, но выше определенной скорости потока устройство резко «включается» и значительно сдерживает обратный поток или сопротивляется ему.

«Что особенно важно, это включение приводит к возникновению турбулентных потоков в обратном направлении, которые« закупоривают »трубу вихрями и разрушающими токами», — объясняет Ристроф.«Более того, турбулентность возникает при гораздо более низких расходах, чем когда-либо ранее наблюдалось для труб более стандартных форм — до 20 раз меньшей скорости, чем обычная турбулентность в цилиндрической трубе или трубе. Это показывает мощность, которую он имеет для управления потоками, которые можно использовать во многих приложениях ».

Кроме того, они обнаружили, что клапан работает даже лучше, когда поток не является постоянным — когда он приходит в виде импульсов или колебаний, которые устройство затем преобразует в плавный и направленный выходной поток.Это перекачивающее действие имитирует преобразователи переменного тока в постоянный, которые преобразуют переменный ток в постоянный.

«Мы думаем, что именно это Тесла имел в виду для устройства, поскольку он думал об аналогичных операциях с электрическими токами», — отмечает Ристроф. «На самом деле он наиболее известен тем, что изобрел двигатель переменного тока, а также преобразователь переменного тока в постоянный».

Сегодня, учитывая способность клапана управлять потоками и создавать турбулентность на низких скоростях, Ристроф видит возможности для изобретения Теслы в начале 20 века.

«Устройство Теслы является альтернативой обычному обратному клапану, движущиеся части которого со временем изнашиваются», — объясняет Ристроф. «И теперь мы знаем, что он очень эффективен при смешивании, и его можно использовать для управления вибрациями двигателей и механизмов для перекачки топлива, охлаждающей жидкости, смазки или других газов и жидкостей».

Ссылка: «Ранняя турбулентность и пульсирующие потоки увеличивают периодичность макрожидкостного клапана Теслы» Куин М.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *