Расчет резистивного делителя: Делитель напряжения на резисторах. Формула расчета, онлайн калькулятор

Содержание

Делитель напряжения на резисторах. Формула расчета, онлайн калькулятор

Делитель напряжения — это простая схема, которая позволяет получить из высокого напряжения пониженное напряжение.

Используя только два резистора и входное напряжение, мы можем создать выходное напряжение, составляющее определенную часть от входного. Делитель напряжения является одной из наиболее фундаментальных схем в электронике. В вопросе изучения работы делителя напряжения следует отметить два основных момента – это сама схема и формула расчета.

Блок питания 0…30 В / 3A

Набор для сборки регулируемого блока питания…

Схема делителя напряжения на резисторах

Схема делителя напряжения включает в себя входной источник напряжения и два резистора. Ниже вы можете увидеть несколько схематических вариантов изображения делителя, но все они несут один и тот же функционал.

Обозначим резистор, который находится ближе к плюсу входного напряжения (Uin) как R1, а резистор находящийся ближе к минусу как R2. Падение напряжения (Uout) на резисторе R2 — это пониженное напряжение, полученное в результате применения резисторного делителя напряжения.

Расчет делителя напряжения на резисторах

Расчет делителя напряжения предполагает, что нам известно, по крайней мере, три величины из приведенной выше схемы: входное напряжение и сопротивление обоих резисторов. Зная эти величины, мы можем рассчитать выходное напряжение.

Формула делителя напряжения

Это не сложное упражнение, но очень важное для понимания того, как работает делитель напряжения. Расчет делителя основан на законе Ома.

Для того чтобы узнать какое напряжение будет на выходе делителя, выведем формулу исходя из закона Ома. Предположим, что мы знаем значения Uin, R1 и R2. Теперь на основании этих данных выведем формулу для Uout. Давайте начнем с обозначения токов I1 и I2, которые протекают через резисторы R1 и R2 соответственно:

Наша цель состоит в том, чтобы вычислить Uout, а это достаточно просто используя закон Ома:

Цифровой мультиметр AN8009

Большой ЖК-дисплей с подсветкой, 9999 отсчетов, измерение TrueRMS…

Хорошо. Мы знаем значение R2, но пока неизвестно сила тока I2. Но мы знаем кое-что о ней. Мы можем предположить, что I1 равно I2. При этом наша схема будет выглядеть следующим образом:

Что мы знаем о Uin? Ну, Uin это напряжение на обоих резисторах R1 и R2. Эти резисторы соединены последовательно, при этом их сопротивления суммируются:

И, на какое-то время, мы можем упростить схему:

Закон Ома в его наиболее простом виде: Uin = I *R. Помня, что R состоит из R1+R2, формула может быть записана в следующем виде:

А так как I1 равно I2, то:

Это уравнение показывает, что выходное напряжение прямо пропорционально входному напряжению и отношению сопротивлений R1 и R2.

Делитель напряжения — калькулятор онлайн



 Применение делителя напряжения на резисторах

В радиоэлектронике есть много способов применения делителя напряжения. Вот только некоторые примеры где вы можете обнаружить их.

Потенциометры

Потенциометр представляет собой переменный резистор, который может быть использован для создания регулируемого делителя напряжения.

Изнутри потенциометр представляет собой резистор и скользящий контакт, который делит резистор на две части и передвигается между этими двумя частями. С внешней стороны, как правило, у потенциометра имеется три вывода: два контакта подсоединены к выводам резистора, в то время как третий (центральный) подключен к скользящему контакту.

Если контакты резистора подключения к источнику напряжения (один к минусу, другой к плюсу), то центральный вывод потенциометра будет имитировать делитель напряжения.

Переведите движок потенциометра в верхнее положение и напряжение на выходе будет равно входному напряжению. Теперь переведите движок в крайнее нижнее положение и на выходе будет нулевое напряжение. Если же установить ручку потенциометра в среднее положение, то мы получим половину входного напряжения.

Резистивные датчики

Большинство датчиков применяемых в различных устройствах представляют собой резистивные устройства. Фоторезистор представляет собой переменный резистор, который изменяет свое сопротивление, пропорциональное количеству света, падающего на него. Так же есть и другие датчики, такие как датчики давления, ускорения и термисторы и др.

Так же резистивный делитель напряжения помогает измерить напряжение при помощи микроконтроллера (при наличии АЦП).

Пример работы делителя напряжения на фоторезисторе.

Допустим, сопротивление фоторезистора изменяется от 1 кОм (при освещении) и до 10 кОм (при полной темноте). Если мы дополним схему постоянным сопротивлением примерно 5,6 кОм, то мы можем получить широкий диапазон изменения выходного напряжения при изменении освещенности фоторезистора.

Как мы видим, размах выходного напряжения при уровне освещения от яркого до темного получается в районе 2,45 вольт, что является отличным диапазоном для работы большинства АЦП.

Расчет делителя напряжения на резисторах, конденсаторах и индуктивностях — Help for engineer

Расчет делителя напряжения на резисторах, конденсаторах и индуктивностях

Делитель напряжения используется в электрических цепях, если необходимо понизить напряжение и получить несколько его фиксированных значений. Состоит он из двух и более элементов (резисторов, реактивных сопротивлений). Элементарный делитель можно представить как два участка цепи, называемые плечами. Участок между положительным напряжением и нулевой точкой – верхнее плечо, между нулевой и минусом – нижнее плечо.

Делитель напряжения на резисторах может применятmся как для постоянного, так и для переменного напряжений. Применяется для низкого напряжения и не предназначен для питания мощных машин. Простейший делитель состоит из двух последовательно соединенных резисторов:

На резистивный делитель напряжения подается напряжение питающей сети U, на каждом из сопротивлений R1 и R2 происходит падение напряжения. Сумма U1 и U2 и будет равна значению U.

В соответствии с законом Ома (1):

Падение напряжения будет прямо пропорционально значению сопротивления и величине тока. Согласно первому закону Кирхгофа, величина тока, протекающего через сопротивления одинакова. С чего следует, что падение напряжения на каждом резисторе (2,3):


Тогда напряжение на всем участке цепи (4):

Отсюда определим, чему равно значение тока без включения нагрузки (5):

Если подставить данное выражение в (2 и 3), то получим формулы расчета падения напряжения для делителя напряжения на резисторах (6, 7):


Необходимо упомянуть, что значения сопротивлений делителя должны быть на порядок или два (все зависит от требуемой точности питания) меньше, чем сопротивление нагрузки. Если же это условие не выполняется, то при приведенном расчете подаваемое напряжение будет посчитано очень грубо.

Для повышения точности необходимо сопротивление нагрузки принять как параллельно подсоединенный резистор к делителю. А также использовать прецизионные (высокоточные) сопротивления.

Онлайн подбор сопротивлений для делителя

Пусть источник питания выдает 24 В постоянного напряжения, примем, что величина сопротивления нагрузки переменная, но минимальное значение равно 15 кОм. Необходимо рассчитать параметры резисторов для делителя, выходное напряжение которого равно 6 В.

Таким образом, напряжения: U=24 B, U2=6 В; сопротивление резисторов не должно превышать 1,5 кОм (в десять раз меньше значения нагрузки). Принимаем R1=1000 Ом, тогда используя формулу (7) получим:

выразим отсюда R2:

Зная величины сопротивления обоих резисторов, найдем падение напряжения на первом плече (6):

Ток, который протекает через делитель, находится по формуле (5):

Схема делителя напряжения на резисторах рассчитана выше и промоделирована:


Использование делителя напряжения очень неэкономичный, затратный способ понижения величины напряжения, так как неиспользуемая энергия рассеивается на сопротивлении (превращается в тепловую энергию). КПД очень низкий, а потери мощности на резисторах вычисляются формулами (8,9):



По заданным условиям, для реализации схемы делителя напряжения необходимы два резистора:

1. R1=1 кОм, P1=0,324 Вт.
2. R2=333,3 Ом, P2=0,108 Вт.

Полная мощность, которая потеряется:



Делитель напряжения на конденсаторах применяется в схемах высокого переменного напряжения, в данном случае имеет место реактивное сопротивление.


Сопротивление конденсатора рассчитывается по формуле (10):

где С – ёмкость конденсатора, Ф;
f – частота сети, Гц.

Исходя из формулы (10), видно, что сопротивление конденсатора зависит от двух параметров: С и f. Чем больше ёмкость конденсатора, тем сопротивление его ниже (обратная пропорциональность). Для ёмкостного делителя расчет имеет такой вид (11, 12):


Еще один делитель напряжения на реактивных элементах – индуктивный, который нашел применение в измерительной технике. Сопротивление индуктивного элемента при переменном напряжении прямо пропорционально величине индуктивности (13):

где L – индуктивность, Гн.


Падение напряжения на индуктивностях (14,15):

Недостаточно прав для комментирования

Резисторный делитель напряжения: расчёт-онлайн, формулы и схемы

Резисторный делитель напряжения — одна из основополагающих конструкций в электронике, без которой не обходится ни одно устройство. Подбор сопротивлений задаёт нужные режимы работы. Как правило, эта конструкция содержит два резистора. Один ставится между входом и выходом схемы. Второй резистор одним концом подключается к общему проводу, а вторым — к выходу схемы, тем самым его шунтируя. Он также играет роль нагрузки источника, подключённого ко входу.

Формула делителя напряжения

Расчёт можно осуществить, используя формулы, вытекающие из закона Ома. Можно узнать, каким будет U на выходе устройства, если известно входное, а также сопротивления обоих резисторов. Можно также решить обратную задачу, например, вычислить напряжение, которое получится на выходе при известных сопротивлениях резисторов.

Чтобы выполнить расчет резистивного делителя, необходимо:

  • Обозначить резистор, находящийся ближе ко входу делителя, как R1.
  • Обозначить резистор, находящийся ближе к выходу делителя, как R2.
  • Протекающие через резисторы токи обозначаются, как I1 и I2, а входное и выходное напряжения — UВХ и UВЫХ, соответственно.
  • Промежуточная формула примет следующий вид: UВЫХ=I2*R2.
  • Если предположить, что силы обоих токов равны, то формула для определения протекающего через схему тока станет выглядеть так: I=UВХ/R1+R2.
  • Окончательная формула принимает такой вид: UВЫХ=R2*(UВХ/R1+R2).

Из неё становится ясно, что выходное напряжение всегда будет меньше, чем входное. Оно зависит от самих резисторов. Чем больше сопротивление R1 и сила протекающего тока, тем меньше будет UВЫХ. Напротив, чем больше сопротивление R2, включённое между выходом и общим проводом, тем больше будет UВЫХ. Если упомянутое сопротивление стремится к бесконечности, то UВЫХ будет почти равным входному. Чем больше ток, который проходит по резисторам, тем меньше будет UВЫХ. Таким образом при больших токах делитель на резисторах становится малоэффективным, ввиду сильного падения напряжения.

Онлайн-калькуляторы

С их помощью можно рассчитать делитель напряжения на резисторах онлайн. Входными данными в этом случае могут являться: входное напряжение и оба сопротивления. Калькулятор «Делитель напряжения — онлайн» произведёт все необходимые операции по обозначенной формуле, и выведет значения искомых параметров. Расчет делителя напряжения на резисторах онлайн облегчает процесс разработки многих электронных схем, позволяет добиться достижения требуемых режимов и правильной работы устройств.

Разновидности делителей

Самая распространенная и характерная из них — это потенциометр. Он представляет собой стандартный переменный резистор. Внутри его находится дужка, на которую нанесен токопроводящий слой. По ней скользит контакт, делящий сопротивление на две части. Таким образом, потенциометр имеет три вывода, два из которых подключены к самому резистору, а третий — к перемещаемому движку.

Источник тока подключается к двум крайним выводам потенциометра, а UВЫХ будет сниматься с вывода движка и общего провода. По такой схеме устроены, например, регуляторы громкости и тембра звука в различной аудиоаппаратуре. При перемещении движка в крайнее нижнее положение UВЫХ станет равным нулю, а в противоположной ситуации будет равно входному. Если же перемещать движок, то напряжение будет плавно изменяться от нуля до входного.

Свойства делителей также используются при конструировании резистивных датчиков. Например, одним из их элементов может являться фоторезистор, изменяющий свое сопротивление в зависимости от освещённости. Есть и другие датчики, преобразующие физические воздействия в изменение сопротивления: терморезисторы, датчики давления, ускорения. Созданные на их основе делители используются совместно с аналого-цифровыми преобразователями для измерения и отслеживания самых различных величин в промышленности и быту: температуры, скорости вращения.

В качестве примера можно привести схему для определения уровня освещенности. Последняя деталь включается между выходом и общим проводом (R2 в формуле). Для расширения пределов изменения напряжения схема дополняется постоянным сопротивлением (R1 в формуле). К её выходу присоединяется микроконтроллер аналого-цифрового преобразователя. Чем сильнее освещённость фоторезистора, тем ниже UВЫХ, так как он включён между выходом конструкции и «массой», шунтируя его.

Коэффициент деления по напряжению. Резистивный делитель напряжения. Расчет делителя напряжения на резисторах

Делители напряжения получили широкое распространение в электронике, потому что именно они позволяют оптимальным образом решать задачи регулировки напряжения. Существуют различные схематичные решения: от простейших, например, в некоторых настенных светильниках, до достаточно сложных, как в платах управления переключением обмоток нормализаторов сетевого напряжения.

Что такое делитель напряжения? Формулировка проста — это устройство, которое в зависимости от коэффициента передачи (настраивается отдельно) регулирует значение выходного напряжения относительно входного.

Раньше на прилавках магазинов часто можно было встретить светильник-бра, рассчитанный на две лампы. Его особенностью являлось то, что сами лампы были рассчитаны на работу с напряжением 127 Вольт. При этом вся система подключалась к бытовой электросети с 220 В и вполне успешно работала. Никаких чудес! Все дело в том, что способ соединения проводников формировал не что иное, как делитель напряжения. Вспомним основы электротехники, а именно потребителей. Как известно, при последовательном способе включения равна, а напряжение изменяется (вспоминаем закон Ома). Поэтому в примере со светильником однотипные лампы включены последовательно, что дает уменьшение питающего их напряжения в два раза (110 В). Также делитель напряжения можно встретить в устройстве, распределяющем сигнал с одной антенны на несколько телевизоров. На самом деле примеров много.

Давайте рассмотрим простейший делитель напряжения на основе двух резисторов R1 и R2. Сопротивления включены последовательно, на свободные выводы подается входное напряжение U. Из средней точки проводника, соединяющего резисторы, есть дополнительный вывод. То есть получается три конца: два — это внешние выводы (между ними полное значение напряжения U), а также средний, формирующий U1 и U2.

Выполним расчет делителя напряжения, воспользовавшись законом Ома. Так как I = U / R, то U является произведением тока на сопротивление. Соответственно, на участке с R1 напряжение составит U1, а для R2 составит U2. Ток при этом равен Учитывая закон для полной цепи, получаем, что питающее U является суммой U1+U2.

Чему же равен ток при данных условиях? Обобщая уравнения, получаем:

I = U / (R1+R2).

Отсюда можно определить значение напряжения (U exit) на выходе делителя (это может быть как U1, так и U2):

U exit = U * R2 / (R1+R2).

Для делителей на регулируемых сопротивлениях существует ряд важных особенностей, которые необходимо учитывать как на этапе расчетов, так и при эксплуатации.

Прежде всего, такие решения нельзя использовать для регулировки напряжения мощных потребителей. Например, таким способом невозможно запитать электродвигатель. Одна из причин — это номиналы самих резисторов. Сопротивления на киловатты если и существуют, то представляют собой массивные устройства, рассеивающие внушительную часть энергии в виде тепла.

Значение сопротивления подключенной нагрузки не должно быть меньше, чем схемы самого делителя, в противном случае всю систему потребуется пересчитывать. В идеальном варианте различие R делителя и R нагрузки должно быть максимально большим. Важно точно подобрать значения R1 и R2, так как завышенные номиналы повлекут за собой излишнее а заниженные будут перегреваться, затрачивая энергию на нагрев.

Рассчитывая делитель, обычно подбирают значение его тока в несколько раз (например, в 10) больше, чем ампераж подключаемой нагрузки. Далее, зная ток и напряжение, вычисляют суммарное сопротивление (R1+R2). Далее по таблицам подбирают ближайшие стандартные значения R1 и R2 (учитывая их допустимую мощность, чтобы избежать чрезмерного нагрева).

В составе делителя напряжения для получения фиксированного значения напряжения используют резисторы. В этом случае выходное напряжение U вых связано с входным U вх (без учета возможного сопротивления нагрузки) следующим соотношением:

U вых = U вх х (R2 / R1 + R2)

Рис. 1. Делитель напряжения

Пример. С помощью резисторного делителя нужно получить на нагрузке сопротивлением 100 кОм напряжение 1 В от источника постоянного напряжения 5 В. Требуемый коэффициент деления напряжения 1/5 = 0,2. Используем делитель, схема которого приведена на рис. 1.

Сопротивление резисторов R1 и R2 должно быть значительно меньше 100 кОм. В этом случае при расчете делителя сопротивление нагрузки можно не учитывать.

Следовательно, R2 / (R1 +R2) R2 = 0,2

R2 = 0 ,2R1 + 0,2R2 .

R1 = 4R2

Поэтому можно выбрать R2 = 1 кОм, R1 — 4 кОм. Сопротивление R1 получим путем последовательного соединения стандартных резисторов 1,8 и 2,2 кОм, выполненных на основе металлической пленки с точностью ±1% (мощностью 0,25 Вт).

Следует помнить, что сам делитель потребляет ток от первичного источника (в данном случае 1 мА) и этот ток будет возрастать с уменьшением сопротивлений резисторов делителя.

Для получения заданного значения напряжения следует применять высокоточные резисторы.

Недостатком простого резисторного делителя напряжения является то, что с изменением сопротивления нагрузки выходное напряжение (U вых) делителя изменяется. Ддя уменьшения влияния нагрузки на U выхнеобходимо выбирать соротивление R2 по крайней мере в 10 раз меньше минимального сопротивления нагрузки.

Важно помнить о том, что с уменьшением сопротивлений резисторов R1 и R2 растет ток, потребляемый от источника входного напряжения. Обычно этот ток не должен превышать 1-10 мА.

Резисторы используются также для того, чтобы заданную долю общего тока направить в соответствующее плечо делителя. Например, в схеме на рис. 2 ток I составляет часть общего тока I вх, определяемую сопротивлениями резисторов Rl и R2, т.е. можно записать, что I вых = I вх х (R1 / R2 + R1)

Пример. Стрелка измерительного прибора отклоняется на всю шкалу в том случае, если постоянный ток в подвижной катушке равен 1 мА. Активное сопротивление обмотки катушки составляет 100 Ом. Рассчитайте сопротивление так, чтобы стрелка прибора максимально отклонялась при входном токе 10 мА (см. рис. 3) .

Рис. 2 Делитель тока

Рис. 3.

Коэффициент деления тока определяется соотношением:

I вых / I вх = 1/10 = 0,1 = R1 / R2 + R1 , R2 = 100 Ом.

Отсюда,

0,1R1 + 0,1R2 = R1

0,1R1 + 10 = R1

R1 = 10/0 ,9 = 11,1 Ом

Требуемое сопротивление резистора R1 можно получить путем последовательного соединения двух стандартных резисторов сопротивлением 9,1 и 2 Ом, выполненных на основе толстопленочной технологии с точностью ±2% (0,25 Вт). Заметим еще раз, что на рис. 3 сопротивление R2 — это .

Для обеспечения хорошей точности деления токов следует использовать высокоточные (± 1 %) резисторы.

При проектировании электрических цепей возникают случаи, когда необходимо уменьшить величину напряжения (разделить его на несколько частей) и только часть подавать на нагрузку. Для этих целей используют делители напряжения . Они основаны на втором законе Кирхгофа .

Самая простая схема — резистивный делитель напряжения. Последовательно с подключаются два сопротивления R1 и R2.

При последовательном подключении сопротивлений через них протекает одинаковый ток I.

В результате, согласно закону Ома , напряжения на резисторах делится пропорционально их номиналу.

Подключаем нагрузку параллельно к R1 или к R2. В результате на нагрузке будет напряжение равное U R2 .

Примеры применения делителя напряжения

  1. Как делитель напряжения. Представьте, что у Вас есть лампочка, которая может работать только от 6 вольт и есть батарейка на 9 вольт. В этом случае при подключении лампочки к батарейке, лампочка сгорит. Для того, чтобы лампочка работала в номинальном режиме, напряжение 9 В необходимо разделить на 6 и 3 вольта. Данную задачу выполняют простейшие делители напряжения на резисторах.
  2. Датчик параметр — напряжение. Сопротивление резистивных элементов зависит от многих параметров, например температура. Помещаем одно из сопротивлений в среду с изменяющейся температурой. В результате при изменении температуры будет изменяться сопротивление одного из делителей напряжения. Изменяется ток через делитель. Согласно закону Ома входное напряжение перераспределяется между двумя сопротивлениями.
  3. Усилитель напряжения. Делитель напряжения может использоваться для усиления входного напряжения. Это возможно, если динамическое сопротивление одного из элементов делителя отрицательное, например на участке вольт-амперной характеристики туннельного диода.

Ограничения при использовании резистивных делителей напряжения

  • Номинал сопротивлений делителя напряжения на резисторах должен быть в 100 — 1000 раз меньше, чем номинальное сопротивление нагрузки, подключаемой к делителю. В противном случае сопротивление нагрузки уменьшит величину разделенного делителем напряжения.
  • Малые значения сопротивлений, являющихся делителем напряжения, приводят к большим потерям активной мощности . Через делитель протекают большие токи. Необходимо подбирать сопротивления, чтобы они не перегорали и могли рассеять такую величину отдаваемой энергии в окружающую среду.
  • Резистивный делитель напряжения нельзя использовать для подключения мощных электрических приборов: электрические машины , нагревательные элементы, индукционные печи.
  • Снижение КПД схемы за счет потерь на активных элементах делителя напряжения.
  • Для получения точных результатов в делителе напряжения необходимо использовать прецизионные (высокоточные) сопротивления.

). Можно представить как два участка цепи, называемые плечами , сумма напряжений на которых равна входному напряжению. Плечо между нулевым потенциалом и средней точкой называют нижним , а другое — верхним . Различают линейные и нелинейные делители напряжения. В линейных выходное напряжение изменяется по линейному закону в зависимости от входного. Такие делители используются для задания потенциалов и рабочих напряжений в различных точках электронных схем. В нелинейных делителях выходное напряжение зависит от коэффициента нелинейно. Нелинейные делители напряжения применяются в функциональных потенциометрах . Сопротивление может быть как активным , так и реактивным .

Резистивный делитель напряжения

Простейший резистивный делитель напряжения представляет собой два последовательно включённых резистора и , подключённых к источнику напряжения . Поскольку резисторы соединены последовательно, то ток через них будет одинаков в соответствии с Первым правилом Кирхгофа . Падение напряжения на каждом резисторе согласно закону Ома будет пропорционально сопротивлению (ток, как было установлено ранее, одинаков):

Для каждого резистора:

Разделив выражение для на выражение для в итоге получаем:
Таким образом, отношение напряжений и в точности равно отношению сопротивлений и .
Используя равенство
, в котором , а
И, выражая из него соотношение для тока:

Получим формулу, связывающую выходное () и входное () напряжение делителя:

Следует обратить внимание, что сопротивление нагрузки делителя напряжения должно быть много больше собственного сопротивления делителя, так, чтобы в расчетах этим сопротивлением, включенным параллельно можно было бы пренебречь. Для выбора конкретных значений сопротивлений на практике, как правило, достаточно следовать следующему алгоритму . Сначала необходимо определить величину тока делителя, работающего при отключенной нагрузке. Этот ток должен быть значительно больше тока (обычно принимают превышение от 10 раз по величине), потребляемого нагрузкой, но, однако, при этом указанный ток не должен создавать излишнюю нагрузку на источник напряжения . Исходя из величины тока, по закону Ома определяют значение суммарного сопротивления . Остается только взять конкретные значения сопротивлений из стандартного ряда , отношение величин которых близко́ требуемому отношению напряжений, а сумма величин близка расчетной. При расчете реального делителя необходимо учитывать температурный коэффициент сопротивления , допуски на номинальные значения сопротивлений, диапазон изменения входного напряжения и возможные изменения свойств нагрузки делителя, а также максимальную рассеиваемую мощность резисторов — она должна превышать выделяемую на них мощность , где — ток источника при отключенной нагрузке (в этом случае через резисторы течет максимально возможный ток) .

Применение

Делитель напряжения имеет важное значение в схемотехнике. В качестве реактивного делителя напряжения как пример можно привести простейший электрический фильтр , а в качестве нелинейного — параметрический стабилизатор напряжения .

Делители напряжения использовались как электромеханическое запоминающее устройство в АВМ . В таких устройствах запоминаемым величинам соответствуют углы поворота реостатов. Подобные устройства могут неограниченное время хранить информацию.

Усилитель напряжения

Делитель напряжения может использоваться для усиления входного напряжения — это возможно, если , а — отрицательно, например как на участке вольт-амперной характеристики туннельного диода

Ограничения в применении резистивных делителей напряжения

  • Номинал сопротивлений делителя должен быть в 100 — 1000 раз меньше, чем номинальное сопротивление нагрузки.
  • Малые значения сопротивлений, являющихся делителем напряжения, приводят к возникновению больших токов в делителе. Снижается КПД схемы из-за нагрева сопротивлений.
  • Резистивный делитель напряжения нельзя использовать для подключения мощных электрических приборов: электрические машины, нагревательные элементы.

Нормативно-техническая документация

  • ГОСТ 11282-93 (МЭК 524-75) — Резистивные делители напряжения постоянного тока

Примечания

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое «Делитель напряжения» в других словарях:

    делитель напряжения — делитель напряжения Преобразующее устройство, состоящее из плеч высокого и низкого напряжения, таких, что напряжение входа прикладывается ко всему устройству, а напряжение выхода снимается с плеча низкого напряжения. [МЭС… … Справочник технического переводчика

    Большой Энциклопедический словарь

    Устройство, позволяющее снимать (использовать) только часть имеющегося постоянного или переменного напряжения посредством элементов электрической цепи, состоящей из резисторов, конденсаторов или катушек индуктивности. Используется в радио и… … Энциклопедический словарь

    делитель напряжения — įtampos dalytuvas statusas T sritis automatika atitikmenys: angl. potential divider; voltage divider vok. Spannungsteiler, m rus. делитель напряжения, m pranc. diviseur de tension, m … Automatikos terminų žodynas

    делитель напряжения — įtampos dalytuvas statusas T sritis Standartizacija ir metrologija apibrėžtis Įtaisas nuolatinei ar kintamajai įtampai dalyti į dvi ar daugiau dalių. atitikmenys: angl. potential divider; voltage divider vok. Spannungsteiler, m rus. делитель… …

    делитель напряжения — įtampos dalytuvas statusas T sritis Standartizacija ir metrologija apibrėžtis Įtaisas, sudarytas iš rezistorių, induktyvumo ričių, kondensatorių, transformatorių arba iš šių elementų derinio taip, kad tarp dviejų šio įtaiso taškų susidarytų… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    делитель напряжения — įtampos dalytuvas statusas T sritis chemija apibrėžtis Įtaisas nuolatinei ar kintamajai įtampai dalyti į dvi ar daugiau dalių. atitikmenys: angl. potential divider; voltage divider rus. делитель напряжения … Chemijos terminų aiškinamasis žodynas

    делитель напряжения — įtampos dalytuvas statusas T sritis fizika atitikmenys: angl. voltage divider vok. Spannungsteiler, m rus. делитель напряжения, m pranc. diviseur de tension, m … Fizikos terminų žodynas

    Электротехническое устройство для деления напряжения постоянного или переменное тока на части. Любой Д. н. состоит из активных или реактивных электрических сопротивлений. Обычно Д. н. применяют для измерения напряжения. При низких… … Большая советская энциклопедия

    Электротехническое устройство, позволяющее снимать (использовать) только часть имеющегося постоянного или переменного напряжения посредством элементов электрической цепи, состоящей из резисторов, конденсаторов или катушек индуктивности. При… … Энциклопедия техники

Устройство, в котором входное и выходное напряжение связаны коэффициентом передачи. Делитель можно представить, как два участка цепи, называемые плечами, сумма напряжений на которых равна входному напряжению. Чаще всего делитель напряжения строится из двух резисторов. Такой делитель называют резисторным. Каждый резистор в таком делителе называют плечом. Плечо соединённое с землёй называют нижним, то что соединено с плюсом — верхним. Точка соединения двух резисторов называется средним плечом или средней точкой. Если говорить совсем упрощённо, то можно представить среднее плечо, как бассейн. Делитель напряжения позволяет нам управлять двумя «шлюзами», «сливая» напряжение в землю (уменьшая сопротивление нижнего плеча) или «подливая» напряжения в бассейн (уменьшая сопротивление верхнего плеча). Таким образом, делитель может использоваться для того, чтобы получить из исходного напряжения лишь его часть.

Принципиальная схема делителя напряжения

В рассматриваемом примере на вход (Uвх) подаётся напряжение 9В. Предположим, нам нужно получить на выходе (Uвых) 5В. Каким образом расчитать резисторы для делителя напряжения?

Расчёт делителя напряжения

Многие сталкиваются с тем, что не существует формул для расчёта сопротивлений в делителе. На самом деле, такие формулы легко вывести. Но обо всё по порядку. Для наглядности, начнём расчёт с конца, т.е. расчитаем напряжение на выходе, зная номиналы резисторов.

Ток, протекающий через R1 и R2 одинаков, пока к среднему плечу (Uвых) ничего не подключено. Общее сопротивление резисторов при последовательном соединении равняется сумме их сопротивлений:

Rобщ = R1 + R2 = 400 + 500 = 900 Ом

По закону Ома находим силу тока, протекающего через резисторы:

I = Uвх / Rобщ = 9В / 900 Ом = 0.01 А = 10 мА

Теперь, когда нам известен ток в нижнем плече (ток, проходящий через R2), раcчитаем напряжение в нижнем плече (Опять закон Ома):

Uвых = I * R2 = 0.01А * 500 Ом = 5В

Или упрощая цепочку вычислений:

Uвых = Uвх * (R2 / (R1+R2))

Применив немного математики и прочих знаний, сдобрив всё законом Ома, можно получить следующие формулы:

R1 = (Uвх-Uвых)/Iд+Iн

R2 = Uвых / Iд

Здесь и — ток делителя и ток нагрузки соответственно. В общем случае, не нужно даже знать, что это за токи такие. Можно просто принять их равными = 0.01 А (10 мА), а = 0. То есть рассматривать делитель без нагрузки. Это приемлемо до тех пор, пока мы используем делитель только для измерений напряжения (а во всех примерах в нашей базе знаний он именно так и используется). Тогда формулы упростятся:

R1 = (Uвх-Uвых) * 100

R2 = Uвых * 100

P.S. Это совсем не важно, но обратите внимание: 100 — это не физическая величина. После принятия условия, что у нас всегда равен 0.01 А, это просто коэффициент, получившийся при переносе 0.01 в числитель.

Проверяем:

Входящее напряжение у нас 9 вольт, хотим получить 5 вольт на выходе. Подставляем значения в формулу, получаем:

R1 = (9-5) * 100 = 400 Ом

R2 = 5 * 100 = 500 Ом

Всё сходится!

Применение делителя напряжений

В основном делитель напряжения используется там, где нужно измерить изменяющееся сопротивление. На этом принципе основано считывание значений с фоторезистора: фоторезистор включается в делитель в качестве одного плеча. Второе плечо представляет собой постоянный резистор. Аналогичным образом можно считывать показания терморезистора.

Практическая работа «Расчёт резистивного делителя напряжения»

Практическая работа № 1

Расчёт резистивного делителя напряжения

Цель: Уметь рассчитывать элементы схемы; знать принципы соотношений между значениями показателей сигналов; уметь применять полученные данные для построения временной диаграммы.

1 Задание

1.1 Начертить схему резистивного делителя напряжения.

1.2 Рассчитать сопротивления резисторов для получения коэффициента передачи.

1.3 Округлить найденное сопротивление до стандартного номинала.

1.4 Определить полученный коэффициент передачи, сравнить его с заданным, оценить погрешность и сделать выводы к её допуску.

1.5 Определить амплитуду выходного напряжения.

1.6 Рассчитать мощность, которую рассеивают резисторы и обозначить на схеме номиналы мощностей резисторов.

1.7 Показать в масштабе эпюры входного и выходного напряжений, обращая внимание на фазу сигналов (вверху входное напряжение, внизу – выходное). Внимание! Размещение эпюр в разных столбцах или на разных страницах не разрешается.

2 Исходные данные

2.1 Входное сопротивление Rвх ≥ 1 кОм.

2.2 Амплитуда входного напряжения Um вх = 10 + M, В.

Здесь и дальше: М – предпоследняя, а N – последняя цифры зачётной книжки.

3 Методические указания к решению задания

3.1 Привести схему резистивного делителя напряжения.

Рисунок 3.1 – Схема резисторного делителя напряжения

3.2 Рассчитать заданный коэффициент передачи делителя.

Согласно условию задания

Rвх ≥ 1 кОм

А так как в данном случае резисторы соединены последовательно, то входное сопротивление цепи равно:

Rвх (1.1)

Из данной формулы видно, что коэффициент передачи будет равным:

(1.2)

Как видно по рисунку 1 и формуле 1.1 входное сопротивление зависит как от сопротивления резистора R1, так и от сопротивления резистора R2. Для выполнения условия задачи можно задать сопротивление одного из этих резисторов равным 1 кОм. Если задать R2 = 1 кОм, то в таком случае Rвх > 1кОм.

Тогда значение резистора R1

R1 =((10+N)-1) . 1000, Ом

3.3 Из Приложения найти ближайшую стандартную величину R1.

3.4 Рассчитать коэффициент передачи делителя с новыми значениями.

Крас =

Определить погрешность коэффициента передачи:

∆К = Крас – К


δ% =

Так как в реальности нельзя изготовить идеальный резистор, все резисторы имеют шкалу допуска разброса параметров. Необходимо выбрать тип резистора из Рядов номинальных значений сопротивлений с ближайшим допустимым отклонением от номинала. Соответственно погрешность δ% будет равна номинальному отклонению.

3.5 Определить амплитуду выходного напряжения

Um вых = Крас . Um вх (1.3)

3.6 Рассчитать мощности, которые рассеивают резисторы по формуле:

P = U . I = U2 / R = I2 . К (1.4)

Также используйте формулу:

Um вх = Um R1 + Um R2 = Um R1 + Um вых (1.5)

Выберите номинальные величины мощностей резисторов.

3.7 На графике покажите эпюры входного и выходного напряжений.

4 Пример расчета (для М =1, N=4)

4.1 Приведем схему резистивного делителя напряжения.

Рисунок 4.1 – Схема резистивного делителя напряжения

4.2 Рассчитаем заданный коэффициент передачи делителя.

Согласно условию задания

Rвх ≥ 1 кОм

А так как в данном случае резисторы соединены последовательно, то входное сопротивление цепи равно:

Rвх (1.1)

Из данной формулы видно, что коэффициент передачи будет равным:

(1.2)

Как видно по рисунку 3.1 и формуле 1.1 входное сопротивление зависит как от сопротивления резистора R1, так и от сопротивления резистора R2. Для выполнения условия задачи можно задать сопротивление одного из этих резисторов равным 1 кОм. Если задать R2 = 1 кОм, то в таком случае Rвх > 1кОм.

Тогда значение резистора R1

R1 =((10+ -1) . 1000=(14-1) . 1000=13000, Ом

4.3 Из Приложения находим ближайшую стандартную величину R1=13кОм.

4.4 Рассчитать коэффициент передачи делителя с новыми значениями.

Крас

Определить погрешность коэффициента передачи:

∆К = Крас – К=0,071 – 0,071=0


δ% = = . 100%= 0%

Но так как в реальности нельзя изготовить идеальный резистор, все резисторы имеют шкалу допуска разброса параметров. Мы выбрали тип резистора из ряда Е24, для которого допустимые отклонения от номинала составляет ± 5% . Соответственно δ% = 5% .

Полученное значение погрешности не превышает 5%, что удовлетворяет условию.

4.5 Определим амплитуду выходного напряжения

Um вых = Крас . Um вх (1.3)

4.6 Рассчитаем мощности, которые рассеивают резисторы по формуле:

P = U . I = U2 / R = I2 . К (1.4)

Um вх = 10 + M = 10 + 1 = 11 В

Um вых = 0,071 . 11 = 0,781 В

Так как Um вх = Um R1 + Um R2 = Um R1 + Um вых

Um R1 = Um вх — Um вых = 11 – 0,781 = 10,219, В

PR2 = U2m вых / R2 = 0,7812 / 1000 = 6,1 . 10-4, Вт

PR1 = U2m R1 / R1 = 10,2192 / 13000 = 8,03 . 10-3, Вт

Выбираем номинальные величины мощностей резисторов.

PR1 = 0,125 Вт; PR2 = 0,125 Вт.

4.7 На графике покажем эпюры входного и выходного напряжений.

Рисунок 4.2 – Эпюры входного и выходного напряжений делителя

Приложение

Ряды номинальных значений сопротивлений, емкостей и индуктивностей с допуском ±5 % и более

Е3

Е6

Е12

Е24

Е3

Е6

Е12

Е24

Е3

Е6

Е12

Е24

1

1

1

1

2.2

2.2

2.2

2.2

4.7

4.7

4.7

4.7

1.1

2.4

5.1

1.2

1.2

2.7

2.7

5.6

5.6

1.3

3

6.2

1.5

1.5

1.5

3.3

3.3

3.3

6.8

6.8

6.8

1.6

3.6

7.5

1.8

1.8

3.9

3.9

8.2

8.2

2

4.3

9.1

Номиналы соответствуют числам, приведенным в таблице и числам, полученным умножением на 10n, где n — целое положительное или отрицательное число.

Ряд Е3 соответствует отклонению от номинального значения ±50%
Ряд Е6 соответствует отклонению от номинального значения ±20%
Ряд Е12 соответствует отклонению от номинального значения ±10%
Ряд Е24 соответствует отклонению от номинального значения ±5%.

Резистивный делитель напряжения. Расчет делителя напряжения на резисторах

При проектировании электрических цепей возникают случаи, когда необходимо уменьшить величину напряжения (разделить его на несколько частей) и только часть подавать на нагрузку. Для этих целей используют делители напряжения. Они основаны на втором законе Кирхгофа.

Самая простая схема — резистивный делитель напряжения. Последовательно с источником напряжения подключаются два сопротивления R1 и R2.

 

При последовательном подключении сопротивлений через них протекает одинаковый ток I.

 

В результате, согласно закону Ома, напряжения на резисторах делится пропорционально их номиналу.

    

Подключаем нагрузку параллельно к R1 или к R2. В результате на нагрузке будет напряжение равное UR2.

Примеры применения делителя напряжения 

  1. Как делитель напряжения. Представьте, что у Вас есть лампочка, которая может работать только от 6 вольт и есть батарейка на 9 вольт. В этом случае при подключении лампочки к батарейке, лампочка сгорит. Для того, чтобы лампочка работала в номинальном режиме, напряжение 9 В необходимо разделить на 6 и 3 вольта. Данную задачу выполняют простейшие делители напряжения на резисторах.
  2. Датчик параметр — напряжение. Сопротивление резистивных элементов зависит от многих параметров, например температура. Помещаем одно из сопротивлений в среду с изменяющейся температурой. В результате при изменении температуры будет изменяться сопротивление одного из делителей напряжения. Изменяется ток через делитель. Согласно закону Ома входное напряжение перераспределяется между двумя сопротивлениями.
  3. Усилитель напряжения. Делитель напряжения может использоваться для усиления входного напряжения. Это возможно, если динамическое сопротивление одного из элементов делителя отрицательное, например на участке вольт-амперной характеристики туннельного диода.

Ограничения при использовании резистивных делителей напряжения

  • Номинал сопротивлений делителя напряжения на резисторах должен быть в 100 — 1000 раз меньше, чем номинальное сопротивление нагрузки, подключаемой к делителю. В противном случае сопротивление нагрузки уменьшит величину разделенного делителем напряжения.
  • Малые значения сопротивлений, являющихся делителем напряжения, приводят к большим потерям активной мощности. Через делитель протекают большие токи. Необходимо подбирать сопротивления, чтобы они не перегорали и могли рассеять такую величину отдаваемой энергии в окружающую среду.
  • Резистивный делитель напряжения нельзя использовать для подключения мощных электрических приборов: электрические машины, нагревательные элементы, индукционные печи.
  • Снижение КПД схемы за счет потерь на активных элементах делителя напряжения.
  • Для получения точных результатов в делителе напряжения необходимо использовать прецизионные (высокоточные) сопротивления.

Делитель напряжения расчет онлайн. Делитель напряжения на резисторах

Для того, чтобы получить из исходного напряжения лишь его часть используется делитель напряжения (voltage divider). Это схема, строящаяся на основе пары резисторов .

В примере, на вход подаются стандартные 9 В. Но какое напряжение получится на выходе V out ? Или эквивалентный вопрос: какое напряжение покажет вольтметр?

Ток, протекающий через R1 и R2 одинаков пока к выходу V out ничего не подключено. А суммарное сопротивление пары резисторов при последовательном соединении:

Таким образом, сила тока протекающая через резисторы

Теперь, когда нам известен ток в R2 , расчитаем напряжение вокруг него:

Или если отавить формулу в общем виде:

Так с помощью пары резисторов мы изменили значение входного напряжения с 9 до 5 В. Это простой способ получить несколько различных напряжений в одной схеме, оставив при этом только один источник питания.

Применение делителя для считывания показаний датчика

Другое применение делителя напряжения — это снятие показаний с датчиков. Существует множество компонентов, которые меняют своё сопротивление в зависимости от внешних условий. Так термисторы меняют сопротивление от нуля до определённого значения в зависимости от температуры, фоторезисторы меняют сопротивление в зависимости от интенсивности попадающего на них света и т.д.

Если в приведённой выше схеме заменить R1 или R2 на один из таких компонентов, V out будет меняться в зависимости от внешних условий, влияющих на датчик. Подключив это выходное напряжение к аналоговому входу Ардуино, можно получать информацию о температуре, уровне освещённости и других параметрах среды.

Значение выходного напряжения при определённых параметрах среды можно расчитать, сопоставив документацию на переменный компонент и общую формулу расчёта V out .

Подключение нагрузки

С делителем напряжения не всё так просто, когда к выходному подключения подключается какой-либо потребитель тока, который ещё называют нагрузкой (load):

В этом случае V out уже не может быть расчитано лишь на основе значений V in , R1 и R2 : сама нагрузка провоцирует дополнительное падение напряжения (voltage drop). Пусть нагрузкой является нечто, что потребляет ток в 10 мА при предоставленных 5 В. Тогда её сопротивление

В случае с подключеной нагрузкой следует рассматривать нижнюю часть делителя, как два резистора соединённых параллельно:

Подставив значение в общую формулу расчёта V out , получим:

Как видно, мы потеряли более полутора вольт напряжения из-за подключения нагрузки. И тем ощутимее будут потери, чем больше номинал R2 по отношению к сопротивлению L . Чтобы нивелировать этот эффект мы могли бы использовать в качестве R1 и R2 резисторы, например, в 10 раз меньших номиналов.

Пропорция сохраняется, V out не меняется:

А потери уменьшатся:

Однако, у снижения сопротивления делящих резисторов есть обратная сторона медали. Большое количество энергии от источника питания будет уходить в землю. В том числе при отсоединённой нагрузке. Это небольшая проблема, если устройство питается от сети, но — нерациональное расточительство в случае питания от батарейки.

Кроме того, нужно помнить, что резисторы расчитаны на определённую предельную мощьность. В нашем случае нагрузка на R1 равна:

А это в 4-8 раз выше максимальной мощности самых распространённых резисторов! Попытка воспользоваться описанной схемой со сниженными номиналами и стандартными 0.25 или 0.5 Вт резисторами ничем хорошим не закончится. Очень вероятно, что результатом будет возгарание.

Применимость

Делитель напряжения подходит для получения необходимого заниженного напряжения в случаях, когда подключенная нагрузка потребляет небольшой ток (доли или единицы миллиампер). Примером подходящего использования является считывание напряжения аналоговым входом микроконтроллера, управление базой/затвором транзистора .

Делитель не подходит для подачи напряжения на мощных потребителей вроде моторов или светодиодных лент.

Чем меньшие номиналы выбраны для делящих резисторов, тем больше энергии расходуется впустую и тем выше нагрузка на сами резисторы. Чем номиналы больше, тем больше и дополнительное (нежелательное) падение напряжения, провоцируемое самой нагрузкой.

Если потребление тока нагрузкой неравномерно во времени, V out также будет неравномерным.

Делитель напряжения применяется, если нужно получить заданное напряжение при условии стабилизированного питания. Сейчас мы поговорим о постоянном токе и резисторных делителях. О делителях с использованием конденсаторов, диодов, стабилитронов, индуктивностей и других элементов будет отдельная статья. Подпишитесь на новости, чтобы ее не пропустить. В конце для примера расскажу, как сделать делитель напряжения для осциллографа, чтобы снимать осциллограммы высокого напряжения.

Резисторные делители также могут применяться для уменьшения в заданное количество раз сигналов сложной формы. На делителях напряжения с регулируемым коэффициентом ослабления строятся, например, регуляторы громкости.

Вашему вниманию подборка материалов:

Схема традиционного резисторного делителя напряжения

Для применения делителя напряжения нам надо уметь рассчитывать три величины: напряжение на выходе делителя, его эквивалентное выходное сопротивление, его входное сопротивление. С напряжением все понятно. Эквивалентное выходное сопротивление скажет нам, насколько изменится напряжение на выходе с изменением тока нагрузки делителя. Если эквивалентное выходное сопротивление равно 100 Ом, то изменение тока нагрузки на 10 мА приведет к изменению напряжения на выходе на 1 В. Входное сопротивление показывает, насколько делитель нагружает источник сигнала или источник питания. Дополнительно посчитаем коэффициент ослабления сигнала. Он может пригодиться при работе с сигналами сложной формы.

Расчет резистивного делителя напряжения

[Напряжение на выходе, В ] = [Напряжение питания, В ] * / ( + [Сопротивление резистора R2, Ом ])

Из этой формулы, в частности, видно, что резисторные (резистивные) делители выдают стабильное выходное напряжение, если напряжение питания фиксировано.

= [Сопротивление резистора R1, Ом ] + [Сопротивление резистора R2, Ом ]

Эта формула верна для ненагруженного делителя. Если делитель работает на нагрузку, то [Входное сопротивление делителя, Ом ] = [Сопротивление резистора R1, Ом ] + 1 / (1 / [Сопротивление резистора R2, Ом ] + 1 / [Сопротивление нагрузки, Ом ])

[Эквивалентное выходное сопротивление делителя, Ом ] = 1 / (1 / [Сопротивление резистора R1, Ом ] + 1 / [Сопротивление резистора R2, Ом ])

= [Сопротивление резистора R2, Ом ] / ([Сопротивление резистора R1, Ом ] + [Сопротивление резистора R2, Ом ])

[Действующее / мгновенное / амплитудное напряжение на выходе делителя, В ] = [Коэффициент ослабления сигнала ] * [Действующее / мгновенное / амплитудное напряжение на входе делителя, В ]

Эта формула верна, если ток нагрузки делителя равен нулю.

Пример — делитель для осциллографа

Если мы хотим получить осциллограмму высокого напряжения, то сразу приходит в голову делитель напряжения. Изготавливаем делитель, подключаем его вход к источнику высоковольтного сигнала, а выход к входу осциллографа. Должны получить на входе осциллографа уменьшенную копию входного сигнала.

Если наш сигнал имеет достаточно большую частоту или просто резкие фронты (например, меандр), то ничего не получится. Осциллограмма не будет похожа на изначальный сигнал. Причина в том, что осциллограф имеет некоторую входную емкость, которая образует с эквивалентным выходным сопротивлением делителя фильтр нижних частот. Все высшие гармоники сигнала подавляются. Кроме того этот фильтр формирует фазовый сдвиг. Это бывает существенным для многолучевых осциллографов, когда мы анализируем соотношения сигналов. Чтобы этого избежать, резистор R1 нужно зашунтировать конденсатором.


Качество усилителей звуковой частоты. Обзор, схемы….

Как не спутать плюс и минус? Защита от переполярности. Описание…
Схема защиты от неправильной полярности подключения (переполюсовки) зарядных уст…

Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида…
Как сделать бесперебойник самому? Чисто синусоидальное напряжение на выходе, при…

Применение тиристоров (динисторов, тринисторов, симисторов). Схемы. Ис…
Тиристоры в электронных схемах. Тонкости и особенности использования. Виды тирис…

Соединение светодиодов. Последовательное, параллельное включение оптоэ…
Как правильно включить светодиод, соединять их и входные цепи приборов на их осн…

Параллельное, последовательное соединение резисторов. Расчет сопротивл…
Вычисление сопротивления и мощности при параллельном и последовательном соединен…


Делитель напряжения на резисторах — это схема, позволяющая получить из высокого напряжения пониженное напряжение. Используя всего два резистора, мы можем создать любое выходное напряжение, составляющее меньшую часть от входного напряжения. Делитель напряжения является фундаментальной схемой в электронике и робототехнике. Для начала рассмотрим электрическую схему и формулу для расчета.

Как работает делитель напряжения на резисторах

Для того, чтобы разобраться в принципе работы резисторного делителя напряжения и понять, как рассчитать делитель напряжения на резисторах, следует ознакомиться с его принципиальной схемой (см. картинку ниже — несколько вариантов изображения делителя). Схема включает в себя входное напряжение и два резистора.

Резистор, находящийся ближе к плюсу входного напряжения Vвх , обозначен R1 , резистор находящийся ближе к минусу обозначен R2 . Падение напряжения Vвых — это пониженное выходное напряжение, полученное в результате резисторного делителя напряжения. Для расчета выходного напряжения необходимо знать три величины из приведенной схемы — входное напряжение и сопротивление обоих резисторов.

Расчет делителя напряжения на резисторах основан на законе Ома .

V вых = R2 х V вых / R1 + R2

Эта формула показывает, что выходное напряжение резисторного делителя прямо пропорционально входному напряжению и обратно пропорционально отношению сопротивлений R1 и R2. На этом принципе работают потенциометры (переменные резисторы) и многие резистивные датчики, например, датчик освещенности на фоторезисторе . Смотрите калькулятор делителя напряжения на резисторах онлайн.

Как сделать делитель напряжения на резисторах? Часто в практике электронщика возникает необходимость снизить величину входного напряжения либо напряжение на отдельном участке цепи в строго определенной количество раз. Например, величина входного напряжения 50 В , а выходное напряжение нужно получить в 10 раз меньше, т. е. 5 В (рис. 1 ). Для этого используются делители напряжения.

Рис. 1 — Структурная схема делителя напряжения

Они бывают разных типов и выполняются на безе , катушек индуктивности (рис. 2 ). Однако мы рассмотрим только наиболее применяемые на практике делители напряжения.


Рис. 2 — Элементы, применяемые в качестве делителей напряжения

Наиболее простым делителем напряжения являются два последовательно соединенных резистора R1 и R2 , которые подключены к источнику напряжения U (рис. 3 ). Если сопротивление резисторов одинаковы R1 = R2 , то напряжение источника питания разделится поровну на них U1 = U2 = U/2 .


Рис. 3 — Общая схема делителя напряжения на резисторах

Расчет делителя напряжения на резисторах

Давайте разберемся как происходит деление напряжения. Для этого нам понадобится знание только закона Ома, который, если говорить очень обобщенно, звучит так: ток I , протекающий в цепи (или на ее участке), прямопропорционален приложенному напряжению U и обратнопропорционален сопротивлению цепи (или ее участка) R , т. е.


откуда

Также следует знать, что в последовательной цепи, т. е. в цепи, в которой все резисторы соединены последовательно, ток I протекает одной и той же величины через все резисторы, а общее сопротивление последовательно соединенных резисторов равно сумме сопротивлений всех резисторов Rобщ = R1+R2 .

Теперь, на основании выше сказанного, давайте определим напряжения на резисторах в зависимости от величины их сопротивлений и напряжения источника питания.

Ток I , протекающий в цепи, равен отношению напряжения U к сумме сопротивлений R1+R2 , т. е.

Падение напряжения на первом резисторе равно

По аналогии находим падение напряжения на втором резисторе

Теперь в выражение (2) и (3) подставим значение тока из выражения (1), в результате получим

Делитель напряжения на резисторах. Различные номиналы резисторов

С помощью полученных формул можно определить падение напряжения на резисторе, зная только величину входного напряжения и сопротивления самих резисторов. Однако такие формулы часто применимы лишь в теоретических расчётах. На практике же гораздо проще пользоваться основным свойством любого делителя напряжения, которое заключается в том, что при соответствующем подборе сопротивлений резисторов R1 и R2 выходное напряжение составляет часто входного (рис. 4 ).


Рис. 4 — Схемы делителей напряжения на резисторах

Следует обратить внимание на то, что величина выходного напряжения зависит от относительного значения сопротивлений резисторов R1 и R2 , а не от абсолютного.


Рис. 5 — Схемы делителей напряжения с одинаковым коэффициентом деления при разных номиналах резисторов

Здесь возникает вопрос: какие же номиналы резисторов R1 и R2 применять, 3 кОм и 1 кОм или 30 кОм и 10 кОм ? Все зависит от конкретного случая. Однако есть рекомендация, которая исходит из закона Ома, чем меньше значение сопротивления R1 и R2 , тем больший ток будет протекать в цепи и тем большую мощность можно получить с выхода делителя напряжения, но нужно помнить, что эта мощность ограничивается мощностью источник питания и не может ее превысить.

Также делитель напряжения можно выполнять из нескольких последовательно соединенных резисторов (рис. 6 ).


Рис. 6 — Схема делителя напряжения с несколькими резисторами

И так, мы рассмотрели резисторный делитель напряжения с фиксированным значением выходного напряжения. Однако часто возникает необходимость в плавном изменении выходного напряжения. Например, при регулировании громкости звука мы плавно изменяем напряжение на усилителе.

Для плавного регулирования величины выходного напряжения применяются переменные и подстроечные резисторы (рис. 7 ).


Рис. 7 — Переменные и подстроечные резисторы

Переменный резистор еще называют потенциометром. Конструктивно он состоит из корпуса, имеющего три вывода, и рукоятки. При вращении ручки осуществляется скользящих контакт подвижной металлической пластины, которая замыкает две токопроводящие графитные дорожки, имеющие разную проводимость в зависимости от длины. Благодаря этому изменяется сопротивление межу двумя, рядом расположенными, выводами. А сопротивление между двумя крайними выводами остается всегда неизменным.

Схема подключения переменного резистора или же потенциометра приведена ниже (рис. 8 ). Два крайних вывода подключаются к источнику питания, а между средним и одним из крайних выводов снимается выходное напряжение, величину которого можно изменять от нуля до значения входного напряжения Uвых = 0…Uвх .


Рис. 8 — Схема включения переменного резистора для деления напряжения

Если, проворачивая ручку резистора, мы введем все сопротивление (как показано на схеме (рис. 9 )), то выходное напряжение будет равно входному Uвых = Uвх , так как подводимое напряжение будет полностью падать на сопротивлении резистора.

Если же вывести все сопротивление, то выходное напряжение будет равно нулю Uвых = 0 .


Рис. 9 — Схема плавного изменения напряжения

Некоторые виды переменных резисторов

В зависимости от степени относительного изменения сопротивления при вращении рукоятки переменного резистора их разделяют на три типа (рис. 10 ):

1) с линейной зависимостью;

2) с логарифмической зависимостью;

3) с экспоненциальной зависимостью.


Рис. 10 — Зависимости переменных резисторов

Переменные резисторы с логарифмической зависимостью часто используются для регулировки уровня звука, поскольку ухо человека воспринимает звук именно по такой зависимости.

Кроме того переменные резисторы бывают как одинарные, так и сдвоенные. Последние находят широкое применение в звуковой технике.

Делители напряжения на резисторах одинаково работают и рассчитываются как для постоянного, так и для переменного напряжения. Однако, в качестве делителей переменного напряжения также часто используются конденсаторы и реже – катушки индуктивности.

Расчет делителя напряжения

Просмотрите схему делителя напряжения, представленную здесь, и рассчитайте выходное напряжение с помощью калькулятора делителя напряжения по следующей формуле делителя напряжения:

V выход = (V дюйм x R 2 ) / ( R 1 + R 2 )

Здесь:

  • В в входное напряжение
  • R1 — сопротивление 1-го резистора,
  • R2 — сопротивление 2-го резистора,
  • V out — выходное напряжение.

В качестве альтернативы вы также можете использовать этот калькулятор делителя напряжения, чтобы получить любые 3 известных значения в цепи и вычислить 4-е.


Схема делителя потенциала — очень распространенная схема, используемая в электронике, где входное напряжение должно быть преобразовано в другое напряжение, меньшее, чем оно. Эта схема очень полезна для всех аналоговых схем, где требуются переменные напряжения, поэтому важно понимать, как эта схема работает и как рассчитывать значения резисторов.

Схема делителя напряжения — это очень простая схема, состоящая всего из двух резисторов (R1 и R2), как показано выше. Требуемое выходное напряжение (Vout) можно получить на резисторе R2. Используя эти два резистора, мы можем преобразовать входное напряжение в любое требуемое выходное напряжение, это выходное напряжение определяется значением сопротивления R1 и R2. Формулы для расчета Vout показаны ниже.

V выход = (V дюйм x R 2 ) / (R 1 + R 2 9000

Где, Vout = выходное напряжение Vin = входное напряжение и R1 = верхний резистор R2 = нижний резистор

Мы можем использовать вышеупомянутый калькулятор делителя напряжения для вычисления любого из значений, упомянутых в формулах делителя напряжения , но теперь давайте узнаем, как были получены эти формулы.Рассмотрим схему ниже, которую можно использовать для преобразования входного сигнала 5 В в выходное напряжение 3,3 В для анализа

.

Чтобы понять, как выводятся формулы потенциального дайвера, нам нужен калькулятор закона Ома, согласно закону Ома падение напряжения в любом месте является произведением тока, протекающего по цепи, и сопротивления в ней.

Напряжение = Ток, протекающий через × Сопротивление на напряжении

Давайте воспользуемся этим, чтобы вычислить входное напряжение (Vin) для вышеуказанной схемы.Здесь есть два резистора на входном напряжении Vin, следовательно,

Входное напряжение = ток × (сопротивление 1 + сопротивление 2)

Vin = I × (R1 + R2) ( 1)

Аналогичным образом рассчитаем выходное напряжение (Vout), здесь есть только один резистор (R2), следовательно,

Выходное напряжение = ток × сопротивление R2

Vout = I × R2 ( 2)

Если мы посмотрим на уравнения 1 и 2, мы можем заметить, что значение тока одинаковое, поэтому давайте перепишем

Уравнение 1 как, I = Vin / (R1 + R2)

Уравнение 2 как, I = Vout / R2

Поскольку ток, протекающий по цепи, постоянен, ток I останется одинаковым для обоих уравнений, поэтому мы можем приравнять их как

Вин / (R1 + R2) = Vout / R2

V выход = (V дюйм x R 2 ) / (R 1 + R 2 9000

Давайте проверим эту формулу делителя напряжения для указанной выше схемы, где Vin = 5 В, R1 = 1000 Ом и R2 = 2000 Ом.

Выход = (5 × 2000) / (1000/2000)

Выход = (10000) / (3000)

Выход = 3,3333 В

Еще одним важным фактором, который следует учитывать при выборе номиналов резистора, является его номинальная мощность (P) . Как только вы узнаете значения I (в зависимости от нагрузки), Vin, R1 и R2, сложите R1 и R2 вместе, чтобы получить R ИТОГО , и используйте калькулятор закона Ома, чтобы узнать номинальную мощность (в ваттах), необходимую для резисторов. Или просто используйте формулы P = VI, чтобы определить номинальную мощность вашего резистора.Если не выбрана правильная номинальная мощность, резистор будет перегреваться и также может сгореть.

Вычислитель резистивного делителя

Одна из проблем резистивных делителей состоит в том, чтобы найти пару резисторов, которые обеспечат требуемый коэффициент деления потенциала. Эта проблема возникает из-за того, что резисторы существуют только в дискретных наборах стандартных значений в зависимости от их допуска. Эти наборы называются «серией E» и обозначаются буквой E, за которой следует количество резисторов в одной декаде. Что ж, вы наверняка все это уже знаете, если зашли на эту страницу… В любом случае, имея только дискретные значения, нетривиально найти пары резисторов, которые дают соотношение, близкое к желаемому.

Введите напряжения ввода / вывода или желаемый коэффициент деления, выберите серию E, с которой вы работаете, и вы получите список из 12 лучших совпадений. Простой! Кроме того, рассчитан допуск делителя напряжения 1 , что является уникальной особенностью этого инструмента.

Примечания:

  1. Допуск коэффициента деления, который составляет , а не , идентичный одному из резисторов, показан в столбце «Допуск».Вероятно, вам не следует использовать резистивные делители с коэффициентами, близкими к нулю (например, 0,01): это, скорее всего, приведет к неточным результатам. Вы можете пересмотреть свой дизайн или добавить триммер для калибровки разделителя, если вам действительно нужно очень маленькое соотношение. Например, попытка получить коэффициент 0,012 с резисторами 5% (E24) приведет к неопределенности в итоговом соотношении, превышающем 10%. С другой стороны, высокое отношение 0,988 приведет к гораздо меньшему допуску (~ 0,13%). Другими словами: малые отношения плохи для толерантности, большие отношения — хорошо.
  2. Требуемое соотношение, очевидно, должно быть между нулем и единицей. Не ставьте что-либо ниже 0. Могут случиться странные вещи. Как разрушение вселенной. Или хуже. Математика — это мощный инструмент, будьте осторожны. Значения более 1 считаются «коэффициентами деления» и автоматически инвертируются. Входное соотношение игнорируется и пересчитывается из V в и V из , если предусмотрены два последних входа.
  3. Значения E24 можно найти с более высокой точностью, чем всего 5%. Если выбрана эта опция, то также будут использоваться значения E24, отсутствующие в выбранной серии.Это очевидно только для серии E> 24. Например: 270 Ом является частью E24, но не E96; отметка этой опции с серией E96 добавит 270 Ом (среди прочего) к списку возможных значений резистора E96.
  4. Допуски отношения не вычисляются, если используются только пользовательские значения. В сочетании с серией E пользовательские значения должны иметь тот же допуск, что и серия E. Пользовательские значения, которые являются частью выбранной серии E, будут по-прежнему выделены (голубым), как и другие пользовательские значения.Это можно использовать для выделения определенных / предпочтительных значений без фактического добавления новых пользовательских значений. При использовании пользовательских значений также будут показаны 5 лучших пар резисторов, не входящих в топ-12 и включающих хотя бы одно из ваших пользовательских значений. Это может помочь оценить, насколько пары резисторов, использующие ваши пользовательские значения, сравниваются с лучшими парами.

Случайные мысли:

  • В школе учеников обычно просят: «Вычислите напряжение на выходе этой схемы, если R L = 100 кОм и R H = 150 кОм», но в реальной жизни проектировщик сталкивается с обратной проблемой: » При таком соотношении я хочу, какие резисторы я выберу? ».Это делает эту проблему — и, следовательно, этот инструмент — особенно интересным, поскольку он решает реальный жизненный эквивалент тривиального вопроса, который каждый задавал в школе. А в реальной жизни проблема немного сложнее 🙂
  • Говоря о новичках: значения для R L и R H , возвращаемые этим инструментом, конечно, могут быть умножены на константу, и соотношение делителя не изменится. Это масштабирование позволит вам, например, изменить импеданс делителя в соответствии с вашими текущими потребностями.
  • Я сделал эту небольшую программу для решения проблемы с аналого-цифровым преобразователем (АЦП). Это был 10-битный АЦП с выходом резистивного делителя (коэффициент 1/10). Максимальный вход для АЦП был 10В. 10 бит означают 1023 шага, поэтому младший бит результатов был близок (но не равен!) К 10 мВ (10 В / 1023 ~ 10 мВ). Чтобы он был равен 10 мВ, я хотел добавить коэффициент 1000/1023 в восходящий делитель. Поэтому вместо делителя 1/10 я теперь искал 1 / 10,23 = 0,097752. Что, как выясняется, можно получить практически точно, применив два простых резистора 3К9 и 36К.
  • Numberphile time: вы можете достичь отношения пи / 10 с точностью до 6 десятичных знаков, используя резисторы на 284 и 620 Ом (E192 с дополнительными значениями E24). Точно так же 1 / пи можно оценить с помощью 4 значащих цифр, используя резисторы на 390 и 835 Ом. Следует отметить, что эти, казалось бы, очень точные результаты не будут видны в реальной жизни из-за допусков резисторов, которые приводят к допуску ~ 0,7% в соотношении делителя (E192, 0,5%). См. Примечание 2 выше. Тем не менее, это может быть способ получить значение числа Пи в аналоговом компьютере.Или поразите своих друзей видео на YouTube.

Особая благодарность:

  • Uwe Schueler за обнаружение неправильного ограничения диапазона предложенных значений.
  • Майклу Бендзику за обнаружение нескольких ошибок и множество интересных предложений.

Делители напряжения — схемы, уравнения и приложения

Делитель напряжения, также известный как делитель потенциала, представляет собой очень распространенную простую схему, которая используется для преобразования большого напряжения в небольшое.Из этой статьи вы узнаете о:

  • Что такое делитель напряжения?
  • Цепи делителя напряжения
  • Уравнение / формула делителя напряжения
  • Применение делителей напряжения

Что такое делитель напряжения?

  • Пассивная линейная схема, вырабатывающая выходное напряжение, составляющее часть входного напряжения.
  • Он уменьшает входное напряжение до меньшего напряжения в зависимости от соотношения двух резисторов путем распределения входного напряжения между компонентами делителя.
  • Часто используется для подачи напряжения, отличного от имеющегося в наличии аккумулятора или источника питания.
  • Выходное напряжение делителя напряжения зависит от сопротивления входящей нагрузки.

Схема делителя напряжения

Схема делителя напряжения обычно выглядит так в схеме с последовательностью из 2 резисторов.

  • R1 = резистор, ближайший к входному напряжению (Vin)
  • R2 = резистор, ближайший к земле
  • В вход = входное напряжение
  • В выход = выходное напряжение на R2, которое представляет собой разделенное напряжение (1/4 от входное напряжение)

Формула / уравнение делителя напряжения

Уравнение для определения выходного напряжения цепи делителя:

R2 / R1 + R2 = Ratio определяет масштабный коэффициент уменьшенного напряжения.

Например,
V в = 100, 1 = 20, 2 = 10

С помощью калькулятора получите:

Правило делителя напряжения

  • Правило деления напряжения гласит: Напряжение, разделенное между двумя последовательными резисторами, прямо пропорционально их сопротивлению.
  • Это означает, что ваша схема может иметь более 2 резисторов!
  • Формула правила делителя напряжения:

Пример уравнения правила делителя напряжения:

Закон Ома

Теперь мы можем использовать закон Ома для расчета напряжения, протекающего через каждый резистор:

  • Уравнение для закона Ома = E = IR
    • E = ток на каждом резисторе
    • I = ток цепи
    • R = сопротивление
R1 R2 R3 Итого
E (вольт) 5 10 15 30 9019 Am
2.5 м 2,5 2,5 м 2,5 м
R (Ом) 2K 4K 6K 12K

Таким образом, ток на каждом резисторе составляет 5 В, 10 В и 15 В соответственно!

Упрощенные уравнения

  • Если вы решаете для R1,
  • Если вы решаете R2,

Применение делителей напряжения

Цепи делителей напряжения

очень распространены и используются во многих приложениях.Вот несколько примеров того, где находится схема делителя напряжения:

Потенциометр

  • Потенциометр — это пассивный электронный компонент с функцией скольжения или вращения, который действует как регулируемый делитель напряжения.
  • Входное напряжение подается на всю длину потенциометра, а выходное напряжение (падение напряжения) регулируется с помощью фиксированного и скользящего контакта потенциометра.
  • Существует два типа потенциометров
    • Поворотные потенциометры (поворотная ручка)
    • Линейный потенциометр (ползунок)
  • Компания Seeed предлагает оба типа!
Grove — Потенциометр скольжения

  • Как это работает?
    • Ручной стеклоочиститель, который перемещается, касается резистивной полосы материала.Когда он перемещается ближе к клемме 1 и дальше от клеммы 2, сопротивление уменьшается до клеммы 1, в то время как сопротивление увеличивается на клемме 2, и наоборот.
  • Потенциометр полезен для получения переменного напряжения от источника постоянного напряжения. Он может подключать внешние клеммы потенциометра к источнику напряжения и контролировать необходимое напряжение между потенциометром и одной из внешних клемм вашей цепи.
  • Потенциометр Grove — Slide включает линейный переменный резистор с максимальным сопротивлением 10 кОм.При перемещении ползунка выходное напряжение будет варьироваться от 0 В до применяемого вами Vcc.
  • Он подключается к другим модулям Grove через стандартный 4-контактный кабель Grove.
  • Ниже приведено изображение принципиальной схемы потенциометра:
  • У него много целей, например, в качестве регулируемого резистора, автономного делителя напряжения с Arduino или даже в качестве устройства интерфейса пользователя (HID), что означает, что его можно использовать для управления автомобилем!
  • Некоторые проекты, которые вы можете выполнять с помощью потенциометра Grove — Slide, похожи на создание собственного битбокса или бумбокс на Arduino!
Grove — Датчик угла поворота (P)
  • Датчик угла поворота Grove-Rotary (P) способен выдавать аналоговый выходной сигнал от 0 до Vcc (5 В постоянного тока с Seeeduino) на разъеме D1.
  • Со значением сопротивления 10 кОм идеально подходит для использования с Arduino.
  • Он поддерживается на всех платформах MCU, таких как Arduino, Raspberry Pi, BeagleBone, Wio, а также LinkIt ONE.
  • Один из проектов, который вы можете сделать с этим потенциометром, — это использовать его для управления яркостью светодиодов.
Использование Arduino для управления яркостью светодиода с помощью датчика угла поворота Grove-Rotary (P)

Grove — Делитель напряжения

  • Grove — делитель напряжения обеспечивает интерфейс для измерения внешнего напряжения, который устраняет необходимость подключения сопротивления к входному интерфейсу.
  • С помощью дискового переключателя вы можете легко выбрать коэффициент усиления напряжения, что упрощает его использование.

Чтение резистивных датчиков

  • Большинство датчиков представляют собой простые резистивные устройства, такие как наш Grove — инфракрасный датчик отражения. Однако большинство из них могут считывать только напряжение, но не сопротивление.
  • Добавив в схему еще один резистор, мы можем создать делитель напряжения вместе с датчиком.
  • Поскольку мы можем проверить выход делителя напряжения, теперь мы можем рассчитать величину сопротивления датчика.
  • Пример схемы показан ниже, где R2 — резистивный датчик:
  • Например, резистивный датчик — это датчик температуры Grove, который представляет собой термистор с сопротивлением комнатной температуры 350 Ом, где сопротивление R1 фиксировано на 350 Ом.
  • Использование уравнения делителя напряжения:
Температура Vin (фиксированный) R2 R1 R2 /
(R1 + R2)
Vout
Холодный 5V 300 Ом
350 Ом 350 Ом .46 2,3 В
Комнатная температура 5 В 350 Ом 350 Ом 0,5 2,5 В
Горячий 5 В 400 Ом 350 Ом 0,53 2,65 В

Уровнемеры

  • Что происходит, когда датчик и микроконтроллер встречаются с двумя разными напряжениями? Без выравнивания напряжения, например, напрямую связав микроконтроллер с логическим выходом 5 В с микроконтроллером 3.Входной датчик 3 В может вызвать повреждение цепи 3,3 В.
  • Вот где главный герой: делитель напряжения спасает положение, действуя как переключатель уровня, соединяющий две цепи, использующие разные рабочие напряжения.
  • Делитель напряжения может помочь выровнять напряжение с микроконтроллера (например, с 5 В до 3,3 В), чтобы избежать повреждения датчика, что делает его безопасным для обращения с датчиком.
  • Обратите внимание, что делитель напряжения может работать только в одном направлении: понижать напряжение, но не повышать.
  • Вот таблица комбинаций резисторов для понижения часто встречающихся напряжений:
Комбинация резисторов Напряжения, которые необходимо выровнять
4,7 кОм и 3,9 кОм 9В до 5В
кОм и 9,1 кОм от 12В до 3,3В
от 3,3 кОм и 5,7 кОм от 9В до 3,3В
  • Обратите внимание, что не рекомендуется использовать делитель напряжения для понижения уровня большой нагрузки, такой как 12В. до 5 В, поскольку они не предназначены для подачи такого питания на нагрузку, как с такой нагрузкой, это может расплавить резистор.(Вместо этого вы можете использовать регуляторы напряжения, такие как наш регулируемый преобразователь постоянного и постоянного тока (1,25 В — 35 В и 3 А)

Резюме

Обладая всеми знаниями делителя напряжения в ваших руках, вы можете превратить любое напряжение в меньшее, как фокусник! Хотите проверить свои навыки, создав свой собственный проект делителя напряжения? Вот несколько идей проектов, которые помогут вам начать использовать потенциометр и Arduino для создания битбокса или бумбокса на нашей вики-странице: Grove — Slide Potentiometer Wiki

Следите за нами и ставьте лайки:

Продолжить чтение

Как работает эта простая формула

Делитель напряжения — это схема, которая делит напряжение между двумя резисторами.Вы всегда будете видеть это как в простых, так и в сложных схемах.

Это очень полезно знать!

Если вы знаете, как это работает, гораздо легче увидеть, как работают схемы. И это позволит вам рассчитать напряжения во многих разных точках цепи, что часто необходимо для понимания этого.

Формула делителя напряжения

Должен признать, что я больше использовал свой практический опыт построения схем, чем теорию электроники, которую я изучил в университете.Но эта формула — одна из немногих формул для электроники, которую я на самом деле использую регулярно.

Используется для определения выходного напряжения, когда у вас есть два резистора, подключенных следующим образом:

Формула для расчета выходного напряжения:

Я рекомендую вам запомнить эту формулу. Часто пригодится. Или добавьте в закладки этот калькулятор делителя напряжения, если предпочитаете простой способ;)

Где найти делитель напряжения?

Один из примеров схемы делителя напряжения — для аналоговых датчиков.Например, термистор — это датчик температуры. Он изменяет свое сопротивление в зависимости от температуры. Если вы подключите его с резистором известного номинала в схеме делителя напряжения, вы получите напряжение, зависящее от температуры:

Или можно комбинировать известный резистор с фоторезистором . Фоторезистор изменяет сопротивление в зависимости от количества обнаруживаемого света. Таким образом, у вас есть схема, которая увеличивает или уменьшает напряжение в зависимости от света.

Вы можете подключить выход любой из этих схем к компаратору, чтобы проверить, что оно выше или ниже определенного напряжения.Тогда сделайте что-нибудь исходя из этого. Например, если температура выше 40 градусов, включите вентилятор.

Или подключитесь к аналоговому выводу Arduino или микроконтроллера и сделайте с ним крутые штуки. Может, включить свет, если фотоэлемент показывает, что темно?

Пример расчета: разные значения резистора

Допустим, у нас есть следующие значения:

Используя формулу выше, мы получаем

Пример расчета: одинаковые значения резисторов

Теперь предположим, что R1 и R2 имеют одинаковое значение.

Используя формулу выше, мы получаем

Это означает, что когда два резистора имеют одинаковое значение, выход всегда равен половине входного.

Можно ли использовать делитель напряжения в качестве источника питания?

Если у вас есть цепь, которая требует 4,5 В, можно ли использовать делитель напряжения с двумя резисторами по 500 Ом, чтобы получить 4,5 В от батареи 9 В?

К сожалению, это не так просто.

Любая цепь, которую вы хотите запитать, будет иметь внутреннее сопротивление.Таким образом, с точки зрения делителя напряжения, любую схему, которую вы подключаете к выходу напряжения, можно рассматривать как резистор (R НАГРУЗКА ), подключенный параллельно с R2.

Если внутреннее сопротивление цепи (R НАГРУЗКА ) также составляет 500 Ом, что произойдет?

Теперь R2 из формулы делителя напряжения становится параллельным сопротивлением R2 и R НАГРУЗКА . А это всего 250 Ом. Если вы поместите это в формулу делителя напряжения, вы получите выходное напряжение 3 В вместо 4.5V ты хотел.

Для источника питания вы хотите, чтобы напряжение оставалось на выбранном уровне, независимо от того, имеет ли цепь, которую вы подключаете, высокое или низкое внутреннее сопротивление. Вот почему делитель напряжения обычно не используется в источниках питания.

Вместо этого нужно использовать регулятор напряжения.

Вопросы?

Какие у вас вопросы по делителю напряжения? Дайте мне знать в разделе комментариев ниже.

Калькулятор делителя напряжения

-Apogeeweb

Часто задаваемые вопросы

1.Как рассчитать делитель напряжения?

Формулировка правила проста: Правило деления напряжения: напряжение делится между двумя последовательными резисторами прямо пропорционально их сопротивлению. −v (t) + v1 (t) + v2 (t) = 0 → v (t) = v1 (t) + v2. v (t) = R1i (t) + R2i (t) = (R1 + R2) i (t).

2. Как выбрать резистор делителя напряжения?

Вот очень приблизительное эмпирическое правило: ток, протекающий через два резистора (при условии отсутствия входного тока), должен быть от 10 до 1000 раз больше, чем входной ток.Чем больше тока проходит через эти резисторы, тем меньше влияние входного тока.

3. Параллельно ли включен делитель напряжения?

Параллельную цепь часто называют делителем тока из-за ее способности пропорционально или делить общий ток на дробные части. Еще раз, должно быть очевидно, что ток через каждый резистор связан с его сопротивлением, учитывая, что напряжение на всех резисторах одинаково.

4.Почему используется делитель напряжения?

Резисторные делители напряжения обычно используются для создания опорных напряжений или для уменьшения величины напряжения, чтобы его можно было измерить, а также могут использоваться в качестве аттенюаторов сигналов на низких частотах.

5. Как рассчитать выходное напряжение?

Формула: V = I x R, где V — напряжение, измеренное в вольтах, I — величина тока, измеренная в амперах, а R — сопротивление, измеренное в омах.

6.Как работает делитель напряжения?

Делитель напряжения — это простая схема, которая преобразует большое напряжение в меньшее. Используя всего два последовательных резистора и входное напряжение, мы можем создать выходное напряжение, составляющее часть входного. Делители напряжения — одна из самых фундаментальных схем в электронике.

7. Что такое правило делителя напряжения и тока?

Цепи делителя тока

имеют две или несколько параллельных ветвей для протекания токов, но напряжение одинаково для всех компонентов в параллельном блоке.Цепи делителя тока — это параллельные цепи, в которых ток источника или питания делится на несколько параллельных цепей.

8. В чем разница между потенциометром и делителем напряжения?

Делитель потенциала также называется резистивным делителем, напряжение пропорционально делится между цепочкой последовательно соединенных резисторов. Он может быть сформирован из N нескольких отводов и количества (N + 1) постоянных резисторов, но в природе существует гораздо больше его реализаций.

Короче говоря, потенциометр — это компонент, внутри которого используется делитель потенциала. Следовательно, все потенциометры, используемые для получения переменного напряжения, можно назвать делителями напряжения, но все делители напряжения не являются потенциометрами.

9. Как рассчитать делитель потенциала?

Делитель потенциала

Vin = p.d. поставляется ячейкой.

Vout = p.d. через интересующий резистор.

R1 = сопротивление резистора, представляющего интерес R1

R2 = сопротивление резистора R2

10.Как работает потенциальный делитель?

Делитель потенциала — это простая схема, в которой используется способ падения напряжения на последовательно соединенных резисторах. Это очень полезная и распространенная схема, которая широко используется в нашем ассортименте электронных комплектов. Идея состоит в том, что, используя два последовательно подключенных резистора, можно разделить напряжение и создать между ними другое напряжение.

11. Зачем использовать делитель напряжения?

Делитель напряжения может использоваться для уменьшения очень высокого напряжения, чтобы его можно было измерить с помощью вольтметра.Высокое напряжение подается на делитель, а выход делителя, который выводит более низкое напряжение, которое находится в пределах входного диапазона измерителя, измеряется измерителем.

12. Как построить делитель напряжения?

13. Что такое схема умножителя напряжения?

Умножитель напряжения — это тип схемы диодного выпрямителя, который может создавать выходное напряжение, во много раз превышающее приложенное входное напряжение. В руководстве по выпрямителям мы увидели, что выходное напряжение постоянного тока, контролируемое выпрямителем, находится на значении ниже входного напряжения сети.

14. Что такое смещение делителя напряжения?

Смещение делителя напряжения, также известное как смещение делителя напряжения, представляет собой метод, используемый для смещения постоянного тока биполярных переходных транзисторов (BJT) в простой схеме усилителя.

15. Почему смещение делителя напряжения называется самосмещением?

Причина его названия «самосмещение» не очень очевидна, за исключением того факта, что резистор, подключенный к эмиттерному выводу транзистора, способствует стабильности смещения.

16. Какое правило делителя напряжения?

Правило делителя напряжения используется для решения схем для упрощения решения. Применение этого правила также может полностью решить простые схемы. Основная концепция этого правила делителя напряжения: «Напряжение делится между двумя резисторами, которые соединены последовательно, прямо пропорционально их сопротивлению.

17. Какие бывают типы умножителей напряжения?

Умножители напряжения подразделяются на четыре типа:

Однополупериодный удвоитель напряжения.

Двухполупериодный удвоитель напряжения.

Утроитель напряжения.

Напряжение увеличено в 4 раза.

18. Как построить в цепи умножитель напряжения?

19. Может ли потенциометр работать как делитель напряжения?

Да. Потенциометр — это переменный резистор, который можно использовать для создания регулируемого делителя напряжения.

20. Почему смещение делителя напряжения более стабильно, чем фиксированное смещение?

Смещение делителя напряжения для транзистора не зависит от бета транзистора, в то время как фиксированное смещение зависит от бета.

Можно показать, что смещение делителя напряжения (тот, который используется в H-образной схеме смещения, обнаруженной вокруг биполярных транзисторов, работающих как почти линейные усилители), создает контур, отображающий свойства отрицательной обратной связи, которые помогают точке смещения быть почти независимой от тока транзистора. усиление, hFE или βF. Это приятное свойство, поскольку в обычных транзисторах этот параметр может иногда варьироваться в диапазоне 1: 3 от устройства к устройству.

Принцип деления напряжения резисторов в серии

В последовательной цепи распределение напряжения пропорционально величине сопротивления, то есть чем больше сопротивление, тем больше распределяется напряжение; Напротив, чем меньше сопротивление, тем меньше распределяется напряжение.

В последовательной цепи напряжение на проводниках пропорционально их сопротивлению.

По I1 = I2,

U1 / R1 = U2 / R2 равно

Объяснение схемы делителя напряжения:

Этот видеоурок по физике дает базовое введение в схемы делителя напряжения. Он предоставляет простую формулу для расчета напряжения на резисторе в последовательной цепи с двумя резисторами, включенными последовательно с батареей.он содержит множество примеров и практических задач. В нем обсуждается влияние на выходное напряжение схемы делителя напряжения, когда нагрузочный резистор включен параллельно R2. В нем обсуждается, как спроектировать схему делителя напряжения в соответствии с определенными требованиями.

Резистор в серии и В делитель напряжения

резисторов включены последовательно, напряжение, получаемое на k-м резисторе:

В заключении:

① В последовательной цепи полное сопротивление равно сумме сопротивлений субрезисторов.

② Напряжение на каждом резисторе соответствует общему напряжению в соответствии с отношением его сопротивления к общему сопротивлению.

Расчет мощности цепи последовательного сопротивления:

Делитель напряжения с нагрузкой, онлайн-калькулятор и формулы


Онлайн-калькулятор для расчета значений на нагруженном делителе напряжения

Расчет нагруженного делителя напряжения


Эта функция вычисляет напряжения, токи и сопротивления на нагруженном делителе напряжения.

На выходе схемы можно указать значения напряжения U 2 или сопротивления нагрузки R 3 . Вход напряжения U 2 задан.


Rechner, Belasteten Spannungsteiler


Формулы для нагруженного делителя напряжения

Делитель напряжения представляет собой последовательную цепь, состоящую из двух резисторов, которые делят электрическое напряжение.Когда делитель напряжения нагружен, дополнительный резистор (нагрузочный резистор) подключается параллельно второму резистору. Соотношение парциальных напряжений соответствует соотношению резисторов R 1 и сопротивление параллельного включения (R 2 и R L ).

Поэтому для расчета необходимо сначала рассчитать общее сопротивление R 2 и R L . по следующей формуле:

\ (\ Displaystyle U_ {2L} = \ гидроразрыва {R_2 · R_L} {R_2 + R_L} \)

Тогда напряжение U 2 рассчитывается по формуле:

\ (\ Displaystyle U_2 = U · \ гидроразрыва {R_ {2L}} {R_1 + R_ {2L}} \)

Эта страница полезна? да Нет

Спасибо за ваш отзыв!

Прошу прощения за это

Как мы можем это улучшить?

послать


Калькулятор делителя напряжения

— The Geek Pub

По сути, делитель напряжения — это схема, которая с помощью пары резисторов разделяет более высокие напряжения на более низкие.Это может быть сложной задачей для новичков, которые еще не понимают всех основ или того, как использовать формулу делителя напряжения. Вот почему мы собрали этот удобный калькулятор делителя напряжения, который вы можете использовать для расчета сопротивления, необходимого для ваших схем делителя напряжения. Все, что вам нужно сделать, это ввести любые три из приведенных ниже значений, и недостающее значение будет рассчитано автоматически. Нет ничего проще!

Калькулятор делителя напряжения


Наш калькулятор делителя напряжения работает по стандартной формуле делителя напряжения: Vout = (Vin x R2) / (R1 + R2)

Давайте разберем это немного, чтобы было проще понять :

  • Vin — входное напряжение вашего источника питания или аккумулятора
  • R1 — сопротивление 1-го резистора в Ом
  • R2 — сопротивление 2-го резистора в Ом
  • Vout — выходное напряжение делителя напряжения

На этой схематической иллюстрации видно, что при использовании двух резисторов (R1 = 4.7 кОм, R2 = 6,8 кОм), что мы можем создать выход 5 вольт из 12 вольт. Этот делитель напряжения преобразует 12 вольт в 5 вольт:

Вы можете использовать вышеуказанный калькулятор делителя напряжения для быстрого вычисления любого из этих значений. Мы также составили таблицу наиболее распространенных делителей напряжения, из которых вы можете выбрать:

Комбинация резисторов Используйте
4,7 кОм и 6,8 кОм От 12 В до 5 В
4.7 кОм и 3,9 кОм 9–5 В
3,6 кОм и 9,1 кОм 12–3,3 В
3,3 кОм и 5,7 кОм 9–3,3 В

Вы должны попробовать эти значения в калькуляторе делителя напряжения, чтобы вы могли видеть, как работают выходы! Это отличный способ познакомиться с ним (он поможет вам понять формулу делителя напряжения).

Рекомендации по использованию делителя напряжения

При использовании калькулятора и формулы делителя напряжения следует помнить о нескольких вещах.Ни формула, ни калькулятор не подберут для вас размер компонентов и не отрегулируют это напряжение!

  • Регулировка напряжения : Делители напряжения не регулируют напряжение. Если входное напряжение нестабильно и колеблется, выходное напряжение тоже будет! Если вам нужен надежный источник питания, вы можете подумать о добавлении регулятора напряжения в свою схему.
  • Правильный выбор размера : Убедитесь, что резисторы правильно подобраны для работы с нагрузкой, которую вы планируете использовать в этой цепи.Большинство резисторов имеют мощность только 1/4 или 1/2 Вт! То, что многие люди забывают. Для больших нагрузок вам понадобятся резисторы большего размера. Возможно, вы захотите ознакомиться с нашим руководством по резисторам. И давайте будем честными, вам не следует использовать делитель напряжения для питания больших нагрузок. Это неэффективно, есть варианты получше!
  • Потенциометры : Не упускайте из виду потенциометры при создании делителя напряжения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *