Ремонт импульсных блоков питания с шим контроллером: Ремонт импульсных блоков питания: схемы, описание, неисправности

Содержание

Ремонт импульсных блоков питания телевизоров своими руками

Неисправности современных импульсных блоков питания

Часто причины отказов импульсных источником напряжения кроется в некачественном сетевом напряжении. Понижение и повышение напряжения сети, скачки напряжения, отключение сети, негативно сказываются на надежности электронных компонентов схем питания.

Импульсный блок питания

Особенно болезненно переносят такие скачки и отключения сети — это силовые диоды, мощные транзисторы, ШИМ контроллеры, конденсаторы. Хорошо, когда у вас преобразователь напряжения выполнен без заливки компаундом. Ремонт таких импульсных блоков питания можно сделать своими руками.

Все чаще появляются источники напряжения, залитые компаундом. Их не берут на ремонт даже в специализированных мастерских. Для них только один вариант ремонта — это замена новым. Неправильная эксплуатация этих источников, подключение более мощных нагрузок, также могут быть причиной их выхода из строя.

Не нужно эти преобразователи сразу отдавать в ремонт, причины их отказа могут быть довольно простыми, и вы с легкостью с ними справитесь. Для более сложных неисправностей нужны некоторые познания в электронике. Опыт в ремонте приходит со временем, чем вы больше будете им заниматься, тем больше обретете знаний.

Диагностика неисправностей импульсных блоков питания

Самое главное в ремонте — это найти неисправность, а устранить ее дело техники. Схемотехнику импульсных источников питания можно разделить на входную и выходную части. К входной части относится высоковольтная схема, а к выходной низковольтная.

Простой импульсный блок питания

В высоковольтной ее части платы все элементы работают под высоким напряжением, поэтому они чаще выходят из строя, чем элементы низковольтной части. Высоковольтная схема имеет сетевой фильтр, диодные мосты для выпрямления переменного напряжения сети, ключи на транзисторах и импульсный трансформатор.

Используются ещё и небольшие развязывающие трансформаторы, которые управляются ШИМ контроллерами и подают импульсы на затворы полевых транзисторов. Таким образом, происходит гальваническая развязка сетевых и вторичных напряжений. Для такой развязки часто в современных схемах используются оптроны.

Схема импульсного блока питания на транзисторах

Выходные напряжения также имеют гальваническую развязку с сетью через силовой трансформатор. В простых схемах преобразования вместо ШИМ контроллеров используют автогенераторы на транзисторах. Эти дешевые источники напряжения применяются для питания галогенных ламп, светодиодных ламп и т. д.

Особенностью таких схем является простота и минимум элементов. Однако простые и дешевые источники напряжения без нагрузки не запускается, выходное напряжение нестабильно и имеют повышенные пульсации. Хотя на освещение галогенных ламп эти параметры влияния не оказывают.

Диодный мост импульсного блока питания АТХ

Ремонт такого устройства очень прост из-за небольшого количества элементов. Наиболее часто возникают неисправности в высоковольтной части схемы, когда пробивается один или несколько диодов, вспучиваются электролитические конденсаторы, отказывают силовые транзисторы. Также выходят из строя диоды низковольтной схемы, перегорают дросселя выходного фильтра и предохранитель.

Неисправность этих элементов можно обнаружить мультиметром. Другие же неисправности импульсных блоков требуют применения осциллографа, цифрового мультиметра. В этом случае лучше отдать блок на ремонт в мастерскую. Предохранитель можно легко прозвонить мультиметром на наличие напряжения после предохранителя.

Предохранитель импульсного блока питания

Если перегорел предохранитель нужно внимательно визуально проверить всю схему платы, дорожки, нарушение паек, потемнение элементов схемы и участков дорожек, вспучивание конденсаторов. Если диоды плохо прозваниваются мультиметром на плате, их выпаивают, и проверяет каждый в отдельности.

Проверяются все элементы платы, неисправный меняют и только тогда включается блок в сеть для проверки. При диагностике конденсаторы тоже выпаиваются и проверяются тестером. Сгоревший дроссель можно перемотать, определив количество витков, сечение провода. Найти необходимый дроссель в продаже будет нелегко, лучше его восстановить самому.

Ремонт блоков ИБП компьютеров и телевизоров

Для ремонта источника импульсного напряжения понадобится такие инструменты как паяльник с регулировкой температуры, набор отвёрток, кусачки, пинцет, монтажный нож, обычная лампа на 100 Вт. Из материала понадобится припой, флюс, спирт для удаления канифоли кисточкой с паек платы. Из приборов нужен будет мультиметр.

Так как импульсные блоки питания (ИБП) телевизоров и компьютеров имеют стандартные схемы, то и методика обнаружения неисправностей в них будет одинакова. Нарушение работы преобразователя напряжения телевизора можно определить по отсутствию подсветки светодиода.

Блок питания компьютера АТХ

Начинают ремонт с проверки сетевого шнура, снятия блока питания с телевизора, внимательного осмотра элементов и дорожек платы. Ищут вздутые конденсаторы, потемнение дорожек, треснутый корпус алиментов, обугливание сопротивлений, нарушение целостности паек, особенно у выводов импульсного трансформатора.

Если внешних повреждений не найдено мультиметром, проверяют предохранитель, диоды, силовые транзисторы ключей, работоспособность конденсаторов. Когда вы уверены в исправности всех элементов, а устройство не работает, нужно менять микросхему генератора импульсов.

В преобразователе телевизора основные неисправности возникают в балластных резисторах, электролитических конденсаторах низкого напряжения, диодах. Прозвонить их можно не снимая с плат (кроме диодов). После устранения неисправностей припаивают лампу 100 Вт взамен предохранителя и включают.

  1. Лампа загорается и гаснет, появляется свечение светодиода спящего режима. Светится экран телевизора.
    Тогда проверяют напряжение строчной развертки, если оно, выше нормы меняют конденсаторы.
  2. Лампа загорается и тухнет, а светодиод не светится, нет растра. Причина, скорее всего в генераторе импульсов. Меряют напряжение на конденсаторе, которое должно находиться в пределах 280 — 300В. Если напряжение ниже, неисправность ищут в диодах или в утечке конденсатора. При отсутствии напряжения на конденсаторе, снова проверяют все цепи высоковольтных источников питания.
  3. Лампа горит ярко при неисправности некоторых элементов. Источник напряжения проверяют заново.

С помощью лампы накаливания можно находить вероятные неисправности источника. Для ремонта источника АТХ компьютера, нужно собрать схему нагрузки как на рисунке ниже или подключить к компьютеру. Однако, если неисправность блока АТХ на устранена можно спалить материнскую плату.

Вариант нагрузки для БП компьютера

Внешнее проявление отказа блока ATX может быть, когда не включается материнская плата, вентиляторы не работают или блок пытается многократно включиться. Перед поиском неисправностей устройства нужно пылесосом и кисточкой очистить его от пыли. Также проводится визуальный осмотр элементов, дорожек платы и только после этого включается нагрузка.

Если перегорает предохранитель, тогда подключают лампу накаливания 100 Вт, как при проверке источника напряжения в телевизоре. Когда лампа загорается, но не гаснет, неисправность ищут в конденсаторе, трансформаторе и диодах моста. При целом предохранителе неисправность могла возникнуть в ШИМ контроллере, тогда необходимо заменить устройство. Также многократный запуск источника указывает на неисправность стабилизатора опорного напряжения.

Техника безопасности при ремонте импульсного блока питания

Высокая сторона устройства не имеет гальванической развязки с сетью, поэтому нельзя прикасаться к элементам этой части двумя руками. При касании одной рукой вы получите ощутимый удар током, но это не смертельно.

Нельзя проверять элементы, находящиеся под напряжением отверткой, пинцетом.

Высоковольтная схема устройства обозначается широкой полосой, а внутренняя часть мелкими штрихами краски. Устройство имеет высоковольтный конденсатор, который после выключения блока держит опасное напряжение до 3 минут. Поэтому после выключения нужно ждать пока конденсаторы не разрядятся или их разрядить через резистор 3 — 5 Ком. Повысить безопасность при ремонте устройства можно с помощью трансформатора безопасности.

Схема трансформатора безопасности

Этот трансформатор имеет две обмотки на 220 В мощностью до 200 Вт (зависит от мощности ИБП). Такой трансформатор имеет гальваническую развязку с сетью. Первичная обмотка трансформатора включается в сеть, а вторичная с лампой подсоединяется к ИБП. В этом случае вы можете прикасаться к элементам высокой части устройства одной рукой, вы не получите удар током.

  1. Диагностика
  2. Ремонт пошагово с фото
  3. Видео
  4. Общие рекомендации по ремонту блока питания телевизора

Промышленные блоки питания нередко выходят из строя, иногда даже и высококачественные и дорогостоящие образцы. В таком случае обычный человек чаще всего выбрасывает и приобретает новое, но причина поломки может быть незначительной, а для радиолюбителя такие устройства представляют немалый интерес в плане изучения и возможности возвращения работоспособности. При том, что зачастую выбрасываются устройства, стоящие немало денег.

Предлагаем пользователям рассмотреть простой ремонт стабилизированного блока питания импульсного типа, основанного на обратноходовом генераторе с обратной связью по току и напряжению, что кроме стабилизации позволяет осуществить и защиту от перегрузки. Блок питается от сети переменного тока с напряжением от 100 до 240 Вольт частоты 50/60 Герц и выдаёт постоянное напряжение 12 Вольт 2 Ампер.

Описываемая здесь неисправность довольно часто встречается в блоках питания указанного типа и имеет следующие симптомы: напряжение на выходе периодически появляется и пропадает с определённой частотой, что визуально наблюдается как вспышки и погасания светодиода индикатора выходного питания:

Если же индикаторный светодиод не установлен, то подобный симптом можно обнаружить стрелочным вольтметром, подключив его к выходу блока питания. При этом стрелка вольтметра периодически будет отклоняться до некоторого значения и возвращаться обратно (может не до конца). Такое явление наблюдается вследствие срабатывания защиты устройства, при превышении напряжения или тока в определённых точках выше допустимого.

Это может произойти как и при коротком замыкании, так и при разрыве цепи. Короткое замыкание чаще всего бывает во время пробоя конденсаторов или полупроводниковых радиоэлементов, таких как диоды или транзисторы. Обрыв же может наблюдаться как у полупроводников, так и резисторов. В любом случае в первую очередь следует визуально осмотреть печатную плату и установленные на ней радиоэлементы.

Диагностика блока питания перед ремонтом

Лучше всего проводить визуальную диагностику с помощью увеличительной лупы:

На плате был обнаружен подгоревший резистор с позиционным номером R18, при прозвонке которого выявился его обрыв и нарушение контакта:

Ремонт блока питания пошагово с фото

Сгорание резистора могло произойти при долговременном превышении на нём номинальной мощность рассеивания. Сгоревший резистор был выпаян, а его посадочное место было зачищено:

Для замены резистора нужно узнать его номинал. Для этого был разобран заведомо исправный блок питания. Указанный резистор оказался с сопротивлением 1 Ом:

Далее по цепи этого резистора был обнаружен пробитый конденсатор с позиционным номером C6, прозвонка которого показала его низкое сопротивление, а следовательно и непригодность для дальнейшего использования:

Как раз пробой этого конденсатора и мог стать причиной сгорания резистора и дальнейшей неработоспособности всего устройства в целом. Этот конденсатор также был удалён со своего места, вы можете сравнить, насколько он мал:

Пробитый конденсатор соизмерим со спичечной головкой, вот такая маленькая деталь стала причиной поломки блока питания. Рядом с ним на плате, параллельно ему, установлен второй такой же конденсатор, который уцелел. К сожалению, конденсатора для замены не оказалось и все надежды легли на оставшийся второй конденсатор. А вот на место сгоревшего резистора был подобран резистор с нужным сопротивлением в 1 Ом, но не поверхностного монтажа:

Этот резистор был установлен на посадочное место сгоревшего, места пайки были зачищены от остатков флюса, а посадочное место пробитого конденсатора было покрыто лаком для лучшей изоляции и устранения возможности воздушного пробоя этого места:

После пробного включения блок питания заработал в нормальном режиме и индикаторный светодиод перестал мигать:

Впоследствии установленный резистор всё же был заменён на резистор поверхностного монтажа и на месте удалённого конденсатора был нанесён второй слой лака:

Конечно идеальным было бы установить и второй конденсатор, но даже и без него блок питания работает нормально, без постороннего шума и мерцания светодиода:

После включения адаптера в сеть был произведён замер выходного напряжения, оно оказалось в пределах нормы, а именно 11,9 Вольт:

На этом ремонт устройства можно считать завершённым, так как ему была возвращена работоспособность и его и дальше можно применять по назначению. Стоит отметить, что блок выполнен по весьма хорошей схеме, которую, к сожалению, не представилось возможным зарисовать.

На данный момент по быстрому внешнему осмотру можно выделить хороший сетевой и выходной фильтр, продуманную схемотехнику управления силовым транзистором и хорошую стабилизацию выходного напряжения. Физическое исполнение устройства тоже на высоком уровне, монтаж жёсткий и ровный, пайка чистая, использованы прецизионные радиоэлементы. Всё это позволяет получить устройство высокого качества с точно заданными параметрами и характеристиками.

  • Читайте больше о ремонте компьютерного блока питания

Из общих рекомендаций по поиску неисправностей, в первую очередь следует осуществить визуальный осмотр, обращая внимание на потемневшие участки платы или повреждённые радиоэлементы. При обнаружении сгоревшего резистора или предохранителя обязательно нужно прозвонить ближайшие детали, непосредственно соединённые с визуально повреждённой.

Особенно опасны полупроводники и конденсаторы в высоковольтных цепях, которые в случае пробоя могут повлечь за собой необратимые последствия для всего устройства при многократном его включении без выявления полного списка повреждённых компонентов. При правильной и внимательной диагностике в большинстве случаев всё заканчивается хорошо и поломку удаётся устранить заменой повреждённых деталей на такие же исправные или близкие по номиналу и параметрам.

Видеоинструкция по ремонту импульсного блока питания:

Общие рекомендации по ремонту блока питания телевизора

Импульсные блоки питания — самый ненадежный узел в современных радиоустройствах. Оно и понятно — огромные токи, большие напряжения. Через ИБП проходит вся мощность, потребляемая устройством. При этом не будем забывать, что величина мощности, отдаваемая ИБП в нагрузку, может изменяться в десятки раз, что не может благотворно влиять на его работу.

Большинство производителей применяют простые схемы импульсного блока питания, оно и понятно. Наличие нескольких уровней защиты часто лишь усложняет ремонт и практически не влияет на надежность, так как повышение надежности за счет дополнительной петли защиты компенсируется ненадежностью дополнительных элементов, а при ремонте приходится долго разбираться, что это за детали и зачем они нужны.

Конечно, каждый импульсный блок питания имеет свои характеристики, отличающиеся мощностью, отдаваемой в нагрузку, стабильностью выходных напряжений, диапазоном рабочих сетевых напряжений и другими параметрами, которые при ремонте играют роль, только когда нужно выбрать замену отсутствующей детали.

Понятно, что при ремонте желательно иметь схему. Ну, а если ее нет, простые телевизоры можно ремонтировать и без нее. Принцип работы всех импульсных блоков питания практически одинаков, отличие только в схемных решениях и типах применяемых деталей.

  • Как исправить выгорание экрана смартфона?

Мы рассмотрим методику, выработанную многолетним опытом ремонта. Вернее, это не методика, а набор обязательных действий при ремонте, проверенных практикой. Для ремонта необходим тестер (авометр) и, желательно, но необязательно, осциллограф.

Итак, пошаговая инструкция ремонт импульсного блока питания:

    Включаем телевизор, убеждаемся, что он не работает, что индикатор дежурного режима не горит. Если он горит, значит дело, скорее всего, не в блоке питания. На всякий случай надо будет проверить напряжение питания строчной развертки.

Выключаем телевизор, разбираем его.

Проводим внешний осмотр платы телевизора, особенно участка, где размещен блок питания. Иногда могут быть обнаружены вспучившиеся конденсаторы, обгоревшие резисторы и другое. Надо будет в дальнейшем проверить их.

Внимательно смотрим пайки, особенно трансформатора, ключевого транзистора/микросхемы, дросселей.

Проверяем цепь питания: прозваниваем шнур питания, предохранитель, выключатель питания (если он есть), дроссели в цепи питания, выпрямительный мост. Часто при неисправном ИБП предохранитель не сгорает — просто не успевает. Если пробивается ключевой транзистор, скорее сгорит балластное сопротивление, чем предохранитель. Бывает, что горит предохранитель из-за неисправности позистора, который управляет размагничивающим устройством (петлей размагничивания). Обязательно проверьте на короткое замыкание выводы конденсатора фильтра сетевого питания, не выпаивая его, так как таким образом часто можно проверить на пробой выводы коллектор – эмиттер ключевого транзистора или микросхемы, если в нее встроен силовой ключ. Иногда питание на схему подается с конденсатора фильтра через балластные сопротивления и в случае их обрыва надо проверять на пробой непосредственно на электродах ключа.

Проверяем остальные детали блока — диоды, транзисторы, некоторые резисторы. Сначала проверку производим без выпаивания детали, выпаиваем только когда возникло подозрение, что деталь может быть неисправна. В большинстве случаев такой проверки достаточно. Часто обрываются балластные сопротивления. Балластные сопротивления имеют малую величину (десятые Ома, единицы Ом) и предназначены для ограничения импульсных токов, а также для защиты в качестве предохранителей.

  • Смотрим, нет ли замыканий во вторичных цепях питания — для этого проверяем на короткое замыкание выводы конденсаторов соответствующих фильтров на выходах выпрямителей.
  • Выполнив все проверки и заменив неисправные детали, можно заняться проверкой под током. Для этого вместо сетевого предохранителя подключаем лампочку 150–200 Ватт 220 Вольт. Это нужно для того, чтоб лампочка защитила блок питания в случае, если неисправность не устранена. Отключите размагничивающее устройство.

    Включаем. На этом этапе возможны три варианта:

      Лампочка ярко вспыхнула, затем притухла, появился растр. Или загорелась индикация дежурного режима. В обоих случаях надо замерить напряжение, питающее строчную развертку — для разных телевизоров оно различно, но не больше 125 Вольт. Часто его величина написана на печатной плате, иногда возле выпрямителя, иногда возле ТДКС. Если оно завышено до 150–160 Вольт, а телевизор находится в дежурном режиме, то переведите его в рабочий режим. В некоторых телевизорах допускается завышение напряжений на холостом ходу (когда строчная развертка не работает). Если в рабочем режиме напряжение завышено, проверьте электролитические конденсаторы в блоке питания только методом замены на заведомо исправный. Дело в том, что часто электролитические конденсаторы в ИБП теряют частотные свойства и на частоте генерации перестают выполнять свои функции несмотря на то, что при проверке тестером методом заряда-разряда конденсатор вроде бы исправен. Также может быть неисправна оптопара (если она есть) или цепи управления оптопарой. Проверьте, регулируется ли выходное напряжение внутренней регулировкой (если таковая имеется). Если не регулируется, то надо продолжить поиск неисправных деталей.

    Лампочка ярко вспыхнула и погасла. Ни растра, ни индикации дежурного режима не появилось. Это говорит о том, что импульсный блок питания не запускается. Надо измерить напряжение на конденсаторе сетевого фильтра, оно должно быть 280–300 Вольт. Если его нет — иногда ставят балластное сопротивление между мостом сетевого выпрямителя и конденсатором. Еще раз проверить цепи питания и выпрямителя. Если напряжение занижено, может быть оборван один из диодов моста сетевого выпрямителя или, что встречается чаще, потерял емкость конденсатор фильтра сетевого питания. Если напряжение в норме, то нужно еще раз проверить выпрямители вторичных источников питания, а также цепь запуска. Цепь запуска у простых телевизоров состоит из нескольких резисторов, включенных последовательно. Проверяя цепь, надо измерять падение напряжения на каждом из них, измеряя напряжение непосредственно на выводах каждого резистора.

  • Лампочка горит на полную яркость. Немедленно выключите телевизор. Заново проверьте все элементы. И помните — чудес в радиотехнике не бывает, значит вы где-то что-то упустили, не все проверили.
  • На 95 % неисправности укладываются в данную схему, однако встречаются более сложные неисправности, когда приходится поломать голову. Для таких случаев методики не напишешь и инструкцию не создашь.

    • Пошаговый ремонт компьютерных колонок SVEN

    Не выбрасывайте повреждённые устройства, восстанавливайте их. Конечно иногда дешевле и проще купить новое, но ремонт — это полезное и увлекательное занятие, позволяющее развить навыки восстановления и конструирования своих собственных устройств.

    Если вы ремонтировали ИБП, то вы наверняка сталкивались с такой ситуацией: все неисправные элементы заменены, оставшиеся вроде бы проверены, а включаете телевизор и… бац… и все надо начинать сначала! В радиотехнике чудес не бывает и, если что-то не работает, то на это есть причина! Наша задача – найти ее!

    ИБП – самый ненадежный узел в современных радиоустройствах. Оно и понятно – огромные токи, большие напряжения – ведь через ИБП проходит вся мощность, потребляемая устройством. При этом не будем забывать, что величина мощности, отдаваемая ИБП в нагрузку, может изменяться в десятки раз, что не может благотворно влиять на его работу.

    Большинство производителей применяют простые схемы ИБП. Оно и понятно. Наличие нескольких уровней защиты способно часто лишь усложнить ремонт и практически не влияют на надежность, так как повышение надежности за счет дополнительной петли защиты компенсируется ненадежностью дополнительных элементов, а нам при ремонте приходится долго разбираться, что это за детали и зачем они нужны. Конечно, каждый ИБП имеет свои характеристики, отличающиеся мощностью, отдаваемой в нагрузку, стабильностью выходных напряжений, диапазоном рабочих сетевых напряжений и другими характеристиками, которые при ремонте играют роль, только когда нужно выбрать замену отсутствующей детали.

    Понятно, что при ремонте желательно иметь схему. Ну, а если ее нет, простые телевизоры можно ремонтировать и без нее. Принцип работы всех ИБП практически одинаков, отличие только в схемных решениях и типах применяемых деталей.

    Я пользуюсь методикой, выработанной многолетним опытом ремонта. Вернее, это не методика, а набор обязательных действий при ремонте, проверенных практикой.

    Предложенная методика предполагает, что вы хоть немного знакомы с работой телевизора. Для ремонта необходим тестер (авометр) и, желательно, но необязательно, осциллограф.

    Итак, ремонтируем блок питания.

    Вам принесли телевизор или испортился свой.

    Включаете телевизор, убеждаетесь, что он не работает, что индикатор дежурного режима не горит. Если он горит, значит дело, скорее всего, не в ИБП. На всякий случай надо будет проверить напряжение питания строчной развертки.

    Выключаете телевизор, разбираете его.

    Внешний осмотр платы телевизора, особенно участка, где размещен ИБП. Иногда могут быть обнаружены вспучившиеся конденсаторы, обгоревшие резисторы и др.

    Надо будет в дальнейшем проверить их.

    Внимательно просмотрите пайки, особенно трансформатора, ключевого транзистора/микросхемы, дросселей.

    Проверьте цепь питания: прозвоните шнур питания, предохранитель, выключатель питания – если он есть, дроссели в цепи питания, выпрямительный мост.

    Часто при неисправном ИБП предохранитель не сгорает – просто не успевает. Если пробивается ключевой транзистор, скорее сгорит балластное сопротивление, чем предохранитель. Бывает, что горит предохранитель из-за неисправности позистора, который управляет размагничивающим устройством (петлей размагничивания). Обязательно проверьте на короткое замыкание выводы конденсатора фильтра сетевого питания, не выпаивая его, так как таким образом часто можно проверить на пробой выводы коллектор – эмиттер ключевого транзистора или микросхемы, если в нее встроен силовой ключ. Иногда питание на схему подается с конденсатора фильтра через балластные сопротивления и в случае их обрыва надо проверять на пробой непосредственно на электродах ключа.

    Недолго проверить остальные детали блока – диоды, транзисторы, некоторые резисторы. Сначала проверку производим без выпаивания детали, выпаиваем только когда возникло подозрение, что деталь может быть неисправна. В большинстве случаев такой проверки достаточно. Часто обрываются балластные сопротивления. Балластные сопротивления имеют малую величину (десятые Ома, единицы Ом) и предназначены для ограничения импульсных токов, а также для защиты в качестве предохранителей.

    Надо посмотреть, нет ли замыканий во вторичных цепях питания – для этого проверяем на короткое замыкание выводы конденсаторов соответствующих фильтров на выходах выпрямителей.

    Выполнив все проверки и заменив неисправные детали, можно выполнить проверку под током. Для этого вместо сетевого предохранителя подключаем лампочку 150-200 Ватт 220 Вольт. Это нужно для того, чтоб лампочка защитила ИБП в случае, если неисправность не устранена. Отключите размагничивающее устройство.

    Включаем.Возможны три варианта:

    1. Лампочка ярко вспыхнула, затем притухла, появился растр. Или загорелась индикация дежурного режима. В обоих случаях надо замерить напряжение, питающее строчную развертку – для разных телевизоров оно различно, но не больше 125 Вольт. Часто его величина написана на печатной плате, иногда возле выпрямителя, иногда возле ТДКС. Если оно завышено до 150-160 Вольт, а телевизор находится в дежурном режиме, то переведите его в рабочий режим, в некоторых телевизорах допускается завышение напряжений на холостом ходу (когда строчная развертка не работает). Если в рабочем режиме напряжение завышено, проверьте электролитические конденсаторы в блоке питания только методом замены на заведомо исправный. Дело в том, что часто электролитические конденсаторы в ИБП теряют частотные свойства и на частоте генерации перестают выполнять свои функции несмотря на то, что при проверке тестером методом заряда-разряда конденсатор вроде бы исправен. Также может быть неисправна оптопара (если она есть), или цепи управления оптопарой. Проверьте, регулируется ли выходное напряжение внутренней регулировкой (если таковая имеется). Если не регулируется, то надо продолжить поиск неисправных деталей.
    2. Лампочка ярко вспыхнула и погасла. Ни растра, ни индикации дежурного режима не появилось. Это говорит о том, что ИБП не запускается. Надо измерить напряжение на конденсаторе сетевого фильтра, оно должно быть 280-300 Вольт. Если его нет – иногда ставят балластное сопротивление между мостом сетевого выпрямителя и конденсатором. Еще раз проверить цепи питания и выпрямителя. Если напряжение занижено – может быть оборван один из диодов моста сетевого выпрямителя или, что встречается чаще, потерял емкость конденсатор фильтра сетевого питания. Если напряжение в норме, то нужно еще раз проверить выпрямители вторичных источников питания, а также цепь запуска. Цепь запуска у простых телевизоров состоит из нескольких резисторов, включенных последовательно. Проверяя цепь, надо измерять падение напряжения на каждом из них, измеряя напряжение непосредственно на выводах каждого резистора.
    3. Лампочка горит на полную яркость. Немедленно выключите телевизор. Заново проверьте все элементы. И помните – чудес в радиотехнике не бывает, значит вы где-то что-то упустили, не все проверили.

    На 95% неисправности укладываются в данную схему, однако встречаются более сложные неисправности, когда приходится поломать голову. Для таких случаев методики не напишешь и инструкцию не создашь.

    Ремонт импульсных блоков питания сетевых коммутаторов, схемы, принцип работы и основные неисправности

    Сетевые коммутаторы фирмы СОМРЕХ достаточно часто применяется при построении офисных компьютерных сетей из-за оптимального соотношения цена — качество. В данной статье рассмотрим опробованный на практике вариант восстановления работоспособности блока питания коммутатора СОМРЕХ SXP1210.


    Рис. 1. Схема блока питания коммутатора Compex SXP1210 на микросхеме ШИМ-контроллера SK8060, силовой ключ 2sk2750.

    В ходе диагностики неисправностей в блоке питания коммутатора СОМРЕХ SXP1210 были выявлены следующие неисправные радиодетали (см. схему на рис. 1): микросхема ШИМ-контроллера IC2 типа SK8060, полевой транзистор Q1 типа 2SK2750 и обрывной резистор R1. Основными проблемами при ремонте данного блока питания были невозможность купить импортную микросхему SK8060 и отсутствие какой-либо технической документации (datasheet pdf). Данная микросхема ШИМ-контролера используется так же в блоке питания ACE 716C.

    При анализе принципиальной схемы блока питания на микросхеме SK8060 было отмечено, что схема шим-контроллера очень напоминает схему включения широко распространенной микросхемы UC3842 фирмы UNITRODE, но, судя по всему, SK8060 является усовершенствованной модификацией UC3842, требующим меньшего количества внешних электронных компонентов. Исходя из этого, было решено произвести замену SK8060 на UC3842 или на ее аналог UC3844.


    Рис. 2. Схема импульсного блока питания на микросхеме ШИМ-контроллера UC3844

    Вариант схемы импульсного блока питания с использованием микросхемы UC3844 (полный аналог КА3844В) фирмы FAIRCHILD приведен на рис. 2. Из первоначальной схемы исключены элементы R1, R3 и DZ1. На рис. 1 вывод конденсатора С6 отключен от общего провода и подключен к выводу 2 микросхемы КА3844В, емкость конденсатора С6 уменьшена до 100 пФ. Выводы 3 и 4 оптрона IC1 отключены от выводов 7 и 1 микросхемы IC2 и подсоединены к выводам 8 и 2 соответственно. Соединенные вместе левый вывод резистора R6 и верхний вывод конденсатора С5 отключены от вывода 4 микросхемы IC2 и подключены к выводу 3. Верхний по схеме вывод конденсатора С7 переключен с вывода 3 микросхемы IC2 на ее вывод 4, емкость конденсатора С7 уменьшена до 2,2 нФ. Вновь введены элементы R21 (10 кОм), R22 (150 кОм), R23 (1 10кОм) и С21 (10 нФ).

    Резистор R1 с надписью на корпусе fuse предохранитель, предназначенный для ограничения броска тока заряда конденсатора СЗ, был заменен обычным плавким предохранителем на ток 0,5 А. Резистор R3 исключен, т.к. в типовой схеме включения микросхемы UC3842 отвод от первичной обмотки импульсного трансформатора Т1 не используется, по этой же причине исключен и стабилитрон DZ1.

    Вновь введенный резистор R21 и конденсатор С7 являются частотозадающими элементами для внутреннего генератора микросхемы IC2. Частота генерации определяется по следующей формуле: f[кГц] = (1,72/(R21[kOм] х С7[мкФ]). Поскольку рабочий цикл микросхемы составляет 50%, то частота внутреннего генератора выбрана в два раза выше частоты преобразования (в данном случае при номиналах R21 — 10 кОм и С7 — 2,2 нФ частота генератора составляет около 78 кгц). В случае применения микросхемы UC3842 частота внутреннего генератора выбирается равной частоте преобразования. Конденсатор С21, подключенный к выходу источника опорного напряжения 5 В (вывод 8) микросхемы КА3844В, выполняет функцию блокировочного.

    Элементы R22 и С6 являются компенсирующей цепью внутреннего усилителя ошибки. Вывод 2 микросхемы IC2 является отрицательным входом усилителя ошибки, и напряжение на нем определяется делителем, образованным резистором R23 и сопротивлением коллектор-эмиттер (выводы 3 и 4) фототранзистора оптрона IC1. Поскольку на положительный вход усилителя ошибки внутри микросхемы подано опорное напряжение 2,5 В, то подбором сопротивления резистора R23 необходимо установить на выводе 2 микросхемы IC2 напряжение 2,5 В при номинальном выходном напряжении блока питания 5 В. Проще всего это сделать следующим образом: подать на контакты «+5V» и «GND» разъема ТВ2 стабильное напряжение 5 В; временно отключить вывод 3 оптрона от остальной схемы, подключив его к контакту «+5V» разъема ТВ2; временно отключить верхний по схеме вывод резистора R23 (рис. 2) от общего провода сетевой части блока питания и соединить его с контактом «GND» разъема ТВ2, и далее подбором сопротивления R23 установить напряжение 2,5 В на выводе 4 IC1.

    Остановимся на назначении других элементов в схеме на рис. 2. Через четыре включенных последовательно (для уменьшения рассеиваемой каждым резистором мощности) резистора R4.1 …R4.4 на вывод 7 микросхемы КА3844В поступает напряжение питания для первоначального ее запуска, в дальнейшем в штатном режиме работы питающее напряжение снимается с отдельной обмотки трансформатора Т1 и после выпрямления однополупериодным выпрямителем D2C8 подается на вывод 7. Для получения вторичного напряжения 5 В также применяется однополупериодный выпрямитель на сдвоенном диоде D3 и LC-фильтр С11L2C12. Обратная связь в схеме блока питания выполнена с использованием оптрона IC1 типа РС123 фирмы SHARP. Отслеживание уровня выходного напряжения 5 В осуществляется при помощи трехвыводного стабилитрона (регулируемого параллельного стабилизатора) IC3 типа TL431C фирмы TEXAS INSTRUMENTS, на управляющий электрод которого через резистивный делитель поступает напряжение +5 В. Рассмотрим случай, когда выходное напряжение +5 В повышается. При превышении заданного делителем уровня на управляющем выводе стабилитрона IC3 он открывается, и начинает протекать ток через светодиод оптопары. В свою очередь, это приводит к увеличению тока через фототранзистор оптопары, в результате чего увеличивается напряжение на входе усилителя ошибки (вывод 2) микросхемы КА3844В. Это вызывает увеличение скважности импульсов на выходе КА3844В и уменьшение выходного напряжения ИП. Аналогичные описанным выше, но обратные по характеру процессы происходят в импульсном блоке питания и при уменьшении уровня выходного напряжения.

    Вышедший из строя n-канальный полевой транзистор Q1 2SK2750 (Uси = 600 В; Iс = 3,5 А; Р = 35 Вт; S = 3000 мА/В; корпус T0-220F) фирмы TOSHIBA можно заменить на транзистор этой же фирмы 2SK1118 (Uси = 600 В; Iс = 6 А; Р = 35 Вт; S = 3000 мА/В; корпус T0-220F).

    В подобных импульсных блоках питания в случае выхода из строя полевого транзистора и ШИМ-контроллера UC3842 рекомендуется проверять также элементы, стоящие в цепи затвора транзистора силового ключа.

     

    В большинстве моделей сетевых коммутаторах, блок питания выдает одно напряжение, и с точки зрения экономии сил и средств, установить вместо вышедшего из строя блока питания готовый, с требуемыми характеристиками, будет куда более правильным и оправданным решением. С другой стороны, если специалист электронщик будет часто прибегать к практике блочного ремонта, это неизбежно приведет к деградации и потери квалификации до такой степени, что метод блочного ремонта уже не будет помогать из-за неспособности не только локализовать неисправность, но и определить причину ее появления.

    Поиск неисправностей в импульсных блоках питания

    Поиск неисправностей в импульсных блоках питания

    Помните, что при ремонте блока питания следует пользоваться развязывающим трансформатором.
    За основу для приведения конкретных примеров, взят наиболее массовый источник питания

    Посмотрим на рис.1, на котором представлена типичная схема блока питания современного ТВ. Для простоты блок питания STAND BY не показан.
    Все многообразие неисправностей блоков питания сводится чаще всего к следующим дефектам:
    1. Блок питания не работает, предохранители остаются целыми.
    2. При включении телевизора перегорает либо сетевой предохранитель,либо предохранитель в цепи напряжения +305 V (если он есть),
    3. Неисправности, проявляющиеся в занижении или завышении вторичных напряжений, причем, если первая из них связана, как правило, с короткими замыканиями в цепи нагрузки одного или нескольких вторичных напряжений, то вторая является следствием обрыва в цепи обратной связи. Обе эти неисправности в современных блоках питания, как правило, приводят к срабатыванию схем блокировки и отключению аппарата.

    Итак, если блок питания не работает, а все предохранители целы, лучше всего начинать поиск неисправностей с проверки напряжения на выходе сетевого выпрямителя. Это напряжение должно составлять около +280 — 305 V, при питающем напряжении сети переменного тока равном 220 В. Кроме того, проверьте с помощью осциллографа амплитуду пульсаций этого напряжения. Если напряжение существенно ниже +305 V или вовсе отсутствует, проверьте выпрямитель сетевого напряжения. Повышенная амплитуда пульсаций указывает на неисправность основного фильтрующего конденсатора С810 (330 mF 400V) либо на обрыв диодного выпрямителя.

    Если напряжение +305 V находится в пределах нормы (от 280 до 320 В), то можно приступать к тестированию ИБП. Сначала необходимо выяснить, не происходит ли блокировка блока питания сразу после включения, либо он вовсе не пытается запуститься. Это можно проверить, присоединив вход осциллографа к тому выводу мощного переключающего транзистора, который присоединен к первичной обмотке трансформатора, коллектор транзистора Q802 (2SD 1548). А землю осциллографа присоедините к “горячей земле” блока питания. Теперь включайте главный сетевой выключатель телевизора и смотрите что произойдет. Полученные данные очень помогут в поиске неисправности.

    И так, если после включения телевизора здесь появится на короткое время серия импульсов, то это говорит о том, что блок питания пытается запуститься, но сразу после запуска выключается какой-либо схемой блокировки (их может быть несколько). Типичной является ситуация когда, срабатывает защита от превышения предельного значения анодного напряжения на кинескопе. Поскольку эта неисправность непосредственно связана с работой выходного каскада строчной развертки. Однако при ремонте блока питания может возникнуть необходимость убедиться в наличии или в отсутствии срабатывания этой блокировки. Убедиться в этом, а также в том, что является причиной неправильной работы блока питания. Неисправность в основном потребителе энергии, выходном каскаде строчной развертки, можно следующим способом. Необходимо, во-первых, разорвать цепь подачи питания на первичную обмотку строчного трансформатора. В рассматриваемом примере это цепь +B 115 V И, во-вторых, нагрузить источник вторичного напряжения 115V блока питания резистором 500-750 Ом мощностью 50 Вт (или, что еще удобнее, лампой накаливания 200V 100 Вт). Если при этом блок питания заработает нормально, значит, поиск неисправности следует продолжить в выходном каскаде строчной развертки, а также в схемах блокировки и защиты от недопустимых режимов.

    Теперь рассмотрим ситуацию, когда после включения телевизора блок питания не пытается запуститься и вообще не подает признаков жизни.

    Сначала следует, обязательно убедившись в том, что блок питания не работает, измерить постоянное напряжение на коллекторе мощного переключающего транзистора (в данной схеме Q802 2SD1548). Если на коллекторе Q802 напряжения 305V нет, а на С810 (конденсаторе фильтра сетевого выпрямителя) есть, то, скорее всего, оборвана первичная обмотка импульсного трансформатора (в данной схеме обмотка 6—3 трансформатора T803). Перед заменой трансформатора необходимо выяснить, не было ли причиной этого обрыва короткое замыкание в цепи первичной обмотки, например, пробой транзистора Q802.

    Если трансформатор и мощный переключательный транзистор исправны, и на коллекторе этого транзистора имеется напряжение около +300 V, но блок питания не работает, проверьте, подается ли запускающее напряжение на задающий генератор. Задающий генератор рассматриваемого нами блока питания содержится в микросхеме IC801 (TDA 4601), а элементами цепи запуска являются D805, R818 соответственно (BYD33J) (20K). Блокировка задающего генератора, возникает в некоторых схемах, при отсутствии или чрезмерных пульсациях напряжения питания ждущего режима USTAND BY, вырабатываемого отдельным блоком. В данной схеме такая ситуация возникнуть не может, поскольку основной блок питания блокируется сигналом STAND BY высокого уровня +5V однако возможны такие неисправности цепей ждущего режима, приводящие к выключению блока питания, как обрыв нагрузочного резистора R838 или неисправность ключевого транзистора Q804 (BC 547A). Исправность транзистора Q804 можно проверить путем замыкания его базы на “холодный” общий провод. Если при этом блок питания запустится, значит, неисправность в блоке управления (постоянно держится сигнал STAND BY). Если блок питания таким образом запустить не удается, и напряжение на 9 выводе IC801 всегда остается меньше + 5V, то неисправными могут оказаться либо оптрон ждущего режима DR01 (CNY75C), либо транзистор Q804 (BC 547A). Если эти элементы исправны, но блок питания, тем не менее, не запускается, придется заменить микросхему контроллера ШИМ IC801.

    Теперь рассмотрим такую часто встречающуюся неисправность, как перегорание предохранителя в цепи напряжения +305 V R801 (6,2 Om) или сетевого предохранителя при включении телевизора. В этом случае в первую очередь следует проверить исправность мощного переключательного транзистора (в данной схеме Q802). В этом случае с помощью омметра проверяется наличие пробоя переходов база-эмиттер и база-коллектор, а также короткого замыкания между коллектором и эмиттером. В исправном биполярном транзисторе переходы должны вести себя как диоды.

    Следует знать, что пробой мощного переключательного транзистора не обязательно бывает самопроизвольным, а часто вызывается неисправностью какого-либо другого элемента. В частности, в рассматриваемой схеме это может быть обрыв одного из элементов демпфирующей цепи C816,C818, R821, D808, L803, короткозамкнутый виток в первичной обмотке трансформатора T803, а также неисправность микросхемы IC801. Поэтому перед установкой исправного транзистора на место желательно проанализировать возможные причины его выхода из строя и провести необходимые проверки, иначе для устранения неисправности придется запастись большим количеством дорогостоящих, мощных транзисторов.

    Например, неисправность IC801, приводящую к пробою мощного переключательного транзистора, можно установить, если включить блок питания без Q802. Выходных напряжений при таком включении, конечно, не будет. Но с помощью осциллографа можно проверить наличие импульсов на 8 выводе микросхемы ШИМ IC801, подаваемых на базу Q802 (напоминаем, что “земля” осциллографа должна быть присоединена в этом случае к “горячему” общему проводу блока питания!). И если импульсов нет. А есть постоянное, положительное напряжение, то IC801 придется заменить.

    Основные цепи однотактного блока питания

    Подводя итог вышесказанному, следует отметить, что методика поиска неисправностей в импульсных блоках питания имеет одну отличительную особенность. А именно, замена сгоревших резисторов, пробитых диодов и неисправных транзисторов не гарантирует успешного выполнения ремонта, поскольку после включения эти замененные элементы могут отказать вновь.

    Пожалуй, наибольшие трудности при ремонте импульсных блоков питания, обусловлены, их способностью предохранять себя от перегрузок по напряжению и току посредством выключения. Большинство отказов элементов или изменений нагрузки приводят к полному отключению блока, давая один и тот же симптом “мертвого шасси”. Казалось бы, в этом случае остается только гадать; вызвана ли блокировка наличием слишком большого напряжения? Или выпрямленное сетевое напряжение слишком мало? Или слишком велик ток нагрузки? Или отказал какой-либо элемент в блоке питания или в предохранительных цепях? При отсутствии последовательной логической процедуры поиск неисправности в импульсном блоке питания может быть безуспешным Тем не менее, есть возможность исключить цепи блокировки и тем самым ограничить область поиска неисправности, выполнив шесть несложных проверок. Вспомним сначала, какие основные цепи присутствуют практически во всех импульсных блоках питания. Для этого обратимся к блок-схеме на рис.2

    Цепь 1: Выпрямленное сетевое напряжение (около +305 V). Эта цепь содержит линейный первичный источник питания (обычно диодный мост и фильтрующий конденсатор), блок питания ждущего режима, первичную обмотку импульсного трансформатора и связанные с ней цепи, а также мощный переключательный транзистор.

    Цепь 2: Генератор импульсов и цепи запуска. Эта цепь вырабатывает управляющий сигнал для переключательного транзистора. Она может быть выполнена как в виде одного транзисторного каскада, так и специализированной интегральной микросхемы контроллера ШИМ.

    Цепь 3: Вторичные цепи. Вторичные цепи содержат вторичные обмотки импульсного трансформатора и компоненты (диоды, конденсаторы и т.д.), которые обеспечивают подачу энергии в нагрузки. Большинство ИБП имеют от двух до пяти нагрузок.

    Цепь 4: Обратная связь и управление. Цепи обратной связи выполняют четыре функции: — стабилизацию выходных напряжений,
    — контроль над высоким напряжением;
    — передачу на ИБП сигналов включено
    — выключено от блока управления телевизора,
    — гальваническую развязку вторичных цепей от сетевого напряжения.

    Далее предлагается процедура, которая после выполнения шести определенных шагов позволяет эффективно локализовать неисправность, возникшую в каждой перечисленных выше основных цепей. При поиске неисправностей в импульсных блоках питания придерживайтесь следующих правил:

    — помните, что неправильный выбор общего провода при измерениях не только даст неправильные результаты, но и может привести к выходу из строя некоторых компонентов.
    — “горячий” общий провод связан с первичными цепями импульсного трансформатора и используется при измерениях в цепи 1,
    — “холодный” общий провод связан с вторичными цепями импульсного трансформатора и используется при измерениях в цепях 2, 3 и 4;
    — при измерениях на входе оптопары (от цепей управления) используется “холодный” общий провод,
    — при измерениях на выходе оптопары (на цепи задающего генератора или контроллера ШИМ) используется “горячий” общий провод;
    — будьте готовы к выполнению всех необходимых измерений.
    Эффективный поиск неисправностей зависит от вашей способности быстро выполнить измерения постоянных напряжений от десятых долей до 350V и различных сигналов с размахом от 2 до 800 Вис частотой от 40 до 150 Кгц,

    Итак, первым шагом должна быть

    Шаг 1. Проверка напряжения питания ждущего режима (STAND ВТ)

    Измеряйте это напряжение на шасси, подключенном к сети через изолирующий трансформатор. Напряжение STAND BY должно иметь правильное значение. Независимо от того, работает ли блок питания, или нет (не все импульсные блоки питания снабжены отдельным источником питания STAND BY, некоторые шасси имеют для ждущего режима второй импульсный блок питания меньшего размера, в котором в качестве драйвера используется часто та же самая микросхема, что и в основном блоке питания).

    Нормально работающий источник питания STAND BY отводит подозрения от многих компонентов. Например, в этом случае можно с большой вероятностью утверждать, что микросхема драйвера и контроллера ШИМ исправна, а причина, по которой она не выдает открывающие импульсы на выходной транзистор, состоит в том, что она заблокирована каким-либо внешним сигналом.

    Итак, если напряжение STAND BY нормальное, а блок питания не подает признаков жизни, переходим к шагу 2.

    Шаг 2. Замена основной нагрузки

    Важным шагом при ремонте ИБП является отключение выхода блока питания от цепей-потребителей вторичных, напряжений. Это поможет выяснить, выключается ли блок питания из-за внутренней неисправности, или это происходит под влиянием какой-либо внешней причины. Внешние блокирующие сигналы появляются при коротких замыканиях в нагрузках, и при срабатывании цепей защиты от перенапряжения, при неправильной работе выходных каскадов строчной и кадровой разверток, а также при неисправностях самих цепей блокировки.

    Большинство ИБП не могут работать без надлежащей нагрузки, поэтому просто отсоединить все потребители энергии нельзя. Вместо отсоединенных нагрузок необходимо подключить резистивный эквивалент (хотя бы один вместо всех), Подходящим эквивалентом нагрузки является лампа накаливания, которая ограничивает до безопасного уровня потребляемый по данной вторичной цепи ток и наглядно демонстрирует наличие в этой цепи напряжения. Мощность и рабочее напряжение лампы нагрузки, соответствует эквиваленту нагрузки. Например, если в цепь питания выходного каскада строчной развертки подается вторичное напряжение +115 V, то в качестве эквивалента подходит стандартная лампа 100 Вт 220 V, а цепь 15 V следует нагружать на 18-вольтовую лампу мощностью 10 Вт.

    Вы должны разорвать цепь питания выходного каскада строчной развертки, чтобы удалить нормальную нагрузку. Убедитесь, что разрыв цепи сделан таким образом, чтобы делитель напряжения цепи обратной связи остался присоединенным к шине питания, как это показано на рис. 3

    Удаление выходного строчного транзистора разрывает цепь питания, однако не пытайтесь подключить лампу-эквивалент вместо удаленного транзистора! Первичная обмотка строчного трансформатора не рассчитана на пропускание постоянного тока, поэтому присоединяйте лампу так, как это показано на рис.3.

    Когда после замены реальной нагрузки эквивалентом вы включите блок питания, возможна одна из четырех перечисленных ниже ситуаций.

    -Лампа светится. Это показывает нормальную работу ИБП. Неисправность, по причине которой ИБП блокируется, находится во внешних цепях. Это может быть короткое замыкание, слишком высокое напряжение на кинескопе или неисправность цепей блокировки и защиты.
    -Лампа не светится, (блок питания не запускается).
    -Лампа вспыхивает, но сразу гаснет, (блок питания запускается, но сразу блокируется),
    -Лампа светится слишком ярко (отсутствует стабилизация выходного напряжения).

    Последние три ситуации показывают, что неисправность необходимо искать в самом блоке питания, для чего выполняем шаг 3.

    Шаг 3. Отключение сигнала управления от мощного транзистора

    Разорвите цепь подачи сигнала управления на базу мощного переключательного транзистора. Для этого достаточно отпаять какой-либо элемент, включенный последовательно в эту цепь. Это позволит вам искать неисправность в блоке питания, включенном в сеть, без риска получить какую-либо перегрузку, поскольку никаких выходных напряжений в этом случае производиться не будет. Например, можно будет перейти к шагу 4.

    Шаг 4. Проверка цепи 1

    Цепь I включает в себя элементы, пропускающие ток от выхода линейного источника питания — шины выпрямленного сетевого напряжения +305 V — эмиттера переключающего транзистора Проверку цепи 1 удобно проводить с использованием регулируемого автотрансформатора и осциллографа, настроенного на измерение постоянного напряжения. Присоедините вход осциллографа к коллектору, переключательного транзистора и постепенно увеличивайте переменное напряжение, подаваемое на вход ИБП, от нуля до номинального значения 220 В. При этом может наблюдаться низкий ток потребления, нормальное напряжение (около +305V при сетевом напряжении 220 В). Это показывает, что источник выпрямленного сетевого напряжения исправен, однако с элементами цепи 1 возможны проблемы. Начинайте с проверки мощного переключающего транзистора. Проверьте также резисторы и если вы полагаете, что резисторы изменили свое сопротивление, замените их заведомо исправными.

    Выпрямленное напряжение и ток, потребляемый от сети 220V равны нулю. Такая ситуация возникает при обрыве в цепи +305 V. Проверьте предохранители, защитные резисторы, диоды выпрямительного моста и первичную обмотку импульсного трансформатора. Перед заменой исправных элементов, выясните, не была ли причиной их обрыва токовая перегрузка, например, вследствие пробоя переключательного транзистора или какого-либо другого элемента.

    Выпрямленное напряжение равно нулю или мало при повышенном токе потребления от сети 220 В. Такие симптомы возникают при коротком замыкании в цепи 1 либо в самом источнике выпрямленного сетевого напряжения. Проверьте, не пробит ли переключающий транзистор, диоды выпрямителя, конденсатор фильтра. Проверьте также импульсный трансформатор на короткозамкнутые витки и на замыкание между обмотками.

    Если короткое замыкание в цепи 1 не обнаружено, переходим к шагу 5.

    Шаг 5. Проверка цепей задающего генератора

    Во-первых, убедитесь, что на микросхему задающего генератора поступает запускающее напряжение. В большинстве ИБП запускающее напряжение формируется резистивным делителем. Включенным в цепь выпрямленного сетевого напряжения +305 V. Проверка запускающего напряжения, должна быть обязательно проведена до проверки задающего генератора поскольку присоединение пробника осциллографа к контрольной точке выхода задающего генератора может послужить толчком к его запуску. Блок питания в этом случае заработает, а после выключения и последующего включения вновь не запустится, и причина его неисправности останется невыясненной.

    Во-вторых, тщательно проверьте с помощью осциллографа все параметры выходного сигнала задающего генератора: размах, частоту, уровень постоянной составляющей. Вход осциллографа должен быть присоединен к специальной контрольной точке выхода задающего генератора, а не к тому выходу, который управляет переключательным транзистором. Управляющий сигнал на переключательный транзистор может не поступать, если микросхема контроллера блокирована каким-либо внешним сигналом. Если частота сигнала более чем на 10% выше номинальной, или если на осциллограмме наблюдаются шумовые всплески и регулярные выбросы, то микросхему задающего генератора придется заменить.

    Проверив исправность микросхемы задающего генератора и контроллера ШИМ, переходим к шагу 6.

    Шаг 6. Динамический контроль цепи 4

    Эта процедура позволяет проверить, правильно ли работают элементы обратной связи и управления, входящие в цепь 4 блок-схемы (рис.2.) Неисправности в этой цепи часто вызываются отказами транзисторов, отключающими всю петлю обратной связи, Динамический контроль цепи 4 способствует эффективному и быстрому выявлению и устранению этих проблем.

    Для выполнения этой проверки вам понадобится внешний регулируемый источник питания постоянного тока, способный выдавать напряжение, равное вторичному напряжению, поступающему для питания выходного каскада строчной развертки (в нашем примере +115 В). Выход этого источника подключается к шине вторичного напряжения так, как это показано на рис. 4, а затем с помощью измерительных приборов исследуется реакция элементов цепи 4 на изменения напряжения на шине +115.
    1. Отсоедините эквивалент нагрузки (лампу накаливания) от шины +115 V.
    2. Присоедините выход внешнего источника питания к тому месту, где был отсоединен эквивалент.
    3.Присоедините вход осциллографа или вольтметра постоянного тока к управляющему входу контроллера ШИМ (выходу оптопары).
    4. Установите напряжение сети 220V и включите телевизор.
    5. Изменяйте напряжение внешнего источника питания от+100V до номинального значения +110V и далее до +115, наблюдая при этом изменение напряжения на выходе оптопары.

    Если цепь обратной связи работает нормально, то увеличение напряжения внешнего источника сопровождается увеличением напряжения на выходе оптопары. Типичной является ситуация, когда на 1 вольт изменения напряжения +B приходится 0,1 V изменения напряжения на коллекторе фототранзистора оптопары. Если напряжение остается постоянным, то в первую очередь следует проверить: Исправность оптопары (помните при выполнении измерений о правильном выборе “горячего” и “холодного” общего провода!), В дальнейшем необходимо проверить остальные элементы цепи обратной связи и управления, включая те, которые передают сигналы вкл/выкл от микропроцессора и сигналы блокировки от различных устройств защиты. Часто отказывают электролитические конденсаторы, которые должны быть проверены на обрыв, утечку и потерю емкости.

    В заключение следует отметить, что многие элементы в ИБП работают в условиях больших токов и напряжений на сравнительно высоких частотах, и поэтому их надежность имеет значение, для безопасной эксплуатации телеприемника. В связи с этим производите их замену при необходимости только на те элементы, которые

    указаных в перечне элементов фирмы-производителя.

    В статье нумерация элементов взята из принципиальной схемы телевизоров цветного изображения альбома №5 страница 104-105. А основная схема (рис. 1) взята из пособия по ремонту импульсных источников питания (Автор Ю.И. Фомичев “Источники питания с устройствами управления на ИМС”). Напряжение вторичного источника питания +B по принципиальной схеме равно 147V.

    22 сентября 2001 года С.В. Давыдов

    Как работает импульсный блок питания

    В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения.

    Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств.

    Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой  пример реализации, который может быть собран своими руками.

    Конструктивные особенности и принцип работы

    Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:

    1. Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
    2. Импульсный принцип.

    Рассмотрим, чем отличаются эти два варианта.

    БП на основе силового трансформатора

    Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В.

    Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме.

    Их принцип работы можно найти на нашем сайте.

    Упрощенная структурная схема аналогового БП

    Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.

    Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.

    Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию.

    Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм.

    Можете представить, сколько бы весила зарядка для ноутбука на его основе.

    Понижающий трансформатор ОСО-0,25 220/12

    Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.

    Импульсные устройства

    Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.

    Рисунок 3. Структурная схема импульсного блока питания

    Рассмотрим алгоритм работы такого источника:

    • Питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
    • Далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
    • На следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. Обратная связь с инвертором осуществляется через блок управления.
    • Следующий блок – ИТ, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. Помимо этого в задачу ИТ входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.

    В отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц.

    Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток.

    Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.

    Пример миниатюрных импульсных БП

    • Далее вступает в работу выходной выпрямитель, поскольку он работает с высокочастотным напряжением, для процесса необходимы быстродействующие полупроводниковые элементы, поэтому для этой цели применяют диоды Шоттки.
    • На завершавшей фазе производится сглаживание на выгодном фильтре, после чего напряжение подается на нагрузку.

    Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.

    Как работает инвертор?

    ВЧ модуляцию, можно сделать тремя способами:

    • частотно-импульсным;
    • фазо-импульсным;
    • широтно-импульсным.

    На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.

    Структурная схема ШИМ-контролера и осциллограммы основных сигналов

    Алгоритм работы устройства следующий:

    Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется UП пилообразной формы, поступающее на вход компаратора КШИМ. Ко второму входу этого устройства подводится сигнал UУС, поступающий с регулирующего усилителя.

    Сформированный этим усилителем сигнал соответствует пропорциональной разности UП (опорное напряжение) и UРС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал UУС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (UOUT).

    Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.

    Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала UРС, что приводит к увеличению или уменьшению длительности между импульсами.

    В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.

    Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.

    Сильные и слабые стороны импульсных источников

    Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:

    • Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
    • Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
    • Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
    • Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
    • Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.

    К недостаткам импульсной технологии следует отнести:

    Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.

    Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.

    Сфера применения

    Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:

    • различные виды зарядных устройств;
      Зарядки и внешние БП
    • внешние блоки питания;
    • электронный балласт для осветительных приборов;
    • БП мониторов, телевизоров и другого электронного оборудования.

    Импульсный модуль питания монитора

    Собираем импульсный БП своими руками

    Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.

    Принципиальная схема импульсного БП

    Обозначения:

    • Резисторы: R1 – 100 Ом, R2 – от 150 кОм до 300 кОм (подбирается), R3 – 1 кОм.
    • Емкости: С1 и С2 – 0,01 мкФ х 630 В, С3 -22 мкФ х 450 В, С4 – 0,22 мкФ х 400 В, С5 – 6800 -15000 пФ (подбирается),012 мкФ, С6 — 10 мкФ х 50 В, С7 – 220 мкФ х 25 В, С8 – 22 мкФ х 25 В.
    • Диоды: VD1-4 – КД258В, VD5 и VD7 – КД510А, VD6 – КС156А, VD8-11 – КД258А.
    • Транзистор VT1 – KT872A.
    • Стабилизатор напряжения D1 — микросхема КР142 с индексом ЕН5 – ЕН8 (в зависимости от необходимого напряжения на выходе).
    • Трансформатор Т1 – используется ферритовый сердечник ш-образной формы размерами 5х5. Первичная обмотка наматывается 600 витков проводом Ø 0,1 мм, вторичная (выводы 3-4) содержит 44 витка Ø 0,25 мм, и последняя – 5 витков Ø 0,1 мм.
    • Предохранитель FU1 – 0.25А.

    Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.

    Источник: https://www.asutpp.ru/impulsnyj-blok-pitaniya.html

    Ремонт импульсных блоков питания своими руками

    instrument.guru > Электроника > Ремонт импульсных блоков питания своими руками

    Оглавление:

    • Общие принципы работы импульсных блоков питания
    • Рабочий инструмент для проверки импульсных блоков питания
    • Основные неисправности и методы проверки импульсных блоков питания
    • Самостоятельная и качественная пайка
    • Основные этапы ремонта импульсных блоков питания
    • Неисправности импульсных блоков питания на 12 вольт

    В последнее время многие производители импульсных блоков питания решают вопрос ремонта или замены своего «детища» кардинально.

    Они просто делают монолитные импульсные блоки, не оставляя практически никаких вариантов начинающим радиолюбителям для их ремонта.

    Но если вы стали обладателем разборного импульсного блока питания, то в умелых руках и владея определёнными знаниями и элементарными навыками замены радиоэлементов, вы легко сможете самостоятельно продлить срок его службы.

    Общие принципы работы импульсных блоков питания

    Давайте сначала разберёмся с общим принципом работы любого импульсного блока питания.

    Тем более что основные рабочие функции и даже выходные напряжения для определённых моделей, которые необходимы для функционирования всей системы (будь то телевизор или другой вариант электронного устройства) у всех импульсников практически одинаковы.

    Различаются только индивидуальные схематические рисунки и соответственно применяемые радиоэлементы и их параметры. Но это уже не столь важно для понимания общего принципа его работы.

    Для простых любителей или «чайников»: общий принцип работы импульсных блоков питания заключается в трансформации переменного напряжения, которое подаётся непосредственно из розетки 220 В в постоянные выходные напряжения для запуска и работы всех остальных блоков системы.

    Осуществляется такая трансформация с помощью соответствующих импульсных радиоэлементов. Основными из них являются импульсный трансформатор и транзистор, которые обеспечивают рабочее функционирование всех электропотоков. Для проведения ремонта нужно знать как запускается этот блок.

    А для начала проверить наличие входного рабочего напряжения, предохранитель, диодный мост и так далее.

    Рабочий инструмент для проверки импульсных блоков питания

    Для ремонта импульсного блока питания, вам потребуется обычный, даже простенький мультиметр, который проверит постоянное и переменное напряжение. С помощью функций омметра, прозвонив сопротивления радиодеталей, вы также можете быстро проверить исправность предохранителей, дросселей, рабочее сопротивление резисторов, «бочонки» электролитических конденсаторов. А также транзисторные диодные переходы или диодные мосты и прочие виды радиоэлементов и их связи в любой электронной схеме (иногда даже не выпаивая их полностью).

    Проверять импульсный блок сначала нужно в «холодном» режиме.

    В этом случае прозваниваются все визуально подозрительные (вздувшиеся или горелые радиодетали), которые поддаются «холодной» проверке без подачи рабочего напряжения.

    Визуально испорченные радиодетали следует немедленно заменить на новые. Если облезла маркировка воспользуйтесь принципиальной схемой или найдите соответствующий вариант в интернете.

    Замену производить нужно только с разрешающим допуском по определённым параметрам, который вы можете найти для любого радиоэлемента в специализированной литературе или в прилагающейся к прибору схеме. Это безопасный метод, потому что импульсные блоки питания очень коварны своими электрическими разрядами.

    Не забывайте и то, что при обнаружении нерабочего радиоэлемента, нужно проверить соседние с ним детали. Зачастую резкие перепады напряжения при сгорании одного элемента, влекут за собой выход из строя соседних.

    В процессе практической деятельности по ремонту определённых моделей вы будете логически вычислять неисправность исходя из результата состояния ремонтируемого объекта.

    К примеру, даже по определённому запаху (запах тухлых яиц при выходе из строя электролита), при включении по монотонному звуку или треску в процессе работы блока и прочих дефектах, которые могут возникнуть в процессе работы любого электронного прибора.

    В рабочем режиме проверка импульсного блока питания возможна только при нагрузке всей системы – не вздумайте отключить нагрузочные шины телевизора при проверке. Можно создать нагрузку искусственным путём с помощью подключения специально собранного нагрузочного эквивалента.

    Основные неисправности и методы проверки импульсных блоков питания

    Как включить и выставить определённый режим мультиметра каждый может разобраться сам, даже школьник.

    Перед началом проверки убедитесь в работоспособности сетевого кабеля или выключателя, которые можно определить визуально или с помощью мультиметра. Не забудьте при любой проверке разрядить электролитические конденсаторы.

    Они накапливают и удерживают довольно приличный заряд на протяжении определённого времени, даже после выключения всей системы.

    1. Для этого закоротите контакт любого электролита, а лучше пройдитесь по всей плате изолированным щупом (с номинальным сопротивлением несколько кОм и мощностью больше 0,5 Вт), который другим концом будет подсоединён к заземлению. Старайтесь заземлять только точечные контакты, не прикасаясь одновременно к двум, иначе можете испортить радиодетали. Иногда таким способом вы сможете убрать «коротыш». Это короткое замыкание в схеме, которое может возникнуть при выходе из строя некоторых элементов блока питания.
    2. Как уже говорилось выше все вздувшиеся и чёрные радиоэлементы нужно сразу заменить на подобные, но не спешите после этого сразу опробовать весь блок. Прозвоните соседние детали и при необходимости замените их.
    3. Прозвонить силовые и выпрямительные мосты (при необходимости выпаять), обычно они выполнены на диодах, которые проверяются омметром и имеют односторонний переход. Для проверки подключите щупы мультиметра ко входу и выходу диода (сначала чёрный щуп к одному контакту, а красный к другому, а затем меняя местами), вы должны убедиться, что он не пробит. То есть, вы должны увидеть определённое числовое показание мультиметра, когда подключите щупы в правильном направлении плюс и минус. Единица будет означать исправность перехода в обратном направлении (т. е. непробитый переход). Таким способом нужно проверить все сомнительные детали с диодными переходами.

    Возможные причины выхода из строя импульсного блока питания и необходимая замена нерабочих радиоэлементов:

    1. При сгорании предохранителя весь блок обесточивается. Заменить перегоревший контакт очень просто. Используйте обычный проволочный волосок, который наматывается поверх предохранителя или припаивается непосредственно к его контактам. Необходимо учитывать толщину волоска, которая рассчитана на определённую силу тока. Иначе вы рискуете в последующем вывести из строя весь импульсный блок, если предохранитель не сработает.
    2. Если полностью отсутствует выходное напряжение, возможно, неисправен соответствующий конденсатор или дроссель, который нужно заменить или поменять обмотку. Для этого нужно размотать повреждённый провод и намотать новый с соответственным количеством витков и подходящим сечением. После чего самодельный дроссель впаивается на своё рабочее место.
    3. Проверить все диодные мосты и переходы. Как это сделать описано выше. Не забывайте при установке новых деталей производить самостоятельную, а главное, качественную пайку.

    Самостоятельная и качественная пайка

    1. Предметы первой необходимости при ремонте это паяльник, канифоль и «отсос». Отсос – механический (или электрический) прибор, который применяется во время выпаивания элементов и служит для предотвращения перегрева во время пайки. Принцип его работы заключается в резком втягивании в себя расплавленного олова, которое при сильном нагреве может вывести радиоэлемент из строя. Особенно это касается интегральных микросхем, которые очень чувствительны к таким температурным скачкам. Отсосы бывают механические и электрические. Хорошо и правильно подобранный по мощности паяльник в сочетании с отсосом являются отличным тандемом для качественной пайки.
    2. Для выпаивания и обратной установки необходимых радиоэлементов можно пользоваться не только паяльником и отсосом, но и термовоздушной паяльной станцией. Её несложно соорудить и самому. Обычный вентилятор можно использовать в качестве нагнетателя, а спираль буде нагревающим элементом. Схема на тиристоре будет оптимальным вариантом для регулировки температуры. Такая станция ещё удобна и для прогрева всех подозрительных и некачественных паек, которые могут стать причиной появления микротрещин, и как результат – плохого контакта.

    Правильная и качественная пайка является одним из основополагающих навыков, которым должен овладеть любой начинающий радиолюбитель. От этого зависит конечный результат всего ремонта и срок дальнейшей эксплуатации отремонтированного прибора.

    Основные этапы ремонта импульсных блоков питания

    1. Несмотря на то что практически все импульсные блоки питания работают почти по одному принципу, схематические схемы для разных моделей электроприборов могут существенно различаться. Поэтому прежде чем приступить к ремонту постарайтесь найти электрическую принципиальную схему именно на тот объект, который собираетесь ремонтировать. Это поможет и для замеров конкретных рабочих напряжений в определённых точках, чтобы быстрее понять и найти неисправный элемент в цепи.
    2. Как бы теоретически вы ни были подкованы в этой области, без практических навыков вам не обойтись. Элементарные знания и практическое использование мультиметра или осциллографа, а также практические навыки по замене радиоэлементов с помощью паяльника и припоя вам просто необходимы в процессе ремонта.
    3. Если первые два этапа выполнены и вы готовы начать – разберите и почистите устройство с помощью пылесоса и произведите визуальную проверку блока (обратите внимание на вздутые конденсаторы, гарь и прочие механические дефекты).
    4. Проверьте электроприборами соответствие рабочих напряжений согласно схеме или просто подозрительные радиоэлементы. Осциллографом определите соответствие необходимых пульсаций в контрольных точках. После этого делайте выводы и производите необходимые замены.

    Возможные неисправности типовых импульсных блоков питания на примере телевизора или компьютера:

    • Если нет свечения светодиода дежурного режима телевизора, прозвоните сетевой шнур и предохранитель блока питания. Когда они в порядке проверьте дальше выпрямительный мост, транзисторы, стабилитроны и выходные напряжения микросхемы. Не забудьте устранить возможные «коротыши». А также можете пойти от обратного. Для этого замерьте выходные напряжения, которые должны подаваться на остальные блоки и если найдёте несоответствие – проверяйте всю цепочку в обратном порядке. Включайте при этом не только измерительные приборы, но и свою логику. Для этого, конечно, нужны теоретические знания работы тока в конкретном блоке. Но если вы имеете представление хотя бы о простых законах Ома – сделать это будет несложно.
    • Для ремонта компьютерного блока питания можно начать с обычных первоначальных проверок любого электроблока. Маленькое отступление и совет: убедитесь в точности своей диагностики. Если вы неуверены в правильности своих выводов по поводу неисправности того или иного блока – просто замените его на заведомо исправный. Если замена устранила дефект или сделала работоспособной систему, значит, вы не ошиблись и можете смело приступать к ремонту заменяемого блока. Для этого проверяются все предохранители и диодные переходы. Проверка обмоток трансформатора тоже будет не лишней. Запомните одно, и это, главное. Даже если вы не имеете понятия о процессах, происходящих, в радиоэлементах под воздействием разного тока, научитесь просто читать электрическую схему и по ней измерять и сравнивать нужные напряжения и делать логические выводы. Это как разгадывание кроссворда – занимательно и интересно.

    Неисправности импульсных блоков питания на 12 вольт

    Сложность замены любого импульсного блока питания на 12 В заключается в поиске нужной модели, а они очень многообразны. Поэтому найти такой блок с нужным выходным напряжением и силой тока не всегда представляется возможным, если он быстро понадобился. Иногда проще, при незначительной поломке, восстановить его работоспособность самому. Вот некоторые советы для этого:

    • Если полностью пропало выходное напряжение нужно вскрыть корпус и проверить электролитический конденсатор со средней ёмкостью до 70 мкФ. При выходе его из строя он обычно вспучивается, хотя дополнительно можно проверить и мультиметром.
    • Также проверяется предохранитель и выпрямительный мост, который часто выходит из строя при сетевых перегрузках.
    • После замены неисправных радиодеталей проверьте соседние, которые могли пострадать от большого выхода энергии сгоревших деталей.

    Надеемся, эта статья дала общее представление об устройстве импульсных блоков питания. А, возможно, даже и заинтересовала многих начинающих радиолюбителей, которые хотят повысить свои профессиональные навыки.

    Источник: https://instrument.guru/elektronika/remont-impulsnyh-blokov-pitaniya-svoimi-rukami.html

    Что такое импульсный блок питания и где применяется

    Импульсный блок питания служит для преобразования входного напряжения до величины, необходимой внутренним элементам устройства. Иное название импульсных источников, получившее широкое распространение, – инверторы.

    Что это такое?

    Инвертор – это вторичный источник питания, который использует двойное преобразование входного переменного напряжения. Величина выходных параметров регулируется путем изменения длительности (ширины) импульсов и, в некоторых случаях, частоты их следования. Такой вид модуляции называется широтно-импульсным.

    Принцип работы импульсного блока питания

    В основе работы инвертора лежит выпрямление первичного напряжения и дальнейшее его преобразование в последовательность импульсов высокой частоты. Этим он отличается от обычного трансформатора.

    Выходное напряжение блока служит для формирования сигнала отрицательной обратной связи, что позволяет регулировать параметры импульсов. Управляя шириной импульсов, легко организовать стабилизацию и регулировку выходных параметров, напряжения или тока.

    То есть это может быть как стабилизатор напряжения, так и стабилизатор тока.

    Количество и полярность выходных значений может быть самым различным в зависимости от того, как работает импульсный блок питания.

    Разновидности блоков питания

    Применение нашли несколько типов инверторов, которые отличаются схемой построения:

    • бестрансформаторные;
    • трансформаторные.

    Первые отличаются тем, что импульсная последовательность поступает непосредственно на выходной выпрямитель и сглаживающий фильтр устройства. Такая схема имеет минимум комплектующих. Простой инвертор включает в себя специализированную интегральную микросхему – широтно-импульсный генератор.

    Из недостатков бестрансформаторных устройств главным является то, что они не имеют гальванической развязки с питающей сетью и могут представлять опасность удара электрическим током. Также они обычно имеют небольшую мощность и выдают только 1 значение выходного напряжения.

    Более распространены трансформаторные устройства, в которых высокочастотная последовательность импульсов поступает на первичную обмотку трансформатора. Вторичных обмоток может быть сколько угодно много, что позволяет формировать несколько выходных напряжений. Каждая вторичная обмотка нагружена на собственный выпрямитель и сглаживающий фильтр.

    Мощный импульсный блок питания любого компьютера построен по такой схеме, которая имеет высокую надежность и безопасность. Для сигнала обратной связи здесь используется напряжение 5 или 12 Вольт, поскольку эти значения требуют максимально точной стабилизации.

    Использование трансформаторов для преобразования напряжения высокой частоты (десятки килогерц вместо 50 Гц) позволило многократно снизить их габариты и массу и использовать в качестве материала сердечника (магнитопровода) не электротехническое железо, а ферромагнитные материалы с высокой коэрцитивной силой.

    На основе широтно-импульсной модуляции построены также преобразователи постоянного тока. Без использования инверторных схем преобразование было связано с большими трудностями.

    Схема БП

    В схему самой распространенной конфигурации импульсного преобразователя входят:

    • сетевой помехоподавляющий фильтр;
    • выпрямитель;
    • сглаживающий фильтр;
    • широтно-импульсный преобразователь;
    • ключевые транзисторы;
    • выходной высокочастотный трансформатор;
    • выходные выпрямители;
    • выходные индивидуальные и групповые фильтры.

    Назначение помехоподавляющего фильтра состоит в задерживании помех от работы устройства в питающую сеть. Коммутация мощных полупроводниковых элементов может сопровождаться созданием кратковременных импульсов в широком спектре частот. Поэтому здесь необходимо в качестве проходных конденсаторов фильтрующих звеньев использовать разработанные специально для этой цели элементы.

    Выпрямитель служит для преобразования входного переменного напряжения в постоянное, а установленный следом сглаживающий фильтр устраняет пульсации выпрямленного напряжения.

    В том случае когда используется преобразователь постоянного напряжения, выпрямитель и фильтр становятся ненужными, и входной сигнал, пройдя цепи помехоподавляющего фильтра, подается непосредственно на широтно-импульсный преобразователь (модулятор), сокращенно ШИМ.

    ШИМ является самой сложной частью схемы импульсного источника питания. В его задачу входят:

    • генерация высокочастотных импульсов;
    • контроль выходных параметров блока и коррекция импульсной последовательности в соответствии с сигналом обратной связи;
    • контроль и защита от перегрузок.

    Сигнал с ШИМ подается на управляющие выводы мощных ключевых транзисторов, включенных по мостовой или полумостовой схеме. Силовые выводы транзисторов нагружены на первичную обмотку выходного трансформатора высокой частоты.

    Вместо традиционных биполярных транзисторов используются IGBT- или MOSFET-транзисторы, которые отличаются малым падением напряжения на переходах и высоким быстродействием.

    Улучшенные параметры транзисторов способствуют уменьшению рассеиваемой мощности при одинаковых габаритах и технических параметрах конструкции.

    Выходной импульсный трансформатор использует одинаковый с классическим принцип преобразования. Исключением является работа на повышенной частоте. Как следствие, высокочастотные трансформаторы при одинаковых передаваемых мощностях имеют меньшие габариты.

    Напряжение со вторичной обмотки силового трансформатора (их может быть несколько) поступает на выходные выпрямители. В отличие от входного выпрямителя, диоды выпрямителя вторичной цепи должны иметь повышенную рабочую частоту. Наилучшим образом на данном участке схемы работают диоды Шоттки. Их преимущества перед обычными:

    • высокая рабочая частота;
    • сниженная емкость p-n перехода;
    • малое падение напряжения.

    Назначение выходного фильтра импульсного блока питания – снижение до необходимого минимума пульсаций выпрямленного выходного напряжения. Поскольку частота пульсаций намного выше, чем у сетевого напряжения, то нет необходимости в больших значениях емкости конденсаторов и индуктивности у катушек.

    Сфера применения импульсного блока питания

    Импульсные преобразователи напряжения применяются в большинстве случаев вместо традиционных трансформаторных с полупроводниковыми стабилизаторами.

    При одинаковой мощности инверторы отличаются меньшими габаритными размерами и массой, высокой надежностью, а главное – более высоким КПД и возможностью работать в широком диапазоне входного напряжения.

    А при сравнимых габаритах максимальная мощность инвертора в несколько раз выше.

    В такой области, как преобразование постоянного напряжения, импульсные источники практически не имеют альтернативной замены и способны работать не только по понижению напряжения, но и вырабатывать повышенное, организовывать смену полярности. Высокая частота преобразования существенно облегчает фильтрацию и стабилизацию выходных параметров.

    Малогабаритные инверторы на специализированных интегральных микросхемах используются в качестве зарядных устройств всевозможных гаджетов, а их надежность такова, что срок службы зарядного блока может превосходить время работоспособности мобильного устройства в несколько раз.

    Драйверы питания на 12 Вольт для включения светодиодных источников освещения также построены по импульсной схеме.

    Как сделать импульсный блок питания своими руками

    Инверторы, особенно мощные, имеют сложную схемотехнику и доступны для повторения только опытным радиолюбителям.

    Для самостоятельной сборки сетевых источников питания можно рекомендовать несложные маломощные схемы с использованием специализированных микросхем ШИМ-контроллеров.

    Такие ИМС имеют малое количество элементов обвязки и имеют отработанные типовые схемы включения, которые практически не требуют регулировки и настройки.

    При работе с самодельными конструкциями или ремонте промышленных устройств необходимо помнить, что часть схемы всегда будет находиться под потенциалом сети, поэтому требуется соблюдать меры безопасности.

    Источник: https://odinelectric.ru/equipment/chto-takoe-impulsnyj-blok-pitaniya-i-gde-primenyaetsya

    Импульсный блок питания

    Для обычного человека, не вникающего в электронику, был незаметен переход всех питающих устройств с линейных на импульсные. Именно импульсные источники (ИИП) питания устанавливаются во всей современной аппаратуре. Основная причина перехода на такой тип преобразователей напряжения — это уменьшение габаритов. Так как всё время, с начала появления и изобретения, электронные приборы требуют постоянного уменьшения их размеров. На рисунке изображен для сравнения габариты обычного и импульсного источника постоянного тока. Не вооруженным глазом видны различия в размерах.

    Принцип действия ИИП и его устройство

    Импульсный источник питания — это устройство, которое работает по принципу инвертора, то есть сначала преобразует переменное напряжение в постоянное, а потом снова из постоянного делает переменное нужной частоты.

    В конечном итоге последний каскад преобразователя всё равно основан на выпрямлении напряжения, так как большинство приборов всё же работают на пониженном постоянном напряжении. Суть уменьшения габаритов этих питающих и преобразующих устройств построена на работе трансформатора. Дело в том, что трансформатор не может работать с постоянным напряжением.

    Просто-напросто на выходе вторичной обмотки при подаче на первичную постоянного тока не будет индуктироваться ЭДС (электродвижущая сила). Для того чтобы на вторичной обмотке появилось напряжения оно должно меняться по направлению или же по величине. Переменное напряжение обладает этим свойством, ток в нём меняет своё направление и величину с частотой 50 Гц.

    Однако, чтобы уменьшить габариты самого блока питания и соответственно трансформатора, являющегося основой гальванической развязки, нужно увеличить частоту входного напряжения.

    При этом импульсные трансформаторы, в отличие от обычных линейных, имеют ферритовый сердечник магнитопровода, а не стальной из пластин. И также современные блоки питания работающие по этому принципу состоят из:

    1. выпрямителя сетевого напряжения;
    2. генератора импульсов, работающего на основе ШИМ (широтно-импульсная модуляция) или же триггера Шмитта;
    3. преобразователя постоянного стабилизированного напряжения.

    После выпрямителя сетевого напряжения генератор импульсов с помощью ШИМ генерирует его в переменное с частотой около 20–80 кГц. Именно это повышение с 50 Гц до десятков кГц и позволяет значительно уменьшить, и габариты, и массу источника питания.

    Верхний диапазон мог быть и больше, однако, тогда устройство будет создавать высокочастотные помехи, которые будет влиять на работу радиочастотной аппаратуры. При выборе ШИМ стабилизации обязательно нужно учитывать также и высшие гармоники токов.

    Даже при работе на таких частотах эти импульсные устройства вырабатывают высокочастотные помехи. А чем больше их в одном помещении или в одном закрытом помещении тем больше их в радиочастотах. Для поглощения этих негативных влияний и помех устанавливаются специальные помехоподавляющие фильтры на входе устройства и на его выходе.

    Это наглядный пример современного импульсного блока питания применяемого в персональных компьютерах.

    A — входной выпрямитель. Могут применяться полумостовые и мостовые схемы. Ниже расположен входной фильтр, имеющий индуктивность;
    B — входные с довольно большой емкостью сглаживающие конденсаторы.

    Правее установлен радиатор высоковольтных транзисторов;
    C — импульсный трансформатор.

    Правее смонтирован радиатор низковольтных диодов;
    D — катушка выходного фильтра, то есть дроссель групповой стабилизации;
    E — конденсаторы выходного фильтра.

    Катушка и большой жёлтый конденсатор, находящиеся ниже E, являются компонентами дополнительного входного фильтра, установленного непосредственно на разъёме питания, и не являющегося фрагментом основной печатной платы.

    Если схему радиолюбитель изобретает сам то он обязательно заглядывает в справочник по радиодеталям. Именно справочник является основным источником информации в данном случае.

    Обратноходовой импульсный источник питания

    Блок питания из энергосберегающих ламп

    Это одна из разновидностей импульсных источников питания, имеющих гальваническую развязку как первичных, так и вторичных цепей.

    Сразу был изобретён именно этот вид преобразователей, который был запатентован ещё в далёком 1851 году, а его усовершенствованный вариант применялся в системах зажигания и в строчной развертке телевизоров и мониторов, для подачи высоковольтной энергии на вторичный анод кинескопа.

    Основная часть этого блока питания тоже трансформатор или может быть дроссель. В его работе есть два этапа:

    1. Накопление электрической энергии от сети или от другого источника;
    2. Вывод накопленной энергии на вторичные цепи полумоста.

    Во время размыкания и замыкания первичной цепи во вторичной появляется ток. Роль размыкающего ключа выполнял чаще всего транзистор. Узнать параметры которого нужно обязательно использовать справочник. управление же этим транзистором чаще всего полевым выполняется за счёт ШИМ-контроллера.

    Управление ШИМ-контроллером

    Преобразование сетевого напряжения, которое уже прошло этап выпрямления, в импульсы прямоугольной формы выполняется с какой-то периодичностью.

    Период выключения и включения этого транзистора выполняется с помощью микросхем. ШИМ-контроллеры этих ключей являются основным активным управляющим элементом схемы.

    В данном случае как прямоходовой, так и обратноходовой источник питания имеет трансформатор, после которого происходит повторное выпрямление.

    Для того чтобы с увеличением нагрузки не падало выходное напряжение в ИИП была разработана обратная связь которая была заведена непосредственно в ШИМ-контроллеры. Такое подключение даёт возможность полной стабилизации управляемым выходным напряжения путём изменения скважности импульсов. Контроллеры, работающие на ШИМ модуляции, дают большой диапазон изменения выходного напряжения.

    Микросхемы для импульсных источников питания могут быть отечественного или зарубежного производства. Например, NCP 1252 – ШИМ-контроллеры, которые имеют управление по току, и предназначены для создания обоих видов импульсных преобразователей. Задающие генераторы импульсных сигналов этой марки показали себя как надёжные устройства.

    Контроллеры NCP 1252 обладают всеми качественными характеристиками для создания экономически выгодных и надежных блоков питания. Импульсные источники питания на базе этой микросхемы применяются во многих марках компьютеров, телевизоров, усилителей, стереосистем и т. д.

    Заглянув в справочник можно найти всю нужную и подробную информацию обо всех её рабочих параметрах.

    Преимущество импульсных источников питания перед линейными

    Блок питания для шуруповерта 12в своими руками

    В источниках питания на импульсной основе видны целый ряд преимуществ, которые качественно выделяют их от линейных. Вот основные из них:

    1. Значительное снижение габаритов и массы устройств;
    2. Уменьшение количества дорогостоящих цветных металлов, таких как медь, используемых в их изготовлении;
    3. Отсутствие проблем при возникновении короткого замыкания, в большей степени это касается обратноходовых устройств;
    4. Отличная плавная регулировка выходного напряжения, а также его стабилизация путём введения обратной связи в ШИМ-контроллеры;
    5. Высокие показатели КПД.

    Однако, как и всё в этом мире, импульсные блоки имеют свои недостатки:

    1. Излучение помех, которые могут появляется при неисправных помехоподавляющих цепочек, чаще всего это высыхание электролитических конденсаторов;
    2. Нежелательная работа их без нагрузки;
    3. Более сложная схема с применением большего количества деталей для поиска аналогов которых необходим справочник.

    Применение источников питания на основе высокочастотной модуляции (в импульсных) в современной электронике как в быту, так и на производстве, существенно повлияли на развитие всей электронной техники.

    Они давно вытеснили с рынка устаревшие источники, построенные на традиционной линейной схеме, и в дальнейшем будут только усовершенствоваться.

    ШИМ-контроллеры при этом являются сердцем этого аппарата и развитие их функциональности и технических характеристик постоянно улучшается.

    Видео о работе импульсного источника питания

    Источник: https://amperof.ru/elektropribory/impulsnyj-blok-pitaniya.html

    Импульсные блоки питания

    ПРИНЦИП РАБОТЫ ПРИМЕНЕНИЕ

    Блок питания — это устройство, преобразующее сетевое напряжения до уровня, необходимого для работы электрических схем различных приборов. Вторичные источники электропитания часто используются для бытовой техники и промышленных установок, содержащих электронику.

    Изначально источники вторичного напряжения строились по схеме, которую принято называть трансформаторной. Принцип её работы состоит в трансформации сетевого напряжения до необходимого уровня с последующим его выпрямлением и стабилизацией.

    Типовая схема традиционного источника электропитания состоит из следующих элементов:

    • силовой понижающий трансформатор, содержащий одну или несколько вторичных обмоток, в зависимости от потребностей питаемой схемы; выпрямительный блок, как правило, выполняется по схеме диодного моста;
    • конденсатор фильтра, включенный между положительным и отрицательным выводами моста и необходимый для сглаживания пульсаций выпрямленного напряжения, иногда для улучшения параметров фильтра, в схему добавляется дроссель;
    • стабилизатор выходного напряжения, построенный на основе специализированной микросхемы или содержащий ключевой транзистор и небольшую схему управления.

    Эти схемы надёжны в работе, не создают высокочастотных помех, обеспечивают гальваническую развязку между первичными и вторичными цепями. Тем не менее есть ряд причин по которым они уступают блокам питания импульсного типа.

    Трансформаторы, преобразующие напряжение с частотой 50 герц, отличаются относительно большими габаритами и весом. Это свойство трансформаторных источников электропитания вступило в противоречие с общими принципами миниатюризации бытовых и промышленных электроприборов.

    Проблему удалось решить путём создания импульсных или инверторных блоков. Такие параметры трансформатора, как сечение магнитопровода, количество витков обмотки и сечение провода, существенно уменьшаются с увеличением частоты преобразуемого напряжения.

    Это также относится к ёмкости, следовательно, и к габаритам фильтрующих конденсаторов. Этот базовый принцип электротехники был послужил основой при создании вторичных источников питания нового типа.

    Как работает импульсный блок питания

    Принцип работы импульсного блока питания заключается в ряде последовательных преобразований питающего напряжения:

    • выпрямление входного напряжения;
    • инвертирование, то есть, генерация сигнала с частотой от десятков до сотен килогерц;
    • трансформация высокочастотных импульсов до требуемого уровня;
    • выпрямление и фильтрация полученного напряжения.

    Цепочка преобразований в описании принципа работы импульсного блока питания выглядит достаточно громоздкой и даже лишённой смысла. Однако нужно учесть что в данной схеме преобразуется напряжение, частота которого в отдельных моделях составляет 200 кГц (а не 50 Гц, как в трансформаторных источниках питания).

    Трансформаторы, которые работают на высоких частотах, называют импульсными. Обычно они используют магнитопровод тороидальной формы (в виде бублика) небольшого размера. Это позволило уменьшить вес и габариты блока той же мощности более чем на порядок.

    Тор обычно изготавливается штамповкой из пермаллоя — сплава, состоящего из железа и никеля, магнитопровод же низкочастотного трансформатора набирается из тонких пластин электротехнической стали.

    Принцип инверторного преобразования дает возможность создать сверхминиатюрные аппараты электродуговой сварки, работа которых возможна от обычной бытовой розетки, способные сваривать металл до 10 мм толщиной, легко переносимые в небольшой сумке с плечевым ремнём.

    Базовые принципы, на которых основано устройство импульсного блока питания не новы, всё находится в рамках давно устоявшихся представлений об электричестве. Что же мешало создать их раньше? Причина в технологии.

    Главными электронными компонентами инверторного преобразователя импульсного блока являются элементы схемы, способные работать с высокими частотой и напряжением и большими токовыми нагрузками.

    Раньше, компонентов, отвечающих этим требованиям, просто не существовало.

    Настоящий прорыв в развитии и распространении инверторных технологий произошёл после того, как мировым производителям электроники удалось наладить массовое производство мощных IGBT – транзисторов, а также полевых транзисторов по технологии MOSFET. Они отличаются очень малым значением тока управления, что обеспечивает высокий КПД блока.

    Кроме мощных транзисторных ключей, инвертор содержит времязадающие цепочки, генерирующие высокочастотные сигналы управления транзисторами.

    Применение в этом качестве цифровых микросхем ШИМ – контроллеров позволяет ещё более миниатюризировать электронную часть. Контроллер широтно импульсного модулирования формирует прямоугольные периодические импульсы. В целом схемотехнически импульсные блоки питания относительно просты.

    Стабилизация выходного напряжения осуществляется за счёт обратной связи этого параметра с задающими цепями ШИМ – контроллера. Принцип работы обратной связи — при отклонении уровня контролируемого параметра на выходе от номинального значения происходит изменение скважности импульсов, формируемых контроллером.

    Скважностью импульсов называется безразмерная величина, равная отношению периода чередования этих импульсов к их длительности. Таким образом, скважность изменяется от 0 до 1.

    Увеличение уровня выходного напряжения вызывает снижение скважности и наоборот, то есть, имеет место отрицательная обратная связь. Скважность, задаваемая контроллером, определяет режим работы ключевых транзисторов. Чем выше значение скважности, тем большую часть периода транзистор открыт, и тем больше среднее значение напряжение за период.

    Описанный принцип стабилизации обеспечивает работу блока питания в очень широком диапазоне изменения питающего напряжения. Резюмируя сказанное, преимущества импульсных блоков питания таковы:

    • малые габариты и вес по сравнению с трансформаторными источниками питания;
    • схемотехническая простота, обусловленная применением интегральных электронных компонентов;
    • возможность работы в широком диапазоне изменения значений входного напряжения.

    Применение импульсных блоков

    Источники вторичного напряжения инверторного типа используются повсеместно, как в быту, так и в промышленной технике. Перечень устройств и бытовых приборов, в которых реализована схема электропитания, работающая по принципу инверторного преобразователя:

    • все виды компьютерной техники;
    • телевизионная и звуковоспроизводящая аппаратура;
    • пылесосы, стиральные машины, кухонная техника;
    • источники бесперебойного электроснабжения различного назначения;
    • системы видеонаблюдения, комплексы охранной сигнализации.

    Исполнение инверторных источников зависит от условий эксплуатации и назначения. Блоки питания, встроенные в электроприбор, выполняются бескорпусными. Они могут располагаться внутри основного изделия на отдельной плате, или быть интегрированы в общую плату электроприбора.

    Существуют источники электропитания для автономного применения, к ним могут подключаться различные потребители. Примером могут служить зарядные устройства, источники электропитания систем видеонаблюдения, охранной и пожарной сигнализации. Такие блоки питания размещаются в отдельном корпусе и комплектуются штекерами и проводами для подключения.

      *  *  *

    © 2014-2019 г.г. Все права защищены.Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.

    Источник: https://video-praktik.ru/blok_pitanija_impulsnyj.html

    Как проверить ШИМ контроллер мультиметром и с применением тестера радиодеталей

    Широтно–импульсные преобразователи являются конструктивной частью импульсных блоков питания электронных устройств. Разберем, как проверить ШИМ контроллер с применением мультиметра, на примере материнской платы компьютера.

    Проверка на материнской плате

    Итак, при включении питания платы, срабатывает защита. В первую очередь, необходимо проверить мультиметром сопротивление плеч стабилизатора.

    Для этих целей также может быть использован тестер радиодеталей. Если одно из них показывает короткое замыкание, то есть, измеренное сопротивление составляет меньше 1 Ома, значит, пробит один из ключевых полевых транзисторов.

    Выявление пробитого транзистора в случае, если стабилизатор однофазный, не составляет труда – неисправный прибор при проверке мультиметром показывает короткое замыкание. Если схема стабилизатора многофазная, а именно так питается процессор, имеет место параллельное включение транзисторов. В этом случае, определить поврежденный прибор можно двумя путями:

    1. произвести демонтаж транзистора и проверить мультиметром сопротивление между его выводами на предмет пробоя;
    2. не выпаивая транзисторы, замерить и сравнить сопротивление между затвором и истоком в каждой из фаз преобразователя. Поврежденный участок определяется по более низкому значению сопротивления.

    Второй способ работает не во всех случаях. Если пробитый элемент определить не удалось, придется все же выпаять транзистор.

    Далее производится замена поврежденного транзистора, а также, установка на место всех выпаянных в процессе диагностики радиоэлементов. После этого можно попытаться запустить плату.

    Первое включение после ремонта лучше выполнить, сняв процессор и выставив соответствующие перемычки. Если первый запуск был успешным, можно проводить тест с нагрузкой, контролируя температуру мосфетов.

    Неисправности ШИМ контроллера могут проявляться так же, как и пробой мосфетов, то есть уходом блока питания в защиту. При этом проверка самих транзисторов на пробой результата не дает.

    Кроме этого, следствием нарушения функций ШИМ контроллера может быть отсутствие выходного напряжения или его несоответствие номинальной величине. Для проверки ШИМ контроллера следует вначале изучить его даташит. Наличие высокочастотного напряжения в импульсном режиме, при отсутствии осциллографа, можно определить, используя тестер кварцев на микроконтроллере.

    Признаки неисправности, их устранение

    Перейдем к рассмотрению конкретных признаков неисправностей ШИМ контроллера.

    Остановка сразу после запуска

    Импульсный модулятор запускается, но сразу останавливается. Возможные причины: разрыв цепи обратной связи; блок питания перегружен по току; неисправны фильтровые конденсаторы на выходе.

    Поиск проблемы: осмотр платы, поиск видимых внешних повреждений; измерение мультиметром напряжения питания микросхемы, напряжения на ключах (на затворах и на выходе), на выходных емкостях. В режиме омметра мультиметром надо измерить нагрузку стабилизатора, сравнить с типовым значением для аналогичных схем.

    Импульсный модулятор не стартует

    Возможные причины: наличие запрещающего сигнала на соответствующем входе. Информацию следует искать в даташите соответствующей микросхемы. Неисправность может быть в цепи питания ШИМ контроллера, возможно внутренне повреждение в самой микросхеме.

    Шаги по определению неисправности: наружный осмотр платы, визуальный поиск механических и электрических повреждений. Для проверки мультиметром делают замер напряжений на ножках микросхемы и проверку их соответствия с данными в даташит, в случае необходимости, надо заменить ШИМ контроллер.

    Проблемы с напряжением

    Выходное напряжение существенно отличается от номинальной величины. Это может происходить по следующим причинам: разрыв или изменение сопротивления в цепи обратной связи; неисправность внутри контроллера.

    Поиск неисправности: визуальное обследование схемы; проверка уровней управляющих и выходных напряжений и сверка их значений с даташит. Если входные параметры в норме, а выход не соответствует номинальному значению – замена ШИМ контроллера.

    Отключение блока питания защитой

    При запуске широтно-импульсного модулятора, блок питания отключается защитой. При проверке ключевых транзисторов короткое замыкание не обнаруживается. Такие симптомы могут свидетельствовать о неисправности ШИМ контроллера или драйвера ключей.

    В этом случае нужно произвести замер сопротивлений между затвором и истоком ключей в каждой фазе. Заниженное значение сопротивления может указывать на неисправность драйвера. При необходимости делается замена драйверов.

    принцип работы, типовые неисправности, пошаговый ремонт

    Персональный компьютер состоит из множества компонентов, без которых его работа невозможна. Одним из них является источник питания. Блок питания компьютера (БП) за всю историю развития вычислительной техники оказался довольно консервативен.

    На протяжении 30 лет только один раз поменялся его формат с АТ на АТХ, с добавлением в схемотехнику узла дежурного напряжения. Поэтому и неисправности, возникающие в БП типичны, и методика поиска неисправностей для разных моделей идентичная.

    Основные компоненты и особенности работы

    В последнее время все производители перешли на форм-фактор ATX. Такой переход был связан с изменением технических решений в производстве материнских плат, в частности, изменения системы её запуска. Используемая схемотехника требовала напряжения +3,3 вольта.

    Стандарт ATX претерпел за всё время несколько ревизий, в первую очередь это было связано с выделением отдельных линий питания для процессоров и видеокарт. Самая первая модель имела стандартный 20-pin разъём, к которому в дальнейшем были добавлены четыре пина, подающие питание 12 вольт.

    Из всех модификаций популярность получил формат EPS/EPS 12 В, состоящий из основного 24-pin штекера и дополнительного 8- pin для подачи 12 вольт.

    Все необходимые для работы напряжения подаются через основной разъём, имеющий ключ, защищающий от неправильной установки. Для обеспечения автоматизации запуска применяются различные сигналы, позволяющие провести первичное тестирование БП перед запуском. Так, для включения БП используется сигнал PS-ON. А линия PW-OK, разрешает запуск устройства только после появления всех требуемых напряжений, выдаваемых устройством питания.

    Перед тем как приступить к ремонту компьютера своими руками, следует понимать как он устроен и принцип его работы. К основным его блокам относят:

    • сетевой фильтр;
    • первичную цепь питания;
    • узел контроля сигнала PS-ON;
    • блок формирования сигнала PW-OK;
    • стабилизатор напряжения линии + 5 вольт;
    • блок формирования положительных напряжений: 3,3 В, +5 В, +12 В;
    • блок формирования отрицательных напряжений: 5 В, 12 В;
    • формирователь положительного стабильного сигнала 3,3 вольта;
    • фильтры на линиях сформированных напряжений;
    • блок защиты.

    Принцип работы источника напряжения основан на широтно-импульсной модуляции (ШИМ). Напряжение из промышленной сети поступает на сетевой фильтр, а через него на выпрямительный блок и силовые ключи. Величина напряжения на его выходе составляет 310 вольт. Далее сигнал поступает на вторичные узлы прибора питания и дежурку.

    Если напряжение присутствует на ключевых транзисторах, то происходит их открывание, и в первичной обмотке трансформатора возникает ток. Под действием электродвижущей силы ток появляется и во вторичной обмотке. Шим-контроллер, изменяя параметры импульса, управляет временем открытия транзисторов. Работа транзисторов происходит попарно: если один открыт, то другой закрыт.

    Стабилизация выходного сигнала происходит путём применения обратной связи. При поднятии уровня сигнала на вторичной обмотке схема обратной связи корректирует значение напряжения на управляющей ноге микросхемы. При этом контроллер увеличивает длительность сигнала, поступающего на транзисторные ключи.

    С импульсного трансформатора напряжение поступает на остальные узлы схемы, где и формируются требуемые величины напряжений. На каждой такой линии стоит фильтр, он предназначен для убирания из сигнала паразитных пульсаций. Обычно фильтр представляет собой электролитический конденсатор.

    Во время своей работы ключевые элементы работают в тяжёлых режимах, поэтому они нуждаются в охлаждении. Для этого используется активно-пассивный метод. Сами элементы устанавливаются на радиаторы, а их поверхность обдувается вентилятором работающими от 12 вольт.

    При соединении разъёмов БП с материнской платой на неё поступает напряжение равное +5 вольт. Основные напряжения на блоке питания в этот момент отсутствуют, кроме сформированного материнской платой дежурного сигнала +3,3 вольта. При нажатии кнопки включения ПК, замыкающей контакты PW-ON на материнской плате, величина PS-ON становится равной нулю, и даётся разрешение на формирование рабочих напряжений. После этого на материнскую плату поступает напряжение PW-OK, обозначающее, что питание в норме. Провода, выходящие из устройства, отвечают за подачу напряжения, величина которого соответствует их цвету:

    • жёлтый, +12 вольт;
    • красный, +5 вольт;
    • белый, -5 вольт;
    • синий, -12 вольт;
    • оранжевый, + 3,3 вольта;
    • зелёный, для передачи сигнала PS ON;
    • серый, для передачи сигнала PW OK;
    • фиолетовый, дежурное питание;
    • чёрный, общий.

    Когда при работе блока питания какой-то компонент неисправен (или на входе, или выходе), произошёл всплеск уровня напряжения, срабатывает схема защиты. Она останавливает работу путём снятия сигнала Power Good. Повторный запуск компьютерного БП возможен только после отключения его и обратного включения в электрическую сеть.

    Этапы выявления неисправностей

    Перед тем как перейти к ремонту импульсного блока питания своими руками, потребуется удостовериться, что проблема заключается именно в нём. Обычно первое подозрение возникает на него, когда системный блок отказывается запускаться. Проще всего проверить исправность БП путём его замены на заведомо исправный блок. Диагностику блоку питания компьютера удобно проводить поэтапно. Эти этапы в себя включают:

    1. Первичную диагностику. Она основана на нахождении признаков неисправностей. Сюда входят визуальный осмотр на наличие подозрительных мест, а также выявление запаха горевших деталей и элементов. Если происходит первичный запуск, стоит прислушаться к посторонним звукам.
    2. Выявление неисправных узлов. Для этого потребуется предположить неисправность в узле и выделить сгоревший элемент. Этот этап самый сложный, для его облегчения необходимо не только понимать процессы, проходящие в БП, но и иметь электрическую схему, которая просто необходима при поиске «плавающих» неисправностей.
    3. Используя измерительные приборы, проследить путь прохождение сигнала до неисправного элемента. Понять причину, почему возникла эта поломка.
    4. После замены сгоревшего элемента проверить другие радиодетали, непосредственно влияющие на его работу.
    5. По завершении ремонта осуществить безопасный тестовый старт. Для этого используется лампа накаливания, включённая в разрыв провода питания. Хорошим признаком будет её кратковременная вспышка, показывающая, что короткое замыкание отсутствует.
    6. При нормальном запуске понадобится измерить наличие выходных напряжений и, если есть осциллограф, посмотреть форму сигналов.
    7. На следующем этапе нужно нагрузить компьютерный блок на максимальную нагрузку и, контролируя выходные сигналы, оставить его работать в течение часа.
    8. На последнем этапе БП устанавливается в системный блок и производится его включение.

    Необходимо отметить, что при ремонте импульсных блоков питания своими руками запуск и проверку, кроме последнего этапа, лучше проводить автономно от ПК. Для этого на 20 пиновом шлейфе (24 пиновом) замыкается зелёный провод PS-ON c чёрным Com. Такой запуск безопасен, так как в качестве нагрузки выступает кулер, но в случае подозрения на его неисправность желательно нагрузить основные линии нагрузкой, например, ненужным CDRom или HDD.

    Проверка элементов и частые поломки

    Чтобы починить БП понадобятся не только знания в электронике, но и наличие измерительного и рабочего инструментов. Из измерительных приборов используются: мультиметр, измеритель ёмкости, осциллограф. Хорошо также иметь и генератор. А из инструмента не обойтись без крестовых отвёрток и паяльных принадлежностей. Для 80% повреждений можно обойтись мультиметром, но исследовать микросхемы и формы сигналов можно будет только осциллографом.

    Измерения параметров радиоэлементов

    Компьютерный источник питания состоит как из пассивных, так и активных радиоэлементов. Измерение параметров радиодеталей необходимо проводить после выпаивания из платы, так как, находясь в схеме, их выводы, могут шунтироваться другими элементами. Для элементов с двумя выводами можно отрывать от платы только один из них.

    Измерение резисторов проводится мультиметром, для этого сравнивается соответствие измеренного сопротивления со значением, соответствующим его маркировке. Диоды и стабилитроны проверяются на наличие пробоя в обе стороны, мультиметр ставится в режим прозвонки. Конденсаторы измеряются на соответствие их ёмкости и ёмкостного сопротивления, для этого используется ESR-метр. Биполярные транзисторы проверяются аналогично диодам в режиме прозвонки, а в случае полевых транзисторов проверка происходит на способность их открываться и закрываться.

    Типовые отказы

    Так как схемотехника компьютерных источников питания существенно не изменяется, существуют типовые неисправности и способы их решения. В первую очередь понадобится попробовать стартовать БП в автономном режиме. В случае неудачи — разобрать его и визуально осмотреть электролитические конденсаторы на вздутие и потёки. Около 70 процентов неисправностей связаны с выходом из строя конденсаторов, и отремонтировать БП получается путём простой их замены на исправные. Если решено ремонтировать БП самостоятельно, то можно воспользоваться следующей инструкцией:

    • Устройство не включается. Сгорает плавкий предохранитель F1, пробит диодный мост. Вышел из строя разделительный фильтр, терморезисторы находятся в обрыве. Высоковольтный конденсатор потерял свою ёмкость. Силовые транзисторы в обрыве или пробиты.
    • Устройство не хочет включаться, на высоковольтном конденсаторе присутствует напряжение 310 вольт. Неисправна схема дежурного питания, заменить микросхему ШИМ — контроллера. При отсутствии стабилизированных пяти вольт проверяется подтягивающий резистор 1 кОм. Неисправна цепь супервизора, ёмкости и резисторы в её цепи.
    • Стабилизированные напряжения занижены или завышены. Нарушения в работе стабилизирующей цепи, проверяются интегральные микросхемы. Неисправна микросхема ШИМ контроллера.
    • Уровни выходных сигналов занижены. Виновата цепь обратной связи. Нарушена работа ШИМ контролера, повреждены радиоэлементы в её обвязке.
    • При включении срабатывает защита. Повреждён узел дежурного питания. Сгорела микросхема супервизора, элементы обвязки её цепи. Присутствует короткое замыкание в выходных формирователях напряжения.
    • При работе выключается. Перегрев, очистить от пыли, смазать кулер, заменить термопасту.
    • Не крутит вентилятор. Отсутствует питающее напряжение 12 вольт. Обрыв терморезистора. Повреждён вентилятор.

    Практический ремонт

    Наиболее часто в БП перегорает предохранитель с хлопком и запахом сгоревших деталей. При его замене происходит повторное его сгорание. В первую очередь визуально осматривается плата, и меняются все подозрительные конденсаторы. Если элементы выпрямительного блока исправны, выпаиваются силовые ключи. Устройство включается, предохранитель не сгорел, впаиваются новые транзисторы, и блок запускается заново. Все действия по запуску БП проводятся с включённой в разрыв питания лампочкой. Ярко горящая лампа сигнализирует о коротком замыкании. Если запуска нет, и лампочка горит, то меняется ШИМ контроллер.

    Бывает, что при запуске устройства питания слышен свист, он может возникнуть сразу или после прогрева устройства. В этом случае внимательно просматривается плата на «непропаи» элементов и микротрещины, особенно в районе дросселей.

    Таким образом, выполняя пошаговый ремонт блока питания компьютера своими руками, можно отремонтировать практически любой БП. Научившись ремонтировать блоки питания персональных компьютеров, несложно будет восстанавливать их в ноутбуках. Устроен ноутбуковый адаптер питания практически так же, как и компьютерный. Отличия лишь в применении планарных радиоэлементов, для выпаивания которых потребуется паяльная станция.

    Регулировка напряжения в импульсном блоке питания, иип принцип работы

    Принцип работы импульсного блока питания.

    Существуют блоки питания (БП) линейные и импульсные.
    Линейный БП состоит из силового трансформатора, выпрямителя и стабилизатора. Главным недостатком линейного БП — это наличие низкочастотного силового трансформатора с тяжелым и массивным железным сердечником и сетевой обмоткой с большим числом витков.
    Это следствие того, что работать силовой трансформатор вынужден на частоте электросети 50 Гц. Уже при повышении частоты сети до 400 Гц (на некоторых промышленных предприятиях, на оборонных объектах) его массо-габиритные параметры резко снижаются. К тому же, при увеличении частоты будет увеличена и частота пульсаций выпрямленного напряжения, а значит и для эффективного сглаживания потребуется конденсатор куда меньшей емкости.
    Теперь понятно, что если мы хотим компактный, легкий и мощный БП, то нужно каким-то образом повысить частоту, на которой будет работать трансформатор. Ну и если уж повышать её, то не до 400 Гц, а уж сразу лучше до нескольких десятков или сотен кГц. Однако, повысить частоту сети непосредственно практически сложно. Куда легче вообще отказаться от переменного тока, — взять и сразу же выпрямить ток, поступающий из розетки, а затем уже из него с помощью генератора сделать переменный ток любой частоты.
    На рисунке 1 показана упрощенная схема импульсного блока питания.
    Ток от электросети частотой 50 Гц поступает на диодный мост VD1, выпрямляется, сглаживается конденсатором С1 и на выходе получаем около 300V, которым питается высокочастотный импульсный генератор ШИМ (ШИМ — это аббревиатура названия: «широко — импульсная модуляция»). Через первичную обмотку 1 подается питание на мощный выходной транзистор VТ1, который выполняет роль усилителя и ключа подачи импульсов в трансформатор.
    Генератор вырабатывает прямоугольные импульсы в несколько десятков кГц и подаются на базу VТ1. Транзистор открывается и через него и обмотку 1 пойдет нарастающий импульсный ток. На вторичной обмотке 2 наводится ЭДС самоиндукции и на выходе диода VD2 появится положительное напряжение.
    Трансформатор импульсного блока питания работает на частоте значительно выше сетевых 50 Гц и поэтому он имеет малое сходство с привычным силовым трансформатором. Он компактный с ферритовым сердечником и обмотками с небольшим числом витков. И при мощности в сотню ватт весит не более 100 граммов.
    Если будем увеличивать длительность импульсов приложенных к базе VТ1, во вторичной цепи будет увеличиваться напряжение, т.к энергии будет отдаваться больше, а если уменьшать длительность, — будет уменьшаться. Таким образом, изменяя длительность импульсов, поступающих на базу VT1, можно изменять напряжение вторичной обмотки Т1 и, следовательно, осуществлять стабилизацию на выходе импульсного блока питания. Для этого нужно устройство, которое будет каким-то образом измерять напряжение на выходе вторичной обмотки и регулировать соответствующим образом ширину импульсов, поступающих на базу VT1. В качестве такого устройства используется ШИМ контроллер.

    В состав ШИМ контроллера входит задающий генератор импульсов, схема защиты и контроля, логическая схема, которая и управляет длительностью импульсов, поступающих на базу выходного транзистора.
    Для стабилизации выходного напряжения импульсного блока питания, контроллер «должен знать» его величину при любом его изменении. Для этих целей используется цепь слежения (или цепь обратной связи) и она может быть выполнена самыми разными способами.
    Если нет необходимости в гальванической развязки от сети, то напряжение с выходного выпрямителя (как показано на рис. 1) непосредственно подается на вход слежения (или на вход компаратора) генератора ШИМ (или ШИМ — контроллера). Если же необходима развязка, то, как промежуточное звено, может быть использована оптопара. Такой способ слежения называется непосредственным. Однако, существует и косвенный метод слежения (рис.2).
    Суть косвенного метода слежения в том, что для измерения выходных параметров импульсного блока питания используется дополнительная обмотка 3 трансформатора с выпрямителем на выходе. Так как все обмотки взаимосвязаны, то эта дополнительная обмотка 3 и работает как некий датчик выходных параметров импульсного блока питания.
    Практически, ШИМ-контроллер работает таким образом: он изменяет широту импульсов, подаваемых на базу транзистора таким образом, чтобы на его контрольном входе всегда было одно и то же напряжение. Так что регулировать выходное напряжение можно не только изменяя числа витков обмоток, но и с помощью делителя в контрольной цепи, например, переменным резистором R3 (рис.2). Меняя напряжение на контрольном входе контроллера он изменяет широту импульсов так, чтобы это напряжение на его контрольном входе восстановить.
    Со стабилизацией все понятно. Теперь вопрос о защите от перегрузки импульсного блока питания. Ведь при превышении тока через транзистор он может выйти из строя.
    Обычно используют датчики тока, представляющие собой мощный резистор, включенный в эмиттерную цепь транзистора. При прохождении тока через VT1 и R1 (рис.3) на резисторе создается падение напряжения, которое подается на вход защиты от КЗ ШИМ-контролера. Если оно на резисторе превышает некоторую величину, то контроллер выключает генератор и на базу транзистора не подается сигнал и транзистор не включается.

    После знакомства с работой импульсного блока питания можно расширить перечень его преимуществ перед линейными блоками питания.
    Кроме уменьшения веса трансформатора и конденсаторов у импульсных блоков будет выше КПД. У низкочастотных трансформаторов значительная доля потерь энергии создается за счет выделения и рассеивания тепла при выполнении электромагнитных преобразований. В импульсных блоках питания наибольшие потери энергии создаются во время возникновения переходных процессов при коммутациях каскадов силовых ключей. А в остальное время транзисторы находятся в устойчивом положении: открыты или закрыты. При таком их состоянии создаются все условия для минимальной потери электроэнергии, когда КПД может составлять 90÷98%.
    Также, благодаря использованию полупроводниковых модулей, работающих по цифровым технологиям, в конструкцию импульсных блоков удается встраивать малогабаритные защиты от перегрузки, стабилизаторы выходного напряжения и др.

    Но кроме преимуществ импульсные блоки питания имеют и недостатки. Вот основные:
    первый — высокочастотные помехи. Так как импульсные блоки работают по принципу преобразования ВЧ импульсов и они излучают помехи для точной цифровой аппаратуры, которые не всегда можно подавить;
    второй — импульсные блоки питания имеют ограничение на минимальную мощность нагрузки. Если мощность нагрузки ниже минимальной, блок питания либо не запускается, либо параметры выходных напряжений (величина, стабильность) могут не укладываться в допустимые отклонения.

    Что такое импульсный блок питания и чем он отличается от обычного аналогового

    Во многих электрических приборах уже давно применяется принцип реализации вторичной мощности за счет использования дополнительных устройств, на которые возложены функции обеспечения электроэнергией схем, нуждающихся в питании от отдельных типов напряжений, частоты, тока…

    Для этого создаются дополнительные элементы: блоки питания, преобразующие напряжение одного вида в другой. Они могут быть:

    • встроены внутрь корпуса потребителя, как на многих микропроцессорных приборах;

    • или изготовлены отдельными модулями с соединительными проводами по образцу обычного зарядного устройства у мобильного телефона.

    В современной электротехнике успешно уживаются два принципа преобразования энергии для электрических потребителей, основанные на:

    1. использовании аналоговых трансформаторных устройств для передачи мощности во вторичную схему;

    2. импульсных блоках питания.

    Они имеют принципиальные отличия в своей конструкции, работают по разным технологиям.

    Трансформаторные блоки питания

    Первоначально создавались только такие конструкции. Они изменяют структуру напряжения за счет работы силового трансформатора, питающегося от бытовой сети 220 вольт, в котором происходит понижение амплитуды синусоидальной гармоники, направляемой далее на выпрямительное устройство, состоящее из силовых диодов, включенных, как правило, по схеме моста.

    После этого пульсирующее напряжение сглаживается параллельно подключенной емкостью, подобранной по величине допустимой мощности, и стабилизируется полупроводниковой схемой с силовыми транзисторами.

    За счет изменения положения подстроечных резисторов в схеме стабилизации удается регулировать величину напряжения на выходных клеммах.

    Импульсные блоки питания (ИБП)

    Подобные конструктивные разработки массово появились несколько десятилетий назад и стали пользоваться все большей популярностью в электротехнических приборах благодаря:

    • доступностью комплектования распространенной элементной базой;

    • надежностью в исполнении;

    • возможностями расширения рабочего диапазона выходных напряжений.

    Практически все источники импульсного питания незначительно отличаются по конструкции и работают по одной, типичной для других устройств схеме.

    В состав основных деталей источников питания входят:

    • сетевой выпрямитель, собранный из: входных дросселей, электромеханического фильтра, обеспечивающего отстройку от помех и развязку статики с конденсаторами, сетевого предохранителя и диодного моста;

    • накопительная фильтрующая емкость;

    • ключевой силовой транзистор;

    • задающий генератор;

    • схема обратной связи, выполненная на транзисторах;

    • оптопара;

    • импульсный источник питания, со вторичной обмотки которого исходит напряжение для преобразования в силовую цепь;

    • выпрямительные диоды выходной схемы;

    • цепи управления выходного напряжения, например, на 12 вольт с подстройкой, изготовленной на оптопаре и транзисторах;

    • фильтрующие конденсаторы;

    • силовые дроссели, выполняющие роль коррекции напряжения и его диагностики в сети;

    • выходные разъемы.

    Пример электронной платы подобного импульсного блока питания с кратким обозначением элементной базы показан на картинке.

    Как работает импульсный блок питания

    Импульсный блок питания выдает стабилизированное питающее напряжение за счет использования принципов взаимодействия элементов инверторной схемы.

    Напряжение сети 220 вольт поступает по подключенным проводам на выпрямитель. Его амплитуда сглаживается емкостным фильтром за счет использования конденсаторов, выдерживающих пики порядка 300 вольт, и отделяется фильтром помех.

    Входной диодный мост выпрямляет проходящие через него синусоиды, которые затем преобразуются транзисторной схемой в импульсы высокой частоты и прямоугольной формы с определенной скважностью. Они могут преобразовываться:

    1. с гальваническим отделением сети питания от выходных цепей;

    2. без выполнения подобной развязки.

    Импульсный блок питания с гальванической развязкой

    В этом случае высокочастотные сигналы направляются на импульсный трансформатор, осуществляющий гальваническую развязку цепей. За счет повышенной частоты увеличивается эффективность использования трансформатора, снижаются габариты его магнитопровода и вес. Чаще всего для материала подобного сердечника применяют ферромагнетики, а электротехнические стали в этих устройствах практически не используются. Это также позволяет минимизировать общую конструкцию.

    Один из вариантов исполнения схемы импульсного блока питания с трансформаторной развязкой цепей показан на картинке.

    В таких устройствах работают три взаимосвязанных цепочки:

    1. ШИМ-контроллер;

    2. каскад из силовых ключей;

    3. импульсный трансформатор.

    Как работает ШИМ-контроллер

    Контроллером называют устройство, которое управляет каким-либо технологическим процессом. В рассматриваемых нами блоке питания им выступает процесс преобразования широтно-импульсной модуляции. В его основу заложен принцип выработки импульсов одинаковой частоты, но с разной длительностью включения.

    Подача импульса соответствует обозначению логической единицы, а отсутствие — нуля. При этом они все равны по величине амплитуды и частоте (имеют одинаковый период колебаний Т). Продолжительность включенного состояния единицы и его отношение к периоду меняются и позволяют управлять работой электронных схем.

    Типовые изменения ШИП-последовательностей показаны на графике.

    Контроллеры обычно создают подобные импульсы с частотой 30÷60 кГц.

    В качестве примера можно привести контроллер, выполненный на микросхеме TL494. Для настройки частоты выработки его импульсов используется схема, состоящая из резисторов с конденсаторами.

    Работа каскада из силовых ключей

    Он состоит из мощных транзисторов, которые подбираются из биполярных, полевых или IGBT-моделей. Для них может быть создана индивидуальная система управления на других маломощных транзисторах либо интегральных драйверах.

    Силовые ключи могут быть включены по различным схемам:

    Импульсный трансформатор

    Первичная и вторичная обмотки, смонтированные вокруг г магнитопровода из феррита или альсифера, способны надежно передавать высокочастотные импульсы с частотой вплоть до 100 кГц.

    Их работу дополняют цепочки из фильтров, стабилизаторов, диодов и других компонентов.

    Импульсные блоки питания без гальванической развязки

    В импульсных блоках питания, разработанных по алгоритмам, исключающим гальваническое разделение, высокочастотный разделительный трансформатор не используется, а сигнал поступает сразу на фильтр нижних частот. Подобный принцип работы схемы показан ниже.

    Особенности стабилизации выходного напряжения

    Все импульсные блоки питания имеют в своем составе элементы, осуществляющие отрицательную обратную связь с выходными параметрами. За счет этого они обладают хорошей стабилизацией выходного напряжения при изменяющихся нагрузках и колебаниях питающей сети.

    Способы реализации обратной связи зависят от применяемой схемы для работы блока питания. Она может осуществляться у блоков, работающих с гальванической развязкой за счет:

    1. промежуточного воздействия выходного напряжения на одну из обмоток высокочастотного импульсного трансформатора;

    2. применения оптрона.

    В обоих случаях эти сигналы управляют скважностью импульсов, подаваемых на выход ШИМ-контроллера.

    При использовании схемы без гальванической развязки обратная связь обычно создается за счет подключения резистивного делителя напряжения.

    Преимущества импульсных блоков питания над обычными аналоговыми

    При сравнении конструкций блоков с равными показателями выходных мощностей импульсные блоки питания обладают следующими достоинствами:

    1. уменьшенный вес;

    2. повышенный КПД;

    3. меньшая стоимость;

    4. расширенный диапазон питающих напряжений;

    5. наличие встроенных защит.

    1. Пониженный вес и габариты импульсных блоков питания объясняются переходом от преобразований низкочастотной энергии мощными и тяжелыми силовыми трансформаторами с управляющими системами, расположенными на больших радиаторах охлаждения и работающими в постоянном линейном режиме, к технологиям импульсного преобразования и регулирования.

    За счет повышения частоты обрабатываемого сигнала сокращается емкость конденсаторов у фильтров напряжения и, соответственно, их габариты. Также упрощается их схема выпрямления вплоть до перехода к самой простой — однополупериодной.

    2. У низкочастотных трансформаторов значительная доля потерь энергии создается за счет выделения и рассеивания тепла при выполнении электромагнитных преобразований.

    В импульсных блоках наибольшие потери энергии создаются во время возникновения переходных процессов при коммутациях каскадов силовых ключей. А в остальное время транзисторы находятся в устойчивом положении: открыты или закрыты. При таком их состоянии создаются все условия для минимальной потери электроэнергии, когда КПД может составлять 90÷98%.

    3. Цена на импульсные блоки питания постепенно снижается за счет постоянно проводимой унификации элементной базы, которая производится широким ассортиментом на полностью механизированных предприятиях со станками-роботами. К тому же режим работы силовых элементов на основе управляемых ключей позволяет использовать менее мощные полупроводниковые детали.

    4. Импульсные технологии позволяют запитывать блоки питания от источников напряжения с разной частотой и амплитудой. Это расширяет область их применения в условиях эксплуатации с различными стандартами электрической энергии.

    5. Благодаря использованию малогабаритных полупроводниковых модулей, работающих по цифровым технологиям, в конструкцию импульсных блоков удается надежно встраивать защиты, контролирующие возникновение токов коротких замыканий, отключения нагрузок на выходе прибора и другие аварийные режимы.

    У обычных трансформаторных блоков питания такие защиты создавались на старой электромеханической, релейной, полупроводниковой базе. Применять сейчас для них цифровые технологии в большинстве схем не имеет смысла. Исключение составляют случаи питания:

    • маломощных цепей управления сложной бытовой техники;

    • слаботочных устройств управления высокой точности, например, используемых в измерительной технике или метрологических целях (цифровые счетчики электроэнергии, вольтметры).

    Недостатки импульсных блоков питания

    В/ч помехи

    Поскольку импульсные блоки питания работают по принципу преобразования высокочастотных импульсов, то они в любом исполнении вырабатывают помехи, транслируемые в окружающую среду. Это создает необходимость их подавления различными способами.

    В отдельных случаях помехоподавление может быть неэффективным, что исключает использование импульсных блоков питания для отдельных типов точной цифровой аппаратуры.

    Ограничения по мощности

    Импульсные блоки питания имеют противопоказание к работе не только на повышенных, но и пониженных нагрузках. Если в выходной цепи произойдет резкое снижение тока за предел минимального критического значения, то схема запуска может отказать или блок станет выдавать напряжение с искаженными техническими характеристиками, не укладывающимися в рабочий диапазон.

    А в этой статье читайте про ремонт импульсных блоков питания.

    Из чего состоит импульсный блок питания часть 3

    Рубрика: Информация для начинающих / Моё видео / Блоки питания; kirich; Опубликовано: 9-06-2017, 11:09 Что вообще такое — инвертор.
    Данный узел предназначен для преобразования постоянного тока в переменный. В данном случае мы имеем на входе 310 Вольт постоянного тока, которые надо подать на трансформатор. Но так как трансформаторы не хотят работать на постоянном токе, то и нужен инвертор.

    Инвертор состоит из двух основных узлов.
    ШИМ контроллера.

    А также выходных высоковольтных транзисторов. Попутно весьма кстати попал в кадр трансформатор управления этими транзисторами.

    Впрочем инвертор может выглядеть заметно проще, например у известного блока питания.

    Микросхема, жменька деталей, вот и весь ШИМ контроллер.

    В данном случае схемотехника блока питания, а также его мощность заметно отличаются от предыдущего варианта, потому транзистор всего один.

    Еще один вариант, слева конденсаторы входного фильтра, справа трансформатор, между ними инвертор.
    Так как на силовом транзисторе выделяется значительная мощность, то чаще всего он устанавливается на радиатор.

    Но давайте немного отвлечемся на историю, с чего собственно все начиналось. Возможно конечно начиналось не с этого, потому точнее будет сказать, с чего начинал я.
    Как вы понимаете, раньше не было ШИМ контроллеров, а иногда и обычную «кренку» купить была проблема, но прогресс не стоял на месте и радиолюбители пытались заменить большие трансформаторы на импульсные блоки питания.
    На схеме показан типичный автогенератор, но были схемы и с простой логикой в качестве генератора импульсов.

    Тогда схемы подобных блоков питания часто встречались в журнале Радио в контексте усилителей мощности. Но мое знакомство было на примере блока питания для Синклера. Кстати на фото один из них, который я оставил себе на память 🙂
    Правда вышеприведенная схема требовала подбора транзисторов и в моем случае сильно перегревалась.

    Схема с автогенератором считается самой простой, в данном примере она даже не имеет стабилизации выходного напряжения.

    При всем современном разнообразии микросхем показанная выше схема также нашла себя в современном мире, в качестве «электронного трансформатора» для галогенных ламп.

    Правда постепенно такие лампы заменяют на светодиоды, но все равно электронные трансформаторы довольно популярны, в основном из-за свой простоты и дешевизны.

    Уже через довольно большое время подобные схемы получили второе дыхание. Известная фирма International Rectifier выпустила весьма простую микросхему для электронного балласта люминесцентных ламп. Но выяснилось, что данная микросхема отлично работает в качестве задающей для импульсного БП. К ним относятся микросхемы IR2151, IR2153 и подобные.
    Вообще некоторые радиолюбители делали и стабилизированные блоки питания на базе этой микросхемы, но работает это не всегда корректно.

    По сути для этой микросхемы надо только несколько мелких деталей и пара полевиков, вот и вся схема инвертора. Именно с применением этой микросхемы я делал первичный блок питания для своего лабораторного.
    Кстати, именно эту микросхему я рекомендую для питания усилителей мощности, как неприхотливую и довольно надежную. А также хочу сказать, что нерегулируемые БП лучше себя ведут в плане шумов.

    Так выглядит трехканальный блок питания с мощностью в 300 Ватт и ШИМ регулировкой вентилятора. Более полная информация есть в обзоре лабораторника.

    Также довольно часто можно встретить и однотактные блоки питания на основе автогенератора. Особенно часто они попадались в АТХ боках в качестве дежурки.

    Также они могут попасться и в очень бюджетных зарядных для телефонов. Автогенератор является самым простым типом инвертора.

    Хотя бывают и исключения, например блок питания довольно дорогого фирменного кондиционера также имел в своем составе автогенератор, правда сделан довольно качественно и имеет стабилизацию напряжения.

    В следующий раз мне попались импульсные блоки питания в новых тогда телевизорах. После больших и тяжелых трансформаторов это был прогресс.

    Схемотехника правда была жуткая, ремонтопригодность слабая, да и габарит я не назвал маленьким. На фото блок питания мощностью 80 Ватт.
    Сначала они также делались по схеме с автогенератором, но потом начали ставить микросхему, правда особо ничего это не изменило.

    Вот и подошли мы к теме более современных инверторов, так как на этом этапе блоки питания вышли на тот схемотехнический уровень, который мы сейчас наблюдаем в современных блоках.
    Да, поднимали частоту, расширяли диапазон работы, мощность, но суть осталась той же что и была 30 лет назад. Правда так как тогда интегральные ШИМ контроллеры были слабо развиты, то делали их в виде сборок.

    Впрочем и в современных блоках питания не стесняются применять такие вот унифицированные модули, по своему это даже удобно.

    Типовая блок схема распространенных моделей инверторов состоит из пяти узлов.
    1. Узел контроля напряжения питания, защита от работы при пониженном и повышенном напряжении.
    2. Вспомогательное питания или цепь запуска.
    3. Силовой элемент и датчик тока. Этот узел может заметно отличаться в зависимости от топологии блока питания.
    4. Собственно ШИМ контроллер, мозги блока питания.
    5. Узел основного питания ШИМ контроллера.

    Рассмотрим как происходит запуск большинства блоков питания, эта информация может помочь в поиске неисправностей.
    После того как подали высокое напряжение, оно через резистор попадает в цепь питания ШИМ контроллера.

    Как только напряжение достигнет порога включения ШИМ контроллер запускается, питаясь в это время от конденсатора в цепи питания.
    Если ваш блок питания не подает признаков жизни, проверьте, есть ли питание на входе ШИМ контроллера, иногда эти резисторы уходят в обрыв.

    Затем ШИМ контроллер проверяет, в порядке ли питающее напряжение. Эта цепь есть далеко не у всех инверторов, потому если ее нет, то можно сразу перейти к следующему шагу.

    Если с питанием все отлично, то контроллер начинает выдавать управляющие импульсы силовому транзистору. попутно при этом контролируется ток в цепи этого транзистора и если он превышен, то ШИМ контроллер переходит в режим защиты.

    Если все нормально, то буквально после нескольких тактов на выходе цепи основного питания появляется рабочее напряжение, которое и питает контроллер. Кстати это один из узлов отказа, если питания нет, то блок питания будет работать в старт-стоп режиме.

    Если все этапы запуска прошли корректно, то дальше вступает в дело ШИМ стабилизация. В данном случае я всегда сравниваю ее с бочкой, в которую мы порциями подаем воду и сливая ее через другой кран с разным напором. Задача контроллера поддерживать всегда один и тот же уровень воды в бочке при том, что вводной кран может быть только в двух состояниях, открыто и закрыто.
    Кстати, многие видели на выходе блоков питания резистор, подключенный параллельно питанию, он нужен чтобы обеспечить некую минимальную нагрузку, так как блоку питания тяжело работать при очень малой ширине импульса.
    Для примера ширина импульсов при небольшой нагрузке.

    Если увеличить нагрузку, то ШИМ контроллер увеличит подачу энергии в трансформатор, а через него в нагрузку.

    Даже если к примеру нагрузить блок питания на полную, то ширина импульсов не будет полной.

    Запас необходим для компенсации снижения входного напряжения.

    Если снизить входное напряжение еще больше, то ШИМ контроллер просто выставит максимальную ширину импульса. Кстати, ШИМ контроллеры блоков питания не формируют 100% заполнение, так как всегда необходимо «мертвое» время для защиты выходных транзисторов. В это время выходные транзисторы закрыты.
    Для обратноходовых однотактных блоков питания, а именно они используются в качестве блоков питания небольшой мощности, максимальное заполнение составляет 50%.

    Самым первым ШИМ контроллером, с которым я познакомился, была легендарная TL494. Микросхема очень старая, но так получилось, что у разработчика дешевый и очень универсальный контроллер и даже спустя много лет и при наличии современных решений он еще весьма широко применяется в блоках питания.
    Выпускается она многими фирмами и иногда под разными названиями, например аналог от Самсунга называется КА7500.

    На первый взгляд его внутреннее устройство может показаться довольно сложным, но на самом деле таковым не является.

    Если немного упростить картинку, то будет примерно так:
    1 и 2, стабилизатор питания и источник опорного напряжения.
    3. Генератор импульсов, задает частоту работы контроллера.
    4. Два компаратора, один обычно используется для стабилизации тока, второй — напряжения.
    5. Задатчик мертвого времени, т.е. минимальной паузы между открытым состоянием выходов.
    6. Узел сложения всех сигналов.
    7. Триггер, который управляет выходными ключами и задает логику работы, двухтактный или однотактный режим. В некоторых аналогах этот триггер сбоил на частотах ниже 100 Гц, чем доставлял немало сюрпризов строителям повышающих инверторов в 220 Вольт.

    Микросхема выполнена в корпусе с 16 выводами. Сама по себе надежна, но иногда в блоках питания АТХ, где ее питание идет от источника дежурного напряжения, выходит из строя после его ухода в разнос, когда высыхал конденсатор по выходу 5 Вольт. Пробивало стабилизатор опорного напряжения и на выходе БП запросто могло появиться высокое напряжение. Потому при проверке прежде всего смотреть наличие 5 Вольт на выводе 14.

    В блоках питания АТ, а потом в распространенных китайских БП в кожухе она питается от своего же силового трансформатора. Запуск происходит за счет резисторов в базовых цепях силовых ключей. При включении они сначала входят в автогенераторный режим, на выходе трансформатора появляется небольшое напряжение, микросхема начинает работать и перехватывает управление на себя. Потому если БП не запускается, то в первую очередь проверяем резисторы выделенные на схеме резисторы.

    Вторым, не менее легендарным ШИМ контроллером является семейство однотактных UC384х.
    Думаю что вы могли из встречать раньше в блоках питания и преобразователях напряжения.

    Внутреннее устройство весьма похоже на TL494, но немного отличается. Для начала у микросхемы только один выход, а не два.
    Кроме того компараторы привязаны к определенному напряжению, заданному внутри микросхемы, а не универсальные.
    Ну и конечно ключевая особенность, микротоковый старт. пока микросхема не начнет работать, он потребляет очень маленький ток, потому запустить ее можно прямо от входного напряжения через резистор, TL494 так не умеет.
    Чтобы запуск проходил корректно, у микросхемы есть пороговая схема определяющая напряжение включения и выключения микросхемы. Существует два варианта, около 9 и 15 Вольт.
    Кроме того микросхема может иметь 50 и 100% рабочий цикл, первая идет в блоки питания, вторая в преобразователи напряжения.
    Так получается четыре варианта исполнения этого контроллера.

    Микросхема выпускается в разных корпусах, но наиболее распространен корпус с восемью выводами.

    Типовая схема блока питания с этой микросхемой выглядит примерно так.

    Сейчас на рынке есть много блоков питания с другими микросхемами, но если посмотреть на их схему, то вы увидите очень много общего, все те же узлы и элементы. Отличия если и есть, то они минимальны.

    Инверторы блоков питания могут иметь разную топологию, и об этом я обязательно расскажу отдельно, но большинство выполнено по схемотехнике флайбек или полумост, две верхние схемы на чертеже. Собственно все описанные сегодня блоки питания работают именно так.

    Но вернемся к ШИМ контроллерам. Перед этим я описывал варианты, когда ШИМ контроллер отдельно, а силовой узел отдельно. но также получили распространение и полностью интегрированные контроллеры, например серии TOP от Power integrations где практически все собрано в одном корпусе.
    Не так давно мне даже попалась подделка, причем что интересно, она слева, с лазерной маркировкой, справа оригинал.

    Распространение они получили благодаря простейшей схемотехнике, где в простом варианте блок питания состоит буквально из нескольких деталей.

    Потом появились более продвинутые контроллеры, где можно задавать напряжение включения и отключения, а также ограничение выходной мощности. Но при желании их можно перевести в трехвыводный режим, соединив выводы как было на фото раньше.
    Но в любом случае данные контроллеры гораздо умнее и имеют комплекс защит от разных проблем, например они выдерживали напряжение более 300 Вольт по входу просто блокируя свою работу.

    Но секрет их популярности был также и в удобной программе расчета, которую предоставлял производитель. Она позволяла рассчитать все, вплоть до укладки обмоток трансформатора. А при обнаружении проблем в расчетах, выдавала подсказки.

    Производитель предоставлял варианты применения своих микросхем в виде примеров. Был даже вариант компьютерного блока питания, но как-то не пошло.

    Зато в небольших блоках питания, например мониторов, он встречаются весьма часто.

    Кроме того я и сам их очень активно использую уже наверное лет 15.


    Китайские производители также не отстают, выпуская свои варианты подобных микросхем.

    Которые довольно успешно применяют в небольших блоках питания

    Кстати, при желании можно использовать ШИМ контроллеры и без обратной связи от выходного напряжения, используя обмотку питания самого контроллера. Схема упрощается, но стабильность конечно будет немного ниже чем при правильной обратной связи.


    В общих чертах на этом все. Вообще мне иногда кажется, что чем больше я рассказываю, тем больше остается за кадром, что еще хотелось бы рассказать более подробно, но не успеваешь. Потому скорее всего будут еще выпуски по отдельным узлам и принципам работы.
    Видео получилось слишком длинным, даже сам не ожидал, и это при том, что еще почти ничего не сказал за ключевые транзисторы и часть даже вырезал, наверное болтаю слишком много 🙁

    Несколько ссылок, на полезные обзоры, которые упоминались в видео.
    Неплохой модуль DC-DC ZXY6005S или лабораторный блок питания своими руками
    12 Вольт 6-8 Ампер блок питания, который приятно удивил
    12 Вольт 5 Ампер блок питания или как это могло быть сделано
    DC-DC преобразователь, как это иногда бывает
    S-180-12 180W 12V / 15A блок питания в непривычном формфакторе
    36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
    48 Вольт, 5 Ампер и 240 Ватт или блок питания который смог удивить
    Блоки питания, маленькие и очень маленькие

    Ремонт импульсного источника питания

    Внутреннее обозначение блока питания ATX:

    А — выпрямительный мостовой
    В — конденсаторы входного фильтра
    между B и C — радиатор высоковольтных транзисторов
    С — трансформатор
    между C и D — Радиатор низковольтных сильноточных выпрямителей
    D — катушка выходного фильтра
    Е — конденсаторы выходного фильтра

    Выход трансформатора (который теперь представляет собой переменный ток) затем выпрямляется специальными высокоскоростными диодами, чтобы снова переключить его на постоянный ток.Однако этот выход не является чистым постоянным током и требует обширной фильтрации для удаления высокочастотного «шума», который генерируется быстрым переключением транзисторов. Фильтрация осуществляется с помощью комбинации катушек (также известных как «дроссели») и конденсаторов.

    Выходное напряжение источника питания регулируется путем подачи части выходного сигнала обратно на интегральную схему, которая управляет переключающими транзисторами. Если выходное напряжение слишком низкое, ИС позволяет транзисторам оставаться под напряжением в течение более длительного периода времени, повышая напряжение.Слишком высокое выходное напряжение сигнализирует микросхеме о необходимости сократить транзисторы, снижая выходное напряжение.

    Отказ источника питания

    Я обнаружил, что только небольшая часть компонентов выходит из строя в импульсных источниках питания регуляторов. Чаще всего выходят из строя сами переключающие транзисторы. В транзисторах происходит короткое замыкание, в результате чего через трансформатор протекает большой ток и перегорает предохранитель.

    Отказ транзистора часто вызван неисправными конденсаторами.Чрезвычайно часто встречаются вздутые или протекающие конденсаторы выходного фильтра. Любой неисправный конденсатор следует заменить. Чтобы предотвратить повторение этого общего отказа, конденсаторы выходного фильтра следует заменить специальными конденсаторами с низким ESR (эквивалентным последовательным сопротивлением). Эти конденсаторы специально разработаны для работы в условиях строгой фильтрации в импульсном источнике питания. Большинство производителей источников питания не устанавливают конденсаторы с низким ESR в качестве оригинального оборудования, поскольку они несколько дороже обычных конденсаторов.Однако использование их в качестве запасных компонентов того стоит, поскольку они значительно продлят срок службы источника питания в полевых условиях. Когда я работаю с источником питания, я заменяю все конденсаторы выходного фильтра конденсаторами с низким ESR, независимо от того, хорошие они или плохие. Поскольку сервисный вызов стоит гораздо дороже, чем конденсаторы, это разумный поступок.

    Отказ диода — еще одна распространенная проблема. В импульсном блоке питания довольно много диодов, и выход из строя любого из них приведет к срабатыванию предохранителя или отключению блока питания.Чаще всего выходят из строя диоды из-за короткого замыкания выходных выпрямителей +12 В или -5 В. Выход из строя этих диодов не приведет к срабатыванию предохранителя. Блок питания просто обнаруживает короткое замыкание и отключается. Некоторые из этих отказов могут быть вызваны использованием выходов +12 или -5 В для питания ламп дверцы монетоприемника. Выход -5 В не имеет защиты от перегрузки по току во всех источниках питания. Закороченный патрон лампы может привести к срыву диода из-за слишком большого тока от источника питания. Диоды +12 В могут перегореть, если случайно использовать лампочки на 6 В вместо ламп на 12 В.Также возможно короткое замыкание высоковольтных входных диодов. Это часто сопровождается коротким замыканием коммутирующих транзисторов и перегорает предохранитель.

    Проверка и ремонт

    Все испытания проводятся при выключенном питании. Начнем с тестирования пары переключающих транзисторов. Они будут установлены на радиаторе, который поможет им работать холоднее. Проверьте их с помощью омметра или цифрового мультиметра, настроенного на диапазон проверки диодов. Проверьте каждый транзистор на короткое замыкание между эмиттером и коллектором.Замените все транзисторы, которые вы сочтете неисправными. Хотя некоторые технические специалисты утверждают, что вам следует заменить их оба, даже если только один из них неисправен, я не счел это необходимым.

    Между прочим, эти транзисторы всегда будут казаться закороченными между базой и эмиттером при тестировании «в цепи». Обычно я не утруждаюсь тестированием перехода база-эмиттер транзисторов. Когда переключающие транзисторы выходят из строя, они всегда закорачивают между эмиттером и коллектором. Если вы сомневаетесь, вытащите транзисторы из цепи, чтобы проверить их.Если транзисторы закорочены, предохранитель перегорит. Обязательно проверьте и высоковольтные диоды. Высоковольтные диоды обычно являются частью мостового выпрямителя, хотя могут быть отдельными диодами.

    Затем проверьте выходные выпрямители. Необходимо проверить три пары диодов. Одна пара предназначена для выхода -5 В. Они будут довольно маленькими; примерно такого же размера, как вездесущий 1N4004, с которым все мы знакомы. Диоды на +12 В обычно несколько больше.Два выходных диода +5 В размещены вместе в «двойном диодном» корпусе, который очень похож на транзистор. Как и переключающие транзисторы, этот диодный корпус установлен на радиаторе. Обычно на нем напечатаны символы схемы диодов. Этот диод обычно не тестирует правильно в цепи. Тестирование можно упростить, отпаяв его с помощью «присоски для припоя» вместо того, чтобы полностью снимать его с печатной платы. Я видел очень мало отказов выходных диодов +5 В.Все диоды необходимо заменить быстродействующими диодами, иначе блок питания будет генерировать чрезмерный шум.

    Выполните эти тесты, заменив все выходные конденсаторы конденсаторами с низким ESR и включите источник питания. Блок питания следует проверить под нагрузкой. Используйте резистор на 1 Ом, 50 Вт или эквивалент в качестве «фиктивной нагрузки», подключенный между выходом +5 В и землей (DC COM). Это потребляет 5 ампер от источника питания, что достаточно для тестирования. Если источник питания все еще не работает, возможно, неисправна интегральная схема.Проверьте микросхему, сняв ее с печатной платы и установив в надежный источник питания. У меня есть запасной блок питания с розеткой, который я использую исключительно для тестирования интегральных схем. Практически все расходные материалы используют одну и ту же микросхему; тип 494. Эквивалентные интегральные схемы: TL494CN, uA494, uPC494C, IR3MO2 и MB3759. Их можно заменить на ECG1729.

    Получение запасных частей

    Одним из основных аргументов в пользу того, чтобы выбросить неисправные блоки питания в мусорное ведро, было то, что стоимость заменяемых компонентов почти равна стоимости нового блока питания.Это просто неправда. Переключающие транзисторы доступны по цене около 0,90 доллара за штуку.

    В большинстве случаев вы можете сказать, что конденсатор плохой, просто взглянув на его верхнюю поверхность. Если он вздулся вверху, это плохо, и его следует немедленно заменить. Иногда конденсаторы, которые выглядят нормально, тоже могут быть плохими, и для их определения вам понадобится измеритель ESR. Конденсаторы, которые вы хотите заказать, произведены Nichicon. Закажите 3300 мкФ при 16 вольт (номер детали UVX1C332M) и 1000 мкФ при 25 вольт (номер детали UVX1E102M.Они подходят для замены конденсаторов выходных фильтров практически во всех моделях источников питания. Помните, что при замене конденсаторов фильтра вы всегда можете заменить конденсатор более высоким напряжением. НАПРИМЕР. Конденсатор на 1000 мкФ, 16 В можно заменить на 1000 мкФ, 25 В.

    Слишком высокий выход минус 5 В

    Большинство источников питания импульсных стабилизаторов имеют три выхода постоянного тока. Один из них — это основной выход +5 В постоянного тока, который питает компьютерную систему.Остальные — выходы +12 и -5 В. Эти выходы постоянного тока часто используются для питания системы генерации звука и самого аудиоусилителя. Когда вы тестируете источник питания, важно проверить все три выхода. Это особенно верно, когда у вас есть игра, которая в основном работает нормально, но имеет искаженный или отсутствующий звук.

    При выходе из строя источника питания импульсного регулятора напряжение на всех трех выходах обычно падает до нуля. Однако иногда выходное напряжение может возрасти.Если вы обнаружите, что выходы +5 В постоянного тока и +12 В постоянного тока в норме, но выходное напряжение -5 В постоянного тока слишком высокое (более -6 В постоянного тока), попробуйте заменить дроссель выходного фильтра -5.

    Дроссель фильтра -5 В легко найти даже без принципиальной схемы. Просто проследите след на печатной плате от выхода -5 В постоянного тока источника питания. В конечном итоге вы придете к компоненту, который может выглядеть как конденсатор, но будет четко обозначен на плате буквой «L» и, как правило, будет сопровождаться схематическим обозначением катушки.Катушка намотана на ферритовую катушку и покрыта пластиковой гильзой, на которую нанесена термоусадка. Осмотрите катушку. Если термоусадочная крышка расплавилась или отсутствует полностью, змеевик может быть неисправен.

    Есть несколько вариантов получения катушки на замену. Предпочтительный метод — отключить катушку от ненужного источника питания. В качестве альтернативы вы можете снять перегоревший провод с ферритового сердечника и самостоятельно перемотать дроссель, используя провод соответствующего калибра. На нем не так много витков провода, чтобы за пять минут не перемотать новую катушку.

    Замена выходного конденсатора

    Я получил несколько звонков и писем от операторов и технических специалистов, у которых возникли проблемы с получением запасных конденсаторов для источников питания импульсных регуляторов. Рекомендую использовать конденсаторы марки Nichicon. Я использую их почти два года и на сегодняшний день не видел повторного выхода конденсатора из строя.

    Я рекомендую вам заказать только два конденсатора различных марок Nichicon для использования в качестве замены конденсаторов выходного фильтра.Когда у вас есть номера деталей, это очень помогает. Для выхода +5 В постоянного тока используйте конденсаторы емкостью 3300 мкФ, 16 В постоянного тока. Номер детали Nichicon — UVX1C332M. Для каждого блока питания требуется два таких блока.

    Чтобы упростить заказ и хранение, я использую один и тот же конденсатор для выходов +12 В постоянного тока и -5 В постоянного тока. Это конденсатор емкостью 1000 мкФ, 25 вольт. Номер детали Nichicon — UVX1E102M. Хотя в некоторых источниках питания для вывода +12 В постоянного тока используется конденсатор на 2200 мкФ, я считаю, что 1000 мкФ вполне удовлетворительны.В большинстве источников питания используется по одному конденсатору для выходов +12 В постоянного тока и -5 В постоянного тока, поэтому заказывайте такое же количество конденсаторов на 1000 мкФ, что и конденсаторы на 3300 мкФ. При замене конденсаторов выходного фильтра рекомендуется заменить их все сразу.

    Замена выходного диода

    Выходные диоды — частая неисправность в блоке питания импульсного регулятора. Я бы сказал, что от двадцати пяти до тридцати процентов из них имеют плохие выходные диоды.

    Высокоскоростные диоды

    Имеется три пары выходных диодов; по одной паре для каждого из выходов: +5 В постоянного тока, +12 В постоянного тока и -5 В постоянного тока.Это не обычные диоды. Это специальные быстродействующие диоды с «быстрым восстановлением». Высокоскоростные диоды предназначены для очень быстрого переключения (около 40 тысяч циклов в секунду) источника питания.

    Я редко заменял диодную сборку +5 В в блоке питания импульсного регулятора. Выходные диоды +12 и -5 В являются наиболее частыми отказами. Плохое испытание этих диодов при проверке «в цепи» является нормальным явлением. Обычно на выходе источника питания имеется резистор с низким сопротивлением (обычно около 100 Ом), который вызывает очень низкие показания при проверке выходных диодов +12 или -5 В.Большинство людей распаивают и удаляют один конец каждого диода, чтобы проверить его, но обычно вы можете обойти этот шаг. Когда эти диоды выходят из строя, они, как правило, полностью замыкаются. Вместо значения около 100 Ом вы получите значение около нуля Ом; тупик!

    Запасные диоды

    Выходные диоды +12 В обычно имеют оригинальный номер детали, например, PXPR302 или FR302. Это диоды на 3 ампера. Выходные диоды -5 В часто имеют тип PXPR1502 или аналогичные. Хорошая инженерная практика требует, чтобы в этой схеме использовались высокоскоростные диоды с «быстрым восстановлением».Я обнаружил, что нормальные диоды преждевременно выходят из строя и как таковые неприемлемы в качестве замены. Чем больше вы работаете над ремонтом блоков питания, тем легче это становится. Если учесть, что многие ремонты блоков питания производятся с заменой одного диода, то можно заметить, что они совсем не одноразовые!

    Плохие импульсные блоки питания обычно делятся на несколько категорий:

    1. Мертвый и тихий с сгоревшим предохранителем
    2. Мертвый и тихий с исправным предохранителем
    3.Мертвый и чириканье / щелчок с предохранителем исправен
    4. Выходное напряжение в порядке, но игра ведет себя глупо с этим источником питания.

    # 2 исправить труднее всего.

    Импульсные блоки питания работают следующим образом:

    Сторона высокого напряжения: выпрямление сетевого напряжения методом грубой силы с помощью набора диодов — либо отдельных, либо 4-выводного мостового выпрямителя. Он фильтруется через конденсатор и поступает в схему переключения (после понижения через другие компоненты) и в главный переключающий транзистор.Проблемы здесь относятся к №1 и их довольно легко исправить.

    Регулировка: эта схема запускает питание и обеспечивает правильный выход. Он запускает колебания главного переключающего транзистора и контролирует выход высокочастотного понижающего трансформатора через механизм обратной связи. Проблемы здесь связаны с №2 — самой сложной для решения.

    Сторона низкого напряжения: здесь находятся выпрямительные диоды, дроссельные катушки фильтра и конденсаторы, которые превращают высокочастотный выход переменного тока трансформатора в выход постоянного тока, необходимый для игры.Здесь есть небольшая часть схемы, которая обеспечивает обратную связь с регулирующей схемой, чтобы все работало стабильно. Проблемы здесь связаны с №3 и №4.

    ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ: * ВСЕ * перечисленные методы поиска и устранения неисправностей выполняются при выключенном питании. Имейте в виду, что проблемы, перечисленные под номерами №2, №3 и №4, связаны с тем, где предохранитель находится в ХОРОШЕМ порядке, а в секции высокого напряжения платы может быть заряд на больших конденсаторах фильтра. У некоторых источников питания есть резисторы для утечки через них.Другие НЕТ. Используйте резистор 150 кОм 1/2 Вт, чтобы удалить эти колпачки и проверить напряжение своим измерителем, чтобы избежать неприятного электрошока. Постоянный ток заставляет ваши мышцы сокращаться, и если вы возьмете в руки блок питания, вы можете обнаружить, что не можете их отпустить. Да, однажды со мной такое случалось. Примите соответствующие меры предосторожности. Вот как я узнал, что не все блоки питания имеют резисторы для защиты от утечки основных фильтров на стороне высокого напряжения. Блин блоки питания Apple II …

    Крепление стороны высокого напряжения:

    С помощью омметра проверьте сопротивление во всех комбинациях 4 ножек мостового выпрямителя.Они НЕ должны показывать нулевое сопротивление. Если да, поменяйте местами провода и проверьте еще раз … если есть … замените компонент.

    Проделайте то же испытание на выводах главного переключающего транзистора и любого другого полупроводника (диода / транзистора) в секции высокого напряжения. Замените все закороченные компоненты.

    Имейте в виду, что в некоторых импульсных источниках питания вокруг переключающего транзистора используются маломощные резисторы. Если вы читаете около 2 Ом, возможно, вы читаете их. Закороченный компонент обычно составляет 1/2 Ом или меньше.

    Если вы обнаружите закороченные компоненты где-либо в секции высокого напряжения, вам следует проверить резисторы на предмет обрыва и при необходимости заменить. Замените предохранитель, отремонтируйте все потрескавшиеся паяные соединения, соберите заново и проверьте …

    Устранение неполадок со стороны низкого напряжения: Чириканье питания обычно означает проблемы с выходом. Это может быть проблема и с регулирующей частью, но я никогда не видел этого в этом случае. В каждом случае чирикающих источников питания, над которыми я работал, закрывался выпрямительный диод в секции низкого напряжения.

    Некоторые диоды представляют собой сдвоенные диоды, похожие на транзисторы. Посмотрите на печатную плату, поскольку большинство из них помечены как «D #» или «CR #». Проверьте эти компоненты с помощью омметра и найдите тот, который показывает короткое замыкание в обе стороны. Высокоскоростные сдвоенные выпрямители обычно считывают очень низкое сопротивление в одну сторону — выглядят почти закороченными — но они будут считывать высокие значения в другую сторону, если они не закорочены.

    Замените закороченные выпрямители, устраните трещины в паяных соединениях, соберите заново и проверьте.

    Блок питания работает, но игра с ним нестабильна: проверьте конденсаторы фильтра на выходной секции блока питания. Ищите те, у которых верхняя часть разделена, или те, которые наклонились или поднялись из-за того, что резиновая заглушка выскочила из дна. Если все они выглядят нормально, либо стреляйте в них, либо проверьте выходы с помощью осциллографа и поищите на них беспорядочные высокочастотные пульсации переменного тока. При необходимости замените колпачки, чтобы очистить эти выводы, исправить любые потрескавшиеся паяные соединения, собрать и проверить.

    Проблема в разделе регулирования: Ну, это может быть сложно понять. Единственный раз, когда мне удавалось починить их без схемы (что не очень часто, так как вы обычно не можете получить схемы для них), это когда дробовик колпачков в секции регулирования или обнаружение трещин в паяном соединении.

    Что делать, если у меня возникла проблема, связанная с №1 или №3, и я не могу найти закороченный компонент? Что ж, это становится сложнее. Иногда полупроводник не замыкается. Иногда он становится «негерметичным», что означает, что прямое сопротивление низкое, как обычно, но сопротивление обратного пути ниже, чем должно быть.Если вы столкнетесь с подобными ситуациями, внимательно проверьте компоненты. Если вы обнаружите один с низким односторонним сопротивлением и около 500-1000 Ом (может быть, немного больше, может немного меньше), то снимите одну ногу детали, поднимите ее из платы и проверьте, что часть вне цепи. . Если он показывает низкий уровень в одном направлении и не высокий в другом (в другом случае должно быть десятки, если не сотни тысяч Ом или выше), замените его, так как он может иметь негерметичность.

    За годы работы я починил сотни коммутационных блоков — Apple II и более старые Mac II, SE, SE / 30 и множество клонов ПК.Я также отремонтировал их для различных сетевых устройств. Помните о мерах предосторожности и убедитесь, что колпачки сняты, и вы в безопасности.

    Как отремонтировать импульсный блок питания

    Как отремонтировать импульсный блок питания

    На практике обслуживания импульсных источников питания существует множество импульсных источников питания, в которых используются 8-контактные ШИМ-компоненты серии UC38 × ×.Большинство источников питания не могут работать из-за повреждения резисторов включения или ухудшения характеристик микросхемы. Когда нет VC после отключения R, компонент PWM не может работать, и необходимо заменить то же сопротивление, что и исходное сопротивление питания. Когда пусковой ток компонента ШИМ увеличивается, значение R можно уменьшать до тех пор, пока компонент ШИМ не сможет нормально работать. При ремонте блока питания GEDR используется модуль ШИМ UC3843, и никаких других отклонений не обнаружено. После подключения резистора 220 кОм к R (220 кОм) компонент ШИМ работает и выходное напряжение в норме.Иногда из-за сбоя периферийной цепи напряжение на клемме VR 5V составляет 0 В, компонент PWM не работает. Такая ситуация возникает при ремонте блока питания камеры Kodak 8900. Внешняя цепь, подключенная к клемме VR, отключается, и VR изменяется с 0 В. 5V, компоненты PWM работают нормально, а выходное напряжение в норме.
    Когда на конденсаторе фильтра нет напряжения около 380 В постоянного тока, схема PFC не работает нормально. Ключевой вывод обнаружения модуля PFC — это вывод питания VC, пусковой вывод Vstart / control, выводы CT и RT и вывод V0.При ремонте камеры Fuji 3000 убедитесь, что на конденсаторе фильтра на плате отсутствует напряжение 380 В постоянного тока. Формы сигналов VC, Vstart / control, CT и RT и сигналов V0 являются нормальными. Измеренная лампа переключателя мощности с полевым эффектом G не имеет формы волны V0. Поскольку FA5331 (PFC) является патч-компонентом, машина появится между концом V0 и платой через долгое время. Припой, сигнал V0 не отправляется на полевой транзистор полевого транзистора. Припаяйте конец V0 к паяльному соединению на плате и измерьте конденсатор фильтра с помощью мультиметра напряжением 380 В постоянного тока.Когда на клемме Vstart / control низкий уровень, PFC не будет работать. Необходимо обнаружить соответствующие цепи, клеммы которых подключены к периферии.
    Короче говоря, схема импульсного источника питания проста в использовании, мощность большая и малая, а выходное напряжение различно. Пока вы понимаете основные вещи, то есть полностью знакомы с базовой структурой импульсного источника питания и характеристиками модулей PFC и PWM, основными условиями их работы, в соответствии с вышеуказанными шагами и методами, больше рук -При обслуживании импульсного источника питания можно быстро устранить сбой питания коммутатора, добиться вдвое большего результата с половиной усилий.

    Линейно-регулируемый источник питания в сравнении с импульсным | ОРЕЛ

    Для повседневных электронных устройств, особенно с интегральными схемами, требуется надежный источник постоянного напряжения, который может обеспечивать питание в любое время без каких-либо сбоев. В этом блоге мы рассмотрим две топологии источников питания, которые следует рассмотреть для вашего следующего проекта: источники питания с линейным стабилизатором и импульсные источники питания. Выбор источника питания зависит от ваших требований к эффективности, занимаемому пространству, регулированию выходной мощности, переходному времени отклика и стоимости.

    Источник питания с линейной регулировкой

    Линейные регуляторы были предпочтительными источниками питания до 1970-х годов для преобразования переменного тока (AC) в установившийся постоянный ток (DC) для электронных устройств. Хотя сегодня этот тип источника питания не используется так широко, он по-прежнему является лучшим выбором для приложений, требующих минимального шума и пульсаций.

    Они могут быть громоздкими, но источники питания с линейной регулировкой бесшумны. (Источник изображения)

    Как они работают

    Основным компонентом, обеспечивающим работу линейного регулятора, является стальной или чугунный трансформатор.Этот трансформатор выполняет две функции:

    • Он действует как барьер для разделения входа высокого напряжения переменного тока от входа низкого напряжения постоянного тока, который также отфильтровывает любой шум, попадающий в выходное напряжение.
    • Он снижает входное напряжение переменного тока с 115 В / 230 В до примерно 30 В, которое затем может быть преобразовано в постоянное напряжение постоянного тока.

    Напряжение переменного тока сначала понижается трансформатором, а затем выпрямляется несколькими диодами. Затем оно сглаживается до низкого постоянного напряжения парой больших электролитических конденсаторов.Это низкое постоянное напряжение затем регулируется как стабильное выходное напряжение с помощью транзистора или интегральной схемы.

    Вот блок питания с линейным регулятором. (Источник изображения)

    Регулятор напряжения в линейном источнике питания действует как переменный резистор. Это позволяет изменять значение выходного сопротивления в соответствии с требованиями к выходной мощности. Поскольку регулятор напряжения постоянно сопротивляется току для поддержания напряжения, он также действует как устройство рассеивания мощности.Это означает, что полезная мощность постоянно теряется в виде тепла, чтобы поддерживать постоянный уровень напряжения.

    Трансформатор — это уже крупный компонент, который нужно разместить на печатной плате (PCB). Из-за постоянной мощности и рассеивания тепла для источника питания линейного регулятора потребуется радиатор. Сами по себе эти два компонента делают устройство очень тяжелым и громоздким по сравнению с малым форм-фактором импульсного источника питания.

    Предпочтительные приложения

    Линейные регуляторы

    известны своим низким КПД и большими размерами, но они обеспечивают бесшумное выходное напряжение.Это делает их идеальными для любого устройства, которому требуется высокая частота и низкий уровень шума, например:

    • Цепи управления
    • Усилители малошумящие
    • Сигнальные процессоры
    • Автоматизированное и лабораторное испытательное оборудование
    • Датчики и схемы сбора данных

    Преимущества и недостатки

    Источники питания с линейной стабилизацией могут быть громоздкими и неэффективными, но их низкий уровень шума идеально подходит для приложений, чувствительных к шуму. Некоторые преимущества и недостатки, которые следует учитывать для этой топологии, включают:

    Преимущества

    • Простое приложение .Линейные регуляторы могут быть реализованы как единый корпус и добавлены в схему всего двумя дополнительными фильтрующими конденсаторами. Это позволяет инженерам любого уровня подготовки легко планировать и проектировать с нуля.
    • Низкая стоимость . Если вашему устройству требуется выходная мощность менее 10 Вт, то стоимость компонентов и производства намного ниже по сравнению с импульсными источниками питания.
    • Низкий уровень шума / пульсаций . Линейные регуляторы имеют очень низкие пульсации выходного напряжения и широкую полосу пропускания.Это делает их идеальными для любых чувствительных к шуму приложений, включая устройства связи и радио.

    Недостатки

    • Ограниченная гибкость . Линейные регуляторы можно использовать только для понижения напряжения. Для источника питания переменного / постоянного тока трансформатор с выпрямлением и фильтрацией необходимо разместить перед линейным источником питания, что увеличит общие затраты и усилия.
    • Ограниченные выходы . Источники питания с линейной стабилизацией обеспечивают только одно выходное напряжение.Если вам нужно больше, вам нужно будет добавить отдельный линейный регулятор напряжения для каждого требуемого выхода.
    • Низкая эффективность . Среднее устройство с линейным регулированием достигает КПД от 30% до 60% за счет рассеивания тепла. Это также требует добавления радиатора, который увеличивает размер и вес устройства.

    В наше время энергоэффективных устройств низкий КПД линейно регулируемого источника питания может стать убийцей. Нормальный источник питания с линейной регулировкой будет работать с КПД около 60% при выходном напряжении 24 В.Когда вы рассматриваете входную мощность 100 Вт, вы получаете 40 Вт потери мощности.

    Прежде чем рассматривать возможность использования источника питания с линейной стабилизацией, мы настоятельно рекомендуем учитывать потери мощности, которые вы получите от входа к выходу. Вы можете быстро оценить эффективность линейного регулятора по следующей формуле:

    Импульсный источник питания (SMPS)

    Импульсные источники питания были представлены в 1970-х годах и быстро стали самым популярным способом подачи постоянного тока на электронные устройства.Что делает их такими замечательными? По сравнению с линейными регуляторами выделяются их высокий КПД и производительность.

    В стандартный адаптер переменного тока входит импульсный блок питания. (Источник изображения)

    Как они работают

    Импульсный источник питания регулирует выходное напряжение с широтно-импульсной модуляцией (ШИМ). Этот процесс создает высокочастотный шум, но обеспечивает высокую эффективность при небольшом форм-факторе. При подключении к сети переменного тока напряжение 115 В или 230 В переменного тока сначала выпрямляется и сглаживается набором диодов и конденсаторов, которые обеспечивают высокое напряжение постоянного тока.Это высокое постоянное напряжение затем понижается с помощью небольшого ферритового трансформатора и набора транзисторов. В процессе понижения сохраняется высокая частота переключения от 200 кГц до 500 кГц.

    Низкое постоянное напряжение, наконец, преобразуется в устойчивый выход постоянного тока с помощью другого набора диодов, конденсаторов и катушек индуктивности. Любое регулирование, необходимое для поддержания постоянного выходного напряжения, осуществляется путем регулировки ширины импульса высокочастотного сигнала. Этот процесс регулирования работает через цепь обратной связи, которая постоянно контролирует выходное напряжение и при необходимости регулирует соотношение включения-выключения сигнала ШИМ.

    Вот импульсный блок питания, в котором на тонну больше деталей, чем с линейным регулированием. (Источник изображения)

    Предпочтительные приложения

    Чаще всего импульсные блоки питания используются в приложениях, где важны время автономной работы и температура, например:

    • Электролиз, обработка отходов или применение топливных элементов
    • Двигатели постоянного тока, игровые автоматы, авиация и морское применение
    • Научно-исследовательское, производственное и испытательное оборудование
    • Зарядка литий-ионных батарей, используемых в авиации и транспортных средствах
    • Процессы гальваники, анодирования и гальванопластики

    Преимущества и недостатки

    Импульсные источники питания

    могут иметь более высокий КПД, чем линейные регуляторы, но их шум делает их плохим выбором для приложений радиосвязи и связи.Некоторые преимущества и недостатки, которые следует учитывать для этой топологии, включают:

    Преимущества

    • Малый форм-фактор . Понижающий трансформатор в ИИП работает на высокой частоте, что, в свою очередь, уменьшает его объем и вес. Это позволяет импульсному источнику питания иметь гораздо меньший форм-фактор, чем линейные регуляторы.
    • Высокая эффективность . Регулирование напряжения в импульсном источнике питания осуществляется без чрезмерного рассеивания тепла.КПД SMPS может достигать 85% -90%.
    • Гибкие приложения . К импульсному источнику питания можно добавить дополнительные обмотки, чтобы обеспечить более одного выходного напряжения. ИИП с трансформаторной развязкой может также обеспечивать выходное напряжение, не зависящее от входного напряжения.

    Недостатки

    • Сложная конструкция . По сравнению с линейными регуляторами планирование и проектирование импульсных источников питания обычно предназначено для специалистов по энергетике.Это не лучший источник питания, если вы планируете разработать свой собственный без внимательного изучения и опыта.
    • Высокочастотный шум . Операция переключения полевого МОП-транзистора в импульсном источнике питания обеспечивает высокочастотный шум в выходном напряжении. Это часто требует использования радиочастотного экранирования и фильтров электромагнитных помех в чувствительных к шуму устройствах.
    • Более высокая стоимость . Для более низкой выходной мощности 10 Вт или менее дешевле использовать линейно регулируемый источник питания.

    Импульсные блоки питания никуда не денутся и станут лучшим выбором для приложений, не чувствительных к шуму. Сюда входят такие устройства, как зарядные устройства для мобильных телефонов, двигатели постоянного тока и многое другое.

    Сравнение линейного регулятора

    и SMPS

    Теперь мы рассмотрим последнее сравнение между линейно регулируемыми и импульсными источниками питания при параллельном сравнении. Некоторые из наиболее важных требований, которые необходимо учитывать, в том числе размер / вес, диапазон входного напряжения, рейтинг эффективности и уровень шума среди других факторов.Вот как он распадается:

    Как спроектировать свой собственный Это выходит за рамки этого блога, чтобы объяснить, как спроектировать источник питания с линейным регулируемым или переключаемым режимом. Однако есть несколько руководств, которыми мы хотели бы поделиться. Имейте в виду, что конструкция SMPS требует высокого уровня сложности и не рекомендуется новичку в проектировании электроники. Руководства по проектированию линейно регулируемых источников питания

    Руководства по проектированию импульсных источников питания

    Power On Большинство электронных устройств в наши дни должны преобразовывать сеть переменного тока в постоянное выходное напряжение.Для этой цели необходимо рассмотреть две топологии: источники питания с линейным регулированием и импульсные источники питания. Линейное регулирование идеально подходит для приложений, требующих низкого уровня шума, тогда как импульсные источники питания лучше подходят для портативных устройств, где важны срок службы батареи и эффективность. Решая, какую топологию выбрать, всегда учитывайте требуемый рейтинг эффективности, форм-фактор, выходную регулировку и требования к шуму. Готовы разработать свой первый линейный регулируемый или импульсный источник питания? Попробуйте Autodesk EAGLE бесплатно сегодня!

