Теплореле – — , , » :

Содержание

Тепловое реле | Заметки электрика

Здравствуйте, уважаемые посетители и гости сайта «Заметки электрика».

В этой статье я расскажу Вам про назначение, устройство, схему подключения теплового реле на примере LR2 D1314 от фирмы «Schneider Electric». Тепловой компонент рассматриваемого реле имеет номинальный ток 10 (А), а токовый диапазон уставок его составляет от 7 до 10 (А). Об остальных технических характеристиках поговорим чуть позже. А теперь давайте перейдем к определению и назначению теплового реле.

Как Вы уже знаете, тепловое реле, или другими словами реле перегрузки, устанавливается в схемах магнитного пускателя, как нереверсивного типа, так и реверсивного.

Более подробно об этом Вы можете ознакомиться здесь:

Назначение теплового реле

Тепловое реле — это электрический коммутационный аппарат, который предназначен для защиты трехфазных двигателей от токовой перегрузки недопустимой продолжительностью (например, при заклинивании ротора или механической его перегрузки), а также от обрыва любой из фаз питающего напряжения (по функции аналогично реле контроля фаз).

Вот список самых распространённых (известных) серий тепловых реле: ТРП, ТРН, РТТ, РТИ (аналог LR2 D13), РТЛ

О каждой серии тепловых реле я постараюсь написать отдельную статью, подписывайтесь на рассылку новостей сайта «Заметки электрика».

Прошу заметить, что тепловое реле не защищает электродвигатель от коротких замыканий по причине того, что оно срабатывает с выдержкой времени, т.е. не мгновенно — это отчетливо можно увидеть по графику (кривой) срабатывания теплового реле. Для защиты двигателя от короткого замыкания в силовую цепь перед магнитным пускателем устанавливаются автоматические выключатели или предохранители.

 

Технические характеристики теплового реле LR2 D1314

Вот его внешний вид:

Вид сбоку:

Я уже говорил выше, что тепловое реле LR2 D1314 имеет конструктивное исполнение один в один, как у теплового реле РТИ.

Ниже я приведу основные технические характеристики, рассматриваемого в данной статье, теплового реле LR2 D1314 от компании «Schneider Electric»:

  • номинальный ток теплового компонента — 10 (А)
  • предел регулирования тока уставки теплового расцепителя — 7-10 (А)

  • напряжение силовой (главной) цепи — 220 (В), 380 (В) и 660 (В)

  • два вспомогательных контакта — нормально-замкнутый NC (95-96) и нормально-разомкнутый NO (97-98)

  • коммутируемая мощность вспомогательных контактов — около 600 (ВА)
  • порог срабатывания — 1,14±0,06 от номинального тока
  • чувствительность к асимметрии фаз — срабатывает при 30% от номинального тока по одной фазе, при условии, что по другим фазам протекает номинальный ток
  • класс отключения — 20 (см. график кривой срабатывания теплового реле)

Кривая срабатывания теплового реле с классом отключения 20 — показывает среднее время срабатывания реле в зависимости от кратности тока уставки:

Согласно ГОСТ 30011.4.1-96 (п.4.7.3, таблица 2) время срабатывания теплового реле (класс 20) при кратности тока уставки реле 7,2 составляет 6 — 20 секунд.

Рассмотрим устройство передней панели теплового реле LR2 D1314

Рассмотрим устройство передней панели.

На ней имеется кнопка-переключатель (синего цвета) режима повторного взвода (включения) реле:

  • «А» — автоматический взвод
  • «Н» — ручной взвод

На данный момент выставлен автоматический режим повторного взвода — синяя кнопка-переключатель утоплена. Это значит, что при срабатывании теплового реле схему питания двигателя можно беспрепятственно и повторно включить.

Чтобы переключиться на ручной режим, нужно открыть защитное стекло и повернуть синюю кнопку-переключатель влево — он выступит наружу. В ручном режиме после срабатывания теплового реле необходимо в ручную нажать синюю кнопку-переключатель, иначе нормально-замкнутый контакт NC (95-96) останется разомкнутым, тем самым не даст собрать схему питания и управления электродвигателя.

Также на передней панели теплового реле LR2 D1314 располагается красная кнопка «Тест» («Test»). С помощью нее имитируется работа внутренних механизмов реле и его вспомогательных контактов.

Кнопку «Test» я нажимаю с помощью небольшой отвертки.

У данного типа теплового реле имеется индикация срабатывания в виде желтого (оранжевого) флажка в окошке. Также по этому флажку можно ориентироваться о текущем состоянии вспомогательных контактов реле. Когда в окошке находится желтый флажок, то значит нормально-замкнутый контакт NC (95-96) находится в разомкнутом состоянии, а нормальный-разомкнутый контакт NO (97-98) — в замкнутом.

Ну вот мы плавно подобрались к красной кнопке «Стоп». Красная кнопка «Стоп» выполнена в виде выступающего «грибка» и нужна для принудительного размыкания нормально-замкнутого контакта NC (95-96). При этом катушка магнитного пускателя теряет питание и двигатель отключается от сети.

Еще на передней панели теплового реле LR2 D1314 имеется регулятор уставки, с помощью которого регулируется и настраивается уставка срабатывания теплового реле. В нашем случае ток уставки реле находится в пределах от 7 до 10 (А). Регулировка производится путем поворота регулятора до совмещения нужной уставки реле и риски-треугольника.

После всех настроек и регулировок защитная крышка теплового реле закрывается и пломбируется. Для этого на ней имеется специальное «ушко». Таким образом, доступ к регулировке уставок реле будет закрыт и никто из посторонних в процессе эксплуатации не сможет их изменить.

Схема подключения теплового реле LR2 D1314

Представляю Вашему вниманию схему теплового реле LR2 D1314:

Входные силовые цепи (медные выводы) не маркируются и подключаются непосредственно к пускателю или контактору. Маркировка выходных главных (силовых) цепей теплового реле имеют маркировку: T1 (2), Т2 (4), Т3 (6) и к ним подключается электродвигатель.

У данного типа реле существует две пары вспомогательных контактов:

  • нормально-замкнутый NC (95-96)
  • нормально-разомкнутый NO (97-98)

Нормально-замкнутый контакт используется в схеме управления магнитным пускателем и подключается, например, перед кнопкой «Стоп». Нормально-разомкнутый контакт чаще всего используется в цепях сигнализации для вывода световой индикации на панель оператору или диспетчеру при срабатывании теплового реле.

Для примера я подключил тепловое реле на выводы T1 (2), Т2 (4), Т3 (6) магнитного пускателя ПМЛ-1100. Вот так это выглядит:

Крепится тепловое реле к пускателю с помощью силовых выводов и специального крючка, который плотно фиксирует корпус реле в неподвижном состоянии.

В зависимости от величины и типа пускателей или контакторов выводы («ножки») теплового реле регулируются путем изменения своего межосевого расстояния.

На корпусе есть «подсказка» с рекомендациями по выставлению «ножек» теплового реле в зависимости от типа пускателя или контактора.

 

Конструкция и внутреннее устройство теплового реле LR2 D1314

Ну чтож, заглянем внутрь реле.

Для этого открутим 3 крепежных винта.

Затем тонкой отверточкой очень аккуратно вскроем защелки по периметру корпуса. Почему аккуратненько — да потому что корпус выполнен из пластика, который очень хрупкий и можно с необычайной легкостью сломать крепежные защелки.

Снимаем верхнюю крышку реле.

На фотографии видны три биметаллические пластины, которые установлены в каждом полюсе (фазе).

Откручиваем винты выходных клемм и вытаскиваем из корпуса биметаллические пластины.

Затем снимаем спусковой механизм теплового реле.

Принцип работы системы рычагов спускового механизма.

Вот так выглядит тепловое реле LR2 D1314 без биметаллических пластин и спускового механизма.

Чтобы добраться до контактной системы теплового реле, нужно снять регулятор уставок и выкрутить винт.

На фотографии ниже изображены контакты теплового реле в режиме готовности.

А сейчас показаны контакты при срабатывании теплового реле:

Я уже упоминал в начале статьи, что при нажатии на кнопку «Стоп» принудительно размыкается нормально-замкнутый контакт NC (95-96), при этом нормально-разомкнутый контакт не изменяет своего положения. Вот подтверждение моих слов.

А вот фотография всех деталей теплового реле LR2 D1314.

 

Принцип работы теплового реле LR2 D1314

Несколько слов о конструкции биметаллической пластины.

Биметаллическая пластина состоит из 2 пластин разных материалов, у которых коэффициент линейного теплового расширения значительно отличается друг от друга. Например:

  • сплав железа с никелем (инвар) со сталью
  • ниобий со сталью

Соединяются эти две пластины с помощью сварки или клепки.

Один конец биметаллической пластины закреплен (неподвижный), а другой — подвижный и соприкасается со спусковым механизмом теплового реле. Когда биметаллическая пластина нагревается от проходящего через нее тока, она начинает изгибаться в сторону материала, у которого коэффициент линейного теплового расширения меньше.

А теперь рассмотрим принцип работы теплового реле LR2 D1314.

В нормальном режиме работы электродвигателя через биметаллические пластины трех полюсов (трех фаз) протекает ток нагрузки электродвигателя — пластины нагреваются до определенной начальной температуры, которая не вызывает их изгиб. Предположим, что по некоторой причине ток нагрузки двигателя увеличился, соответственно, по биметаллическим пластинам будет протекать ток больше номинального, который и вызовет их подогрев (температура станет больше начальной). При этом подвижная часть биметаллических пластин начнет изгибаться и приведет в действие спусковой механизм теплового реле.

После срабатывания теплового реле нужно подождать определенное время, пока не остынут биметаллические пластины и не разогнутся в нормальное положение. Да и включать сразу же электродвигатель в сеть после срабатывания теплового реле совершенно нецелесообразно, ведь в первую очередь нужно определить причину и устранить ее.

P.S. Пожалуй на этом я закончу статью о тепловом реле LR2 D1314 от фирмы «Schneider Electric». В следующих статьях я расскажу Вам как правильно выбрать тепловое реле, а также покажу как его настроить и проверить на стенде. Если у Вас имеются вопросы по материалу статьи, то готов выслушать Вас — форма комментариев всегда открыта.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


zametkielectrika.ru

виды, основные параметры и сфера использования

Использование тепловых реле позволяет защитить электрические двигатели от токовой перегрузки: при превышении определенных параметров они отключают подачу электроэнергии.

При перегрузке в цепи происходит значительное повышение температуры. В некоторых случаях это может стать причиной неисправности или поломки оборудования. Применение тепловых реле дает возможность значительно продлить период эксплуатации аппаратуры, так как обеспечиваются нормальные условия для его функционирования.

Стоимость устройств варьируется в широком диапазоне. Во многом она зависит от особенностей эксплуатации, назначения и вида теплового реле. Например, РТЛ. Обеспечивают защиту электрических моторов от возможных перегрузок, исключают вероятность заклинивания ротора, перекоса фаз и затяжного пуска.

Цены на тепловые реле также зависят от того, какими технико-эксплуатационными характеристиками они обладают.

Основные параметры тепловых реле:

  1. Номинальный ток. При определенном значении ТР не срабатывает в течение длительного промежутка времени. В то же время превышение лимита не приводит к незамедлительному отключению цепи. Например, если значение больше номинального на 20 %, то ТР сработает примерно через 20-30 минут.
  2. Номинальное напряжение. Обычно бытовые модели предназначены для эксплуатации в однофазных сетях переменного тока (220 вольт и 50 Гц). При этом выпускаются и промышленные тепловые реле, которые могут быть рассчитаны на использование в трехфазных сетях.
  3. Эксплуатационные условия. Категория размещения тепловых реле определяется в соответствии с нормами ГОСТ 15150. Стандарт описывает возможные температурные значения и уровень влажности, а также устойчивость прибора к вибрациям, ударам, взрывоопасным газам.
  4. Граница срабатывания теплового реле.
  5. Количество и вид дополнительных контактов управления.
  6. Чувствительность к перекосу фаз.

ВИДЫ ТЕПЛОВЫХ РЕЛЕ, ИХ ПРИНЦИП ДЕЙСТВИЯ И СФЕРА ПРИМЕНЕНИЯ

Область применения такого оборудования — цеха промышленных предприятий, ремонтные мастерские, некоторые объекты сельского и коммунального хозяйства. Внедрение этих устройств позволяет защищать электроприводы от перегрузок.

Принцип действия реле основан на способности электрического тока повышать температуру проводника при прохождении через него.

Любой материал при нагреве увеличивает свой объем, но по-разному. Если нагреть две жестко соединенные пластины из разных металлов, то они деформируются. Движение передается на механическую защелку выключателя, который срабатывает и разъединяет электрические контакты.

Как правило, в тепловом реле используют 2 биметаллические пластины. Чаще всего это инвар, а также немагнитная или хромоникелевая сталь, имеющие разные коэффициенты расширения. Там, где пластины прилегают друг к другу, они жестко закрепляются путем штамповки, горячей прокатки или сварки. Когда происходит нагревание неподвижной части закрепленной пластины, она изгибается, что и приводит к срабатыванию — взаимодействию с контактным блоком реле.

Однако нагревание может происходить двумя способами. Например, тепло выделяется при прохождении через биметаллическую часть нагрузочного тока. Кроме того, нагрев возможен благодаря специальному нагревателю, также обтекаемому током нагрузки. Наиболее эффективно тепловое реле работает при комбинировании двух способов нагревания.

Разновидности применяемых в промышленности тепловых реле:

  • РТЛ;
  • РТТ;
  • ТРН;
  • РТП и др.

Серия РТЛ — устройства для защиты электродвигателей от длительных перегрузок или выпадения одной из фаз. Они применяются как в комплекте с пускателями типа ПМЛ, так и отдельно.

РТТ — тепловые реле для защиты промышленных асинхронных электромоторов (380 V) с короткозамкнутым ротором от затяжных перегрузок. Они также реагируют на выпадение фазы, иногда встраиваются в пускатели типа ПМА.

Серия ТРН — это двухфазные тепловые реле промышленного назначения. Они применяются в комплекте с магнитными пускателями и выполняют функцию защиты асинхронных электродвигателей от перегрузки.

РТП — тепловые реле с комбинированной системой нагрева биметаллической пластины. Конструкция устройства обеспечивает плавную ручную настройку тока срабатывания. Возврат якоря реле в исходное положение осуществляется двумя способами:

  • вручную, посредством кнопки;
  • автоматически, после остывания биметаллической пластины.

Особенности установки теплового реле

Обычно монтаж производится вместе с магнитным пускателем, который обеспечивает подключение и запуск электродвигателя. Некоторые тепловые реле устанавливаются как самостоятельные приборы на DIN-рейку либо на монтажные панели (ТРН или РТТ). Причем если у реле ТРН есть лишь пара входящих подключений, то фаз все равно 3.

Отключенный фазный провод выводится с пускателя к двигателю в обход устройства. Изменение тока будет происходить пропорционально во всех фазах, в результате чего достаточно контролировать только две из них.

Возможно подключение теплового реле и с помощью токовых трансформаторов, что целесообразно при использовании мощных моторов. Как бы там ни было, важно избегать ошибок при установке, например, нельзя подключать реле с параметрами, не соответствующими характеристикам электродвигателя.

Технические характеристики тепловых реле:
Номинальное напряжение переменного тока, В 660
Частота переменного тока, Гц 50 (60)
Время срабатывания при токе 1,2 Iном, мин 20
Время ручного возврата, мин, не менее 1,5
Время срабатывания при нагрузке 6-кратным Iном, с РТЛ-1000 4,5 … 9,0
РТЛ-2000 4,5 … 12,0
Термическая стойкость реле, с, при нагрузке 18-кратным Iном на ток: до 10А 0,5
свыше 10А 1,0
Тип реле Диапазон регулирова-ния номинального тока несрабатывания, А Мощность, потребляемая одним полюсом реле, Вт Тип реле Диапазон регулирова-ния номинального тока несрабатывания, А Мощность, потребляемая одним полюсом реле, Вт
Номинальный ток 25А
РТЛ-1001 0,10 … 0,17 2,05 РТЛ-1008 2,40 … 4,00 1,87
РТЛ-1002 0,16 … 0,26 2,03 РТЛ-1010 3,80 … 6,00 1,84
РТЛ-1003 0,24 … 0,40 1,97 РТЛ-1012 5,50 … 8,00 1,68
РТЛ-1004 0,38 … 0,65 1,99 РТЛ-1014 7,00 … 10,0 1,75
РТЛ-1005 0,61 … 1,00 1,8 РТЛ-1016 9,50 … 14,0 2,5
РТЛ-1006 0,95 … 1,6 1,8 РТЛ-1021 13,0 … 19,0 2,75
РТЛ-1007 1,50 … 2,60 1,8 РТЛ-1022 18,0 … 25,0 2,8
Номинальный ток 80А
РТЛ-2053 23 … 32 2,43 РТЛ-2059 47 … 64 3,69
РТЛ-2055 30 … 41 3,03 РТЛ-2061 54 … 74 4,38
РТЛ-2057 38 … 52 3,3 РТЛ-2063 63 … 86 5,62

КАК ПРАВИЛЬНО ВЫБРАТЬ НУЖНОЕ ТЕПЛОВОЕ РЕЛЕ

Для правильного выбора модели теплового реле нужно ориентироваться на мощностные параметры защищаемого электродвигателя. Основные характеристики устройства отображаются в условном обозначении. В маркировке теплового реле в обязательном порядке присутствуют следующие данные:

  • диапазон токов установки;
  • климатическое исполнение;
  • режим возврата теплового реле (ручной или автоматический).

При выборе теплового реле рекомендуем учитывать и такие аспекты:

  • некоторые разновидности имеют функцию недогрузки, позволяющую выявить уменьшение тока в цепи;
  • устройства могут иметь опцию компенсации температуры внешней среды — такие считаются самыми удобными и надежными;
  • выпускаются приборы, дополненные световыми индикаторами. Датчики или светодиоды отображают сигналы состояния и включения.

www.reform-market.ru

Тепловое реле: особенности и характеристики

Тепловое реле – устройство, замыкающее-размыкающее цепь под влиянием сигналов агрегатов, работающих от изменения температуры среды. Нагрев проводников электричеством замечали исследователи, количественное описание дает закон Джоуля-Ленца. Благодаря знанию зависимости, биметаллические конструкции применяют, контролируя ток, температуру.

Устройство, работающее от температуры среды

Тепловое реле

Кратко о тепловых реле

Тепловые реле холодильников совмещают с пускозащитными. Применяются многими двигателями. Отличие защитных в электромагнитной конструкции, где катушка может мгновенно отработать резкое повышение тока. Тепловые работают с интегрированием эффекта некоторым отрезком времени. Медная обмотка иногда перегревается. В мясорубках случается, когда заклинивает вал. Ток повышает лимитирующую величину. Чтобы избежать опасности, изготовитель включает в механическую передачу пластиковые шестерни, ломающиеся, спасающие ситуацию. Конечно, лучше применять тепловые реле.

Принцип действия основан на свойствах биметаллических пластин. Двухслойные материалы, составленные парой металлов с неодинаковым коэффициентом линейного расширения. В результате при изменении температуры биметаллическая пластина гнется. Контакты используются повсеместно, начиная электрическими утюгами, заканчивая чайниками! Измерение тока происходит преимущественно в тепловых реле. В остальных случаях нагрев вызывается изменением температуры прибора: пара, ТЭНа.

В тепловых реле принцип используется, вариантом (см. патент US292586 A), но распространен больше другой – с защитой по току. В последнем случае используется упомянутый закон Джоуля-Ленца. С течением времени тепловой эффект накапливается, при соблюдении условий реле срабатывает. Обрыв цепи блокирует дальнейший рост температуры. Условия срабатывания реле тесно связаны с конструкцией двигателя.

Любому типу компрессора холодильника подобрана пара, работающая безотказно. Не соблюдая целостности тандема компрессор-двигатель, можно вызвать неисправности.

Для трёхфазных цепей используются двух- или трехполюсные тепловые реле. Включаются меж двумя линиями (нейтраль короткозамкнутая), в нормальном режиме ток здесь мал. При большой мощности вместо непосредственного присоединения к цепи используются трансформаторы тока. Эффект получается аналогичный: при обрыве фазы равновесие нарушается, нагрузка теплового реле увеличивается. В результате происходит разогрев биметаллической пластины, цепь обрывается. Двигатель спасается от перегрева, других негативных последствий.

Тепловое реле не защищает против короткого замыкания, само нуждается в охране от подобной ситуации. В противном случае цепь легко сгорает.

История создания тепловых реле

Идея регулировки температуры возникла в XVII веке. Английский изобретатель Корнелиус Дреббель применил в двух изобретениях: печь, инкубатор для цыплят. Конструкции требовали ответственного подхода. Дреббель сумел реализовать концепцию, используя ртуть. Любопытный факт: на момент начала третьего десятилетия термометров, не существовало. Работающих на ртути. Историки склонны изобретение термометра приписывать Корнелиусу Дреббелю. Касательно печей новшество заключалось в следующем:

  • Топка снабжалась воздухом через сопло, снабжаемое регулируемой заслонкой.
  • В зависимости от конструкции сооружение оборудовалось подобием реторты, дно которой размещалось в пепле, либо углях.
  • Изменяющийся уровень ртути позволял осуществлять поддержание температуры на заданном уровне путем регулирования объема подаваемого воздуха.
Патент US1477455 A

Патент US1477455 A

Аналогичного рода конструкция предложена инженерами компании Вестингауз Электрик в 1917 году (патент US1477455 A). Уровень ртути позволял замкнуть-размокнуть цепь в зависимости от изменяющейся температуры. Еще раньше для контроля параметров среды стали применять свойства биметаллических пластин. Патент Вестингауз Электрик принят только 11 декабря 1923 года, шведско-швейцарская компания ABB занималась выпуском тепловых реле для защиты работающих двигателей с 1920 года. Термостаты для инкубатора, печи под авторства Дреббеля рассмотрены комиссией организованного в 1660 году Королевского общества (Англии). И примерно через 40 лет после создания нашли признание ученого совета.

Свойства биметаллических пластин известны с 1726 года. Точнее говоря, к этой дате приурочено первое их официальное применение. Джон Харрисон, плотник по профессии, кое-что знал о металлах. Нашел оригинальный способ подарить маятниковым часам независимость от температуры. Подвес изготовил из стержней двух разных металлов, что проиллюстрировано на изображении, взятом из издания Общества Ньюкомена (1946 год). По мере изменения температуры длина маятника остается постоянной. Период колебаний поддерживается с высокой точностью.

Джон Харрисон не останавливается на достигнутом, в палубных часах конструкции 1761 года применяет балансную пружину свернутой биметаллической ленты. По замыслу конструктора новшество скомпенсирует капризы климата. Теперь время позволит определить географические координаты вне зависимости от температуры. Идеи Дреббеля и Харрисона использовал в 1792 году Жан Симон Боннемейн, – сегодня называемый отцом централизованного снабжения горячей водой. Применял идеи терморегуляторов для курятников (1777 год). Историки отмечают любопытный факт: несмотря на знаменитость Жан остается личностью загадочной. Доподлинно неизвестен день рождения.

Маятник и балансная пружина

Маятник и балансная пружина

Инкубатор Боннемейна напоминает печь-буржуйку. Снизу цилиндрическая конструкция подогревается открытым пламенем, продукты сгорания обтекают стенки и уходят наружу. Температура контролируется биметаллической пластиной (из железа и латуни), погруженной в воды, заполняющую пространство меж стенок. Неудивительно, что в скором времени инженер придумал первую котельную. Температура пламени регулируется скоростью подачи воздуха в топку, биметаллический стержень управляет заслонкой. Последовали многие другие изобретения аналогичного толка.

В некоторой степени к тепловым реле можно отнести изобретение Джеймса Кьюли (интернет обошел внимание подробности жизни), датированное 1816 годом. В британском патенте №4086 упоминается некий балансный термометр. Весы, вага которых представлена трубкой с двумя утолщениями на концах. Поделена в центре двумя секциям, одна заполнена спиртом, другая – ртутью. При изменении температуры нарушается баланс, поскольку объёмы в утолщениях неравные. И нужно, подстраивая длины плеч винтом, добиться равновесия. Показания считываются с зубчатого лимба, жестко привязанного к трубке. Изобретатель отмечал возможность использования изобретения для контроля микроклимата зданий.

Эра электричества тепловых реле

Долгое время термостаты не находили применения в сфере электричества. Справедливости ради заметим, применялось преимущественно фабриками, цехами, питая двигатели. До появления электрических лампочек накала было далеко. Устройством, давшим зеленый свет применению тепловых реле, историки считают электромагнитный клапан регулирования тока жидкости трубы. Наработка заявлена патентом US355893 A, опубликованным 11 января 1887 года. Документ говорит: термостат (тип не указан) размещен в жилых помещениях, электромагнитный клапан позволит регулировать под его командованием скорость тока горячей воды системы отопления.

Ряд обстоятельств позволит утверждать: изобретение касалось армии США, по-видимому, должно было применяться казармами. Что касается термостата, подходящий существовал к тому времени (патент US150566 A). В опубликованном 5 мая 1874 года документе Джон Гест говорит о создании настраиваемого реле управления электрической цепью. Внешний круглый корпус по кромке снабжен лимбом с нанесенными значениями температуры, устройство пригодно выполнять самые разные функции. Длинный полый цинковый стержень (другого материала) изменяет длину, отслеживая температуру, управляя движением стрелки, в определенном положении замыкающей контакт.

Конструкция теплового реле

Конструкция теплового реле

Конструкция напоминает велосипедный звонок, из которого торчит упомянутый стержень. Реле контролирует температуру помещения. Для отслеживания величины тока непригодно. Исследователям осталось сделать один шаг: провести параллель меж законом Джоуля-Ленца и изменениями температуры, превращая термостат в тепловое реле. Собственно, было сделано патентом US292586 A, опубликованном 29 января 1884 года. Наверняка в бюро с интересом смотрели на странного изобретателя, по тем временам изделию тяжело было найти применение. Родс (разработчик) пишет: конструкция помогает в организации освещения газовыми рожками (лампочки накала тогда не существовали).

Патент заявил: авторским правом защищается реле на биметаллической пластине с нагревателем из резистора. Сегодня повсеместно используется. Можно сказать, Родс ткнул пальцем в небо, попав на золотоносную жилу. Дальнейший ход инженерной мысли понятен без дальнейших поисков в реестре патентов.

Характеристики тепловых реле

Характеристики теплового реле указывают, в паре с каким оборудованием применимо изделие. Среди важных параметров фигурируют:

  1. Номинальный ток – значение, при котором в режиме длительной работы тепловое реле не срабатывает. Превышение лимита не вызывает немедленного отключения цепи. Например, ток, больший номинального на 20%, заставляет реле сработать через 20-30 минут. Прибор напоминает автоматический выключатель. Принцип действия аналогичный.
  2. Номинальное напряжение – бытовое (220 В и 50 Гц) при одной фазе переменного тока. Для промышленных объектов возможны разные варианты.
  3. Условия эксплуатации:
  • Климат. Температура и влажность. Категория размещения отечественных реле выбирается согласно ГОСТ 15150.
  • Прочие факторы. Сюда относят вибрации, ускорения, удары, высота над уровнем моря. Дополнительно может оговариваться присутствие взрывоопасных газов, иных веществ природного и антропогенного происхождения.
Маркировка от КЭАЗ

Маркировка КЭАЗ

Реле выбирается, исходя из мощности защищаемого электродвигателя. Большинство ключевых характеристик заключено в условном обозначении. На рисунке приведена маркировка рекламных материалов завода КЭАЗ (основан в 1945 году). Особое внимание обратим на следующие моменты:

  1. Диапазон токов уставки (в скобках) разнится по производителям на малое значение. Простая небрежность инженеров-конструкторов.
  2. Литеры в обозначении типа исполнения могут отличаться, лучше уточнять по каталогам.
  3. Климатическое исполнение часто дается в виде диапазона. Например, УХЛ2О4. Что следует читать: УХЛ2 – О4. После аббревиатуры может следовать малая литера, характеризующая группу пониженного давления.

Обозначения могут отсутствовать вовсе. Возможно наличие не оговоренных выше включений. Например, РТЛ 205704 Д. Что означает здесь 04, сказать сложно, разумно уточнить момент на предприятии-изготовителе.

vashtehnik.ru

Выбор теплового реле

В данной статье будет рассматриваться выбор теплового реле для асинхронного электродвигателя.

Тепловое реле предназначено для защиты двигателя от длительных перегрузок свыше 5 – 20 % от номинальной мощности. Исходя из этого, формула по определению тока срабатывания теплового реле определяется по выражению:

Iн.р ≥ 1,05-1,2* Iн.д.

где: Iн.д. – номинальный ток двигателя, А.

Тепловое реле целесообразно устанавливать только на двигатели с длительным режимом работы и равномерным характером нагрузки (рабочий период которых составляет не менее 30 мин.) [Л1, с.32].

Если же двигатель работает с частыми пусками или с резко меняющейся нагрузкой применять тепловые реле нецелесообразно. Так например для двигателей с повторно-кратковременным режимом, от перегрева тепловое реле не защищает, но установка которого может привести к ложным отключениям. Из-за этого тепловое реле не применяется в крановых электроприводах, приводах быстрых перемещений металлорежущих станков и т.п.

Пример

Требуется выбрать тепловое реле для двигателя типа M2AA160MLB4 (фирмы АББ) мощностью 15 кВт со следующими техническими характеристиками:

  • коэффициент мощности cosϕ = 0,82;
  • коэффициент полезного действия, η = 89,2%;
  • номинальное напряжение Uном. = 380 В.

Расчет

1. Определяем номинальный ток двигателя:

Определяем номинальный ток двигателя

2. Определяем ток срабатывания теплового реле:

Iн.р ≥ 1,2* Iн.д. = 1,2*31,2 = 37,44 А

Выбираем тепловое реле типа LRE355 фирмы «Schneider Electric» с диапазоном уставки по току 30 40 А.

Тепловое реле LRE355

Тепловая защита также может осуществляться автоматическими выключателями с тепловым расцепителем (например автоматические выключатели типа MS фирмы АББ), который действует аналогично тепловому реле.

Литература:

1. Защита асинхронных двигателей до 500 В. Е.Н.Зимин.

Поделиться в социальных сетях

raschet.info

Принцип работы теплового реле ртл. Тепловое реле

Тема : Тепловые реле — устройство, принцип действия, технические характеристики.

Цель: Изучить устройство, принцип действия и технические характеристики тепловых реле.

1.Принцип действия тепловых реле.

Тепловые реле — это электрические аппараты, предназначенные для защиты электродвигателей от токовой перегрузки. Наиболее распространенные типы тепловых реле — ТРП, ТРН, РТЛ и РТТ. Принцип действия тепловых реле основан на свойствах биметаллической пластины изменять свою форму при нагревании. В общем случае тепловое реле представляет собой расцепитель, в основе которого лежит биметаллическая пластина, по которой протекает ток. Под воздействием теплового эффекта протекающего тока, биметаллическая пластина изгибается, разрывая цепи. При этом происходит изменение состояния дополнительных контактов. Первая и основная функция тепловых реле — защита электрооборудования от перегрузки.

Рис.1.Тепловое реле .

Долговечность энергетического оборудования в значительной степени зависит от перегрузок, которым оно подвергается во время работы. Для любого объекта можно найти зависимость длительности протекания тока от его величины, при которых обеспечивается надежная и длительная эксплуатация оборудования. Эта зависимость представлена на рисунке 2 (кривая 1).

Рис.2. Зависимость длительности протекания тока от его величины.

При номинальном токе допустимая длительность его протекания равна бесконечности. Протекание тока, большего, чем номинальный, приводит к дополнительному повышению температуры и дополнительному старению изоляции. Поэтому чем больше перегрузка, тем кратковременнее она допустима. Кривая 1 на рисунке устанавливается исходя из требуемой продолжительности жизни оборудования. Чем короче его жизнь, тем большие перегрузки допустимы. При идеальной защите объекта зависимость t ср (I) для реле должна идти немного ниже кривой для объекта. Для защиты от перегрузок, наиболее широкое распространение получили тепловые реле с биметаллической пластиной. Биметаллическая пластина теплового реле состоит из двух пластин, одна из которых имеет больший температурный коэффициент расширения, другая — меньший. В месте прилегания друг к другу пластины жестко скреплены либо за счет проката в горячем состоянии, либо за счет сварки. Если закрепить неподвижно такую пластину и нагреть, то произойдет изгиб пластины в сторону материала с меньшим. Именно это явление используется в тепловых реле. Широкое распространение в тепловых реле получили материалы инвар (малое значение a) и немагнитная или хромоникелевая сталь (большое значение a). Нагрев биметаллического элемента теплового реле может производиться за счет тепла, выделяемого в пластине током нагрузки. Очень часто нагрев биметалла производится от специального нагревателя, по которому протекает ток нагрузки. Лучшие характеристики получаются при комбинированном нагреве, когда пластина нагревается и за счет тепла, выделяемого током, проходящим через биметалл, и за счет тепла, выделяемого специальным нагревателем, также обтекаемым током нагрузки. Прогибаясь, биметаллическая пластина своим свободным концом воздействует на контактную систему теплового реле.

Принцип действия тепловых реле . Тепловые реле — это электронные аппараты, созданные для защиты электродвигателей от токовой перегрузки. Более всераспространенные типы термических реле – ТРП, ТРН, РТЛ и РТТ. Долговечность энергетического оборудования в значимой степени находится в зависимости от перегрузок, которым оно подвергается во время работы. Для хоть какого объекта можно отыскать зависимость продолжительности протекания тока от его величины, при которых обеспечивается надежная и долгая эксплуатация оборудования. Эта зависимость представлена на рисунке (кривая 1). При номинальном токе допустимая продолжительность его протекания равна бесконечности. Протекание тока, большего, чем номинальный, приводит к дополнительному увеличению температуры и дополнительному старению изоляции. Потому чем больше перегрузка, тем кратковременнее она допустима. Кривая 1 на рисунке устанавливается исходя из требуемой длительности жизни оборудования. Чем короче его жизнь, тем огромные перегрузки допустимы.

Время-токовые свойства термического реле и защищаемого объекта

При безупречной защите объекта зависимость tср (I) для термического реле должна идти малость ни-же кривой для объекта.
Для защиты от перегрузок, более обширное распространение получили термические реле с биметаллической пластинкой.
Биметаллическая пластинка термического реле состоит из 2-ух пластинок, одна из которых имеет больший температурный коэффициент расширения, другая — наименьший. В месте прилегания друг к другу пластинки агрессивно скреплены или за счет проката в жарком состоянии, или за счет сварки. Если закрепить бездвижно такую пластинку и подогреть, то произойдет извив пластинки в сторону материала с наименьшим. Конкретно это явление употребляется в термических реле.
Обширное распространение в термических реле получили материалы инвар (маленькое значение a) и немагнитная либо хромоникелевая сталь (огромное значение a).
Нагрев биметаллического элемента термического реле может выполняться за счет тепла, выделяемого в пластинке током нагрузки. Очень нередко нагрев биметалла делается от специального нагревателя, по которому протекает ток нагрузки. Наилучшие свойства получаются при комбинированном нагреве, когда пластинка греется и за счет тепла, выделяемого током, проходящим через биметалл, и за счет тепла, выделяемого особым нагревателем, также обтекаемым током нагрузки.


Прогибаясь, биметаллическая пластинка своим свободным концом повлияет на контактную систему термического реле.
Время-токовые свойства термического реле
Основной чертой термического реле является зависимость времени срабатывания от тока нагрузки (времятоковая черта). В общем случае до начала перегрузки через реле протекает ток Iо, который нагревает пластинку до температуры qо.
При проверке времятоковых черт термических реле следует учесть, из какого состояния (прохладного либо перегретого) происходит срабатывание реле.
При проверке термических реле нужно подразумевать, что нагревательные элементы термических реле термически неустойчивы при токах недлинного замыкания.
Выбор термических реле
Номинальный ток термического реле выбирают исходя из номинальной нагрузки электродвигателя. Избранный ток термического реле составляет (1,2 – 1,3) номинального значения тока электродвигателя (тока нагрузки), т. е.термическое реле срабатывает при 20 — 30% перегрузке в течении 20 минут.

Постоянная времени нагрева электродвигателя находится в зависимости от продолжительности токовой перегрузки. При краткосрочной перегрузке в нагреве участвует только обмотка электродвигателя и неизменная нагрева 5 – 10 минут. При долговременной перегрузке в нагреве участвует вся масса электродвигателя и постоянна нагрева 40-60 минут. Потому применение термических реле целенаправлено только тогда, когда продолжительность включения больше 30 минут.
Воздействие температуры среды на работу термического реле
Нагрев биметаллической пластинки термического реле находится в зависимости от температуры среды, потому с ростом температу

les74.ru

1.4 Назначение, устройство, принцип работы теплового реле

Тепловые реле — это электрические аппараты, предназначенные для защиты электродвигателей от токовой перегрузки. Наиболее распространенные типы тепловых реле — ТРП, ТРН, РТЛ и РТТ.

Принцип действия тепловых реле.

Долговечность энергетического оборудования в значительной степени зависит от перегрузок, которым оно подвергается во время работы. Для любого объекта можно найти зависимость длительности протекания тока от его величины, при которых обеспечивается надежная и длительная эксплуатация оборудования. Эта зависимость представлена на рисунке (кривая 1).

При номинальном токе допустимая длительность его протекания равна бесконечности. Протекание тока, большего, чем номинальный, приводит к дополнительному повышению температуры и дополнительному старению изоляции. Поэтому чем больше перегрузка, тем кратковременнее она допустима. Кривая 1 на рисунке устанавливается исходя из требуемой продолжительности жизни оборудования. Чем короче его жизнь, тем большие перегрузки допустимы.

Время-токовые характеристики теплового реле и защищаемого объекта

При идеальной защите объекта зависимость tср (I) для теплового реле должна идти немного ни-же кривой для объекта.

Для защиты от перегрузок, наиболее широкое распространение получили тепловые реле с биметаллической пластиной.

Биметаллическая пластина теплового реле состоит из двух пластин, одна из которых имеет больший температурный коэффициент расширения, другая — меньший. В месте прилегания друг к другу пластины жестко скреплены либо за счет проката в горячем состоянии, либо за счет сварки. Если закрепить неподвижно такую пластину и нагреть, то произойдет изгиб пластины в сторону материала с меньшим. Именно это явление используется в тепловых реле.

Широкое распространение в тепловых реле получили материалы инвар (малое значение a) и немагнитная или хромоникелевая сталь (большое значение a).

Нагрев биметаллического элемента теплового реле может производиться за счет тепла, выделяемого в пластине током нагрузки. Очень часто нагрев биметалла производится от специального нагревателя, по которому протекает ток нагрузки. Лучшие характеристики получаются при комбинированном нагреве, когда пластина нагревается и за счет тепла, выделяемого током, проходящим через биметалл, и за счет тепла, выделяемого специальным нагревателем, также обтекаемым током нагрузки.

Прогибаясь, биметаллическая пластина своим свободным концом воздействует на контактную систему теплового реле.

Время-токовые характеристики теплового реле.

Основной характеристикой теплового реле является зависимость времени срабатывания от тока нагрузки (времятоковая характеристика). В общем случае до начала перегрузки через реле протекает ток Iо, который нагревает пластину до температуры qо.

При проверке времятоковых характеристик тепловых реле следует учитывать, из какого состояния (холодного или перегретого) происходит срабатывание реле. При проверке тепловых реле надо иметь в виду, что нагревательные элементы тепловых реле термически неустойчивы при токах короткого замыкания.

Выбор тепловых реле

Номинальный ток теплового реле выбирают исходя из номинальной нагрузки электродвигателя. Выбранный ток теплового реле составляет (1,2 — 1,3) номинального значения тока электродвигателя (тока нагрузки), т. е.тепловое реле срабатывает при 20- 30% перегрузке в течении 20 минут.

Постоянная времени нагрева электродвигателя зависит от длительности токовой перегрузки. При кратковременной перегрузке в нагреве участвует только обмотка электродвигателя и постоянная нагрева 5 — 10 минут. При длительной перегрузке в нагреве участвует вся масса электродвигателя и постоянна нагрева 40-60 минут. Поэтому применение тепловых реле целесообразно лишь тогда, когда длительность включения больше 30 минут.

Влияние температуры окружающей среды на работу теплового реле

Нагрев биметаллической пластинки теплового реле зависит от температуры окружающей среды, поэтому с ростом температуры окружающей среды ток срабатывания реле уменьшается.

При температуре, сильно отличающейся от номинальной, необходимо либо проводить дополнительную (плавную) регулировку теплового реле, либо подбирать нагревательный элемент с учетом реальной температуры окружающей среды.

Для того чтобы температура окружающей среды меньше влияла на ток срабатывания теплового реле, необходимо, чтобы температура срабатывания выбиралась возможно больше.

Для правильной работы тепловой защиты реле желательно располагать в том же помещении, что и защищаемый объект. Нельзя располагать реле вблизи концентрированных источников тепла — нагревательных печей, систем отопления и т. д. В настоящее время выпускаются реле с температурной компенсацией (серии ТРН).

Конструкция тепловых реле

Прогиб биметаллической пластины происходит медленно. Если с пластиной непосредственно связать подвижный контакт, то малая скорость его движения, не сможет обеспечить гашение дуги, возникающей при отключении цепи. Поэтому пластина действует на контакт через ускоряющее устройство. Наиболее совершенным является «прыгающий» контакт.

В обесточенном состоянии пружина 1 создает момент относительно точки 0, замыкающий контакты 2. Биметаллическая пластина 3 при нагреве изгибается вправо, положение пружины изменяется. Она создает момент, размыкающий контакты 2 за время, обеспечивающее надежное гашение дуги. Современные контакторы и пускатели комплектуются с тепловыми реле ТРП (одно-фазное) и ТРН (двухфазное).

Тепловые реле ТРП

Тепловые токовые однополюсные реле серии ТРП с номинальными токами тепловых элементов от 1 до 600 А предназначены главным образом для защиты от недопустимых перегрузок трехфазных асинхронных электродвигателей, работающих от сети с номинальным напряжением до 500 В при частоте 50 и 60 Гц. Тепловые реле ТРП на токи до 150 А применяют в сетях постоянного тока с номинальным напряжением до 440 В.

Устройство теплового реле типа ТРП

Биметаллическая пластина теплового реле ТРП имеет комбинированную систему нагрева. Пластина 1 нагревается как за счет нагревателя 5, так и за счет прохождения тока через саму пластину. При прогибе конец биметаллической пластины воздействует на прыгающий контактный мостик 3.

Тепловое реле ТРП позволяет иметь плавную регулировку тока срабатывания в пределах (±25% номинального тока уставки). Эта регулировка осуществляется ручкой 2, меняющей первоначальную деформацию пластины. Такая регулировка позволяет резко снизить число потребных вариантов нагревателя.

Возврат реле ТРП в исходное положение после срабатывания производится кнопкой 4. Возможно исполнение и с самовозвратом после остывания биметалла.

Высокая температура срабатывания (выше 200°С) уменьшает зависимость работы реле от температуры окружающей среды.

Уставка теплового реле ТРП меняется на 5% при изменении температуры окружающей среды на КУС.

Высокая ударо- и вибростойкость теплового реле ТРП позволяют использовать его в самых тяжелых условиях.

Тепловые реле РТЛ

Реле тепловое РТЛ предназначено для обеспечения защиты электродвигателей от токовых перегрузок недопустимой продолжительности. Они также обеспечивают защиту от не симметрии токов в фазах и от выпадения одной из фаз. Выпускаются электротепловые реле РТЛ с диапазоном тока от 0.1 до 86 А.

Тепловые реле РТЛ могут устанавливаться как непосредственно на пускатели ПМЛ, так и отдельно от пускателей (в последнем случае они должны быть снабжены клеммниками КРЛ). Разработаны и выпускаются реле РТЛ и клеммники КРЛ которые имеют степень защиты ІР20 и могут устанавливаться на стандартную рейку. Номинальный ток контактов равен 10 А.

Тепловые реле РТТ

Реле топловые РТТ предназначены для защиты трехфазных асинхронных электродвигателей с короткозамкнутым ротором от перегрузок недопустимой продолжительности, в том числе возникающих при выпадении одной из фаз, а также от несимметрии в фазах.

Реле РТТ предназначены для применения в качестве комплектующих изделий в схемах управления электроприводами, а также для встройки в магнитные пускатели серии ПМА в целях переменного тока напряжением 660В частотой 50 или 60Гц, в целях постоянного тока напряжением 440В.

studfile.net

Тепловое реле: схема подключения, принцип работы, назначение

Автор Светозар Тюменский На чтение 3 мин. Просмотров 1.8k. Опубликовано

Тепловые реле – это электрические устройства, основным назначением которых является защита двигателя от избыточной нагрузки и, как следствие, перегрузки системы в целом. На сегодняшний день наиболее распространенными являются следующие типы тепловых реле: ТРН, РТИ, РТТ и РТЛ. Необходимость применения тепловых реле обусловлена тем, что долговечность любого оборудования напрямую зависит от того, как часто оно бывает перегружено. Так, при регулярном превышении номинального напряжения происходит нагрев оборудования, что приводит к старению изоляции и, как следствие снижает эксплуатационный срок установок.

Схема подключения теплового реле

Схема подключения теплового реле

Схемы подключения электродвигателей, в которые включено тепловое реле, могут существенно отличаться между собой, в зависимости от технической необходимости и наличия различных устройств. Тем не менее, в каждой из схем тепловое реле обязательно должно подключаться последовательно с катушкой пускателя. Это обеспечивает надежную защиту от перегрузок оборудования. Так, при превышении определенного уровня потребляемого двигателем тока тепловое реле размыкает цепь, тем самым отключая магнитный пускатель и сам двигатель от источника электропитания.

Принцип работы теплового реле

На сегодняшний день наибольшую популярность приобрели тепловые реле, чье действие основано на использовании свойств биметаллических пластин. Для изготовления биметаллических пластин в таких реле используют, как правило, инвар и хромоникелевую сталь. Сами пластины между собой крепко соединяются посредством сварки или же проката. Поскольку одна из пластин обладает большим коэффициентом расширения при нагревании, а другая меньшим, то в случае воздействия на них высокой температуры (например, при прохождении тока через металл), происходит изгиб пластины в ту сторону, где располагается материал с меньшим коэффициентом расширения.

Схема подключения теплового реле

Таким образом, при определенном уровне нагревания биметаллическая пластина прогибается и оказывает воздействие на систему контактов реле, что приводит к его срабатыванию и размыканию электрической цепи. Также необходимо отметить, что в результате низкой скорости процесса прогиба пластины она не может эффективно гасить дугу, которая возникает в случае размыкания электрической цепи. Для того чтобы решить данную проблему, необходимо ускорить воздействие пластины на контакт. Именно поэтому на большинстве современных реле предусмотрены также ускоряющие устройства, которые позволяют эффективно разорвать цепь в минимальные сроки.

Виды тепловых реле (РТТ, РТЛ, ТРН, РТИ)

Тепловое реле: схема подключения, принцип работы, назначение

Тепловые реле РТТ применяются в тех случаях, когда требуется обеспечить эффективную защиту трехфазных асинхронных двигателей от перегрузок, длительность которых превышает допустимую (которые могут возникнуть, например, при выпадении одной из фаз). Как правило, они являются комплектующими частями в управляющих схемах электроприводов и в магнитных пускателях.

Тепловые реле РТЛ используются в тех случаях, когда требуется защитить от перегрузок по продолжительности, а также о несимметричности тока, например, при выпадении одной из фаз. Этот тип реле может устанавливаться как на пускателях, так и отдельно, при наличии клеммников.

Двухфазное тепловое реле ТРН используется, как правило, на магнитных пускателях в асинхронных двигателях. Его особенностью является возможность использования в сетях постоянного тока.

Схема подключения теплового реле

Тепловое реле РТИ выполняет те же функции, что и описанные выше, а также обеспечивает защиту от затянутого пуска. Данный тип реле обладает собственным потреблением энергии, поэтому дополнительно при его использовании рекомендуется устанавливать предохранители.

remont220.ru

Добавить комментарий

Ваш адрес email не будет опубликован.