    Источники питания с линейной регулировкой Импульсные источники питания
    Размер Линейный блок питания мощностью 50 Вт обычно 3 x 5 x 5.5 ” Импульсный блок питания мощностью 50 Вт, обычно 3 x 5 x 1 дюйм
    Вес Линейный источник питания 50 Вт — 4 фунта Импульсный блок питания мощностью 50 Вт — 0,62 фунта
    Диапазон входного напряжения 105 — 125 В переменного тока и / или

    210–250 В перем. Тока

    90 — 132 В переменного тока или 180 — 264 В переменного тока без PFC

    90 — 264 В переменного тока с PFC

    КПД Обычно 40% -60% Обычно 70% -85%
    EMI Низкая Высокая
    Утечка Низкая Высокая
    Схема проектирования Средняя сложность, можно проектировать с помощью направляющих Высокая сложность, требует специальных знаний
    Регулирование нагрузки 0.От 005% до 0,2% от 0,05% до 0,5%
    Линейное постановление от 0,005% до 0,05% от 0,05% до 0,2%
    Количество деталей Низкий, требуется только регулятор и фильтрация ввода / вывода Высокий, требуется переключатель, демпфер, трансформатор, конденсаторы, сеть обратной связи и т. Д.

    Как отремонтировать блок питания компьютера


    Если блок питания поврежден или не работает, компьютер также не сможет работать.Прежде чем приступить к ремонту блока питания компьютера, необходимо определить причину поломки. Повреждение источника питания обычно вызывается тремя факторами: нестабильным напряжением, чрезмерной нагрузкой, а также плохой системой заземления. Чтобы выяснить это, мы должны сначала провести тестирование, чтобы диагностировать повреждение источника питания, шаги следующие:

    1. Прежде всего, отключите кабель питания БП от электрических соединений.
    2. Отключите БП, выход подключен ко всем компонентам компьютера.
    3. Вставьте обратно шнур питания блока питания, который был отключен от сети.
    4. Подготовьте перемычку проводов на 10–20 см, чтобы оба конца были сняты.
    5. Удерживайте выходной кабель блока питания (порт с 20 контактами или 24 контакта), а затем соедините зеленый кабель с черным кабелем с помощью кабельной перемычки.
    6. Если оба кабеля были подключены, а вентилятор вращается, то состояние блока питания хорошее, а если вентилятор не работает, блок питания неисправен.

    Однако, если повреждение было вызвано поломкой одного из компонентов блока питания, выходное напряжение может стать нестабильным и повредить другие компоненты вашего компьютера. Поэтому не забывайте проверять каждый кабель по цвету. Вот список выходных напряжений блока питания.

    • Красный: + 5 В
    • Белый: — 5 В
    • Черный: 0 В на массу
    • Желтый: + 12 В
    • Синий: — 12 В
    • Пурпурный: +5 вольт в стойке
    • Оранжевый: + 3 В
    • Зеленый: DC ON
    • Коричневый: датчик напряжения согласно MB

    После диагностики повреждения блока питания компьютера следующим шагом является ремонт существующего компонента в блоке питания, если действительно есть повреждение.Перед этим, пожалуйста, обратитесь к примеру схемы блока питания компьютера на изображении выше.

    Как отремонтировать блок питания компьютера

    1. Во-первых, отключите все входные порты источника питания, которые подключены к сети, или выходные порты, подключенные к компонентам компьютера.
    2. После этого выньте блок питания из корпуса компьютера.
    3. Откройте коробку источника питания, очистите внутреннюю часть источника питания и проверьте, есть ли горящие компоненты, горение обычно является компонентом elco.
    4. При обнаружении ослабьте компоненты и замените их новыми. Если нет, проверил ли раздел проверки предохранителя, если его состояние по-прежнему хорошее или нет, путем измерения его с помощью омметра.
    5. Затем проверьте силовой переключающий транзистор 2SC3039 (две части), который предназначен для управления источником питания в режиме ШИМ.
    6. Снимите два транзистора печатной платы, чтобы проверить его состояние. Если все в порядке, проверьте секцию диодного моста.
    7. Проверьте состояние каждого диода с помощью мультиметра.Повреждение блока питания часто происходит из-за того, что есть один излучающий диод.
    8. После этого проверьте транзисторы генератора импульсов, конденсаторы, а также имеющийся резистор на одном блоке схем генератора импульсов. Убедитесь, что все компоненты исправны и работают нормально.
    9. Не забудьте проверить каждую точку пайки компонентов. Убедитесь, что нет пайки, учитывая высокую температуру внутри блока питания.
    10. Если все компоненты проверены и исправны, высока вероятность повреждения компонента ICTL494.Для проверки компонента микросхемы TL494 нельзя использовать мультиметр.
    11. Следовательно, вам следует попробовать заменить старые компоненты микросхемы TL494 на новые.
    12. Проведите тест еще раз.

    Надеюсь, эта статья: как отремонтировать блок питания компьютера оказалась полезной

    Теги: исправить блок питания компьютера исправить блок питания компьютера ремонт блока питания ATX ремонт блока питания компьютера обслуживание блока питания компьютера

    Услуги по ремонту и техническому обслуживанию промышленных источников питания

    Быстрые ссылки: Почему глобальные электронные услуги | Процесс ремонта блока питания | Типы источников питания | Свяжитесь с нами сегодня

    Любому предприятию, использующему промышленные блоки питания, необходима надежная ремонтная служба.Когда прекращается подача электроэнергии, компании сталкиваются с неожиданными простоями, которые могут сорвать проекты и снизить прибыль. Global Electronic Services готова предоставить эффективные услуги по ремонту любых промышленных источников питания, чтобы ваш бизнес мог минимизировать влияние на работу при выходе из строя оборудования.

    ЗАПРОСИТЬ ЦЕНУ

    Почему выбирают глобальные электронные услуги для ремонта источников питания?

    У вашего предприятия есть сотни вариантов, когда дело доходит до ремонта промышленного электрооборудования.Итак, что делает Global Electronic Services правильным выбором и как мы можем предоставить услуги, превосходящие остальные? Вот семь основных преимуществ, которые следует учитывать:

    1. Внутреннее обслуживание

    Многие производители электроники сокращают время и передают часть своей работы другим предприятиям. Они делают это, чтобы сократить расходы, и такая практика сопряжена с серьезными недостатками для конечного потребителя. Плохая коммуникация и отсутствие прозрачности затрудняют понимание того, кто на самом деле занимается ремонтом вашей компании, и часто бывает сложно получить актуальную информацию о том, как идет ремонт.

    Global Electronic Services выполняет весь ремонт на месте, поэтому ваша компания может быть уверена, что весь ремонт источников питания выполняется нашими опытными специалистами по ремонту. Это также означает, что у нас есть тысячи общих компонентов, готовых к работе, и нам не нужно ждать поступления различных компонентов, как это делают многие другие компании. У нас даже есть запасы устаревших компонентов, что позволяет нам ремонтировать блоки питания, которые у других компаний просто нет для обслуживания.

    2. Гарантия в процессе эксплуатации

    Когда ваша компания ремонтирует блок питания, вы ожидаете, что ремонт будет чем-то большим, чем просто пластырем.Многие ремонтные службы в срочном порядке выполняют ремонт блока питания, но не дают никаких гарантий, что проделанная ими работа задержится. Это означает, что многие компании в конечном итоге отправляют одно и то же устройство обратно в ремонт или преждевременно заменяют устройство, срок службы которого может быть долгим, если будет выполнен качественный ремонт.

    Чтобы повысить доверие клиентов к качеству наших услуг, мы предлагаем 18-месячную гарантию на ремонт. Это означает, что даже если ваша компания использует блок питания в качестве резервного, он все равно покрывается в течение 18 месяцев, начиная с момента ввода в эксплуатацию.

    3. Быстрый возврат

    Хотя ремонт промышленных источников питания может быть глубоким и сложным процессом, это не повод заставлять вашу компанию дольше ждать ремонта оборудования. Благодаря нашему оптимизированному процессу и квалифицированным специалистам по ремонту, Global Electronic Services имеет стандартное время выполнения работ от одного до пяти дней.

    Когда вы разговариваете с представителем или запрашиваете ценовое предложение с подробным описанием проблемы с источником питания, мы можем дать оценку того, сколько времени займет ремонт, чтобы ваш бизнес мог соответствующим образом спланировать работу.

    4. Срочная служба

    Многие ремонтные службы просто не в состоянии предоставить срочные услуги. Global Electronic Services готова взять на себя экстренный ремонт, а также отремонтировать и отправить блок питания вашей компании обратно в течение 24–48 часов, если возникнет острая необходимость.

    Имея по одной ремонтной мастерской на каждом берегу, Global Electronic Services может быстрее вернуть ваш недавно отремонтированный источник питания к вашему бизнесу. Лучшая часть срочного сервиса заключается в том, что мы предлагаем его бесплатно.Мы понимаем, что такое аварийное электроснабжение, и не пользуемся ситуацией в вашей компании.

    5. Гарантия цены

    Когда блок питания выходит из строя, вашей компании необходимо найти баланс между соблюдением бюджета и поиском поставщика качественного ремонта. Global Electronic Services избавляет от головной боли при поиске благодаря нашей гарантии цены. Мы превзойдем любую предложенную вами цену на 10%, давая вам уверенность в том, что ваша компания получает лучшую ценность в отрасли.

    6. Испытания при полной нагрузке

    Некоторые компании используют свои гарантии как способ пропустить важный процесс проверки ремонта. Когда это происходит, компании вынуждены отправлять в ремонт одно и то же оборудование несколько раз, потому что оно не проходит тщательные испытания. Хотя ремонт может быть бесплатным, разочарование и простои, вызванные этим, того не стоят.

    Global Electronic Services объединяет нашу лучшую в отрасли гарантию с тестированием при полной нагрузке в процессе ремонта, помогая свести к минимуму вероятность того, что вам понадобится использовать гарантию после завершения ремонта.

    7. Отслеживание процессов

    Незнание того, что происходит в процессе ремонта промышленного источника питания, может вызвать серьезное разочарование и затруднить планирование ремонта источника питания вашей компании. Вот почему мы предлагаем отслеживание процессов через наш клиентский портал. Просто войдите в систему и отслеживайте, где находится каждый заказ в процессе ремонта. Вы также можете просматривать историю заказов, оплачивать заказы и подтверждать расценки через удобный портал.

    Процесс ремонта промышленных источников питания

    В

    Global Electronic Services предусмотрен пятиэтапный процесс ремонта, призванный обеспечить квалифицированный ремонт с оптимизацией эффективности.Когда ваша компания отправляет блок питания в ремонт, он проходит следующий процесс:

    1. Квитанция

    При получении запроса ремонт немедленно регистрируется в нашей системе с собственным уникальным штрих-кодом для отслеживания. Техник завершает первоначальную оценку ремонта и составляет список деталей, необходимых для завершения ремонта. Используя этот список запчастей и оценку, мы создадим для вашей компании ценовое предложение в течение 24 часов и отправим его на утверждение посредством телефонного звонка и подтверждения по электронной почте.

    2. Оценка

    Как только ваша компания утвердит предложение, мы назначаем специалиста по блоку питания. Техник разбирает устройство и начинает поиск неисправностей оборудования — это включает в себя поиск электронных подписей и определение их функциональности, а также их производительности.

    3. Ремонт и проверка

    Используя информацию, полученную на предыдущем шаге, технический специалист выполняет испытание под настоящей нагрузкой и запускает моделирование, чтобы определить условия, при которых устройство выходит из строя.Это дает необходимую информацию для завершения ремонта.

    После того, как техник завершит ремонт, дальнейшие испытания в условиях нагрузки гарантируют оптимальную работу устройства.

    4. Заключительная подготовка

    Некоторые компании проводят ремонт, но не предпринимают дополнительных действий для обеспечения полной готовности устройства к работе после того, как клиент получит его. Это может привести к тому, что ваша компания получит устройство, которое функционирует, но требует дополнительной очистки, прежде чем его можно будет снова ввести в эксплуатацию.

    В Global Electronic Service мы делаем все возможное. После завершения ремонта и проверки агрегат отправляется на станцию ​​очистки. Техники используют чистящие средства, разработанные для электроники, в том числе обезжиривающие вещества и индикаторы масла. Для некоторых ремонтов требуется время, проведенное в сушильном помещении, чтобы влага полностью испарилась. Этот этап очистки гарантирует, что устройство будет готово к установке в тот момент, когда ваша компания получит его.

    5. Гарантия качества и доставка

    Наша опытная команда по обеспечению качества проводит еще один раунд проверок, чтобы убедиться, что блок питания полностью исправен и готов к повторному использованию.Как только это будет подтверждено, ремонт готов к отправке.

    Мы понимаем важность правильной упаковки и принимаем многочисленные меры для обеспечения безопасной доставки. Мы определяем потребности в упаковке в зависимости от размера, формы и веса отремонтированного изделия. При необходимости защиты ремонта мы предоставляем индивидуальную упаковку для отгрузки.

    После того, как мы отправим блок питания обратно в вашу компанию, мы создадим подробный счет, который доступен для просмотра на безопасном портале для клиентов.

    Типы источников питания

    Блок питания — это устройство, которое преобразует электрическую мощность в правильную частоту, ток и напряжение конкретной цепи нагрузки.Источником питания может быть переменный ток (от электричества) или постоянный ток (от батарей или солнечных батарей). Хотя источники питания обычно преобразуют один тип электроэнергии в другой, они также могут преобразовывать другие формы энергии, такие как солнечная или механическая, в электрическую энергию. Давайте посмотрим на некоторые из наиболее распространенных типов источников питания:

    1. Источник переменного тока

    Источник переменного тока позволяет пользователям изменять выходное напряжение и, в некоторых случаях, ток.В источниках питания переменного тока используются трансформаторы или автотрансформаторы для изменения напряжения и тока переменного тока в переменный, при этом частота источника питания остается неизменной.

    2. Частотные преобразователи

    Когда необходимо изменить частоту переменного тока, преобразователь частоты является подходящим типом источника питания. В этих источниках питания могут использоваться такие устройства, как мотор-генератор или выпрямительно-инверторный агрегат. В последнем случае выпрямитель преобразует мощность переменного тока в мощность постоянного тока, а инвертор затем изменяет мощность постоянного тока обратно на мощность переменного тока с другой частотой.

    3. Изолирующие трансформаторы

    Изолирующие трансформаторы передают электроэнергию от источника переменного тока к устройству или части оборудования, сохраняя при этом запитываемое устройство изолированным от источника питания. Они используются, когда необходимо согласование импеданса, и обеспечивают наиболее эффективную передачу мощности между каскадами.

    4. Нерегулируемый линейный источник питания

    Нерегулируемые линейные источники питания обеспечивают простое преобразование переменного тока в постоянный. В их дизайн входит:

    • Трансформатор понижающий
    • Выпрямитель
    • Конденсатор фильтра
    • Резистор кровотока

    Первым шагом в этом источнике питания является изменение сетевого напряжения трансформатором до необходимого уровня переменного напряжения.Полупериодный или двухполупериодный выпрямитель, использующий диоды, затем преобразует пониженное переменное напряжение в постоянное. Конденсаторы фильтра сглаживают возникающий постоянный ток. К конденсатору может быть подключен резистор утечки, а может и не быть его в качестве дополнительного уровня защиты.

    Преимущества нерегулируемых линейных источников питания включают надежность и простоту. К недостаткам можно отнести изменение выходного напряжения и конструкцию, которая может выводить только одно напряжение и ток.

    5. Источник питания с линейной регулировкой

    Источники питания с линейной регулировкой преобразуют переменный ток в постоянный.Процесс преобразования такой же, как и с нерегулируемым источником питания, но с добавлением транзисторной схемы вместо резистора утечки. Эта схема регулятора позволяет источнику питания преобразовывать основное переменное напряжение в стабильное постоянное напряжение, которое идеально подходит для устройств, которым требуется стабильное и постоянное питание.

    Эти блоки питания более дорогие, большие и менее энергоэффективные, чем нерегулируемые линейные блоки питания. Они имеют тенденцию терять значительное количество энергии из-за рассеивания мощности, поэтому их может потребоваться использовать вместе с радиатором с регулятором на интегральной схеме (IC).

    6. Импульсный регулируемый источник питания

    Импульсные регулируемые источники питания или импульсные источники питания (SMPS) доступны в конфигурациях AC-to-DC или DC-to-DC. В них используется сложный высокочастотный метод переключения с широтно-импульсной модуляцией и обратной связью для регулирования выходной мощности. Эти источники питания включают и выключают переключающий транзистор для создания прерываемого постоянного напряжения. Это напряжение проходит через выпрямитель, создавая конечный желаемый выходной сигнал постоянного тока, который фильтруется перед тем, как источник питания передает его на нагрузку.

    Импульсные источники питания обладают преимуществом большей эффективности, чем линейные источники, а также создают значительные электрические и звуковые помехи.

    7. Источник питания с регулируемой пульсацией

    Этот тип источника питания является обновлением нерегулируемых линейных источников питания. Он основан на нерегулируемом источнике питания и имеет транзисторную схему в области насыщения, которая работает для поддержания желаемого напряжения путем передачи мощности постоянного тока на конденсатор. Источники с регулируемой пульсацией используются в приложениях, где пульсации вызывают проблемы, и они очень эффективны по сравнению с нерегулируемыми источниками.

    8. Регулируемые источники питания

    Регулируемый или регулируемый источник питания позволяет пользователю непрерывно регулировать выходное напряжение. Это полезно при тестировании проектов, чтобы убедиться, что размещение деталей соответствует схемам. Эти источники питания основаны на линейно регулируемых источниках питания, но модифицированы переменным резистором. Резистор позволяет источнику питания обеспечивать напряжение от нуля до максимально допустимого значения.

    9. Батарейные и солнечные источники питания

    Солнечные панели и батареи обеспечивают питание постоянного тока, но эту мощность необходимо фильтровать, чтобы не оставалось пульсирующей ряби.После фильтрации микросхемы регуляторов напряжения могут регулировать подачу напряжения до необходимого уровня. Если пользователю необходимо увеличить напряжение, они могут использовать транзисторы для усиления напряжения питания.

    10. Преобразователи постоянного тока в постоянный

    Когда пользователю необходимо повысить или понизить напряжение постоянного тока, преобразователь постоянного тока в постоянный является подходящим источником питания. Они бывают трех возможных типов:

    • Электрохимический
    • Электромеханический
    • Полупроводник

    Полупроводниковые преобразователи являются наиболее распространенными и также бывают различных типов, включая:

    • Двухтактный
    • Бак
    • Повышение
    • Понижающее повышение

    Преобразователи постоянного тока в постоянный позволяют пользователям создавать разные уровни постоянного тока, используя один источник, вместо того, чтобы использовать несколько источников переменного тока в постоянный для питания устройства.

    ЗАПРОСИТЬ ЦЕНУ

    11. Источники питания постоянного тока в переменный ток

    Этот тип источника питания также известен как инвертор мощности. Поскольку напряжение постоянного тока часто слишком низкое для питания устройств переменного тока, блоки питания постоянного тока обычно используются в качестве резервного источника питания в случае сбоя питания. Источник питания этого типа будет принимать энергию, хранящуюся в батарее или элементе, и преобразовывать ее в напряжение переменного тока, подходящее для питания рассматриваемого устройства.

    Если вашему бизнесу требуется ремонт блока питания, доверьтесь Global Electronic Services.Имея большой опыт работы в электронной промышленности, мы предлагаем непревзойденное обслуживание клиентов и высококвалифицированные ремонтные работы. Global Electronic Services гордится тем, что уровень возврата клиентов превышает 98%, и мы приглашаем вашу компанию выяснить, почему.

    Чтобы узнать больше о наших услугах или начать процесс ремонта, позвоните по телефону 977-249-1701 или запросите ценовое предложение в Интернете.

    Дополнительные ресурсы:

    Ремонт импульсных блоков питания Astron

    Я купил сломанный импульсный блок питания Astron SS-18 на ebay за 20 долларов.Возможно, чтобы добавить к страданиям сломанный R2200 блок питания, может быть узнать немного больше о ремонте этих чертовых вещей. Найдя Схема он-лайн, я решил сделать ставку.

    Что я узнал, так это то, что, похоже, все импульсные блоки питания одинаковый. В общем, есть высоковольтный (то есть может вас убить) переменный ток и Сторона постоянного тока, переключающий транзистор или два для отключения HVDC, выпрямление, сторона низкого напряжения с некоторой фильтрацией и контролем переключения.

    Начнем с этого: ремонт блока питания ПК — это пустая трата времени. время.Купите еще одну за 35 долларов и покончите с этим. Может потратить несколько на этот раз больше баксов за лучшую поставку, которая не так легко выйдет из строя. Но большинство коммерческих 12 В smps намного дороже, и это несколько более специализированный для оборудования связи — так возможно стоит потратить некоторое время.

    Я начал с секции LV. Сдернул заглушки и протестировал LV выпрямители и крышки фильтров. Крышки фильтров имели довольно высокое значение ESR, поэтому Я заменил их новыми крышками с низким СОЭ, которые у меня были под рукой. другой проект.Я не думаю, что это было строго необходимо, но что бы ни. Бейсболки ведут нелегкую жизнь, и новые хорошие бейсболки обычно стоят недорого.

    Со стороны ВН я не стал тестировать, потому что поставка не давала взаймы. для безопасного тестирования чего-либо без больших усилий и подготовка. И это не перегорело входные предохранители. Пропусти это.

    Итак, как насчет управления переключателем PLL? Оказывается, они начинаются с обмотки выключателя выключателя при запуске, а затем переключиться на работу от выходного напряжения.Таким образом, вы можете подавать напряжение 12 В постоянного тока. в сеть, полностью отключен от сети переменного тока схемы и более безопасно исследовать функциональность переключателя.

    Есть два выхода переключателя PLL — на этом устройстве TL494 — которые управляют транзисторами переключателя HV. Я начал здесь. Я не видел вывод на моем осциллографе. Хм.

    Как назло, у меня был отбитый блок питания ПК, который оказался неплохим. но не имел подходящих соединений для новых материнских плат. Это было TL494! Я заменил TL494 в Astron на тот, что был на ПК блок питания и это исправлено! Удивительный!

    Итак, теперь у меня есть легкий, красиво построенный средневольтный 12 В PS для ветчины. радиоприемник, отремонтированный за 0 долларов, и я кое-что узнал способ.Хорошо во всем.


    Другой переключатель. Купил этот дешево с ebay, не работает. Физическое состояние хорошее, предохранитель 10А 5×20 полностью испарился. внутри.

    Первоначальное подозрение: мостовой выпрямитель. Почему? Схемы не так много между предохранителем и входным коммутирующим трансформатором. Что-то вызвало полное замыкание на испарение предохранителя. Остается закороченный конденсатор, закорочен выпрямитель или закорочены входные транзисторы. Мостовые выпрямители легко снимаются, легко проверяются.Я видел эту неудачу раньше. Начинать здесь.

    Мое первоначальное подозрение было правильным, входной мост (PBU605) имел один закороченный диод. При замене выпрямителя блок питания один раз снова работает нормально.

    Итак, чтобы подвести итог, если вы перегораете входные предохранители, проверьте входной выпрямитель. для правильной работы с последующим переключением входных транзисторов. Если нет выход, проверьте наличие плохих конденсаторов в выходной цепи и убедитесь, что работа микросхемы управления переключателем в зависимости от ситуации.

    Сб 21 окт, 20:10:15 CDT 2017

    Еще один битый ebay Astron SS-30. Этот был немного другим чем последний — хороший предохранитель, но он тик-тик-тик-тик и имеет нет выходной мощности. Без всякой диагностики заказываю парочку TL494 Микросхемы управления ШИМ от DigiKey и набор выходных заглушек. Четыре выхода крышки дешевы, как и TL494. После замены этих двух элементов блок питания снова в работе. Я выбрал разновидность TL494IN, поскольку он расширил расширенный температурный диапазон в спецификациях и является та же цена, что и другой аромат.Почему нет?!

    Эта страница последний раз изменялась Сб 21 окт, 20:14:51 CDT 2017 пользователя timc!

    Блок питания постоянного тока Регулируемый Прецизионный Ремонт Мобильного Телефона Dual Digital — покупка по низким ценам на платформе электронной коммерции Joom

    В пакет включено: 1 x блок питания с кабелем питания 2 x кабель преобразования 1 х Руководство Описание товара: Источник питания специально разработан для устройств связи, с высокоточным источником постоянного напряжения с защитой от отключения, который имеет высокую скорость защиты, своевременную защиту от перегрузки и короткого замыкания нагрузки, что отключает выход.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *