Устройство люминесцентной лампы: Устройство и принцип действия люминесцентной лампы

Содержание

устройство, праметры, схема, плюсы и минусы

Современные люминесцентные лампы (ЛЛ) прекрасно справляются с освещением жилых, рабочих и технических помещений большой площади и позволяют снизить общее потребление электричества на 50-83%, уменьшив таким способом счета за коммунальные услуги.

В этой статье рассмотрим рабочие характеристики ЛЛ, их устройство, разберем основные преимущества и недостатки в сравнении с другими типами осветительных приборов. В дополнение приведем тематические фото и схемы, а также видеоролики о принципе работы лампочек люминесцентного типа и особенностях их применения.

Содержание статьи:

Принцип работы и устройство ЛЛ

Люминесцентный прибор представляет собой газозарядный источник света, где в ртутных парах электрический разряд создает интенсивное ультрафиолетовое излучение.

Компактные модули люминесцентного типа имеют стандартный цоколь, благодаря которому становятся удобной заменой ярких, но более энергозатратных ламп накаливания.

Как работает люминесцентная лампочка?

В видимый человеческому глазу свет его преображает специальный состав под названием люминофор, состоящий из галофосфата кальция, смешанного с дополнительными элементами.

После подключения к центральной электросети люминесцентной лампы, внутри стеклянной колбы требуется поддерживать так называемый тлеющий разряд.

Он дает возможность обеспечить свечение люминофорного слоя в постоянном режиме и даже в период кратковременного отключения центрального электропитания.

Раньше классическая лампа люминесцентного типа имела вид запаянной с двух сторон трубки, внутри которой находятся пары ртути. Сейчас приборы выпускаются в более разнообразных формах и конфигурациях

Конструкционные особенности прибора

Традиционная лампа люминесцентного типа — это стеклянный цилиндр с внешним диаметром 12, 16, 26 и 38 мм, обычно представленный как:

  • прямая удлиненная трубка;
  • изогнутый U-образный модуль;
  • кольцо;
  • сложная фигура.

В торцевые края герметично впаяны ножки. На их внутренней стороне размещены вольфрамовые электроды, конструктивно напоминающие биспиральные тела накала, встроенные в лампочки «Ильича».

В отдельных типах люминесцентных ламп используются более прогрессивные триспирали, представляющие собой закрученную биспираль. Оснащенные ими приборы имеют повышенный уровень КПД и более низкий порог теплопотери, существенно поднимающие общую эффективность светопотока

С наружной части электродные элементы подпаяны к металлическим штырькам металлического , на которые подается рабочее напряжение.

U-подобные и прямые приборы обычно оснащены цоколями G5 и G13, где буквенная кодировка означает штырьковый тип цокольного элемента, а цифровая показывает, на каком расстоянии друг от друга располагаются рабочие элементы.

Электропроводная среда, располагающаяся внутри стеклянной колбы, обладает отрицательным сопротивлением. Когда между двумя противоположными электродами возникает рост тока, требующий ограничения, оно проявляется и снижает рабочее напряжение.

В схему цепи включения обычной люминесцентной лампочки входит или балластник. Он отвечает за создание высокоуровневого импульсного напряжения, необходимого для корректной активации лампы.

Рисунок показывает внутреннее обустройство лампы люминесцентного типа и наглядно объясняет базовый принцип работы ее основных составных элементов

Помимо этой детали, ЭмПРА комплектуется . Он представляет собой элемент тлеющего разряда, внутри которого располагаются два электрода, окруженные средой инертного газа.

Один из них состоит из биметаллической пластины. В спящем режиме оба электрода находятся в разомкнутом состоянии.

Распространенные виды таких лампочек

Первичная классификация изделий на люминесцентной основе производится по уровню базового давления. Приборы высокого давления используются для осветительных установок большой мощности и наружного уличного освещения.

Лампы низкого давления применяются в быту для подачи света в производственные, технические и жилые помещения различного назначения.

Вид #1 — модули высокого давления

Устройства высокого давления вырабатывают насыщенный светопоток хорошей плотности. Внутренняя поверхность колбового элемента имеет специальное люминофорное покрытие из фторогерманата или арсената магния.

Рабочая мощность таких люминесцентных ламп колеблется в диапазоне 50-2000 Вт.

Ртутные модули высокого давления для корректной работы нуждаются в 220 ваттном номинальном сетевом напряжении. Коэффициент их пульсации обычно составляет от 61 до 74%

Полный розжиг осветительного модуля происходит в течение 3 секунд. Срок службы 80-125-ваттных изделий составляет около 6 000 ч, а лампы от 400 Вт и более могут проработать до 15 000 ч при беспрекословном соблюдении правил эксплуатации, установленных изготовителем.

Вид #2 — изделия низкого давления

ЛЛ низкого давления применяется для обеспечения светопотоком жилых, технических и производственных помещений.

Конструкционно прибор является трубкой из прочного стекла, содержащей внутри аргон под давлением 400 Па и в небольшом количестве ртуть либо амальгаму.

На рынке предлагается в самых разнообразных модификациях и оснащается двумя электродными элементами.

Самая низкая температура, которую могут переносить ЛЛ низкого давления, составляет -15 °C. Поэтому для использования на открытых площадках эти источники света считаются неактуальными

Стеклянная колба может иметь самый разный диаметр. Уровень светоотдачи варьируется в зависимости от мощности самого устройства. Для его корректной работы требуется стартер дроссельного типа. Средний срок службы составляет 10 000 часов.

Особенности компактных ЛЛ

ЛЛ компактного типа – это изделия-гибриды, соединяющие в себе некоторые специфические отличительные черты ламп накаливания и характеристики люминесцентов.

Благодаря прогрессивным технологиям и расширившимся инновационным возможностям, имеют небольшой диаметр и некрупные габариты, свойственные лампочкам «Ильича», а также высокий уровень энергоэффективности, характерный для линейки приборов ЛЛ.

ЛЛ компактного типа выпускаются под традиционные цоколи E27, E14, E40 и очень активно вытесняют с рынка классические лампы накаливания за счет обеспечения качественного света при существенно меньшем потреблении электроэнергии

КЛЛ в большинстве случаев оснащаются электронным дросселем и могут использоваться в осветительных приборах специфического типа. Также применяются для замены в новых и раритетных светильниках простых и привычных ламп накаливания.

При всех достоинствах у компактных модулей есть такие специфические недостатки, как:

  • стробоскопический эффект или мерцание – основные противопоказания здесь касаются эпилептиков и людей с различными заболеваниями глаз;
  • выраженный шумовой эффект – в процессе пролонгированного применения появляется акустический фон, способный вызвать определенный дискомфорт у человека, находящегося в помещении;
  • запах – в некоторых случаях изделия издают едкие, неприятные ароматы, раздражающие обоняние.

Последняя позиция чаще наблюдается у безымянных поделок китайского происхождения, а первыми двумя часто страдают даже брендовые приборы, изготовленные согласно всем правилам и современным требованиям. Рейтинг лучших производителей КЛЛ мы привели .

Базовый спектр цветовых температур

Цвет свечения – один из самых важных параметров, напрямую зависящий от состава люминофора, преображающего ультрафиолетовое излучение в свет.

Сегодня к наиболее распространенным относятся 7 определений оттенков потока, вырабатываемого люминесцентными лампами:

  • ЛЕБ – естественный белый с заметным холодным оттенком;
  • ЛДЦ – натуральный дневной с улучшенным качеством цветопередачи;
  • ЛТБ – теплый белый;
  • ЛД – традиционный дневной белый;
  • ЛБ – классический белый;
  • ЛЕЦ – естественный с максимально качественной передачей оттенков;
  • ЛХБ – простой холодный белый.

Для жилых помещений, где человек проводит много времени, подходят оттенки теплой гаммы или натуральные дневные лампы с повышенным уровнем цветопередачи.

Белые и дневные тона, как правило, присутствуют в офисных, рабочих, промышленных помещениях, кабинетах и аудиториях. Они способствуют концентрации внимания, повышают мозговую активность и улучшают общую обучаемость и производительность труда.

Самые холодные оттенки применяются в медицинских учреждениях, лабораториях, больницах и технических помещениях. Они придают предметам дополнительную четкость и усиливают остроту зрения.

Люминесценты для мясных витрин продовольственных магазинов отличаются специально подобранным спектром излучения розового цвета. Он подчеркивает естественные оттенки продукции, делая ее более привлекательной в глазах покупателей

Цветовые компоненты, добавленные в люминофор, позволяют получать розовый, голубой, зеленый и другие необычные ламповые оттенки.

Такие приборы используются в дизайнерских, рекламных и коммерческих целях. С их помощью создают оригинальное свечение, необходимое в конкретном отдельно взятом случае.

Больше информации о цветовой температуре света, особенностях восприятия цвета человеком и нюансах выбора мы писали .

Сильные и слабые стороны устройств

Как у любых технических приспособлений, предназначенных для освещения бытовых и рабочих помещений, у люминесцентных ламп имеются свои слабые и сильные стороны.

На основании этой информации можно определить, где разумнее их использовать, а в каких случаях стоит отдать предпочтение источникам света иного плана.

Положительные стороны ламп

Основным преимуществом люминесцентных изделий считается повышенная светоотдача и хороший уровень КПД. Они обеспечивают помещение освещением, не раздражающим глаз, и демонстрируют нормальную выносливость даже в условиях интенсивной эксплуатации.

Модуль примерно в 5 раз превышает базовую мощность обычной лампочки «Ильича». А 20-ваттный люминесцент дает световой поток, равный тому, что обеспечивает лампа накаливания в 100 Ватт

Разнообразные температуры световых оттенков, приближенные по гамме к естественному солнечному свету, позволяют подобрать подходящий осветительный прибор под различные цели и для помещений любого назначения.

Поток света, выдаваемый модулем, получается не направленным, а рассеянным. Спокойное, приятное глазу сияние исходит не только от вольфрамовой нити, располагающейся внутри, но и от всей наружной поверхности колбы.

Это позволяет использовать люминесцентные источники как для создания общего фонового освещения, так и для организации зонального света.

Для применения в местах, где освещение включается автоматически, согласно сигналам датчиков движения, люминесценты не подходят. Они ограничены по допустимому количеству включений за определенный временной период и при слишком частой активации могут выйти из строя

Продолжительность службы люминесцентных изделий варьируется в зависимости от модели и доходит до 20 000 часов или до 5 лет.

Однако, покупателю следует знать, что этот ресурс лампа вырабатывает только при соблюдении таких условий, как:

  • наличие достаточного объема качественного электропитания без скачков и перепадов;
  • качественный ;
  • определенное количество активаций, обычно, не более 2000 за первые 2 года использования, что составляет всего 5 включений в день.

Нарушение этих базовых условий существенно ухудшит эффективность осветительного прибора, и значительно укоротит срок его жизни.

Модули можно использовать для освещения теплиц. Они обеспечивают естественный свет, максимально приближенный к солнечному, не потребляют много электропитания и проявляют хорошую стойкость к перепадам напряжения, характерным для загородных энергоподающих сетей

Уровень энергопотребления у люминесцентов почти в 5 раз ниже, чем у традиционных изделий, поэтому их можно отнести к источникам света.

С их помощью удастся эффективно осветить большое помещение, не расходуя при этом больших денег на коммунальные платежи.

Рабочая температура на поверхности колбы не превышает 50 градусов. Это дает возможность эксплуатировать лампу в помещениях, где к пожарной безопасности предъявляются повышенные требования.

Основные недостатки модулей

Первым большим минусом изделий является излишняя чувствительность к температурным перепадам. Они сильно реагируют на движение ртутного столбика и могут перестать работать при похолодании ниже -20 °C.

Жара, превышающая +50 °C, далеко не лучшим образом сказывается на функционировании и серьезно ограничивает спектр использования этих источников света.

Влаговоспримчивость тоже не относится к плюсам и не позволяет широко применять изделия в ванных комнатах и санитарных помещениях.

Со временем люминофор в ламповых колбах деградирует и спектр излучения изменяется. Параллельно падает уровень светоотдачи прибора и заметно снижается КПД

Иногда к недостаткам причисляется и сам светопоток, имеющий линейчатый, неравномерный спектр, искажающий естественные оттенки находящихся в комнате предметов.

Не все ощущают это визуально, но для тех, кто улавливает этот минус слишком явственно, продаются лампы с люминофором, приближенным к сплошному, более натуральному спектральному цвету. Правда, их светоотдача существенно меньше.

Случаются ситуации, когда люминесценты мерцают с удвоенной частотой питающей сети. Проблема эта решаема некоторым усовершенствованием прибора, в частности, применением с подходящим уровнем емкости сглаживающего конденсатора выпрямленного тока на входе инвертора.

Но то, что производители пытаются сэкономить и не комплектуют приборы конденсаторами необходимой емкости, несколько огорчает.

Бытовые ЛЛ модули лучше всего себя чувствуют, когда температура окружающего воздуха держится в диапазоне от +5 до +35 ˚С. Когда градусник демонстрирует меньшие показатели, пуск устройства существенно затрудняется, а время эксплуатации заметно сокращается

Потребность в дополнительном пусковом устройстве тоже немного снижает популярность ламп. Им обязательно требуется либо чрезмерно шумный и довольно громоздкий дроссель со стартером низкой надежности или более прогрессивный ЭПРА, имеющий функцию корректировки мощности, но при этом стоящий солидных денег.

Еще одно уязвимое место люминесцентов – высокая чувствительность к включению. Во время непосредственной активации лампы на электродах выгорает и осыпается особый состав, который обеспечивает стабильность разряда и защищает внутреннюю вольфрамовую нить от перегрева.

Постоянное включение существенно снижает срок службы прибора. Кроме того, появляется заметное глазу, раздражающее мерцание, а края ламповой колбы темнеют и теряют эстетичность.

Химическая угроза здоровью

Одним из основных недостатков люминесцентных источников света является химическая опасность. В ламповой колбе содержится высокотоксичная ртуть, причем ее количество колеблется от 1 до 70 мг.

Пары этого вещества могут нанести вред здоровью людей, постоянно находящихся в помещениях, освещаемых приборами ЛЛ типа.

Целостность отработавшей лампы нельзя нарушать, иначе токсичная ртуть попадет во внешнюю среду. За несанкционированную утилизацию предусмотрен штраф, поэтому лучше передать изделие в центр, занимающийся переработкой элементов, опасных для природы и человека

Когда модуль выходит из строя, его ни в коем случае нельзя разбивать или отправлять в обыкновенную урну. Его необходимо и правилам, четко описанным в действующем законодательстве.

Например, отвозить на полигоны, где от населения принимают токсичные материалы для их корректного уничтожения или переработки.

Сравнение с другими источниками света

Изделия ЛЛ-типа существенно отличаются как от устаревающих ламп накаливания, так и от прогрессивных светодиодных.

По сравнению с первыми они потребляют в 5 раз меньше электроэнергии, обеспечивая при этом такой же уровень насыщенности светопотока. Зато LED-приборам они несколько уступают по мощности в сочетании с энергопотреблением.

Таблица наглядно в цифрах показывает, насколько выгоднее использовать вместо традиционных лампочек Эдисона более современные источники качественного освещения

Правда, лампа накаливания весь период работы горит с одинаковой интенсивностью, тогда как люминесценты теряют часть насыщенности из-за выгорания внутреннего слоя, отражающего ультрафиолет.

LED-изделия в процессе эксплуатации приобретают некоторую тусклость благодаря деградации рабочих диодов. А в отдельных моделях есть возможность регулировки яркости освещения при помощи диммера.

В лампах накаливания или люминесцентах такая функция не предусмотрена. Но этот удобный режим в LED-приборах не бесплатен и за него придется отдать дополнительную сумму.

По уровню конструкционной хрупкости лампы накаливания и люминесценты схожи, так как имеют стеклянную колбу. Лед-модули в этом плане более устойчивы к ударам и механическим повреждениям. Да и отсутствие внутри каких-либо вредных и токсичных элементов делает их значительно привлекательнее для эксплуатации в домашних условиях.

Самые высокие расходы за весь эксплуатационный период влечет за собой использование ламп накаливания. Люминесценты расходуют энергию в разумных пределах, а светодиоды дают возможность снизить затраты до самых минимальных показателей

Что касается финансовой стороны, то изначально меньше других стоит лампочка накаливания. Однако, учитывая ее рабочий ресурс всего в 1 000 часов, это вряд ли можно считать ярко выраженным достоинством.

Базовая цена люминесцентов выше, однако, и служат они значительно дольше. Как говорят солидные производители, их хватает на 10 000-15 000 часов в том случае, если количество ежедневных активаций не превышает 5-6 раз.

Светодиодные модули могут похвастаться еще лучшими показателями, но и заплатить за это удовольствие придется намного больше, а это не во всех случаях целесообразно. Хотя тенденция замены одних источников света другими, прослеживается повсеместно. О необходимости замены люминесцентных лампочек светодиодными и порядке выполнения этой работы .

Выводы и полезное видео по теме

По какому принципу работают люминесценты. Подробное объяснение всех нюансов функционирования экономичных и энергоэффективных приборов для освещения:

В чем заключаются основные отличия люминесцентных элементов от простых и традиционных ламп накаливания. Сравнение мощности, светопотока и энергопотребления двух современных осветительных изделий:

Что собой представляют компактные энергосберегающие лампочки люминесцентного типа. Как они работают, сколько ватт потребляют и для каких целей используются:

Вывод

Люминесцентные лампы более практичное решение для освещения дома и общественных мест. Правда, с появлением светодиодных источников света их востребованность несколько снизилась.

Предыдущая

ЛюминесцентныеОсобенности контейнеров для хранения люминесцентных ламп

Следующая

ЛюминесцентныеКакую лампу Т8 выбрать: LED или люминесцентная + простая переделка светильника

Спасибо, помогло!Не помогло

Люминесцентная лампа — подробно о главном

Люминесцентная лампа представляют группу газоразрядных источников света, но используется намного чаще в сравнении с более простыми аналогами. Их популярность обусловлена рядом достоинств. Поэтому, даже относительно высокая стоимость не является помехой приобретению источника света данного вида.

В каких областях применяются?

Раньше основное целевое назначение подобных осветительных приборов сводилось к организации систем освещения административных и общественных зданий (больниц, магазинов, школ, офисных помещений), что было связано с довольно массивной конструкцией. Сегодня люминесцентные лампы характеризуются более совершенным устройством (компактные размеры, электронное пускорегулирующее устройство в качестве замены устаревшего магнитного варианта).

Дополнительно к этому упрощает эксплуатацию и стандартный цоколь, который позволяет устанавливать такие источники света вместо аналога с нитью накаливания.

Люминесцентная лампа в современном исполнении широко применяется в быту (освещение частных домов, квартир), рекламе (вывески, щиты). Еще одно направление – фасадная подсветка. Больше прочих разновидностей источников света люминесцентные лампы также подходят для освещения крупных территорий и масштабных объектов.

Строение и принцип работы

Основные конструкционные элементы: трубка или колба (в зависимости от исполнения), один или два цоколя, что также определяется моделью изделия, внутри установлены электроды. Люминесцентная лампа с внутренней стороны покрыта люминофором, без которого было бы невозможно преобразовать затрачиваемую энергию в световое излучение. Внутри колбы/трубки находится инертный газ, ртутные пары.

При подаче электричества между электродами образуется тлеющий разряд. Идеальные условия для такого явления: невысокий уровень давления в колбе наряду с малым значением тока. В результате прохождения электрического тока через газообразную среду возникает ультрафиолетовое излучение.

Для того чтобы люминесцентная лампа обеспечивала видимый глазу свет, используется явление люминесценции. Как раз для этого внутренние стенки трубки или колбы источника света покрываются люминофором.

Принцип действия данного вида лампы описан не полностью, так как для полноценной работы необходимо обеспечить еще и нормальные условия эксплуатации. Речь идет о дополнительной аппаратуре, которая снижает значение тока до нужного уровня, чтобы осветительный прибор не вышел из строя. Раньше для этой цели применялись электромагнитные пускорегулирующие элементы (их еще называют балластом), сегодня более популярны электронные аналоги.

Если подключать люминесцентные лампы при помощи второго из вышеназванных вариантов балласта, в результате можно добиться значительного снижения шумового эффекта (гула) во время работы, а еще источники света в таких условиях перестают мерцать.

Какие бывают разновидности ламп

Существует несколько исполнений, которые отличаются по спектру излучения. Выделяют всего три вида:

  • стандартные;
  • специальные;
  • лампы люминесцентные с улучшенной светопередачей.

Излучение первого варианта характеризуется различными оттенками белого цвета. Это обусловлено тем, что конструкцией предусмотрено однослойное покрытие люминофора. В результате область применения таких источников света несколько сужается. Их обычно используют при организации осветительных систем производственных, административных и общественных объектов (офисы, магазины и прочее).

Различные формы исполнения

Исполнения специального типа характеризуются разным спектром излучения. Их главная задача – обеспечение максимально естественных условий для пребывания в различных помещениях. Например, существуют люминесцентные лампы дневного света, а также варианты конструкций, предназначенные для установки в аквариумах специально для растений или животных.

Существуют еще исполнения, которые используют в помещениях, где разводят птиц. Дополнительно к тому встречаются источники света декоративного целевого назначения. Их главное отличие от прочих вариантов – разноцветное свечение.

Лампы с улучшенной светопередачей имеют одно главное преимущество перед остальными видами, о нем довольно красноречиво говорит название таких источников света – более качественная передача цветов. Это достигается путем нанесения многослойного покрытия (3-5 слоев люминофора) на внутреннюю поверхность колбы/трубки.

Классификация по виду цоколя

Классификация данного вида осветительного прибора осуществляется еще и на основании отличий в конструкциях:

  1. Линейные исполнения.
  2. Компактные люминесцентные лампы.

Первый вариант называется еще трубчатым. А, кроме того, эта разновидность бывает прямой и U-образной конструкции. Линейные источники света подразделяются на группы еще и на основании отличий в размерах (длина и диаметр). Причем наблюдается прямая зависимость между габаритами изделия и его мощностью: чем длиннее лампа, тем выше значение данного параметра. Диаметр колбы также отличается: Т4, Т5, Т8, Т10, Т12. Из обозначения можно узнать размер изделия в дюймах. Тип цоколя для таких источников света – G13.

Подразделяются на исполнения по конструкции колбы

Люминесцентные лампы компактного типа подразделяются на исполнения по конструкции колбы (она может быть изогнута в разных вариантах) и цоколю: E14, E27, E40, а также 2D, G23, G27, G24, G53 и несколько подвидов (G24Q1, G24Q2, G24Q3). Первые три из вышеназванных конструктивных элементов дают возможность устанавливать осветительный прибор вместо исполнений с нитью накаливания.

Обзор плюсов и минусов

Если более подробно изучить характеристики основных вариантов источников света (галогенные, лампы накаливания, люминесцентные и светодиодные аналоги), то можно выделить их сильные и слабые стороны. Например, по интенсивности нагрева из всех существующих конструкций выигрывают лишь светодиодные исполнения, тогда как люминесцентные лампы все же греются, хоть и в несколько меньшей мере, чем источники света с нитью накаливания.

По степени хрупкости газоразрядные приборы уступают варианту на базе диодов. Зато уровень мощности у люминесцентных исполнений и светодиодных источников света находится почти на одном уровне. Для примера, оба исполнения обеспечивают примерно одинаковую интенсивность освещения (700-800 лм) при мощности с разницей всего в 5 Вт. Больше всех потребляют энергию лампы накаливания.

Еще один параметр для сравнения – срок функционирования. Безусловно, лидируют светодиодные исполнения (в среднем до 50 000 часов работы). Однако из всех остальных аналогов люминесцентные лампы выделяются довольно продолжительным периодом эксплуатации (от 4 000 до 20 000 часов), на что оказывают влияние условия работы.

Каким производителям отдать предпочтение?

Одни из наиболее известных марок на сегодняшний день: Philips, Osram, General Electric. Ассортимент осветительной техники очень широк и порой довольно трудно разобраться в том, какой производитель надежнее и ответственнее подходит к работе. Ведь стоимость люминесцентных источников света довольно большая, поэтому важно сразу сделать правильный выбор и купить лампу высокого качества.

Условные обозначения от производителей

Особого доверия заслуживают изделия первых двух из вышеназванных марок, так как они занимаются производством разнотипных источников света, включая и светильники с люминесцентными лампами, и по каждому направлению отмечается высокое качество продукции. Кроме того, все три завода-изготовителя на рынке уже довольно давно.

Эксплуатация

Значительные перепады напряжения в сети оказывают негативное воздействие на такие источники света. Особенно нежелательна перегрузка в большую сторону (выше 240 В). Рекомендуется также включать лампу лишь после ее полного остывания. Допустимые значения температуры окружающей среды для эксплуатации источника света лежат в пределах диапазона: от -15 до +40 градусов.

Маркировка российской продукции

Запрещено использовать люминесцентные лампы наряду со стандартными светорегуляторами (диммерами).

Еще одно ограничение в эксплуатации заключается в том, что данный вид источника света несовместим с электронными коммутирующими устройствами типа датчика движения, освещенности или таймера.

Степень безопасности, утилизация

В полностью исправном состоянии такие лампочки не представляют угрозы жизни и здоровью человека или животного. Но внутри колбы содержатся пары ртути, хоть и в небольших количествах. А, кроме того, встречаются более безопасные исполнения, содержащие амальгамы (ртуть растворяется в металлах), но данный вариант встречается реже.

Сегодня существуют специализированные организации, которые официально занимаются утилизацией токсичных отходов. Поэтому в случае нарушения целостности корпуса лампы в первую очередь необходимо покинуть помещение, затем вызвать соответствующее подразделение.

Таким образом, люминесцентные лампы во многом превосходят более простые аналоги (например, с нитью накаливания). В чем-то данный вид изделий уступает светодиодным источникам освещения. Но важно подбирать лампу на основании соответствия ее основных параметров условиям работы, а не подбирать наиболее популярный вариант.

Принцип работы люминесцентной лампы

Среди газоразрядных осветительных приборов широкую известность получили люминесцентные лампы. Они изготавливаются в форме стеклянных цилиндров, на внутреннюю поверхность которых нанесен слой люминофора. Принцип работы люминесцентной лампы состоит в появлении внутри колбы газового разряда в газовой среде, смешанной с разреженными ртутными парами. Далее под влиянием ультрафиолетового излучения начинает светиться люминофор, являющийся источником основного светового потока.

Как появились люминесцентные лампы

Прежде чем рассматривать вопрос, как работает люминесцентная лампа, необходимо хотя бы в общих чертах изучить историю ее появления. Впервые эффект свечения наблюдал известный русский ученый М.В. Ломоносов еще в середине 18 века. В эксперименте был использован стеклянный шар, наполненный водородом. После того как к нему был приложен электрический ток, шар начал испускать видимый свет. Однако это устройство не рассматривалось в качестве источника освещения, а полноценная работа в этой области началась уже в 19 веке.

В 1856 году немецкому стеклодуву Гейслеру удалось откачать воздух из стеклянной колбы с помощью изобретенного им же вакуумного насоса. Используя высоковольтную катушку, он вызвал внутри колбы свечение зеленоватого цвета. Данное устройство получило название трубки Гейслера. Немного позднее, в 1859 году Александр Беккерель осуществил покрытие трубок изнутри веществами, обладающими люминесцирующими свойствами.

Именно с этого момента началось развитие технологий данного типа освещения. Проводимые работы так и остались экспериментами, но сама идея получила дальнейшее развитие на практике.

Первую демонстрацию трубок Гейслера в 1891 году провел американский ученый Никола Тесла. Он на практике показал возможность светиться у трубок с различными покрытиями под действием высокочастотного электрического поля. В этом же году Тесла получил патент на аргоновые газоразрядные лампы, спроектированные для систем освещения.

Первые лампы для светильника на основе ртути удалось получить американцу Питеру Хьюитту. Ртутные пары светились мягким сине-зеленым светом, а по техническим характеристикам эти устройства превосходили лампы Эдисона. Однако полученные цветовые оттенки не нашли широкого применения в искусственном освещении.

Ровное белое свечение было получено в 1926 году немецким изобретателем Эдмундом Гермером. На внутреннюю часть колбы наносился флуоресцентный порошок – люминофор, после чего внутри нее увеличивалось давление. Свет от такого источника был гораздо ярче по сравнению с лампами накаливания. Конструкция этих устройств считается максимально близкой к современным люминесцентным лампам.

С 1934 года компания General Electric приобрела патент и приступила к выпуску осветительных приборов нового типа. Они сразу же приобрели широкую популярность и стали повсеместно использоваться в искусственном освещении вместо обычных лампочек.

Особенности конструкции

Колбы всех ламп, независимо от конфигурации, всегда имеют цилиндрическую форму. Их наружный диаметр составляет 12, 16, 26 и 38 мм. Чаще всего источники света изготавливаются прямыми, но некоторые из них сформированы в кольцо, букву U, спираль и т.д.

Устройство люминесцентной лампы предполагает герметичное соединение торцов со стеклянными ножками, внутри которых установлены зажигательные электроды. Они изготавливаются из вольфрама и закручиваются в спираль, так же как у обычных ламп накаливания. Снаружи электроды соединяются со штырьками цоколя, выполняющими функцию контактов. Устройства прямой и U-образной формы для светильника оборудованы двумя видами цоколей – G5 и G13. В указанной маркировке цифры означают размер зазора между штыревыми контактами в миллиметрах.

Рассматривая вопрос, как устроена лампа, следует помнить, что в одну из стеклянных ножек впаян специальный штенгель, через который производится откачка воздуха изнутри колбы. После этого внутрь закачивается инертный газ с небольшим количеством ртути, примерно 30 мг. Вместо чистой ртути может использоваться амальгама, представляющая собой ее сплавы с такими металлами, как индий, висмут и другие. Вольфрамовые электроды покрываются активирующим веществом. Для этой цели используются оксиды бария, кальция или стронция. В некоторых случаях к ним добавляется торий.

Основной функцией электродов является отдача и прием ионов и электронов, обеспечивающих течение электрического тока в пространстве, где образуется разряд. Чтобы запустить процесс термоэмиссии, они разогреваются до температуры 1100-1200 градусов. Электроны начинают вылетать с поверхности активирующего вещества. В процессе эксплуатации слой этих веществ постепенно уменьшается, происходит его оседание на стеклянных стенках, что делает зависимым от этого общий срок эксплуатации люминесцентной лампы.

Максимальное ультрафиолетовое излучение ртути достигается наиболее эффективным использованием разряда. Для этого внутри колбы должна поддерживаться определенная температура. Ее диаметр определяется именно этим техническим условием.

Работоспособность лампы для светильника во многом зависит от плотности тока. Чтобы найти эту величину, необходимо значение тока разделить на площадь сечения цилиндра. Мощность лампы находится в прямой зависимости с ее длиной, поэтому просто так колбу нельзя сделать короче. В связи с этим, габариты стали уменьшаться за счет измененной конфигурации, при которой общая протяженность изделия остается прежней.

Как работает устройство с люминофором

Принцип работы люминесцентных ламп во многом зависит от ее конструкции. Газ, наполняющий внутреннее пространство колбы, создает электропроводную среду с отрицательным сопротивлением. Его проявление заключается в изменении напряжения между электродами, расположенными с противоположных сторон. Напряжение начинает снижаться при возрастании тока, который требует ограничения.

Включение в работу люминесцентной лампы для светильника осуществляется при помощи электромеханической пускорегулирующей аппаратуры – ЭмПРА. Основными компонентами данной схемы служат дроссель и стартер. Первое устройство создает импульс напряжения с большой величиной, обеспечивающий зажигание. Второй компонент представляет собой лампу тлеющего разряда, внутри которой в газовой среде размещаются два электрода. Один электрод является биметаллической пластиной, а в исходном положении они оба разомкнуты.

Запуск лампы и ее принцип действия происходят в следующей последовательности:

  • В пусковую схему изначально поступает напряжение. Изначально ток не будет проходить через лампу, поскольку он ограничивается высоким сопротивлением внутренней среды. Он попадает на спирали катодов и производит их разогрев. Одновременно ток идет на стартер и дает толчок к образованию внутри него тлеющего разряда.
  • После того как под действием тока контакты дросселя разогреются, наступает замыкание биметаллической пластины. В результате, металл становится проводником и действие разряда прекращается.
  • На следующем этапе происходит остывание биметаллического электрода, что приводит к размыканию контактов. В дросселе под влиянием самоиндукции образуется импульс высокого напряжения, дающий толчок к зажиганию лампы.
  • Ток, проходящий через лампу для светильника, постепенно уменьшается в два раза из-за падения напряжения на дросселе. Его не хватает, чтобы повторно запустить стартер с разомкнутыми контактами, но сама лампа будет продолжать свою работу.

Если в один светильник установлены сразу две светящиеся лампы, схема включения предусматривает для них общий дроссель. Подключение ламп осуществляется последовательно, однако к каждой из них параллельно подключен собственный стартер. При выходе из строя одной из ламп, вторая также отключается. В схеме включения рекомендуется устанавливать только качественные выключатели. У бюджетных моделей возможно залипание контактов под влиянием пусковых токов. Поскольку дроссель и стартер являются основными компонентами пусковой схемы, их работу следует рассмотреть более подробно.

Дроссель: назначение и устройство

Люминесцентные светильники не могут быть включены как обычные лампы, одной лишь подачей электроэнергии. Для того чтобы они заработали и начали светиться, необходимо использовать специальную пускорегулирующую аппаратуру.

Ток, протекающий через электроды требуется ограничить, поэтому в схеме используется сопротивление, называемое балластом. Его функции выполняет дроссель, в котором присутствует реактивное сопротивление, не выделяя при этом лишнего тепла. Он ограничивает ток, тем самым предупреждая его нарастание после подключения к сети.

Помимо включения, дроссель в пусковой схеме выполняет следующие функции:

  • Создает безопасный ток, достаточный для быстрого разогрева электродов в лампе при розжиге.
  • В обмотке образуется импульс высокого напряжения, благодаря которому внутри колбы возникает разряд.
  • Стабилизирует разряд при достижении током номинального значения.
  • Обеспечивает устойчивую работу лампы, несмотря на скачки и перепады сетевого напряжения.

Основным элементом дросселя служит катушка индуктивности, которая состоит из проводов, намотанных на сердечник. Именно она выполняет основную ограничивающую функцию. Вся конструкция залита компаундом – специальной массой, устойчивой к возгоранию. За счет этого обеспечивается дополнительная изоляция проводов. Катушка помещается в корпусе из термоустойчивой пластмассы.

Функции стартера в схеме подключения

Вторым компонентом, входящим в состав пускорегулирующей аппаратуры, является стартер, имеющий довольно простую конструкцию. Продукция разных производителей отличается собственными параметрами и техническими характеристиками, которые необходимо учитывать при покупке ламп. Однако устройство и принцип работы этих приборов одинаковый.

Конструкция стартера выполнена в виде стеклянного баллона, заполненного инертным газом – неоном или смесью водорода с гелием. В цоколь баллона неподвижно впаяны металлические электроды, выведенные наружу. Сама стеклянная конструкция располагается в металлическом или пластмассовом корпусе, покрытом термоизоляционным составом.

Параллельно с электродами подключен конденсатор емкостью 0,003-0,1 мкф, предназначенный для борьбы с радиопомехами, возникающими при контакте электродов. Кроме того, данный элемент принимает участие в запуске лампы и понижает величину импульса напряжения, возникающего во время размыкания электродов. Параллельное включение конденсатора существенно понижает вероятность залипания электродов под действием электрической дуги.

Основной функцией стартера является замыкание и размыкание электрической цепи, запуск механизма розжига инертного газа, закачанного в колбу. При замыкании цепи электроды самой лампы нагреваются, и весь процесс зажигания заметно облегчается. После нагрева цепь разрывается с одновременным образованием импульса повышенного напряжения, пробивающего газовый промежуток колбы. Такой принцип работы каждого стартера.

Несмотря на устойчивую и долговременную работу, схемы ЭмПРА с использованием стартера считается несовершенной. Рабочий процесс нередко сопровождается мерцанием, шумом дросселя и другими неприятными явлениями. Поэтому все современные люминесцентные лампы работают с более совершенной электронной пусковой схемой – ЭПРА.

Подключение через электронный балласт – ЭПРА

Схема ЭПРА с люминесцентными лампами функционирует на основе полупроводниковых элементов, что позволило снизить габариты и повысить качество работы этих устройств. Заметно возросли сроки эксплуатации, повысился КПД, появилась возможность плавной регулировки яркости, увеличился коэффициент мощности.

В состав схемы электронного пускорегулирующего устройства входят следующие компоненты:

  • Устройство для выпрямления тока и напряжения.
  • Фильтр электромагнитных излучений.
  • Корректор для регулировки коэффициента мощности.
  • Фильтр сглаживания напряжения.
  • Инверторная схема.
  • Элемент с функциями дросселя.

Схема ЭПРА может быть мостовой или полумостовой. Первый вариант предназначен для очень мощных ламп, а второй используют все остальные люминесцентные лампы низкого давления.

В основе работы электронного балласта лежат увеличенные частотные характеристики, обеспечивающие равномерное свечение, без каких-либо мерцаний. Современные микросхемы, используемые в конструкции, позволили существенно уменьшить размеры устройства и обеспечить равномерный подогрев электродов. Благодаря ЭПРА, люминесцентная лампа может быть автоматически подстроена под конкретные технические характеристики.

Условия правильной эксплуатации компактных люминесцентных ламп. shop220.ru

Компактные люминесцентные лампы являются одним из самых доступных и относительно экономичных источников света по сравнению с аналоговыми лампами накаливания. Очень часто данный вид модулей применяется в общественной или бытовой сфере деятельности человека. За счёт большого запаса часов работы, который варьируется в среднем от 8000 – 15000 часов, пользователь может рассчитывать на долгосрочную работу устройства.

   Производители источников света постоянно разрабатывают новые модели модулей, в которых усовершенствуют как технические параметры, так и дизайнерское исполнение. Люминесцентные лампы способны обладать различным уровнем защищённости корпуса, однако в основном данный показатель является небольшим и подобный источник света нельзя применять подводой или в огнеопасной или агрессивной среде. Пользователь при эксплуатации данного вида освещения должен соблюдать определённые правила, которые позволят использовать весь рабочий ресурс светового модуля.

   Устройство люминесцентной лампы является непростым и состоит из колбы, в которой находятся пары ртути и основания с цоколем. В основании лампа имеет скрытые электронные устройства (пускорегулирующую аппаратуру), которые обеспечивают её функционирование. Данные устройства предназначены для бесперебойной подачи электроэнергии на осветительную плату, запускающую реакцию свечения в колбе. Человек должен проверять и периодически наблюдать состояние электрической проводки, чтобы не допускать кротких замыканий внутри электросети.

   Также, необходимо следить за переключателем или иным устройством, замыкающим электрическую цепь для светового модуля. При включении люминесцентной лампы происходит задержка 1 — 3 секунды, после чего появляется световой поток. Это необходимо по техническим причинам и регламентировано рабочим состоянием устройства, поскольку в эти секунды происходит оптимизация подаваемого напряжения и приведение в рабочее состояние всех вспомогательных электронных модулей. Данная задержка по времени не является критичной и процессы, происходящие в этот момент, могут защитить световой модуль от некачественного контакта в переключатели сетевого напряжения или короткого замыкания в нём.

   Пользователь не должен очень часто использовать переключатель, поскольку каждый цикл выключения/включения снижает срок службы лампы. В среднем люминесцентные лампы имеют 20000 данных циклов переключения, что вполне хватает на весь период заявленного срока эксплуатации. Данные световые модули при возможности не рекомендуется выключать при условии, что они будут повторно запущены через 20 — 40 минут.

   Также, люминесцентная лампа очень критично реагирует на температуру окружающей среды, в которой она находится. После включения лампа начинает излучать максимальный световой поток спустя 1-2 минуты. Это время отводится на стадию максимального розжига светового устройства. При использовании источника света вне помещения в герметичном светильнике на минусовой температуре, может привести к полному отказу включения устройства. Если пользователь создаст нормативные условия и поместит прибор с лампой в помещение с плюсовой температурой воздуха, всё будет работать. Во время эксплуатации люминесцентных ламп пользователь должен чётко соблюдать технические предписания, для нормальной работы устройств.

Как сделать своими руками ремонт люминесцентной лампы.

В предыдущей своей статье Я рассказывал про принципы работы и различные схемы подключения люминесцентных ламп. Эта статья является ее продолжением. В ней Я подробно остановлюсь на устройстве и самостоятельном ремонте  перегоревших ламп трубчатой конструкции или дневного света.

Как отремонтировать своими руками компактные люминесцентные лампы (КЛЛ) под обычный патрон Я уже рассказывал в этой статье.

Сразу скажу в отличии от КЛЛ, которые достаточно дорогие и легко восстанавливаются- лампы дневного света Я не ремонтирую, потому что стоят новые дешево, да, если честно они после восстановления их работы с применением специальной схемы- обладают целым рядом недостатков. Но об этом в конце статьи.

Устройство люминесцентной лампы.

Лампа дневного света состоит из одного стеклянного цилиндра с наружным диаметром 12, 16, 26 или 38 мм. Причем он может быть как прямым, так и изогнутой конструкции  в виде буквы U или кольца и т. п.

С торцов цилиндра  в металлические заглушки встроены в диэлектрическую пластину две контактные ножки под цоколь светильника, на которые с внутренней стороны припаяны электроды, схожие по конструкции с нитями ламп накаливания.

Из колб люминесцентных ламп откачивается воздух, а вместо него добавляется инертный газ с небольшой капелькой ртути  (около 30 мг) или сплава ртути с Индием и другими металлами.

Почему перегорают люминесцентные лампы.

Электроды люминесцентной лампы, как и у ламп накаливания делаются из вольфрамовой нити, но только покрытой активной массой из щелочных металлов. Без нее вольфрамовая спираль очень быстро бы сгорела от перегрева в результате образования между нитями разряда, а так обеспечивается стабильно тлеющий электрический разряд.

Но со временем покрытие на вольфрамовой нити выгорает или осыпается, особенно процесс усиливается во время запуска включения, потому что в этот момент- разряд происходит только на маленьком отрезке нити, вызывая усиленный перегрев ее в этом месте. Поэтому на старых лампах по концам возле цоколя видны потемнения на люминофоре.

Постепенно с выгоранием активной массы электродов— будет происходить все больший их разогрев, из-за этого рано или поздно одна из нитей перегорает. И лампа перестает работать.

Как проверить люминесцентную лампу.

Ее легко проверить с использованием мультиметра или тестера. Для проверки установите переключатель прибора в  положение измерения минимального сопротивления, а лучше при наличии, в режим прозвонки. После этого прикоснитесь концами щупов к выводам цоколя с одной стороны, а затем- с противоположной. Если Вы услышите звуковой индикатор и увидите не большое сопротивление нити на экране- значит лампа цела. При обрыве- сопротивление будет очень большим до бесконечности.

Более подробно читайте в нашей статье: Как пользоваться прозвонкой.

Схема подключения перегоревших люминесцентных ламп.

Представляю вашему вниманию схему, которая исключает из работы ненадежный и гудящий дроссель, а так же часто требующий замены стартер. Кроме того по этой схеме работает перегоревшая люминесцентная лампа дневного света.

Никогда не используйте исправные лампы в этой схеме.

Для нормальной работы конденсаторов С1, С4 необходимо выбирать бумажные модели на 300-350 Вольт, а  для С2, С3 лучше всего подойдут слюдяные.

Резистор R1 в обязательном порядке должен быть проволочным, по мощности лампы необходимо подбирать все необходимые компоненты руководствуясь  таблицей снизу.

Мощность лампы C1-C4 С2-С3 Д1-Д4 R1
30 Ватт 4 мкФ 3300 пФ Д226Б 60 Ом
40 Ватт 10 мкФ 6800 мкФ Д226Б 60 Ом

80 Ватт

20 мкФ 6800 пФ

Д205

30 Ом

Принцип работы. Диоды Д2, Д3 вместе с конденсаторами С1, C4 образуют двухполупериодный выпрямитель с увеличением вдвое напряжения.  В момент включения лампы напряжение в точках а и б достигает величины в 600 Вольт на электродах лампы (Л1). После розжига она перейдет в нормальный рабочий режим, напряжение  уменьшается в указанных точках до необходимой величины для оптимальной работы лампы.

Чем больше Емкости конденсаторов C1 и C4, тем выше рабочее напряжение лампы. Конденсаторы С2, С3 служат для подавления радиопомех.

Но Я эту схему использовал только в экспериментальных целях и не рекомендую для применения в домах, квартирах, гаражах и т. д., потому что:

  1. Через 9-12 часов из-за работы на постоянном токе  происходит смещение  светящейся области в сторону одного из концов лампы. Для восстановления работы необходимо поменять местами концы лампы в светильнике.
  2. Из-за почернения со временем люминофора, уменьшается световой поток, а значит и энергоэффективность.

Рекомендую покупать и менять на новые лампы дневного света, потому что на них не так кусается цена, как на КЛЛ.

Индукционные лампы освещения: принцип работы, устройство

Помимо привычных ламп накаливания, а также светодиодных и люминесцентных ламп существуют и другие источники освещения.

Индукционные лампы

Устройство индукционной лампы

Индукционные лампы представляют собой колбу, заполненную смесью аргона с парами ртути, и со стенками, покрытыми люминофором. Устройство похоже на люминесцентные лампы. Только в отличии от люминесцентных ламп, индукционные являются безэлектродными. Колба индукционной лампы физически отделена и независима от электрической части, которая представляет собой индукционную катушку. Индукционная катушка закрепляется рядом со стенками колбы и при включении лампы индуцирует (вызывает) высокочастотное магнитное поле в полость колбы, которая становится вторичным витком катушки.

Принцип работы индукционной лампы

Запитывается индукционная катушка от балласта, который представлен генератором высокочастотного тока. При индуцировании магнитного поля в полость колбы происходит ионизация газа, находящегося в колбе, что производит к образованию плазменной дуги. Энергия плазмы поглощается люминофором, нанесенным на стенки колбы, и он начинает излучать видимый глазу свет.
Как видно принцип работы тот же, что и в обычных люминесцентных лампах, но благодаря отсутствию внутри колбы электродов, которые являются слабым звеном системы, значительно повышается срок службы лампы.
Впрочем, существуют индукционные лампы с колбой без покрытия люминофором. В таких лампах видимый свет, исходящий наружу, излучается ионизированным газом, закаченным в колбу. Но такие лампы, относящиеся к газосветным, а не к газоразрядным, обычно используют как декоративные или для световой рекламы, а не как лампы освещения.

Устройство индукционной лампы

Индукционные виды ламп для освещения помещений имеют заявляемый производителями срок службы – 60 000 – 150 000 часов.
В основном индукционные лампы, применяемые именно для освещения помещений, являются разновидностью газоразрядных люминесцентных ламп.
Индукционные лампы, также как и люминесцентные, требуют специальной утилизации из-за находящихся внутри них ядовитых паров ртути.

Люминесцентная лампа — Энциклопедия Нового Света

Ассорти из люминесцентных ламп . Сверху две компактные люминесцентные лампы, внизу две штатные лампы. Спичка показана для масштаба.

Люминесцентная лампа — это газоразрядная лампа, в которой для возбуждения паров ртути в аргоне или неоне используется электричество, в результате чего образуется плазма, излучающая коротковолновый ультрафиолетовый свет. Затем этот свет заставляет люминофор флуоресцировать, производя видимый свет.

В отличие от ламп накаливания, люминесцентные лампы всегда требуют пускорегулирующего устройства для регулирования потока энергии через лампу.В обычных ламповых светильниках — обычно 4 фута (120 см) или 8 футов (240 см) — балласт заключен в приспособление. Компактные люминесцентные лампы могут иметь обычный балласт, расположенный в приспособлении, или они могут иметь балласты, встроенные в лампы, позволяя использовать их в патронах, обычно используемых для ламп накаливания.

Поскольку люминесцентные лампы потребляют значительно меньше энергии, чем лампы накаливания, правительства и промышленность поощряют замену традиционных ламп накаливания люминесцентными лампами в рамках разумной экологической и энергетической политики.

История

Самым ранним предком люминесцентной лампы, вероятно, является устройство Генриха Гейслера, который в 1856 году получил голубоватое свечение от газа, который был запечатан в трубке и возбужден индукционной катушкой.

На Всемирной выставке 1893 года на Всемирной колумбийской выставке в Чикаго, штат Иллинойс, были представлены люминесцентные лампы Николы Теслы.

В 1894 году Д. Макфарлейн Мур создал лампу Мура, коммерческую газоразрядную лампу, предназначенную для конкуренции с лампой накаливания его бывшего начальника Томаса Эдисона.Используемые газы представляли собой азот и диоксид углерода, излучающие соответственно розовый и белый свет, и имели умеренный успех.

В 1901 году Питер Купер Хьюитт продемонстрировал ртутную лампу, которая излучала свет сине-зеленого цвета и, таким образом, была непригодна для большинства практических целей. Однако он был очень близок к современному дизайну и имел гораздо более высокий КПД, чем лампы накаливания.

В 1926 году Эдмунд Гермер и его коллеги предложили увеличить рабочее давление внутри трубки и покрыть трубку флуоресцентным порошком, который преобразует ультрафиолетовый свет, излучаемый возбужденной плазмой, в более однородный белый свет.Сегодня Гермер известен как изобретатель люминесцентной лампы.

General Electric позже выкупила патент Гермера и к 1938 году под руководством Джорджа Э. Инмана ввела люминесцентную лампу в широкое коммерческое использование.

Принципы работы

Основной принцип работы люминесцентной лампы основан на неупругом рассеянии электронов. Падающий электрон (испускаемый катушками проволоки, образующими катодный электрод) сталкивается с атомом газа (например, ртути, аргона или криптона), используемого в качестве излучателя ультрафиолета.Это заставляет электрон в атоме временно подпрыгивать на более высокий энергетический уровень, чтобы поглотить часть или всю кинетическую энергию, доставленную сталкивающимся электроном. Вот почему столкновение называется «неупругим», так как часть энергии поглощается. Это более высокое энергетическое состояние нестабильно, и атом излучает ультрафиолетовый фотон, когда электрон атома возвращается на более низкий, более стабильный энергетический уровень. Фотоны, которые испускаются из выбранных газовых смесей, обычно имеют длину волны в ультрафиолетовой части спектра.Человеческий глаз не видит его, поэтому его необходимо преобразовать в видимый свет. Это делается с помощью флуоресценции. Это флуоресцентное преобразование происходит в люминофорном покрытии на внутренней поверхности люминесцентной лампы, где ультрафиолетовые фотоны поглощаются электронами в атомах люминофора, вызывая аналогичный скачок энергии, а затем снижается с испусканием следующего фотона. Фотон, испускаемый в результате этого второго взаимодействия, имеет меньшую энергию, чем тот, который его вызвал. Химические вещества, входящие в состав люминофора, специально подобраны так, чтобы эти испускаемые фотоны имели длину волны, видимую человеческим глазом.Разница в энергии между поглощенным ультрафиолетовым фотоном и испускаемым фотоном видимого света идет на нагрев покрытия люминофора.

Механизм светового производства

Крупный план катодов и анодов бактерицидной лампы (по существу аналогичная конструкция, в которой не используется люминесцентный люминофор, что позволяет видеть электроды) Нефильтрованное ультрафиолетовое свечение бактерицидной лампы создается разрядом паров ртути низкого давления (идентичным таковому в люминесцентной лампе) в оболочке из плавленого кварца без покрытия.

Люминесцентная лампа наполнена газом, содержащим пары ртути низкого давления и аргон (или ксенон), реже аргон-неон, а иногда даже криптон.Внутренняя поверхность колбы покрыта флуоресцентным (и часто слегка фосфоресцирующим) покрытием, состоящим из различных смесей металлических и редкоземельных фосфорных солей. Катод колбы обычно изготавливается из спирального вольфрама, покрытого смесью оксидов бария, стронция и кальция (выбранной так, чтобы она имела относительно низкую температуру термоэлектронной эмиссии). Когда включается свет, электроэнергия нагревает катод настолько, что он испускает электроны. Эти электроны сталкиваются и ионизируют атомы благородного газа в колбе, окружающей нить накала, образуя плазму в процессе ударной ионизации.В результате лавинной ионизации проводимость ионизированного газа быстро возрастает, позволяя протекать через лампу более высоким токам. Ртуть, которая существует в точке стабильного равновесного давления пара около одной части на тысячу внутри трубки (с давлением благородного газа, обычно составляющим около 0,3 процента от стандартного атмосферного давления), затем также ионизируется, вызывая ее выделение. свет в ультрафиолетовой (УФ) области спектра преимущественно на длинах волн 253.7 нанометров и 185 нанометров. Эффективность флуоресцентного освещения во многом обязана тому факту, что ртутные разряды низкого давления излучают около 65 процентов своего общего света на линии 254 нм (также около 10-20 процентов света, излучаемого в УФ, приходится на линию 185 нм). УФ-свет поглощается флуоресцентным покрытием лампы, которое повторно излучает энергию на более низких частотах (более длинные волны: две интенсивные линии с длинами волн 440 и 546 нм появляются на коммерческих люминесцентных трубках) (см. Стоксов сдвиг) для излучения видимого света.Смесь люминофоров контролирует цвет света и вместе со стеклом колбы предотвращает утечку вредного ультрафиолетового света.

Электрические аспекты эксплуатации

Люминесцентные лампы представляют собой устройства с отрицательным сопротивлением, поэтому, когда через них проходит больше тока (больше ионизированного газа), электрическое сопротивление люминесцентной лампы падает, позволяя протекать еще большему току. Люминесцентная лампа, подключенная непосредственно к сети постоянного напряжения, может быстро самоуничтожиться из-за неограниченного протекания тока.Чтобы предотвратить это, люминесцентные лампы должны использовать вспомогательное устройство, обычно называемое балластом, для регулирования тока, протекающего через лампу.

Хотя балласт может быть (и иногда бывает) таким же простым, как резистор, значительная мощность тратится впустую в резистивном балласте, поэтому балласты обычно используют вместо него реактивное сопротивление (катушка индуктивности или конденсатор). Для работы от сети переменного тока обычно используется простой индуктор (так называемый «магнитный балласт»). В странах, где используется сеть переменного тока на 120 В, сетевого напряжения недостаточно для освещения больших люминесцентных ламп, поэтому балласт для этих больших люминесцентных ламп часто представляет собой повышающий автотрансформатор со значительной индуктивностью рассеяния (чтобы ограничить ток).Любая форма индуктивного балласта может также включать конденсатор для коррекции коэффициента мощности.

В прошлом люминесцентные лампы иногда работали напрямую от источника постоянного тока с напряжением, достаточным для зажигания дуги. В этом случае не было сомнений в том, что балласт должен быть резистивным, а не реактивным, что приводит к потерям мощности в балластном резисторе. Кроме того, при непосредственном питании от постоянного тока полярность питания лампы должна быть изменена каждый раз при запуске лампы; в противном случае ртуть скапливается на одном конце трубки.В настоящее время люминесцентные лампы практически никогда не работают напрямую от постоянного тока; вместо этого инвертор преобразует постоянный ток в переменный и обеспечивает функцию ограничения тока, как описано ниже для электронных балластов.

В более сложных балластах могут использоваться транзисторы или другие полупроводниковые компоненты для преобразования сетевого напряжения в высокочастотный переменный ток, а также для регулирования тока в лампе. Их называют «электронными балластами».

Люминесцентные лампы, которые работают непосредственно от сети переменного тока, будут мигать с удвоенной частотой сети, поскольку мощность, подаваемая на лампу, падает до нуля дважды за цикл.Это означает, что свет мерцает со скоростью 120 раз в секунду (Гц) в странах, которые используют переменный ток с частотой 60 циклов в секунду (60 Гц), и 100 раз в секунду в странах с частотой 50 Гц. Этот же принцип может также вызвать гудение от люминесцентных ламп, фактически от их балласта. И раздражающий гул, и мерцание устранены в лампах, в которых используется высокочастотный электронный балласт, например, во все более популярной компактной люминесцентной лампе.

Хотя большинство людей не могут напрямую увидеть мерцание 120 Гц, некоторые люди [1] сообщают, что мерцание 120 Гц вызывает напряжение глаз и головную боль.Доктор Дж. Вейч обнаружил, что люди лучше читают, используя высокочастотные (20-60 кГц) электронные балласты, чем магнитные балласты (120 Гц). [2]

В некоторых случаях люминесцентные лампы, работающие на частоте сети, могут также производить мерцание на самой частоте сети (50 или 60 Гц), что заметно для большего количества людей. Это может произойти в последние несколько часов срока службы лампы, когда катодное эмиссионное покрытие на одном конце почти закончилось, и этот катод начинает испытывать трудности с испусканием достаточного количества электронов в газовый наполнитель, что приводит к небольшому выпрямлению и, следовательно, к неравномерному световому выходу в положительных и отрицательные рабочие циклы сети.Мерцание частоты сети также иногда может исходить от самых концов трубок, поскольку каждый трубчатый электрод поочередно работает как анод и катод в течение каждой половины цикла сети и дает немного отличающуюся диаграмму светового потока в анодном или катодном режиме (это было более серьезная проблема с трубками, возникшая более 40 лет назад, и в результате многие фитинги той эпохи закрывали концы трубок из поля зрения). Мерцание на сетевой частоте более заметно периферическим зрением, чем в центре взгляда.

Способ «запуска» люминесцентной лампы

Схема предварительного нагрева люминесцентной лампы с помощью автоматического пускового выключателя А предварительный нагрев люминесцентная лампа «стартер» (автоматический пусковой выключатель)

Атомы ртути в люминесцентной лампе должны быть ионизированы до того, как дуга сможет «загореться» внутри лампы. Для небольших ламп для зажигания дуги не требуется большого напряжения, и запуск лампы не представляет проблемы, но для больших ламп требуется значительное напряжение (в диапазоне от тысячи вольт).

В некоторых случаях это происходит именно так: мгновенный запуск люминесцентные лампы просто используют достаточно высокое напряжение, чтобы разрушить столб газа и ртути и тем самым запустить дугу. Эти трубки можно идентифицировать по тому факту, что

  1. Они имеют по одному штифту на каждом конце трубки
  2. Патроны, в которые они вставляются, имеют «разъединяющую» розетку на низковольтном конце, чтобы обеспечить автоматическое отключение сетевого тока, чтобы лицо, заменяющее лампу, не могло получить удар электрическим током высокого напряжения.

В других случаях, должно быть предусмотрено отдельное средство помощи при запуске.Некоторые люминесцентные конструкции (лампы предварительного нагрева) используют комбинацию нити накала / катода на каждом конце лампы в сочетании с механическим или автоматическим переключателем (см. Фото), который первоначально соединяет нити накала последовательно с балластом и, таким образом, предварительно нагревает нити перед включением. зажигая дугу.

Эти системы являются стандартным оборудованием в странах с напряжением питания 240 В и обычно используют пускатель накаливания. Раньше также использовались 4-контактные термовыключатели и ручные переключатели. Электронные пускатели также иногда используются с этими электромагнитными балластными устройствами.

Во время предварительного нагрева нити испускают электроны в газовый столб за счет термоэлектронной эмиссии, создавая тлеющий разряд вокруг нитей. Затем, когда пусковой переключатель размыкается, индуктивный балласт и небольшой конденсатор на пусковом переключателе создают высокое напряжение, которое зажигает дугу. Удар трубки надежен в этих системах, но стартеры накаливания часто переключаются несколько раз, прежде чем позволить лампе оставаться зажженной, что вызывает нежелательное мигание во время запуска. В этом отношении старые термостартеры показали себя лучше.

После удара по трубке падающий основной разряд сохраняет нить накала / катод горячим, позволяя продолжать излучение.

Если трубка не ударяется или ударяется, а затем гаснет, последовательность запуска повторяется. При использовании автоматических пускателей, таких как стартеры накаливания, неисправная лампа будет бесконечно циклически повторяться, мигая снова и снова, поскольку стартер многократно запускает изношенную лампу, а затем лампа быстро гаснет, поскольку излучения недостаточно для поддержания катодов в горячем состоянии, и лампа Сила тока слишком мала, чтобы пускатель горелки оставался открытым.Это вызывает визуально неприятное частое яркое мигание и запускает балласт при температуре выше расчетной. При повороте стартера на четверть оборота против часовой стрелки он отключается, размыкая цепь.

У некоторых более продвинутых пускателей в этой ситуации истекает время ожидания, и они не пытаются повторять пуски до тех пор, пока не будет сброшено питание. В некоторых старых системах для обнаружения повторных попыток пуска использовалось тепловое отключение сверхтока. Это требует ручного сброса.

Более новые модели балласта с быстрым запуском обеспечивают накаливание силовых обмоток внутри балласта; они быстро и непрерывно нагревают нити / катоды, используя низковольтный переменный ток.При запуске не возникает никаких индуктивных всплесков напряжения, поэтому лампы обычно следует устанавливать рядом с заземленным отражателем, чтобы тлеющий разряд мог распространяться по трубке и инициировать дуговый разряд.

Электронные балласты часто возвращаются к стилю между стилями предварительного нагрева и быстрого запуска: конденсатор (или иногда автоматически отключающая цепь) может замкнуть цепь между двумя нитями накала, обеспечивая предварительный нагрев нити. Когда трубка загорается, напряжение и частота на лампе и конденсаторе обычно падают, таким образом, ток конденсатора падает до низкого, но ненулевого значения.Обычно этот конденсатор и катушка индуктивности, которая обеспечивает ограничение тока при нормальной работе, образуют резонансный контур, увеличивая напряжение на лампе, так что она может легко запуститься.

Некоторые электронные балласты используют запрограммированный запуск. Выходная частота переменного тока начинается выше резонансной частоты выходного контура балласта, и после того, как нити нагреваются, частота быстро уменьшается. Если частота приближается к резонансной частоте балласта, выходное напряжение возрастает настолько, что лампа загорается.Если лампа не загорается, электронная схема прекращает работу балласта.

Механизмы выхода из строя лампы по окончании срока службы

Режим отказа по окончании срока службы люминесцентных ламп зависит от того, как вы их используете, и от типа их ПРА. В настоящее время существует три основных режима отказа и четвертый, который начинает проявляться:

Кончилась смесь выбросов
Крупный план нити накала ртутной газоразрядной лампы низкого давления показывает белое покрытие из смеси термоэлектронной эмиссии на центральной части катушки.Покрытие, которое обычно состоит из смеси оксидов бария, стронция и кальция, при нормальном использовании разбрызгивается, что часто в конечном итоге приводит к выходу лампы из строя.

«Эмиссионная смесь» на нитях / катодах трубки необходима для того, чтобы электроны могли проходить в газ посредством термоэлектронной эмиссии при используемых рабочих напряжениях трубки. Смесь медленно распыляется путем бомбардировки электронами и ионами ртути во время работы, но большее количество распыляется каждый раз, когда лампа запускается с холодными катодами (метод запуска лампы и, следовательно, тип механизма управления оказывает значительное влияние на это).Лампы, работающие обычно менее трех часов при каждом включении, обычно исчерпывают эмиссионную смесь до того, как выйдут из строя другие части лампы. Распыленная эмиссионная смесь образует темные пятна на концах трубок, которые можно увидеть в старых трубках. Когда вся эмиссионная смесь исчезнет, ​​катод не может пропустить достаточно электронов в газовую заливку, чтобы поддерживать разряд при расчетном рабочем напряжении трубки. В идеале управляющий механизм должен отключать трубку, когда это происходит. Однако некоторые устройства управления будут обеспечивать достаточно повышенное напряжение для продолжения работы лампы в режиме с холодным катодом, что приведет к перегреву конца трубки и быстрому разрушению электродов и их поддерживающих проводов до тех пор, пока они не исчезнут полностью или стекло не потрескается, разрушив Заполнение газом низкого давления и прекращение выпуска газа.

Отказ электроники встроенного балласта

Относится только к компактным люминесцентным лампам со встроенными электрическими балластами. Отказ балластной электроники — это несколько случайный процесс, который следует стандартному профилю отказов для любых электронных устройств. Сначала наблюдается небольшой пик ранних отказов, за которым следует спад и неуклонное увеличение срока службы лампы. Срок службы электроники сильно зависит от рабочей температуры — обычно он сокращается вдвое на каждые 10 ° C повышения температуры.Указанный средний срок службы обычно соответствует температуре окружающей среды 25 ° C (это может варьироваться в зависимости от страны). В некоторых фитингах температура окружающей среды может быть намного выше этой, и в этом случае отказ электроники может стать преобладающим механизмом отказа. Точно так же использование компактного цоколя люминесцентной лампы приведет к более горячей электронике и сокращению среднего срока службы (особенно с более высокой номинальной мощностью). Электронные балласты должны быть спроектированы так, чтобы отключать лампу, когда заканчивается смесь выбросов, как описано выше.В случае интегральных электронных балластов, поскольку они никогда не должны снова работать, это иногда достигается путем преднамеренного сгорания какого-либо компонента для окончательного прекращения работы.

Отказ люминофора

Эффективность люминофора падает во время использования. Приблизительно к 25 000 часов работы это обычно будет вдвое меньше яркости новой лампы (хотя некоторые производители заявляют, что период полураспада у своих ламп намного больше). Лампы, в которых отсутствуют отказы системы эмиссии или встроенной балластной электроники, в конечном итоге разовьются в этом режиме отказа.Они все еще работают, но стали тусклыми и неэффективными. Процесс идет медленно и часто становится очевидным только тогда, когда новая лампа работает рядом со старой.

В трубке заканчивается ртуть

Ртуть теряется из-за газового наполнения в течение всего срока службы лампы, так как она медленно поглощается стеклом, люминофором и трубчатыми электродами, где больше не может работать. Исторически это не было проблемой, потому что в трубках содержится избыток ртути. Тем не менее, экологические проблемы теперь приводят к созданию трубок с низким содержанием ртути, которые гораздо более точно дозируются с достаточным количеством ртути, достаточным для обеспечения ожидаемого срока службы лампы.Это означает, что потеря ртути возьмет верх из-за выхода из строя люминофора в некоторых лампах. Симптомы отказа аналогичны, за исключением того, что потеря ртути сначала вызывает увеличенное время разгона (время для достижения полного светового потока) и, наконец, заставляет лампу светиться тускло-розовым светом, когда ртуть заканчивается, а основной газ аргон вступает во владение. первичный разряд.

Люминофоры и спектр излучаемого света

Многие люди считают цветовую гамму некоторых люминесцентных ламп резкой и неприятной.При флуоресцентном освещении у здорового человека иногда может казаться болезненный размытый оттенок кожи. Это связано с двумя вещами.

Первой причиной является использование ламп плохого качества с низким индексом цветопередачи и высокой цветовой температурой, например «холодный белый». Они имеют плохое качество света, из-за чего доля красного света ниже идеальной, поэтому кожа имеет менее розовую окраску, чем при лучшем освещении.

Вторая причина связана с особенностями типа глаза и трубки.Естественный дневной свет с высокой цветовой температурой выглядит естественным при уровнях дневного освещения, но по мере снижения уровня освещения он становится для глаза все более холодным. При более низких уровнях освещенности человеческий глаз воспринимает более низкие цветовые температуры как нормальные и естественные. Большинство люминесцентных ламп имеют более высокую цветовую температуру, чем лампы накаливания 2700 K, а более холодные лампы не выглядят естественными для глаз при гораздо меньшем дневном освещении. Этот эффект зависит от люминофора лампы и применяется только к лампам с более высокой CCT при значительно меньших уровнях естественного дневного света.

Многие пигменты выглядят немного иначе при просмотре под люминесцентными лампами по сравнению с лампами накаливания. Это связано с различием в двух свойствах: CCT и CRI.

CCT, цветовая температура, для освещения GLS с нитью составляет 2700 K, а для галогенного освещения — 3000 K, тогда как люминесцентные лампы обычно доступны в диапазоне от 2700 K до 6800 K, что представляет собой значительную вариацию с точки зрения восприятия.

CRI, индекс цветопередачи, является мерой того, насколько хорошо сбалансированы различные цветовые компоненты белого света.Спектр лампы с такими же пропорциями R, G, B, что и у излучателя абсолютно черного тела, имеет индекс цветопередачи 100 процентов, но люминесцентные лампы достигают значений индекса цветопередачи от 50 до 99 процентов. Лампы с более низким индексом цветопередачи имеют несбалансированный цветовой спектр визуально низкого качества, что приводит к некоторым изменениям воспринимаемого цвета. Например, пробирка с галогенфосфатом с низким CRI 6800 K, которая выглядит так же неприятно визуально, как и они, заставит красный цвет казаться тускло-красным или коричневым.

Один из наименее приятных источников света исходит от трубок, содержащих старые люминофоры галофосфатного типа (химическая формула Ca 5 (PO 4 ) 3 (F, Cl): Sb 3+ , Mn 2+ ), обычно обозначаемый как «холодный белый».«Плохая цветопередача связана с тем, что этот люминофор в основном излучает желтый и синий свет и относительно мало зеленого и красного. На взгляд эта смесь кажется белой, но свет имеет неполный спектр. В люминесцентных лампах лучшего качества используются либо галофосфатное покрытие с более высоким индексом цветопередачи или трифосфорная смесь на основе ионов европия и тербия, полосы излучения которых более равномерно распределены по спектру видимого света. Галофосфатные и трифосфорные трубки с высоким индексом цветопередачи обеспечивают более естественную цветопередачу. человеческий глаз.

Спектры люминесцентных ламп
Типовая люминесцентная лампа с «редкоземельным» люминофором Типичная «холодная белая» люминесцентная лампа, в которой используются два люминофора, легированные редкоземельными элементами: Tb 3+ , Ce 3+ : LaPO 4 для зеленого и синего излучения и Eu: Y 2 O 3 для красного . Для объяснения происхождения отдельных пиков щелкните изображение. Обратите внимание, что некоторые спектральные пики генерируются непосредственно ртутной дугой.Это, вероятно, наиболее распространенный тип люминесцентных ламп, используемых сегодня.
Галофосфатно-люминесцентная лампа старого образца Галофосфатные люминофоры в этих лампах обычно состоят из трехвалентной сурьмы и галофосфата кальция, допированного двухвалентным марганцем (Ca 5 (PO 4 ) 3 (Cl, F): Sb 3+ , Mn 2+ ). Цвет выходящего света можно регулировать, изменяя соотношение излучающей синий легирующий элемент сурьмы и излучающий оранжевый легирующий марганец.Цветопередача этих ламп более старого стиля довольно низкая. Галофосфатные люминофоры были изобретены A.H. McKeag et al. в 1942 г.
Люминесцентный светильник «Естественное солнце» Объяснение происхождения пиков находится на странице изображения.
Желтые люминесцентные лампы Спектр почти идентичен спектру нормальной люминесцентной лампы, за исключением почти полного отсутствия света ниже 500 нанометров. Этот эффект может быть достигнут либо за счет использования специального люминофора, либо, чаще, за счет использования простого желтого светофильтра.Эти лампы обычно используются в качестве освещения для фотолитографических работ в чистых помещениях и в качестве наружного освещения «от насекомых» (эффективность которого сомнительна).
Спектр «черного света» лампы Обычно в лампе черного света присутствует только один люминофор, обычно состоящий из фторбората стронция, легированного европием, который содержится в оболочке из стекла Вуда.

Использование

Люминесцентные лампы бывают разных форм и размеров.Все более популярными становятся компактные люминесцентные лампы (CF). Во многих компактных люминесцентных лампах вспомогательная электроника встроена в цоколь лампы, что позволяет им вставляться в обычный патрон для лампочки.

В США использование люминесцентного освещения в жилых помещениях остается низким (обычно ограничивается кухнями, подвалами, коридорами и другими помещениями), но школы и предприятия находят значительную экономию затрат на люминесцентные лампы и очень редко используют лампы накаливания.

В осветительных приборах часто используются люминесцентные лампы разных оттенков белого.В большинстве случаев это происходит из-за непонимания разницы или важности различных типов трубок. Смешивание типов трубок в фитингах также делается для улучшения цветопередачи трубок низкого качества.

В других странах использование люминесцентного освещения в жилых помещениях варьируется в зависимости от стоимости энергии, финансовых и экологических проблем местного населения, а также приемлемой светоотдачи.

В феврале 2007 года Австралия приняла закон, запрещающий к 2010 году большинство продаж ламп накаливания. [3] [4] Хотя закон не определяет, какие альтернативы должны использовать австралийцы, компактные флуоресцентные лампы, вероятно, станут основной заменой.

Отравление ртутью

Поскольку люминесцентные лампы содержат ртуть, токсичный тяжелый металл, правительственные постановления во многих областях требуют специальной утилизации люминесцентных ламп отдельно от общих и бытовых отходов. Ртуть представляет наибольшую опасность для беременных женщин, младенцев и детей.

Свалки часто отказываются от люминесцентных ламп из-за высокого содержания в них ртути.Бытовые и коммерческие источники отходов часто обрабатываются по-разному.

Количество ртути в стандартной лампе может сильно различаться — от 3 до 46 мг. [5] Типичная четырехфутовая (120-сантиметровая) люминесцентная лампа Т-12 (а именно, F32T12) эпохи 2006 года содержит около 12 миллиграммов ртути. [6] Новые лампы содержат меньше ртути, а версии на 3-4 миллиграмма (например, F32T8) продаются как лампы с низким содержанием ртути.

Очистка от разбитых люминесцентных ламп

Сломанная люминесцентная лампа опаснее сломанной обычной лампы накаливания из-за содержания ртути.По этой причине безопасная очистка разбитых люминесцентных ламп отличается от очистки обычных разбитых стекол или ламп накаливания. Девяносто девять процентов ртути обычно содержится в люминофоре, особенно в лампах, срок службы которых близок. [7] Таким образом, типичная безопасная очистка обычно включает в себя тщательную утилизацию любого битого стекла, а также любого рыхлого белого порошка (флуоресцентное покрытие стекла) в соответствии с местными законами об опасных отходах. Влажное полотенце обычно используется вместо пылесоса для очистки стекла и порошка, в основном для уменьшения распространения порошка по воздуху.

Преимущества перед лампами накаливания

Люминесцентные лампы более эффективны, чем лампы накаливания аналогичной яркости. Это связано с тем, что большая часть потребляемой энергии преобразуется в полезный свет и меньше преобразуется в тепло, что позволяет люминесцентным лампам работать холоднее. Лампа накаливания может преобразовывать только 10 процентов потребляемой мощности в видимый свет. Люминесцентная лампа, производящая столько полезной энергии видимого света, может потребовать от одной трети до одной четвертой количества потребляемой электроэнергии.Обычно люминесцентная лампа служит в 10-20 раз дольше, чем эквивалентная лампа накаливания. Если освещение используется в помещениях с кондиционированием воздуха, все потери лампы также должны быть устранены оборудованием для кондиционирования воздуха, что приводит к двойному штрафу за потери из-за освещения.

Более высокая начальная стоимость люминесцентной лампы более чем компенсируется более низким потреблением энергии в течение срока ее службы. Более длительный срок службы может также снизить затраты на замену лампы, обеспечивая дополнительную экономию, особенно там, где труд является дорогостоящим.Поэтому он широко используется предприятиями по всему миру, но не домашними хозяйствами.

Ртуть, выбрасываемая в воздух при утилизации от 5 до 45 процентов люминесцентных ламп, [8] компенсируется тем фактом, что многие угольные генераторы выделяют ртуть в воздух. Повышенный КПД люминесцентных ламп помогает снизить выбросы электростанции.

Недостатки

Проблема «эффекта удара», возникающая при съемке фотографий или пленки при стандартном флуоресцентном освещении.

Люминесцентным лампам требуется балласт для стабилизации лампы и обеспечения начального напряжения зажигания, необходимого для начала дугового разряда; это увеличивает стоимость люминесцентных светильников, хотя часто один балласт используется для двух или более ламп.Некоторые типы балластов издают слышимое гудение или жужжание.

Обычные балласты для ламп не работают от постоянного тока. Если доступен источник постоянного тока с достаточно высоким напряжением для зажигания дуги, можно использовать резистор для балласта лампы, но это приводит к низкой эффективности из-за потери мощности в резисторе. Кроме того, ртуть имеет тенденцию перемещаться к одному концу трубки, приводя только к одному концу лампы, производящему большую часть света. Из-за этого эффекта лампы (или полярность тока) должны регулярно меняться.

Люминесцентные лампы лучше всего работают при комнатной температуре (скажем, 68 градусов по Фаренгейту или 20 градусов по Цельсию). При значительно более низких или более высоких температурах эффективность снижается, а при низких температурах (ниже нуля) стандартные лампы могут не запускаться. Для надежной работы на открытом воздухе в холодную погоду могут потребоваться специальные лампы. Электрическая схема «холодного пуска» также была разработана в середине 1970-х годов.

Поскольку дуга довольно длинная по сравнению с газоразрядными лампами с более высоким давлением, количество света, излучаемого на единицу поверхности ламп, невелико, поэтому лампы большие по сравнению с источниками накаливания.Это сказывается на конструкции светильников, поскольку свет должен направляться из длинных трубок, а не из компактного источника. Однако во многих случаях полезна низкая сила света излучающей поверхности, поскольку она уменьшает блики.

Люминесцентные лампы не излучают ровный свет; вместо этого они мерцают (колеблются по интенсивности) со скоростью, которая зависит от частоты управляющего напряжения. Хотя это не так легко различить человеческим глазом, это может вызвать стробоскопический эффект, представляющий угрозу безопасности, например, в мастерской, где что-то, вращающееся с правильной скоростью, может казаться неподвижным, если освещено только люминесцентной лампой.Это также вызывает проблемы при записи видео, так как между периодическими показаниями сенсора камеры и колебаниями интенсивности люминесцентной лампы может наблюдаться «эффект биения». Частота наиболее заметна на компьютерных мониторах с ЭЛТ, настроенных на частоту обновления, аналогичную частоте лампочек, которые будут мерцать из-за эффекта биений. Чтобы устранить это мерцание, можно изменить частоту обновления монитора.

Лампы накаливания из-за тепловой инерции их элемента меньше меняют яркость, хотя эффект можно измерить с помощью инструментов.Это также меньше проблем с компактными флуоресцентными лампами, поскольку они умножают частоту линии до невидимых уровней. Установки могут уменьшить эффект стробоскопа, используя пускорегулирующие балласты или управляя лампами на разных фазах многофазного источника питания.

Проблемы с точностью цветопередачи обсуждались выше.

Если специально не разработаны и не утверждены для регулирования затемнения, большинство люминесцентных осветительных приборов нельзя подключать к стандартному диммерному переключателю, используемому для ламп накаливания.За это ответственны два эффекта: форма волны напряжения, излучаемого стандартным диммером с фазовым управлением, плохо взаимодействует со многими балластами, и становится трудно поддерживать дугу в люминесцентной лампе при низких уровнях мощности. Многие установки требуют 4-контактных люминесцентных ламп и совместимых контроллеров для успешного затемнения люминесцентных ламп; Эти системы стремятся поддерживать полностью нагретые катоды люминесцентной лампы даже при уменьшении тока дуги, способствуя легкой термоэлектронной эмиссии электронов в поток дуги.

Утилизация люминофора и небольшого количества ртути в трубках также представляет собой экологическую проблему по сравнению с утилизацией ламп накаливания. Для крупных коммерческих или промышленных пользователей люминесцентных ламп начинают становиться доступными услуги по переработке.

Обозначение труб

Примечание: информация в этом разделе может быть неприменима за пределами Северной Америки.

Лампы обычно обозначаются кодом, например F ## T ##, где F означает люминесцентные лампы, первое число указывает мощность в ваттах (или, как ни странно, длину в дюймах в очень длинных лампах), буква T указывает, что форма Луковицы трубчатые, а последнее число — диаметр в восьмых дюйма.Типичные диаметры: T12 (1,5 дюйма или 38 миллиметров) для бытовых ламп со старыми магнитными балластами, T8 (1 дюйм или 25 миллиметров) для коммерческих энергосберегающих ламп с электронными балластами и T5 ( 5 8 дюйма или 16 миллиметров) для очень маленьких ламп, которые могут работать даже от устройства с батарейным питанием.

Лампы Slimline работают от пускового балласта с мгновенным запуском и узнаваемы по их однополюсным цоколям.

Лампы высокой мощности ярче и потребляют больше электрического тока, имеют разные концы на выводах, поэтому их нельзя использовать в неправильном приспособлении, и они имеют маркировку F ## T12HO или F ## T12VHO для очень высокой мощности.Примерно с начала и до середины 1950-х годов и по сегодняшний день компания General Electric разработала и улучшила лампу Power Groove с маркировкой F ## PG17. Эти лампы можно узнать по трубкам большого диаметра с рифлением.

U-образные трубки FB ## T ##, где B означает «изогнутые». Чаще всего они имеют то же обозначение, что и линейные трубы. Круглые лампы — это FC ## T #, с диаметром круга (, а не окружности или ватт), это первое число, а второе число обычно равно 9 (29 мм) для стандартных светильников.

Цвет обычно обозначается WW для теплого белого, EW для усиленного (нейтрального) белого, CW для холодного белого (наиболее распространенный) и DW для голубоватого дневного белого. BL часто используется для черного света (обычно используется в устройствах защиты от насекомых), а BLB — для обычных темно-голубых лампочек, которые имеют темно-фиолетовый цвет. Другие нестандартные обозначения применяются для огней для растений или огней для выращивания растений.

Philips использует числовые цветовые коды для цветов:

  • Низкая цветопередача
    • 33 вездесущий холодный белый (4000 К)
    • 32 теплый белый (3000 К)
    • 27 гостиная теплый белый (2700 К)
  • Высокая цветопередача
    • 9xy «Graphica Pro» / «De Luxe Pro» (xy00 K; например, «965» = 6500 K)
    • 8xy (xy00 K; например, «865» = 6500 K)
    • 840 холодный белый (4000 К)
    • 830 теплый белый (3000 К)
    • 827 теплый белый (2700 K)
  • Другое
    • 09 Лампы для загара
    • 08 Черный свет
    • 05 Жесткое УФ-излучение (люминофоры вообще не используются, используется конверт из плавленого кварца)

Нечетные длины обычно добавляются после цвета.Одним из примеров является F25T12 / CW / 33, что означает 25 Вт, диаметр 1,5 дюйма, холодный белый цвет, длина 33 дюйма или 84 сантиметра. Без 33-го можно было бы предположить, что F25T12 является более распространенным 30-дюймовым.

Компактные люминесцентные лампы не имеют такой системы обозначений.

Лампы люминесцентные прочие

Подсветка
Blacklight — это подмножество люминесцентных ламп, которые используются для получения длинноволнового ультрафиолетового света (с длиной волны около 360 нанометров). Они построены так же, как и обычные люминесцентные лампы, но стеклянная трубка покрыта люминофором, который преобразует коротковолновое УФ-излучение внутри трубки в длинноволновое УФ-излучение, а не в видимый свет.Они используются для возбуждения флуоресценции (для создания драматических эффектов с помощью краски для черного света и для обнаружения таких материалов, как моча и некоторые красители, которые были бы невидимы в видимом свете), а также для привлечения насекомых к насекомым.
Так называемые лампы blacklite blue также изготавливаются из более дорогого темно-фиолетового стекла, известного как стекло Вуда, а не из прозрачного стекла. Темно-пурпурное стекло отфильтровывает большинство видимых цветов света, непосредственно испускаемого разрядом паров ртути, производя пропорционально меньше видимого света по сравнению с УФ-светом.Это позволяет легче увидеть УФ-индуцированную флуоресценцию (что позволяет плакатов с черным светом казаться гораздо более драматичными).
Солнечные лампы
Солнечные лампы содержат другой люминофор, который сильнее излучает в средневолновом УФ-диапазоне, вызывая реакцию загара у большинства людей.
Лампы для выращивания растений
Лампы для выращивания содержат смесь люминофора, которая способствует фотосинтезу растений; для человеческого глаза они обычно кажутся розоватыми.
Бактерицидные лампы
Бактерицидные лампы вообще не содержат люминофор (технически это газоразрядные лампы, а не люминесцентные), а их трубки изготовлены из плавленого кварца, прозрачного для коротковолнового УФ-излучения, непосредственно испускаемого ртутным разрядом.УФ-излучение, излучаемое этими трубками, убивает микробы, ионизирует кислород до озона и вызывает повреждение глаз и кожи. Помимо того, что они используются для уничтожения микробов и создания озона, они иногда используются геологами для идентификации определенных видов минералов по цвету их флуоресценции. При таком использовании они снабжены фильтрами так же, как и черно-голубые лампы; фильтр пропускает коротковолновое УФ-излучение и блокирует видимый свет, создаваемый ртутным разрядом. Они также используются в стиральных машинах EPROM.
Индукционные безэлектродные лампы
Безэлектродные индукционные лампы — это люминесцентные лампы без внутренних электродов. Они были коммерчески доступны с 1990 года. В столб газа индуцируется ток с помощью электромагнитной индукции. Поскольку электроды обычно являются элементом, ограничивающим срок службы люминесцентных ламп, такие безэлектродные лампы могут иметь очень долгий срок службы, хотя они также имеют более высокую закупочную цену.
Люминесцентные лампы с холодным катодом (CCFL)
Люминесцентные лампы с холодным катодом используются в качестве подсветки жидкокристаллических дисплеев персональных компьютеров и телевизионных мониторов.

Использование фильмов и видео

Специальные люминесцентные лампы часто используются в кино / видео. Торговая марка Kino Flos используется для создания более мягкого заполняющего света и менее горяча, чем традиционные галогенные источники света. Эти люминесцентные лампы разработаны со специальными высокочастотными балластами для предотвращения мерцания видео и лампами с высоким индексом цветопередачи для приблизительной цветовой температуры дневного света.

Противоречие Агапито Флореса

Многие считают, что изобретателем люминесцентного света был филиппинец по имени Агапито Флорес.Сообщается, что он получил французский патент на свое изобретение и продал его компании General Electric, которая заработала на его идее миллионы долларов. Однако Флорес представил свой патент General Electric после того, как компания уже представила публике люминесцентный свет, и намного позже того, как он был первоначально изобретен. [9]

См. Также

Банкноты

  1. ↑ Lightsearch.com. Световод: люминесцентные балласты. Взято из Руководства по расширенному освещению , первоначально опубликованного Комиссией по энергетике Калифорнии в 1993 году.Проверено 31 мая 2007 года.
  2. ↑ Национальный исследовательский совет Канады, Мерцание люминесцентных ламп. Проверено 31 мая 2007 года.
  3. ↑ Тодд Вуди, «Австралия запрещает использование традиционных лампочек для борьбы с глобальным потеплением». Зеленый вомбат. 20 февраля 2007 г. Проверено 31 мая 2007 г.
  4. ↑ «Впервые в мире! Австралия сокращает выбросы парниковых газов из-за неэффективного освещения ». Канцелярия министра окружающей среды и водных ресурсов Австралии. Пресс-релиз (20 февраля 2007 г.). Проверено 31 мая 2007 года.
  5. ↑ Программа ООН по окружающей среде, «Набор инструментов для идентификации и количественной оценки выбросов ртути». п. 183. Проверено 31 мая 2007 года.
  6. ↑ Лаборатория светового дизайна, Ртуть в люминесцентных лампах. Проверено 31 мая 2007 года.
  7. ↑ Floyd et al. (2002). Цитируется в Программе Организации Объединенных Наций по окружающей среде, «Инструментарий для идентификации и количественной оценки выбросов ртути», стр. 184. Проверено 10 февраля 2012 г.
  8. ↑ Программа ООН по окружающей среде. «Набор инструментов для идентификации и количественной оценки выбросов ртути.» п. 184. Проверено 31 мая 2007 г.
  9. ↑ Агапито Флорес: изобретатели About.com. Проверено 31 мая 2007 года.

Список литературы

  • Аткинсон, Скотт. Идеи для отличного домашнего освещения . Sunset Publishing, 2003. ISBN 037601315X
  • Дерри, Т. К. и Тревор Уильямс. Краткая история технологий . Mineola, NY: Dover Publications, 1993. ISBN 0486274721
  • Хьюз, Томас П. Американский генезис: век изобретений и технологического энтузиазма 1870-1970 гг. 2-е издание.Чикаго, Иллинойс: University of Chicago Press, 2004. ISBN 0226359271

Внешние ссылки

Все ссылки получены 14 апреля 2017 г.

Источники света / освещения:

Естественные / доисторические источники света:

Биолюминесценция | Небесные объекты | Молния

Источники света горения:

Ацетиленовые / карбидные лампы | Свечи | Лампы Дэви | Огонь | Газовое освещение | Керосиновые лампы | Фонари | Limelights | Масляные лампы | Светильники

Ядерные / прямые химические источники света:

Betalights / Trasers | Хемолюминесценция (световые палочки)

Источники электрического света:

Дуговые лампы | Лампы накаливания | Люминесцентные лампы

Разрядные источники света высокой интенсивности:

Керамические разрядные металлогалогенные лампы | Лампы HMI | Лампы ртутно-паровые | Металлогалогенные лампы | Натриевые лампы | Ксеноновые дуговые лампы

Другие источники электрического света:

Электролюминесцентные (EL) лампы | Глобар | Индуктивное освещение | Дискретные светодиоды / твердотельное освещение (светодиоды) | Неоновые и аргоновые лампы | Лампа Нернста | Серная лампа | Ксеноновые лампы-вспышки | Свечи Яблочкова

Кредиты

Энциклопедия Нового Света писателей и редакторов переписали и завершили статью Википедия в соответствии со стандартами New World Encyclopedia .Эта статья соответствует условиям лицензии Creative Commons CC-by-sa 3.0 (CC-by-sa), которая может использоваться и распространяться с указанием авторства. Кредит предоставляется в соответствии с условиями этой лицензии, которая может ссылаться как на участников Энциклопедии Нового Света, , так и на самоотверженных добровольцев Фонда Викимедиа. Чтобы процитировать эту статью, щелкните здесь, чтобы просмотреть список допустимых форматов цитирования. История более ранних публикаций википедистов доступна исследователям здесь:

История этой статьи с момента ее импорта в New World Encyclopedia :

Примечание. Некоторые ограничения могут применяться к использованию отдельных изображений, на которые распространяется отдельная лицензия.

Машина для переработки люминесцентных ламп

Рейтинг продукта: 4.67

Делает то, для чего был создан! (5)

Просто, но эффективно.

Отзыв от больницы Valley Veiw в Гленвуд-Спрингс, Ко.

Отличное соотношение цены и качества (5)

Клиент порекомендовал бы этот продукт другу

Клиенту понравилось: Ничего
Не понравилось покупателю: Ничего

The Bulb Eater немедленно помог нам уменьшить объем хранилища, создать более безопасную среду хранения, одновременно позволив нам добавить еще один предмет к нашим усилиям по сокращению отходов в городе Оберн.

Отзыв от Служба охраны окружающей среды города Оберн — Переработка в Оберне, округ Ли, Алабама, США

Помогает окружающей среде (5)

Клиент порекомендовал бы этот продукт другу

Клиенту понравилось: Уменьшает потребность в пространстве для хранения
Не понравилось покупателю: Ничего

Ничего, это было благословением для нашей собственности, которая постоянно использует ее для дубления лампочек.

Отзыв от Olde Towne University Square в Толедо, Огайо

Отзыв от HMU, LLC в Ричмонде, Вирджиния

Отзыв компании Sanitary Ltd в Грузии

Клиент порекомендовал бы этот продукт другу

Клиенту понравилось: Уменьшает потребность в пространстве для хранения
Не понравилось покупателю: Ничего

Отзыв от Tolley Electric в ashland va

Прочный, быстрый, эффективный, простой (5)

Ничего особенного не любить.Хорошо спроектированный и собранный, готовый к доставке. Спасибо.

Проверено компанией NW Natural Gas в 220 NW Second Ave. Portland, OR. 97209

Сделал именно то, что сказал представитель !! (5)

Покупатель порекомендовал бы этот продукт другу

Покупателю понравилось: Ничего не понравилось
Не понравилось покупателю: Счетчик ламп был бы отличным

Отзыв от PF McCarthy, Inc.в Колорадо-Спрингс, CO

Превосходное соотношение цены и качества (5)

Клиент порекомендовал бы этот продукт другу

Клиенту понравилось: Уменьшает потребность в пространстве для хранения
Не понравилось покупателю: Ничего

Отзыв Bascom Palmer Eye Inst.в Майами, Флорида

Освободить комнату от хранившихся отработавших ламп (5)

Покупатель порекомендовал бы этот продукт другу

Покупателю понравилось: Уменьшает потребность в пространстве для хранения
Не понравилось покупателю: Время от времени выходит из строя барабан

Отзыв от Holmdel Board Of Education в Холмделе, Нью-Джерси

Клиент порекомендовал бы этот продукт другу

Клиенту понравилось: Уменьшает потребность в пространстве для хранения
Не понравилось покупателю: Ничего

Отзыв от Health and Hospital Corp.в Индианаполисе, штат Индиана.

Покупатель порекомендовал бы этот продукт другу

Покупателю понравился: Уменьшает потребность в пространстве для хранения
Покупателю не нравится: Дорогие лампы ограниченного размера, которые можно раздавить

Было бы неплохо вот-вот раздавить HID Bulbs

Отзыв NBPD в Нортбруке

Заказчик порекомендовал этот продукт другу

Заказчику понравился: Уменьшает потребность в пространстве для хранения
Заказчик не любит: Мне сказали, что мне нужно от 12 до 13 сот

В целом мы очень довольны производительностью этой машины.Хотелось бы, чтобы мы купили его раньше.

Отзыв от Amelang partners, Inc. в V.A. Региональный офис, Хьюстон, Техас,

Pruduct работает как рекламируется (5)

Покупатель порекомендовал бы этот продукт другу

Покупателю понравилось: Ничего не понравилось
Не понравилось покупателю: Дорого

Отзыв от Adman Electric Inc.в Кливленде, TN

Покупатель порекомендовал бы этот продукт другу

Покупателю понравилось: Уменьшает потребность в пространстве для хранения
Не понравилось покупателю: Время от времени выходит из строя барабан

Очень доволен. Bulb Eater соответствует нашим ожиданиям или превосходит их.

Отзыв от Колледж Мэри Болдуин в Стонтоне, штат Вирджиния

Намного проще, чем боксировать.(5)

Покупатель порекомендовал бы этот продукт другу

Покупателю понравилось: Уменьшает потребность в пространстве для хранения
Не понравилось покупателю: Время от времени выходит из строя барабан

Отзыв от Williams Electric Company inc в Клинтоне, OK

Покупатель порекомендовал бы этот продукт другу

Покупателю понравился: Уменьшает потребность в пространстве для хранения
Покупателю не нравится: Дорого

Отзыв от TWI-Yamaha в Воноре, Теннесси

Покупатель порекомендовал этот продукт другу

Покупателю понравилось: Уменьшает потребность в пространстве для хранения
Не понравилось покупателю: Дорого, Время от времени выходило из строя барабан

Луковицы часто ломаются при помещении в желоб.Я бы сделал желоб на 12 дюймов длиннее. В целом неплохой агрегат.

Проверено CVCS в Синклервилле, штат Нью-Йорк,

Покупатель порекомендовал бы этот продукт другу

Покупателю понравился: Уменьшает потребность в пространстве для хранения
Покупателю не нравится: Дорого

Отзыв компании Starr Electric в Фейетвилле, Северная Каролина

Клиент порекомендовал бы этот продукт другу

Клиенту понравилось: Уменьшает потребность в пространстве для хранения
Не понравилось покупателю: Ничего

Проверено сертифицированными монтажниками вывески Флориды в Дотане, штат Алабама, 36303

Штамповочный завод избавляется от ламп накаливания 5 лет (4)

Клиент порекомендовал бы этот продукт другу

Клиенту понравилось: Уменьшает потребность в пространстве для хранения
Не понравилось покупателю: Ничего

Отзыв от Unipres, США.в Портленде, штат Теннесси.

Клиент порекомендовал бы этот продукт другу

Клиенту понравилось: Ничего
Не понравилось покупателю: Ничего

Отзыв от Genworth Financial в Линчбурге, Вирджиния

Клиент порекомендовал этот продукт другу

Клиенту понравилось: Хорошее качество
Не понравилось покупателю: Ничего

Отзыв от East Kentucky Power в Винчестере, KY

Отличный продукт и ценность (5)

Клиент порекомендовал этот продукт другу

Клиенту понравилось: Хорошее качество, уменьшает потребность в пространстве для хранения
Не понравилось покупателю: Время от времени выходит из строя барабан

Отзыв от Transwestern Commercial Services в кампусе

Wrigley Goose Island

Что такое балласт?

Если вы оборудуете свои здания флуоресцентным, скрытым или быстродействующим линейным светодиодным освещением, вам понадобится устройство, называемое балластом.

Когда используются правильные балласты, конечный результат может означать экономичное решение для освещения, которое является энергоэффективным и дает вам расширенный контроль над количеством света, производимого в вашем помещении. Давайте копнем глубже.

Что такое балласт?

Балласт взаимодействует с самим механизмом освещения для управления, регулирования и, в конечном итоге, стабилизации светоотдачи лампы.

Вот определение в онлайн-глоссарии по освещению Regency:

Устройство, используемое с электроразрядной лампой для получения необходимых условий цепи (напряжения, тока и формы волны) для запуска и работы.Все люминесцентные и скрытые источники света требуют пускорегулирующего устройства для правильной работы. Диммерные балласты — это специальные балласты, которые при использовании вместе с диммером изменяют световой поток лампы.

Давайте потеряем технический жаргон. Проще говоря, балласт — это функциональное сердце флуоресцентного или скрытого источника света. Подобно тому, как сердце регулирует приток крови к вашему телу, балласт обеспечивает постоянное горение лампы, управляя распределением энергии по прибору. Сердце работает, чтобы распределять кровь по каналам или артериям в теле, чтобы поддерживать тело в активном и живом состоянии.Балласты делают то же самое с флуоресцентными лампами, HID и линейными светодиодами plug-and-play в ваших зданиях, просто используя энергию как жизненную силу.

На изображении ниже показано, как балласт люминесцентной лампы работает.

Есть много разных типов балластов. В зависимости от условий, в которых работает ваша система освещения, от балласта может также потребоваться определенное количество электроэнергии для нагрева лампы (называемое балластом запуска программы). Эта функция предотвращает преждевременное исчезновение внутренней работы света.Другие типы балластов могут похвастаться более быстрым запуском или другими преимуществами, которые вы можете предпочесть.

Переоборудование ваших линейных люминесцентных ламп на линейные светодиоды? Вот несколько советов по решению дилеммы балласта: «Plug-and-play vs. балласт-байпас и другие варианты линейных светодиодов»

Переоборудование ваших HID на светодиодные HID? У нас также есть несколько советов по балласту: «Решения по модернизации HID на светодиоды, которые сэкономят вам деньги»

Как работает балласт?

Так же, как сердце приспосабливается к условиям — сну, упражнениям, стрессу или расслаблению, — электронный балласт может приспособиться к наложенным на него условиям.Как упоминалось в приведенном выше определении, некоторые балласты могут специально изменять светоотдачу ваших люминесцентных или HID-ламп для целей затемнения.

Современные балласты включают в себя множество функций, которые приводят к невероятной экономической экономии наряду с преимуществами для окружающей среды и более легким соответствием все более жестким нормам снижения мощности и требованиям энергоэффективности. Ниже мы обсудим, как регулируемый балласт может помочь вам со световым кодом.

Что такое балластный фактор?

Балластный коэффициент рассчитывается путем деления светового потока комбинации лампа-балласт на световой поток той же лампы (ей) на эталонном балласте.Коэффициент балласта <1 означает, что ваша флуоресцентная система будет производить меньше света (люменов), чем эталонный балласт, а коэффициент> 1 означает, что она будет производить больше света.

Балластный фактор также влияет на энергопотребление светильника. Это может иметь важное значение, если вы пытаетесь рассчитать окупаемость модернизации освещения.

Вот несколько сообщений в блоге, которые помогут вам лучше понять балластный фактор:

Как я могу выполнить требования по снижению потребления энергии в системах освещения с балластной зависимостью?

Энергетические нормы, стимулы для коммунальных предприятий и растущие затраты на электроэнергию — все это усугубляет необходимость сделать систему освещения максимально эффективной.В некоторых случаях светодиодное освещение — хороший вариант, но балластозависимые системы все же могут быть жизнеспособным решением. Вот три эффективных варианта:

1. Диммируемый балласт

В сочетании с правильными элементами управления балласт с регулируемой яркостью может дать вам возможность плавно изменять световой поток в зависимости от условий. Одно из практических применений этого решения — соответствие требованиям Title 24, если вы находитесь в Калифорнии.

2. Многобалластные системы

В отличие от сердец, балласты также могут работать двояко — с двумя или более отдельными балластами, работающими вместе, чтобы регулировать светоотдачу многоламповых светильников.Это решение является бюджетным и удобным для установки, если вам нужно просто выключить 50 процентов ламп в одном светильнике.

У нас был сценарий, когда клиент устанавливал несколько люминесцентных светильников с четырьмя лампами, и ему требовалось снизить уровень освещенности на 50 процентов одним щелчком выключателя. В данном случае идеально подошла двухбалластная система. Размещение каждой пары ламп на отдельном балласте позволило заказчику разделить внутреннее или внутреннее и внешнее — или боковые / внешние — светильники в светильнике.Установка нового балласта в каждое существующее приспособление было простым и легким изменением, которое можно было внести в начале проекта.

3. Низкий балластный фактор

Если вы просто хотите снизить потребление энергии и не нуждаетесь в особом управлении освещением, вы можете рассмотреть продукт с низким балластным фактором как жизнеспособное решение. Это экономичные варианты, позволяющие снизить указанную мощность лампы на 10–15 процентов, пока она горит. (Будьте осторожны при использовании продуктов с низким балластным фактором в холодных условиях, таких как холодильники и морозильники.)

Независимо от того, как вы пытаетесь сэкономить на эксплуатационных расходах или какие энергетические нормы вы пытаетесь соблюдать, существует множество световых решений, которые могут помочь вам добиться успеха.

Подробнее о балластах:

люминесцентная лампа

Люминесцентная лампа или Люминесцентная лампа — это газоразрядная лампа, использующая электричество для возбуждения паров ртути в аргоне или неоновом газе, в результате чего образуется плазма, излучающая коротковолновый ультрафиолетовый свет.Затем этот свет заставляет люминофор флуоресцировать, производя видимый свет.

В отличие от ламп накаливания, люминесцентные лампы всегда требуют пускорегулирующего устройства для регулирования потока энергии через лампу. В обычных трубчатых светильниках (обычно длиной 4 фута (120 см) или 8 футов (240 см)) балласт заключен в приспособление. Компактные люминесцентные лампы могут иметь обычный балласт, расположенный в светильнике, или они могут иметь балласты, встроенные в лампы, что позволяет использовать их в патронах, обычно используемых для ламп накаливания.

Рекомендуемые дополнительные знания

История

История люминесцентных ламп начинается с ранних исследований электрических явлений. К началу 18 века экспериментаторы наблюдали лучистое свечение, исходящее от частично вакуумированных стеклянных сосудов, через которые проходил электрический ток. Немногое больше можно было сделать с этим явлением до 1856 года, когда немецкий стеклодув по имени Генрих Гейсслер (1815-1879) создал ртутный вакуумный насос, который откачивает стеклянную трубку в такой степени, которая ранее была невозможна.Когда электрический ток проходил через трубку Гейсслера, можно было наблюдать сильное зеленое свечение на стенках трубки у катодного конца.

Лампа Гейсслера, производившая красивые световые эффекты, была популярным источником развлечений. Однако более важным был его вклад в научные исследования. Одним из первых ученых, который экспериментировал с трубкой Гейсслера, был Юлиус Плюкер (1801-1868), который в 1858 году систематически описал люминесцентные эффекты, происходящие в трубке Гейсслера.Он также сделал важное наблюдение, что свечение в трубке меняет положение, когда она находится вблизи электромагнитного поля.

Запросы, которые начались с трубки Гейсслера, продолжались, поскольку были созданы еще более совершенные пылесосы. Самой известной была откачиваемая трубка, использовавшаяся для научных исследований Уильямом Круксом (1832-1919), откачиваемая высокоэффективным ртутным вакуумным насосом, созданным Германом Шпренгелем (1834-1906). Исследования, проведенные Круксом и другими, в конечном итоге привели к открытию электрона в 1897 году Дж.Дж. Томсон (1856-1940). Но трубка Крукса, как ее стали называть, давала мало света, потому что в ней был слишком хороший вакуум и, следовательно, не хватало следовых количеств газа, необходимых для электрически стимулированной люминесценции. Важным этапом на долгом научном пути, ведущем к созданию люминесцентной лампы, было наблюдение Александра Эдмона Беккереля (1820–1891) в 1859 году люминесценции некоторых веществ, помещенных в трубку Гейсслера. Он продолжил нанесение тонких покрытий из люминесцентных материалов на поверхности этих трубок.Произошла флуоресценция, но трубки были очень неэффективными и имели короткий срок службы. Несколькими годами ранее другой ученый, Джордж Г. Стоукс (1819–1903), заметил, что ультрафиолетовый свет вызывает флуоресценцию плавикового шпата, свойство, которое станет критически важным для разработки люминесцентных ламп много десятилетий спустя.

В то время как Беккерель был в первую очередь заинтересован в проведении научных исследований флуоресценции, Томас Эдисон (1847–1931) кратко рассмотрел флуоресцентное освещение из-за его коммерческого потенциала.Он изобрел люминесцентную лампу в 1896 году, в которой в качестве флуоресцентного вещества использовалось покрытие из вольфрамата кальция, но, хотя в 1907 году на нее был получен патент, она не была запущена в производство. Как и в случае с некоторыми другими попытками использовать трубки Гейслера для освещения, у него был короткий срок службы, и, учитывая успех лампы накаливания, у Эдисона не было особых причин для поиска альтернативных средств электрического освещения.

Хотя Эдисон потерял интерес к люминесцентному освещению, одному из его бывших сотрудников удалось создать газовую лампу, которая добилась определенного коммерческого успеха.В 1895 году Дэниел Макфарлан Мур (1869-1933) продемонстрировал электрически активированные трубки длиной от 7 до 9 футов, в которых для излучения белого или розового света использовался углекислый газ или азот соответственно. Как и в случае с будущими люминесцентными лампами, он был значительно сложнее лампы накаливания.

После многих лет работы Мур смог продлить срок службы ламп, изобретя электромагнитный клапан, который поддерживал постоянное давление газа внутри трубки. Хотя лампа Мура была сложной, дорогой в установке и требовала очень высокого напряжения, она была значительно более эффективной, чем лампы накаливания, и давала более естественный свет, чем лампы накаливания.С 1904 года система освещения Мура была установлена ​​во многих магазинах и офисах. Его успех способствовал мотивации General Electric к совершенствованию лампы накаливания, особенно ее нити. Усилия GE увенчались изобретением нити накала на основе вольфрама. Увеличенный срок службы ламп накаливания свел на нет одно из ключевых преимуществ лампы Мура, но GE приобрела соответствующие патенты в 1912 году. Эти патенты и изобретательские усилия, которые поддерживали их, должны были иметь значительную ценность, когда фирма занялась люминесцентным освещением более чем два раза. десятилетия спустя.

Примерно в то же время, когда Мур разрабатывал свою систему освещения, другой американец создавал средство освещения, которое также можно рассматривать как предшественник современной люминесцентной лампы. Это была ртутная лампа, изобретенная Питером Купером Хьюиттом (1861-1921) и запатентованная в 1901 году (патент США № 889 692). Как следует из названия, лампа Купер-Хьюитта загоралась, когда электрический ток пропускался через пары ртути при низком давлении. В отличие от ламп Мура, лампы Cooper-Hewitt могли изготавливаться стандартных размеров и работать при низких напряжениях.Лампа на парах ртути превосходила лампы накаливания того времени с точки зрения энергоэффективности, но сине-зеленый свет, который она производил, ограничивал ее применение. Однако он использовался для фотографии и некоторых промышленных процессов.

Лампы на ртутных парах продолжали развиваться медленными темпами, особенно в Европе, и к началу 1930-х годов они получили ограниченное применение для крупномасштабного освещения. В некоторых из них использовались флуоресцентные покрытия, но они в основном использовались для цветокоррекции, а не для увеличения светоотдачи.Лампы на парах ртути также предвосхитили люминесцентные лампы с их включением балласта для поддержания постоянного потока тока.

Купер-Хьюитт не был первым, кто использовал пары ртути для освещения, поскольку ранее усилия были предприняты Уэй, Рапифф, Аронс, Бастиан и Солсбери. Особое значение имела ртутная лампа, изобретенная Кюхом в Германии. В этой лампе вместо стекла использовался кварц, чтобы обеспечить более высокие рабочие температуры и, следовательно, большую эффективность.Хотя ее светоотдача по сравнению с потреблением электроэнергии была лучше, чем у других источников света, излучаемый ею свет был похож на свет лампы Купера-Хьюитта в том, что в ней отсутствовала красная часть спектра, что делало ее непригодной для обычного освещения.

Электрический ток, проходящий через трубку, послужил основой для другого вида освещения — неонового света. В то время как Мур использовал углекислый газ, азот или атмосферный воздух для заполнения трубок, а Купер-Хьюитт и другие использовали пары ртути, на следующем этапе газового освещения использовались люминесцентные свойства неона, инертного газа, который был обнаружен в 1898 г.В 1909 году французский химик Жорж Клод (1870–1960) наблюдал красное свечение, возникающее при пропускании электрического тока через трубку, заполненную неоном. Он также обнаружил, что голубое свечение возникло в результате использования другого инертного газа, аргона. Свет можно было использовать для общего освещения, и фактически он использовался во Франции для этой цели примерно с 1930 года, но неоновое освещение было не более энергоэффективным, чем обычное освещение лампами накаливания, и его начали использовать в основном для привлекательных вывесок и реклама.Однако неоновое освещение не имело никакого отношения к развитию люминесцентного освещения, поскольку усовершенствованный электрод Клода (запатентованный в 1915 году) преодолел «разбрызгивание», основной источник деградации электродов. Распыление происходит, когда ионизированные частицы ударяются об электрод и отрывают кусочки металла. Хотя изобретение Клода требовало электродов с большой площадью поверхности, оно показало, что можно преодолеть серьезное препятствие для газового освещения.

Развитие неонового света также имело значение для последнего ключевого элемента люминесцентной лампы — ее люминесцентного покрытия.В 1926 году Жак Рислер получил французский патент на применение флуоресцентных покрытий на неоновых лампах. Эти лампы, которые можно считать первыми коммерчески успешными люминесцентными лампами, использовались в основном для рекламы, а не для общего освещения. Однако это было не первое использование флуоресцентных покрытий. Как было отмечено выше, Эдисон использовал вольфрамат кальция для своей неудачной лампы. Были предприняты другие попытки, но все они сопровождались низкой эффективностью и различными техническими проблемами.Особое значение для последующей истории имело изобретение Фридрихом Мейером, Хансом-Иоахимом Шпаннером и Эдмундом Гермером, которые в то время были сотрудниками немецкой фирмы, расположенной в г. Берлин. Немецкий патент был выдан, но в серийное производство лампа так и не пошла.

Все основные функции люминесцентного освещения были реализованы в конце 1920-х годов. Десятилетия изобретений и разработок обеспечили ключевые компоненты люминесцентных ламп: экономичные стеклянные трубки, инертные газы для заполнения трубок, электрические балласты, долговечные электроды, пары ртути как источник люминесценции, эффективные средства создания надежного электрического разряда. , а также флуоресцентные покрытия, которые можно возбуждать ультрафиолетовым светом.На этом этапе интенсивные разработки были важнее фундаментальных исследований.

В 1934 году Артур Комптон, известный физик и консультант GE, отправил отчет W.L. Энфилд, руководитель отдела исследований и разработок в отделе ламп GE, рассказал об успешных экспериментах с флуоресцентным освещением в исследовательской лаборатории General Electric Co., Ltd. в Великобритании (хотя она носила прозвище GE, эта фирма не имела прямого отношения к General Electric. Электрический в США). Вдохновленная этим отчетом и всеми доступными ключевыми элементами, команда под руководством Джорджа Э.Инман построил прототип люминесцентной лампы в 1934 году в инженерной лаборатории General Electric в Нела Парк (Огайо). Это было нетривиальное упражнение; как отметил Артур А. Брайт, «пришлось провести множество экспериментов с размерами и формой ламп, конструкцией катода, давлением газов аргона и паров ртути, цветами флуоресцентных порошков, методами их прикрепления к внутренней части лампы. трубка и другие детали лампы и ее вспомогательных устройств до того, как новое устройство было готово для публики.”

Помимо наличия талантливых инженеров и техников, а также отличных условий для исследований и разработок флуоресцентных ламп, General Electric контролировала то, что она считала ключевыми патентами, касающимися флуоресцентного освещения, включая патенты, первоначально выданные Cooper-Hewitt, Moore и Küch. Более важным был патент на электрод, который не разрушался при давлении газа, которое в конечном итоге использовалось в люминесцентных лампах. Это изобретение было создано Альбертом В.Hull из исследовательской лаборатории GE в Скенектади и была зарегистрирована как патент США № 1,790,153.

Хотя патент Халла дал GE основание для требования юридических прав на люминесцентную лампу, через несколько месяцев после запуска лампы в производство фирма узнала о подаче заявки на патент США в 1927 году на вышеупомянутую изобретенную «лампу на парах металла». в Германии Мейером, Шпаннером и Гермером. В заявке на патент указывалось, что лампа была создана как превосходное средство для получения ультрафиолетового света, но в заявке также содержалось несколько утверждений, относящихся к флуоресцентному освещению.Попытки получить патент в США натолкнулись на многочисленные задержки, но, если бы он был выдан, патент мог бы вызвать серьезные трудности для GE. Сначала GE попыталась заблокировать выдачу патента, заявив, что приоритет должен принадлежать одному из их сотрудников, Лерою Дж. Баттольфу, который, согласно их заявлению, изобрел люминесцентную лампу в 1919 году и чья патентная заявка все еще находилась на рассмотрении. GE также подала заявку на патент в 1936 году на имя Инмана, чтобы охватить «улучшения», внесенные его группой.В 1939 году GE решила, что в заявлении Мейера, Спаннера и Гермера есть основания и что в любом случае длительная процедура вмешательства не в их интересах. Поэтому они отказались от иска Buttolph и заплатили 180 000 долларов за приобретение Meyer et al. заявка, которая на тот момент принадлежала фирме, известной как Electrons, Inc. Патент (патент США № 2 182 732) был должным образом выдан в декабре 1939 года. Этот патент, наряду с патентом Халла, поставил GE на то, что казалось твердое правовое основание, хотя компания Sylvania Electric Products, Inc. в течение многих лет сталкивалась с судебными исками., который заявил о нарушении патентов.

Несмотря на то, что вопрос о патентах не будет полностью решен в течение многих лет, сильные стороны General Electric в области производства и маркетинга позволили компании занять лидирующую позицию на развивающемся рынке люминесцентных ламп. Продажа «люминесцентных люмилиновых ламп» началась в 1938 году, когда на рынок были выпущены лампы четырех разных размеров. В течение следующего года GE и Westinghouse рекламировали новые светильники на выставках на Всемирной выставке в Нью-Йорке и на выставке Golden Gate в Сан-Франциско.Флуоресцентные осветительные системы быстро распространились во время Второй мировой войны, поскольку промышленное производство, стимулированное военными потребностями, привело к росту спроса на освещение. Использование люминесцентного освещения продолжало распространяться в годы после войны, и к 1951 году в Соединенных Штатах флуоресцентные лампы производили больше света, чем лампы накаливания.

Принципы работы

Основной принцип работы люминесцентной лампы основан на неупругом рассеянии электронов.Падающий электрон (испускаемый из покрытия на катушках проволоки, образующих катодный электрод) сталкивается с атомом газа (например, ртути, аргона или криптона), используемого в качестве излучателя ультрафиолета. Это заставляет электрон в атоме временно подпрыгивать на более высокий энергетический уровень, чтобы поглотить часть или всю кинетическую энергию, доставленную сталкивающимся электроном. Вот почему столкновение называется «неупругим», так как часть энергии поглощается. Это более высокое энергетическое состояние нестабильно, и атом излучает ультрафиолетовый фотон, когда электрон атома возвращается на более низкий, более стабильный энергетический уровень.Фотоны, которые испускаются из выбранных газовых смесей, обычно имеют длину волны в ультрафиолетовой части спектра. Человеческий глаз не видит его, поэтому его необходимо преобразовать в видимый свет. Это делается с помощью флуоресценции. Это флуоресцентное преобразование происходит в люминофорном покрытии на внутренней поверхности люминесцентной лампы, где ультрафиолетовые фотоны поглощаются электронами в атомах люминофора, вызывая аналогичный скачок энергии, а затем снижается с испусканием следующего фотона.Фотон, испускаемый в результате этого второго взаимодействия, имеет меньшую энергию, чем тот, который его вызвал. Химические вещества, входящие в состав люминофора, специально подобраны так, чтобы эти испускаемые фотоны имели длину волны, видимую человеческим глазом. Разница в энергии между поглощенным ультрафиолетовым фотоном и испускаемым фотоном видимого света идет на нагрев покрытия люминофора.

Механизм светового производства

Люминесцентная лампа заполнена газом, содержащим пары ртути низкого давления и аргон (или ксенон), реже аргон-неон, а иногда даже криптон.Внутренняя поверхность колбы покрыта флуоресцентным (и часто слегка фосфоресцирующим) покрытием, состоящим из различных смесей металлических и редкоземельных фосфорных солей. Катод колбы обычно изготавливается из спирального вольфрама, покрытого смесью оксидов бария, стронция и кальция (выбранной так, чтобы она имела относительно низкую температуру термоэлектронной эмиссии). Когда включается свет, электроэнергия нагревает катод настолько, что он испускает электроны. Эти электроны сталкиваются и ионизируют атомы благородного газа в колбе, окружающей нить, с образованием плазмы в процессе ударной ионизации.В результате лавинной ионизации проводимость ионизированного газа быстро возрастает, позволяя протекать через лампу более высоким токам. Ртуть, которая существует в точке стабильного равновесного давления пара около одной части на тысячу внутри трубки (с давлением благородного газа, обычно составляющим около 0,3% от стандартного атмосферного давления), затем также ионизируется, вызывая ее выделение. свет в ультрафиолетовой (УФ) области спектра преимущественно на длинах волн 253,7 нм и 185 нм.Эффективность флуоресцентного освещения во многом обязана тому факту, что ртутные разряды низкого давления излучают около 65% своего общего света на линии 254 нм (также около 10-20% света, излучаемого в УФ-диапазоне, приходится на линию 185 нм). УФ-свет поглощается флуоресцентным покрытием лампы, которое повторно излучает энергию на более низких частотах (более длинные волны: две интенсивные линии с длиной волны 440 нм и 546 нм появляются на коммерческих люминесцентных трубках) (см. Стоксов сдвиг) для излучения видимого света. Смесь люминофоров контролирует цвет света и вместе со стеклом колбы предотвращает утечку вредного ультрафиолетового света.

Электрические аспекты эксплуатации

Люминесцентные лампы представляют собой устройства с отрицательным сопротивлением, поэтому, когда через них проходит больше тока (больше ионизированного газа), электрическое сопротивление люминесцентной лампы падает, позволяя протекать еще большему току. Люминесцентная лампа, подключенная непосредственно к сети постоянного напряжения, может быстро самоуничтожиться из-за неконтролируемого протекания тока. Чтобы предотвратить это, люминесцентные лампы должны использовать вспомогательное устройство, обычно называемое балластом, для регулирования тока, протекающего через лампу.

Хотя балласт может быть (и иногда бывает) таким же простым, как резистор, значительная мощность тратится впустую в резистивном балласте, поэтому балласты обычно используют вместо него реактивное сопротивление (катушка индуктивности или конденсатор). Для работы от сети переменного тока обычно используется простой индуктор (так называемый «магнитный балласт»). В странах, где используется сеть 120 В переменного тока, сетевого напряжения недостаточно для освещения больших люминесцентных ламп, поэтому балласт для этих больших люминесцентных ламп часто представляет собой повышающий автотрансформатор со значительной индуктивностью рассеяния (чтобы ограничить ток).Любая форма индуктивного балласта может также включать конденсатор для коррекции коэффициента мощности.

В прошлом люминесцентные лампы иногда работали напрямую от источника постоянного тока с напряжением, достаточным для зажигания дуги. В этом случае не было сомнений в том, что балласт должен быть резистивным, а не реактивным, что приводит к потерям мощности в балластном резисторе. Кроме того, при непосредственном питании от постоянного тока полярность питания лампы должна быть изменена каждый раз при запуске лампы; в противном случае ртуть скапливается на одном конце трубки.В настоящее время люминесцентные лампы практически никогда не работают напрямую от постоянного тока; вместо этого инвертор преобразует постоянный ток в переменный и обеспечивает функцию ограничения тока, как описано ниже для электронных балластов.

В более сложных балластах могут использоваться транзисторы или другие полупроводниковые компоненты для преобразования сетевого напряжения в высокочастотный переменный ток, а также для регулирования тока в лампе. Их называют «электронными балластами».

Мерцание

Люминесцентные лампы, которые работают непосредственно от сети переменного тока, будут мигать с удвоенной частотой сети, поскольку мощность, подаваемая на лампу, падает до нуля дважды за цикл.Это означает, что свет мигает со скоростью 120 раз в секунду (Гц) в странах, которые используют переменный ток с частотой 60 циклов в секунду (60 Гц), и 100 раз в секунду в странах, которые используют 50 Гц. Этот же принцип может также вызвать гудение от люминесцентных ламп, фактически от их балласта. И раздражающий гул, и мерцание устранены в лампах, в которых используется высокочастотный электронный балласт, например, во все более популярной компактной люминесцентной лампе.

В некоторых случаях люминесцентные лампы, работающие на частоте сети, могут также производить мерцание на самой частоте сети (50 или 60 Гц), что заметно для большего количества людей.Это может произойти в последние несколько часов срока службы лампы, когда катодное эмиссионное покрытие на одном конце почти закончилось, и этот катод начинает испытывать трудности с испусканием достаточного количества электронов в газовый наполнитель, что приводит к небольшому выпрямлению и, следовательно, к неравномерному световому выходу в положительных и отрицательные рабочие циклы сети. Мерцание частоты сети также может иногда излучаться с самых концов трубок в результате того, что каждый трубчатый электрод поочередно работает как анод и катод в течение каждой половины цикла сети и создает немного отличающуюся картину светового потока в анодном или катодном режиме.(Это было более серьезной проблемой с лампами более 40 лет назад, и многие приспособления той эпохи закрывали концы трубок из-за этого.) Мерцание на частоте сети более заметно в периферическом зрении, чем в центре взгляда. .

Эффективность

Эффективность люминесцентных ламп колеблется от примерно 16 люмен / ватт для 4-ваттной лампы с обычным балластом до примерно 95 люмен / ватт для 32-ваттной лампы с современным электронным балластом, обычно в среднем от 50 до 67 лм / Вт. .Большинство компактных люминесцентных ламп мощностью 13 Вт и более со встроенными электронными балластами достигают около 60 люмен / ватт. Из-за деградации люминофора с возрастом средняя яркость за весь срок службы фактически примерно на 10% меньше. [1]

Начиная с

Атомы ртути в люминесцентной лампе должны быть ионизированы до того, как дуга сможет «загореться» внутри лампы. Для небольших ламп для зажигания дуги не требуется большого напряжения, и запуск лампы не представляет проблемы, но для больших ламп требуется значительное напряжение (в диапазоне от тысячи вольт).

В некоторых случаях это происходит именно так: мгновенный запуск люминесцентные лампы просто используют достаточно высокое напряжение, чтобы разрушить столб газа и ртути и тем самым запустить дугу. Эти трубки можно идентифицировать по тому факту, что

  1. они имеют по одному штифту на каждом конце трубки и
  2. патроны, в которые они вставляются, имеют разъединяющую розетку на низковольтном конце, чтобы гарантировать автоматическое отключение сетевого тока, чтобы человек, заменяющий лампу, не мог получить электрический ток высокого напряжения.

В других случаях необходимо предусмотреть отдельное средство помощи при пуске. Некоторые люминесцентные конструкции ( лампы предварительного нагрева ) используют комбинацию нити накала / катода на каждом конце лампы в сочетании с механическим или автоматическим переключателем (см. Фото), который первоначально соединяет нити накала последовательно с балластом и, таким образом, предварительно нагревает нити перед включением. зажигая дугу.

Эти системы являются стандартным оборудованием в странах с напряжением 240 В и обычно используют пускатель накаливания. До 1960-х годов также использовались четырехконтактные термостартеры и ручные выключатели.Электронные пускатели также иногда используются с этими электромагнитными балластными устройствами.

Во время предварительного нагрева нити испускают электроны в газовый столб за счет термоэлектронной эмиссии, создавая тлеющий разряд вокруг нитей. Затем, когда пусковой переключатель размыкается, индуктивный балласт и небольшой конденсатор на пусковом переключателе создают высокое напряжение, которое зажигает дугу. Удар трубки надежен в этих системах, но стартеры накаливания часто переключаются несколько раз, прежде чем позволить лампе оставаться зажженной, что вызывает нежелательное мигание во время запуска.В этом отношении старые термостартеры показали себя лучше.

После удара по трубке падающий основной разряд сохраняет нить накала / катод горячим, позволяя продолжать излучение.

Если трубка не ударяется или ударяется, а затем гаснет, последовательность запуска повторяется. При использовании автоматических пускателей, таких как стартеры накаливания, неисправная лампа будет бесконечно циклически повторяться, мигая снова и снова, поскольку стартер многократно запускает изношенную лампу, а затем лампа быстро гаснет, поскольку излучения недостаточно для поддержания катодов в горячем состоянии, и лампа Сила тока слишком мала, чтобы пускатель горелки оставался открытым.Это вызывает визуально неприятное частое яркое мигание и запускает балласт при температуре выше расчетной. При повороте стартера на четверть оборота против часовой стрелки он отключается, размыкая цепь.

У некоторых более продвинутых пускателей в этой ситуации истекает время ожидания, и они не пытаются повторять пуски до тех пор, пока не будет сброшено питание. В некоторых старых системах для обнаружения повторных попыток пуска использовалось тепловое отключение сверхтока. Это требует ручного сброса.

Более новые модели балласта с быстрым запуском обеспечивают накаливание силовых обмоток внутри балласта; они быстро и непрерывно нагревают нити / катоды, используя низковольтный переменный ток.При запуске не возникает никаких индуктивных всплесков напряжения, поэтому лампы обычно следует устанавливать рядом с заземленным отражателем, чтобы тлеющий разряд мог распространяться по трубке и инициировать дуговый разряд.

Электронные балласты часто возвращаются к стилю между стилями предварительного нагрева и быстрого запуска: конденсатор (или иногда автоматически отключающая цепь) может замкнуть цепь между двумя нитями накала, обеспечивая предварительный нагрев нити. Когда трубка загорается, напряжение и частота на лампе и конденсаторе обычно падают, таким образом, ток конденсатора падает до низкого, но ненулевого значения.Обычно этот конденсатор и катушка индуктивности, которая обеспечивает ограничение тока при нормальной работе, образуют резонансный контур, увеличивая напряжение на лампе, чтобы ее можно было легко запустить.

Некоторые электронные балласты используют запрограммированный запуск. Выходная частота переменного тока начинается выше резонансной частоты выходного контура балласта; и после того, как нити нагреваются, частота быстро уменьшается. Если частота приближается к резонансной частоте балласта, выходное напряжение возрастает настолько, что лампа загорается.Если лампа не загорается, электронная схема прекращает работу балласта.

Начиная с 1990-х годов, в массовое производство вошел новый тип балласта с более дорогой, но значительно более эффективной конструкцией: работа на высоких частотах. Эти высокочастотные балласты новой конструкции используются либо с лампами с быстрым запуском, либо с лампами катодно-анодного типа с предварительным нагревом (с закороченными контактами на конце лампы) и используют высокую частоту для возбуждения ртути внутри лампы. Эти новые электронные балласты преобразуют поступающие в балласт 50 или 60 Гц в выходную частоту, превышающую 100 кГц.Это позволяет создать более эффективную систему, которая генерирует меньше отходящего тепла и требует значительно меньше энергии для зажигания лампы и работает с быстрым запуском. Они используются в нескольких приложениях, в том числе в системах ламп для загара нового поколения, при которых лампа мощностью 100 Вт (например, F71T12BP) может быть освещена с использованием фактической мощности от 65 до 70 Вт при достижении тех же люменов, что и традиционные балласты на полной мощности. Они работают с напряжениями, которые могут составлять почти 600 вольт, что требует некоторого внимания при проектировании корпуса, и может вызвать небольшое ограничение длины проводов от балласта к концам лампы.Эти балласты работают всего на несколько градусов выше температуры окружающей среды, отчасти поэтому они более эффективны и позволяют использовать их в приложениях, которые не подходят для более нагретой электроники.

Окончание срока службы

Режим отказа по окончании срока службы люминесцентных ламп варьируется в зависимости от того, как они используются, и типа их ПРА. В настоящее время существует три основных режима отказа и четвертый, который начинает проявляться:

Смесь выбросов

«Эмиссионная смесь» на нитях / катодах трубки необходима для того, чтобы электроны могли проходить в газ посредством термоэлектронной эмиссии при используемых рабочих напряжениях трубки.Смесь медленно распыляется путем бомбардировки электронами и ионами ртути во время работы, но большее количество распыляется каждый раз, когда трубка запускается с холодными катодами. (Метод запуска лампы и, следовательно, тип ПРА оказывает на это существенное влияние.) Лампы, работающие обычно менее 3 часов при каждом включении, обычно исчерпывают эмиссионную смесь до того, как выйдут из строя другие части лампы. Распыленная эмиссионная смесь образует темные пятна на концах трубок, которые можно увидеть в старых трубках.Когда вся эмиссионная смесь исчезнет, ​​катод не может пропустить достаточно электронов в газовую заливку, чтобы поддерживать разряд при расчетном рабочем напряжении трубки. В идеале управляющий механизм должен отключать трубку, когда это происходит. Однако некоторые устройства управления будут обеспечивать достаточно повышенное напряжение для продолжения работы лампы в режиме с холодным катодом, что приведет к перегреву конца трубки и быстрому разрушению электродов и их поддерживающих проводов до тех пор, пока они не исчезнут полностью или стекло не потрескается, разрушив Заполнение газом низкого давления и прекращение выпуска газа.

Балластная электроника

Относится только к компактным люминесцентным лампам со встроенными электрическими балластами. Отказ балластной электроники — это несколько случайный процесс, который следует стандартному профилю отказов для любых электронных устройств. Срок службы встроенных электронных балластов сокращается в условиях высокой влажности. Сначала наблюдается небольшой пик ранних отказов, за которым следует спад и неуклонное увеличение срока службы лампы. Срок службы электроники сильно зависит от рабочей температуры — обычно он сокращается вдвое на каждые 10 ° C повышения температуры.Указанный средний срок службы лампы обычно составляет при температуре окружающей среды 25 ° C (это может варьироваться в зависимости от страны). Средний срок службы электроники при этой температуре обычно больше указанной, поэтому при такой температуре не многие лампы выйдут из строя из-за отказа электроники. В некоторых фитингах температура окружающей среды может быть намного выше этой, и в этом случае отказ электроники может стать преобладающим механизмом отказа. Точно так же использование компактного цоколя люминесцентной лампы приведет к более горячей электронике и сокращению среднего срока службы (особенно с более высокой номинальной мощностью).Электронные балласты должны быть спроектированы так, чтобы отключать лампу, когда заканчивается смесь выбросов, как описано выше. В случае интегральных электронных балластов, поскольку они никогда не должны снова работать, это иногда достигается путем преднамеренного сгорания какого-либо компонента для окончательного прекращения работы.

Люминофор

Эффективность люминофора падает во время использования. Приблизительно к 25 000 часов работы это обычно будет вдвое меньше яркости новой лампы (хотя некоторые производители заявляют, что период полураспада у своих ламп намного больше).Лампы, в которых отсутствуют отказы системы эмиссии или встроенной балластной электроники, в конечном итоге разовьются в этом режиме отказа. Они все еще работают, но стали тусклыми и неэффективными. Процесс идет медленно и часто становится очевидным только тогда, когда новая лампа работает рядом со старой.

Потеря ртути

Ртуть теряется из-за газового наполнения в течение всего срока службы лампы, так как она медленно поглощается стеклом, люминофором и трубчатыми электродами, где больше не может работать. Исторически это не было проблемой, потому что в трубках содержится избыток ртути.Тем не менее, экологические проблемы теперь приводят к созданию трубок с низким содержанием ртути, которые гораздо более точно дозируются с достаточным количеством ртути, достаточным для обеспечения ожидаемого срока службы лампы. Это означает, что потеря ртути возьмет верх из-за выхода из строя люминофора в некоторых лампах. Симптомы отказа аналогичны, за исключением того, что потеря ртути сначала вызывает увеличенное время разгона (время для достижения полного светового потока) и, наконец, заставляет лампу светиться тускло-розовым светом, когда ртуть заканчивается, а основной газ аргон вступает во владение. первичный разряд.

Люминофоры и спектр излучаемого света

Некоторые люди находят цветовую гамму некоторых люминесцентных ламп резкой и неприятной. Иногда кажется, что здоровый человек имеет нездоровый оттенок кожи при флуоресцентном освещении. Степень, в которой происходит это явление, связана с индексом цветопередачи света (CRI).

CRI — это показатель того, насколько хорошо сбалансированы различные цветовые компоненты белого света. По определению, лампа накаливания имеет индекс цветопередачи 100.Реальные люминесцентные лампы достигают CRI от 50% до 99%. Люминесцентные лампы с низким индексом цветопередачи имеют люминофор, излучающий слишком мало красного света. Кожа выглядит менее розовой и нездоровой по сравнению с освещением лампами накаливания. Цветные объекты выглядят приглушенными. Например, галофосфатная трубка с низким CRI 6800K, которая выглядит так же неприятно, как и они, придает красному оттенку тускло-красный или коричневый цвет.

CCT Цветовая температура — это мера белизны источника света. Типичное освещение лампами накаливания составляет 2700K, то есть желтовато-белый цвет.Галогенное освещение 3000К. Люминесцентные лампы производятся в соответствии с выбранной цветовой температурой путем изменения смеси люминофоров внутри трубки. Тёпло-белые люминесцентные лампы с цветовой температурой 2700K популярны для освещения жилых помещений. Нейтрально-белые флуоресцентные лампы имеют CCT 3000K или 3500K. Холодно-белые флуоресцентные лампы имеют цветовую температуру 4100K и популярны для офисного освещения. Флуоресцентные лампы дневного света имеют CCT от 5000K до 6500K, что означает голубовато-белый цвет.

Для освещения с высокой цветовой температурой обычно требуется более высокий уровень освещенности.При более тусклом освещении человеческий глаз воспринимает более низкие цветовые температуры как более естественные. Таким образом, тусклая лампа накаливания 2700K выглядит естественно, а яркая лампа 5000K также выглядит естественной, но тусклая люминесцентная лампа 5000K выглядит слишком бледной. Люминесцентные лампы дневного света выглядят естественно, только если они очень яркие.

Один из наименее приятных источников света исходит от трубок, содержащих старые люминофоры галофосфатного типа (химическая формула Ca 5 (PO 4 ) 3 (F, Cl): Sb 3+ , Mn 2+ ).Плохая цветопередача связана с тем, что этот люминофор в основном излучает желтый и синий свет и относительно мало зеленого и красного. На вид эта смесь кажется белой, но свет имеет неполный спектр. CRI таких ламп всего 60.

С 1990-х годов в люминесцентных лампах более высокого качества используется галофосфатное покрытие с более высоким индексом цветопередачи или смесь трифосфорных люминофора на основе ионов европия и тербия, полосы излучения которых более равномерно распределены по спектру видимого света.Галофосфатные и трифосфорные трубки с высоким индексом цветопередачи придают человеческому глазу более естественную цветопередачу. CRI таких ламп обычно составляет 82–100.

По крайней мере, в некоторых из первых люминесцентных ламп использовались соединения, содержащие бериллий, токсичный элемент. Однако вряд ли можно встретить такие лампы.

Спектры люминесцентных ламп
Типичная люминесцентная лампа с люминофором «редкоземельный» Типичная люминесцентная лампа «холодного белого цвета», использующая два люминофора, легированного редкоземельными элементами, Tb 3+ , Ce 3+ : LaPO 4 для зеленого и синее излучение и Eu: Y 2 O 3 для красного.Для объяснения происхождения отдельных пиков щелкните изображение. Обратите внимание, что некоторые спектральные пики генерируются непосредственно ртутной дугой. Это, вероятно, наиболее распространенный тип люминесцентных ламп, используемых сегодня.
Галофосфатно-люминесцентная лампа старого образца Галофосфатные люминофоры в этих лампах обычно состоят из трехвалентной сурьмы и галофосфата кальция, легированного двухвалентным марганцем (Ca 5 (PO 4 901 9030) : Sb 3+ , Mn 2+ ).Цвет выходящего света можно регулировать, изменяя соотношение излучающей синий легирующий элемент сурьмы и излучающий оранжевый легирующий марганец. Цветопередача этих ламп более старого стиля довольно низкая. Галофосфатные люминофоры были изобретены A.H. McKeag et al. в 1942 г.
Флуоресцентный свет «естественного солнечного света» Пояснение происхождения пиков находится на странице изображения.
Желтые флуоресцентные лампы Спектр почти идентичен спектру нормальной люминесцентной лампы, за исключением почти полного отсутствия света ниже 500 нанометров.Этот эффект может быть достигнут либо за счет использования специального люминофора, либо, чаще, за счет использования простого желтого светофильтра. Эти лампы обычно используются в качестве освещения для фотолитографических работ в чистых помещениях и в качестве наружного освещения «от насекомых» (эффективность которого сомнительна).
Спектр лампы «черного света» Обычно в лампе черного света присутствует только один люминофор, обычно состоящий из фторбората стронция, легированного европием, который содержится в оболочке из стекла Вуда.
Спектр «ртутной» люминесцентной лампы Снято с «недорогого» спектрометра (стоимость около 100 долларов). Результаты аналогичны, если не лучше, чем у традиционных, но гораздо более дорогих спектрометров.

Использование

Люминесцентные лампы бывают разных форм и размеров. Компактная люминесцентная лампа (CF) становится все более популярной. Во многих компактных люминесцентных лампах вспомогательная электроника встроена в цоколь лампы, что позволяет им вставляться в обычный патрон для лампочки.

В США использование люминесцентного освещения в жилых помещениях остается низким (обычно ограничивается кухнями, подвалами, коридорами и другими помещениями), но школы и предприятия считают, что флуоресцентные лампы позволяют значительно сэкономить, и редко используют лампы накаливания.

В осветительных приборах используются люминесцентные лампы различных оттенков белого. Иногда это происходит из-за непонимания разницы или важности разных типов трубок. Смешивание типов трубок внутри фитингов улучшает цветопередачу трубок более низкого качества.Налоговые льготы и экологическая осведомленность приводят к более широкому использованию в таких местах, как Калифорния.

В других странах использование люминесцентного освещения в жилых помещениях варьируется в зависимости от стоимости энергии, финансовых и экологических проблем местного населения, а также приемлемой светоотдачи. В Восточной и Юго-Восточной Азии очень редко можно увидеть лампы накаливания в зданиях где-либо.

В феврале 2007 года Австралия приняла закон, запрещающий к 2010 году большинство продаж ламп накаливания. [2] Хотя закон не определяет, какие альтернативы использовать австралийцам, компактные флуоресцентные лампы, вероятно, станут их основной заменой. В апреле 2007 года Канада объявила о аналогичном плане по поэтапному отказу от продажи ламп накаливания к 2012 году. Финский парламент обсуждает запрет на продажу ламп накаливания к началу 2011 года. [3]

Преимущества

Люминесцентные лампы более эффективны, чем лампы накаливания аналогичной яркости.Это связано с тем, что большая часть используемой мощности преобразуется в полезный свет, а меньшая часть преобразуется в тепло, что позволяет люминесцентным лампам работать холоднее. Типичная лампа накаливания с вольфрамовой нитью мощностью 100 Вт может преобразовывать только 2,6% потребляемой мощности в видимый свет, тогда как обычные люминесцентные лампы преобразуют от 6,6% до 15,2% своей потребляемой мощности в видимый свет — см. Таблицу в статье о световой эффективности. Обычно люминесцентная лампа служит в 10-20 раз дольше, чем эквивалентная лампа накаливания. [ необходима ссылка ]

Более высокая начальная стоимость люминесцентной лампы обычно более чем компенсируется более низким потреблением энергии в течение срока ее службы. Более длительный срок службы может также снизить затраты на замену лампы, обеспечивая дополнительную экономию, особенно там, где труд является дорогостоящим. Поэтому он широко используется предприятиями по всему миру, но не домашними хозяйствами.

Недостатки

Проблемы со здоровьем

Люминесцентные лампы могут вызывать проблемы у людей с патологической чувствительностью к ультрафиолетовому свету.Они могут вызывать активность заболевания у светочувствительных людей с системной красной волчанкой; стандартные акриловые диффузоры поглощают УФ-В излучение и, кажется, защищают от этого. [4] В редких случаях люди с солнечной крапивницей (аллергия на солнечный свет) могут получить сыпь от флуоресцентного освещения. [5]

Устранение люминесцентного освещения подходит для нескольких условий. Помимо головной боли и усталости, [6] и проблем со светочувствительностью, [7] они перечислены как проблемные для людей с эпилепсией, [8] волчанкой, [9] синдромом хронической усталости, и головокружение [10] (связано с сердечно-сосудистыми проблемами, рассеянным склерозом и рядом других заболеваний.) Исследования по этому поводу очень ограничены. Кажется, что существует даже меньше доказательств, оспаривающих эффекты, чем подтверждающих их.

Балласты

Люминесцентным лампам требуется балласт для стабилизации лампы и обеспечения начального напряжения зажигания, необходимого для начала дугового разряда. Это увеличивает стоимость люминесцентных светильников, хотя часто один балласт используется двумя или более лампами. Электромагнитные балласты при незначительной неисправности могут издавать слышимый гудение или жужжание.

Обычные балласты для ламп не работают от постоянного тока. Если доступен источник постоянного тока с достаточно высоким напряжением для зажигания дуги, можно использовать резистор для балласта лампы, но это приводит к низкой эффективности из-за потери мощности в резисторе. Кроме того, ртуть имеет тенденцию перемещаться к одному концу трубки, приводя только к одному концу лампы, производящему большую часть света. Из-за этого эффекта лампы (или полярность тока) должны регулярно меняться.

Коэффициент мощности

Балласты люминесцентных ламп имеют коэффициент мощности меньше единицы. Для крупных установок это делает подачу электроэнергии более дорогостоящей, поскольку необходимо принимать специальные меры, чтобы приблизить коэффициент мощности к единице.

Гармоники мощности

Люминесцентные лампы представляют собой нелинейную нагрузку и генерируют гармоники на синусоидальной форме волны 50 Гц или 60 Гц источника питания. В некоторых случаях это может привести к возникновению радиочастотного шума.Подавление генерации гармоник — стандартная, но несовершенная практика. Возможно очень хорошее подавление, но оно увеличивает стоимость люминесцентных светильников.

Оптимальная рабочая температура

Люминесцентные лампы лучше всего работают при комнатной температуре (скажем, 20 ° C или 68 ° F). При значительно более низких или более высоких температурах эффективность снижается, а при низких температурах (ниже нуля) стандартные лампы могут не запускаться. Для надежной работы на открытом воздухе в холодную погоду могут потребоваться специальные лампы.Электрическая схема «холодного пуска» также была разработана в середине 1970-х годов.

Некомпактный источник света

Поскольку дуга довольно длинная по сравнению с разрядными лампами с более высоким давлением, количество света, излучаемого на единицу поверхности ламп, невелико, поэтому ламповые лампы были большими по сравнению с источниками накаливания. Однако во многих случаях использовалась низкая сила света излучающей поверхности, поскольку она уменьшала блики. Объем, создаваемый этой лампой, повлиял на конструкцию светильников, поскольку свет должен направляться из длинных трубок, а не из компактного источника.

Недавно был представлен новый тип люминесцентных ламп, КЛЛ, для решения этой проблемы и позволяющих устанавливать обычные патроны накаливания с этим типом ламп, тем самым устраняя необходимость в установке их на специальные приспособления. Однако некоторые КЛЛ, предназначенные для замены ламп накаливания, не подходят к некоторым настольным лампам, потому что арфа (опорная скоба из тяжелой проволоки) имеет форму узкой шейки лампы накаливания. КЛЛ обычно имеют широкий корпус для электронного балласта рядом с цоколем лампы, слишком широкий, чтобы в него поместиться.

Проблемы с мерцанием

Люминесцентные светильники, использующие балласт с магнитной частотой сети, не излучают ровный свет; вместо этого они мерцают (колеблются по интенсивности) на удвоенной частоте питания. Хотя это не так легко различить человеческим глазом, это может вызвать стробоскопический эффект, представляющий угрозу безопасности, например, в мастерской, где что-то, вращающееся с правильной скоростью, может казаться неподвижным, если освещено только люминесцентной лампой. Это также вызывает проблемы при записи видео, так как между периодическими показаниями сенсора камеры и колебаниями интенсивности люминесцентной лампы может наблюдаться «эффект биения».

Лампы накаливания из-за тепловой инерции их элемента колеблются в меньшей степени. Это также меньше проблем с компактными флуоресцентными лампами, поскольку они умножают частоту линии до невидимых уровней. Установки могут уменьшить эффект стробоскопа, используя пускорегулирующие балласты, управляя лампами на разных фазах многофазного источника питания или используя электронные балласты.

Электронные балласты не производят светового мерцания, поскольку постоянство люминофора превышает полупериод более высокой рабочей частоты.

Невидимое мерцание 100–120 Гц от люминесцентных ламп, питаемых от магнитных балластов, связано с головными болями и зрительным напряжением. На людей с высоким порогом слияния мерцания особенно влияют магнитные балласты: их альфа-волны ЭЭГ заметно ослабляются, и они выполняют офисные задачи с большей скоростью и меньшей точностью. С ЭПРА проблем не наблюдается. [11] Обычные люди лучше читают, используя высокочастотные (20–60 кГц) электронные балласты, чем магнитные балласты. [12]

Мерцание люминесцентных ламп, даже с магнитными балластами, настолько быстрое, что вряд ли представляет опасность для людей, страдающих эпилепсией. [13] Ранние исследования предполагали связь между мерцанием люминесцентных ламп с магнитными балластами и повторяющимися движениями у аутичных детей. [14] Однако эти исследования имели проблемы с интерпретацией [15] и не были воспроизведены.

Цветопередача

Проблемы с точностью цветопередачи некоторых типов трубок обсуждались выше.

Затемнение

Если специально не разработаны и не утверждены для регулирования затемнения, большинство люминесцентных осветительных приборов нельзя подключать к стандартному диммерному переключателю, используемому для ламп накаливания. За это ответственны два эффекта: форма волны напряжения, излучаемого стандартным диммером с фазовым управлением, плохо взаимодействует со многими балластами, и становится трудно поддерживать дугу в люминесцентной лампе при низких уровнях мощности. Многие установки требуют 4-контактных люминесцентных ламп и совместимых контроллеров для успешного затемнения люминесцентных ламп; Эти системы стремятся поддерживать полностью нагретые катоды люминесцентной лампы даже при уменьшении тока дуги, способствуя легкой термоэлектронной эмиссии электронов в поток дуги.

Утилизация и переработка

Утилизация люминофора и особенно ртути в трубках является экологической проблемой. Ртуть представляет наибольшую опасность для беременных женщин, младенцев и детей. Правительственные постановления во многих областях требуют специальной утилизации люминесцентных ламп отдельно от общих и бытовых отходов. Для крупных коммерческих или промышленных пользователей люминесцентных ламп услуги по переработке доступны во многих странах и могут потребоваться в соответствии с законодательством.В некоторых регионах переработка также доступна для потребителей. Необходимость в инфраструктуре утилизации является проблемой с введением предложенных запретов на лампы накаливания.

Количество ртути в стандартной лампе может сильно различаться — от 3 до 46 мг. [16] Новые лампы содержат меньше ртути, а версии на 3-4 мг продаются как лампы с низким содержанием ртути. Типичная люминесцентная лампа Т-12 (122 см) эпохи 2006 года (например, F32T12) содержит около 12 миллиграммов ртути [17] . В начале 2007 года Национальная ассоциация производителей электрооборудования США объявила, что «в соответствии с добровольным обязательством с 15 апреля 2007 года участвующие производители ограничат общее содержание ртути в КЛЛ мощностью менее 25 Вт на уровне 5 миллиграммов (мг) на единицу.КЛЛ, которые потребляют от 25 до 40 Вт электроэнергии, будут иметь максимальное содержание ртути на уровне 6 мг на единицу ». [18]

Сломанная люминесцентная лампа более опасна, чем сломанная обычная лампа накаливания, из-за содержания ртути. этим безопасная очистка разбитых люминесцентных ламп отличается от очистки обычных разбитых стекол или ламп накаливания. 99% ртути обычно содержится в люминофоре, особенно в лампах, срок службы которых приближается к концу. [19] Люминесцентные лампы произведенные много десятилетий назад люминофоры содержали ядовитый бериллий.Такие старые лампы вряд ли встретишь.

Обозначение труб

Примечание: информация в этом разделе может быть неприменима за пределами Северной Америки.

Лампы обычно обозначаются кодом, например F ## T ##, где F означает люминесцентные лампы, первое число указывает мощность в ваттах (или, как ни странно, длину в дюймах в очень длинных лампах), буква T указывает, что форма Луковицы трубчатые, а последнее число — диаметр в восьмых дюйма.Типичные диаметры: T12 (1½ дюйма или 38 мм) для бытовых ламп со старыми магнитными балластами, T8 (1 дюйм или 25 мм) для коммерческих энергосберегающих ламп с электронными балластами и T5 ( 5 8 дюйма или 16 мм) для очень маленьких ламп, которые могут работать даже от устройства с батарейным питанием.

Некоторые лампы имеют встроенный отражатель. Для этого сначала наливают непрозрачное покрытие на лампу, вращают лампу для достижения желаемой степени покрытия, а затем дают ей высохнуть перед добавлением традиционных люминофоров.В прямых лампах его обычно заливают таким образом, чтобы покрыть половину лампы, когда она лежит ровно, при этом лампа рассчитывается по величине кривизны, которая покрыта непрозрачным покрытием. Лампа на 180 градусов имеет охват 50%, тогда как лампа на 210 градусов имеет охват на 30 градусов больше. Это наиболее распространенный тип, хотя отражатель может варьироваться от 120 градусов до более 310 градусов. Лампы, которые имеют охват более 210 градусов, часто называют «термостатами», поскольку количество открытого участка, на которое может выходить свет, значительно меньше площади, которая действует как внутренний отражатель.Часто лампа маркируется как лампа с отражателем, добавляя букву «R» в код модели, поэтому лампа F71T12HO с отражателем будет иметь код «FR71T12HO». Лампы VHO с отражателями могут иметь кодировку VHOR. Не существует обозначения для количества градусов отражателя, которое имеет лампа.

Рефлекторные лампы используются в нескольких приложениях, особенно когда требуется, чтобы свет излучался только в одном направлении, или когда приложение требует максимального количества света. Это может быть так же просто, как в солярии более высокого класса или в какой-либо ситуации с подсветкой для электроники.Внутренний отражатель более эффективен, чем стандартные внешние отражатели, поскольку снижает вероятность потери света из-за подавления волн. Другой пример — подобранный по цвету световой поток (угол открытия 330 градусов, плюс-минус), используемый в пищевой промышленности для контроля качества, чтобы позволить роботам проверять готовые продукты.

Лампы Slimline работают от пускового балласта с мгновенным запуском и узнаваемы по их однополюсным цоколям.

Лампы высокой мощности ярче и потребляют больше электрического тока, имеют разные концы на выводах, поэтому их нельзя использовать в неправильном приспособлении, и они имеют маркировку F ## T12HO или F ## T12VHO для очень высокой мощности.Примерно с начала и до середины 1950-х годов и по сегодняшний день компания General Electric разработала и усовершенствовала лампу Power Groove (R) с маркировкой F ## PG17. Эти лампы можно узнать по трубкам большого диаметра с рифлением.

U-образные трубки FB ## T ##, где B означает «изогнутые». Чаще всего они имеют то же обозначение, что и линейные трубы. Круглые лампы — это FC ## T #, с диаметром круга (, а не окружности или ватт), это первое число, а второе число обычно равно 9 (29 мм) для стандартных светильников.

Цвет обычно обозначается WW для теплого белого, EW для усиленного (нейтрального) белого, CW для холодного белого (наиболее распространенный) и DW для голубоватого дневного белого. BL используется для ламп черного света, которые обычно используются в устройствах защиты от насекомых. BLB используется для черно-голубых ламп, обычно используемых в ночных клубах. Другие нестандартные обозначения применяются для огней для растений или огней для выращивания растений.

Philips использует числовые цветовые коды для цветов:

  • Низкая цветопередача
    • 33 вездесущий холодный белый (4000 K)
    • 32 теплый белый (3000 К)
    • 27 гостиная теплый белый (2700 К)
  • Высокая цветопередача
    • 9xy «Graphica Pro» / «De Luxe Pro» (xy00 K; например, «965» = 6500 K)
    • 8xy (xy00 K; например, «865» = 6500 K)
    • 840 холодный белый (4000 К)
    • 830 теплый белый (3000 К)
    • 827 теплый белый (2700 К)
  • Другое
    • 09 Лампы для загара
    • 08 Черный свет
    • 05 Жесткое УФ-излучение (люминофор вообще не используется, используется оболочка из плавленого кварца)

Нечетные длины обычно добавляются после цвета.Одним из примеров является F25T12 / CW / 33, что означает 25 Вт, диаметр 1,5 дюйма, холодный белый цвет, длина 33 дюйма или 84 см. Без 33-го можно было бы предположить, что F25T12 имеет более распространенную 30-дюймовую длину.

Компактные люминесцентные лампы не имеют такой системы обозначений.

Лампы люминесцентные прочие

Подсветка
Blacklight — это подмножество люминесцентных ламп, которые используются для получения длинноволнового ультрафиолетового света (с длиной волны около 360 нм). Они построены так же, как и обычные люминесцентные лампы, но стеклянная трубка покрыта люминофором, который преобразует коротковолновое УФ-излучение внутри трубки в длинноволновое УФ-излучение, а не в видимый свет.Они используются для возбуждения флуоресценции (для создания драматических эффектов с помощью краски для черного света и для обнаружения таких материалов, как моча и некоторые красители, которые были бы невидимы в видимом свете), а также для привлечения насекомых к насекомым.
Так называемые лампы blacklite blue также изготавливаются из более дорогого темно-фиолетового стекла, известного как стекло Вуда, а не из прозрачного стекла. Темно-пурпурное стекло отфильтровывает большинство видимых цветов света, непосредственно испускаемого разрядом паров ртути, производя пропорционально меньше видимого света по сравнению с УФ-светом.Это позволяет легче увидеть УФ-индуцированную флуоресценцию (что позволяет плакатов с черным светом казаться гораздо более драматичными). Лампы черного света, используемые в противоугонных устройствах, не требуют такой доработки, поэтому ее обычно не используют в целях экономии; они называются просто blacklite (а не blacklite blue).
Лампы для загара
Лампы, используемые в соляриях, содержат различные смеси люминофоров (обычно от 3 до 5 или более люминофоров), которые излучают как УФ-А, так и УФ-В диапазоны, вызывая реакцию загара на большинстве участков кожи человека.Как правило, выходная мощность оценивается от 3% до 10% UVB (наиболее типично 5%), а оставшееся УФ — как UVA. В основном это лампы F71, F72 или F73 HO (100 Вт), хотя несколько распространены VHO мощностью 160 Вт.
лампы для выращивания
Лампы для выращивания содержат смесь люминофора, которая способствует фотосинтезу растений; для человеческого глаза они обычно кажутся розоватыми.
Бактерицидные лампы
Бактерицидные лампы вообще не содержат люминофора (технически это газоразрядные лампы, а не люминесцентные), а их трубки сделаны из плавленого кварца, прозрачного для коротковолнового УФ-излучения, непосредственно испускаемого ртутным разрядом.УФ-излучение, излучаемое этими трубками, убивает микробы, ионизирует кислород до озона и вызывает повреждение глаз и кожи. Помимо того, что они используются для уничтожения микробов и создания озона, они иногда используются геологами для идентификации определенных видов минералов по цвету их флуоресценции. При таком использовании они снабжены фильтрами так же, как и черно-голубые лампы; фильтр пропускает коротковолновое УФ-излучение и блокирует видимый свет, создаваемый ртутным разрядом. Они также используются в стиральных машинах EPROM.
Безэлектродные индукционные лампы
Безэлектродные индукционные лампы — это люминесцентные лампы без внутренних электродов. Они были коммерчески доступны с 1990 года. В столб газа индуцируется ток с помощью электромагнитной индукции. Поскольку электроды обычно являются элементом, ограничивающим срок службы люминесцентных ламп, такие безэлектродные лампы могут иметь очень долгий срок службы, хотя они также имеют более высокую закупочную цену.
Компактные люминесцентные лампы (КЛЛ)
Компактная люминесцентная лампа — это тип люминесцентной лампы, предназначенный для замены лампы накаливания.Многие КЛЛ подходят для существующих ламп накаливания.
Люминесцентные лампы с холодным катодом (CCFL)
Люминесцентные лампы с холодным катодом используются в качестве подсветки ЖК-дисплеев персональных компьютеров и телевизионных мониторов. В последние годы они также популярны среди мододелов.

Научные демонстрации

Люминесцентные лампы можно зажечь иными способами, кроме надлежащего электрического подключения. Однако эти другие методы приводят к очень тусклому или очень непродолжительному освещению, и поэтому они чаще всего используются в научных демонстрациях.За исключением статического электричества, эти методы могут быть очень опасными при неправильном выполнении:

Использование фильмов и видео

Специальные люминесцентные лампы часто используются в кино / видео. Торговая марка Kino Flos используется для создания более мягкого заполняющего света и менее горяча, чем традиционные галогенные источники света. Эти люминесцентные лампы разработаны со специальными высокочастотными балластами для предотвращения мерцания видео и лампами с высоким индексом цветопередачи для приблизительной цветовой температуры дневного света. http://www.richardbox.com/

US 20150292683A1 — УСТРОЙСТВО СВЕТОДИОДНОГО ОСВЕЩЕНИЯ ЛАМПЫ

Коды классов CPC

F21K 9/20 Источники света в составе …

F21K 9/27 Модернизация источников света для …

F21K 9/275 Детали баз или жилья…

F21K 9/62 с использованием смесительных камер, например ….

F21S 8/04 предназначен только для монтажа …

F21S 8/06 по приостановке

F21V 13/02 Комбинации всего двух ки…

F21V 13/04 отражающие элементы …

F21V 15/01 Корпуса, например материал или …

F21V 17/16 деформацией деталей; Sn …

F21V 21/00 Поддержка, приостановка или…

F21V 23/02 элементы трансформируются …

F21V 23/06 элементы соединяются …

F21V 3/02 характеризуется формой

F21V 7/0016 по осветительным приборам, которые др…

F21V 7/005 с удлиненной формой до …

F21Y 2103/10 состоящий из линейного массива …

F21Y 2115/10 Светодиоды [LED]

Как лучше всего интегрировать люминесцентные лампы в мой умный дом?

Q: Я съемщик, который оборудовал большую часть своей квартиры интеллектуальным освещением, но одним из основных препятствий является люминесцентная лампа (я думаю, T8?) На моей кухне.Из-за планировки моего дома его включение или выключение существенно влияет на уровень освещенности в основном жилом помещении.

Я начал видеть замены светодиодов для таких светильников, но никаких признаков разумного выбора — это из-за технических ограничений или просто из-за ограниченного рынка? Я предполагаю, что альтернативой может быть что-то вроде Switchmate, хотя я считаю, что в настоящее время он ограничен подключением по Bluetooth. Любопытно, есть ли у вас какое-либо представление об этом вопросе, который, как я полагаю, должен затронуть хотя бы некоторых из ваших читателей.

Lutron Caséta Wireless In-Wall Dimmer Starter Kit

Caseta заменяет настенный выключатель и позволяет управлять освещением с помощью прилагаемого пульта дистанционного управления или приложения для смартфона на iOS или Android. Кроме того, он совместим с HomeKit и работает с Amazon Alexa.

A: Вы правы — мир интеллектуального освещения еще не решил проблему люминесцентных ламп, и да, я предполагаю, что меньший размер бизнеса ламповых ламп может быть причиной ограбления, но это не значит, что вы застряли, щелкая выключателем.

Вы можете использовать Switchmate, и поскольку это устройство не подключено к сети, это особенно удобно для арендаторов, таких как вы (мы подозреваем, что ваши возможности могут быть ограничены, поскольку вы не можете заменить неприятный люминесцентный светильник на что-то другое). Вы можете легко переместить Switchmate во время движения.

У Switchmate есть несколько недостатков: он громоздкий и громкий, и он использует Bluetooth, поэтому, если вам нужно выключить свет снаружи дома, вам не повезет. (Однако вы можете запрограммировать таймеры в приложении Switchmate).Он не такой элегантный, как другие устройства интеллектуального освещения, и в зависимости от вашей настройки может не интегрироваться с остальной частью вашей системы освещения.

Я не знаю, какие еще осветительные устройства вы используете в настоящее время, но, судя по вашему описанию, если вы можете выполнить какие-либо подключения, лучшим вариантом будет заменить текущий выключатель на встроенный в стену интеллектуальный выключатель. (Если вам неудобно работать с вашей электрической системой, наймите профессионала для установки.) Только не забывайте держаться за предустановленные немые переключатели, чтобы вы могли снова их вставить, когда выйдете из аренды.

Если вы планируете установить в доме несколько других коммутаторов, моя любимая система — это Lutron’s Caseta, потому что ее сеть ClearConnect надежна и хорошо работает с другими системами, такими как Amazon Echo и Apple HomeKit. Кроме того, каждый переключатель Caseta поставляется с небольшим пультом дистанционного управления, поэтому вам не нужно тянуться к смартфону, если вы этого не хотите. Поскольку переключатель полностью загружен, он будет управлять вашим флуоресцентным светом и всем остальным, на что вы можете заменить его позже. Поскольку Caseta совместим с HomeKit, вы можете заставить переключатели работать с лампами Philips Hue (и другими продуктами HomeKit), если это то, что у вас есть в остальной части вашего дома.HomeKit также позволяет выключать свет голосом через Siri. Если у вас еще нет Caseta, вам понадобится концентратор Smart Bridge в дополнение к настенному переключателю — они доступны в виде комбинации.

Вы также можете использовать выключатель света Belkin Wemo, который также является универсальным и немного дешевле; кроме того, ему не нужен отдельный концентратор, и он использует Wi-Fi вместо отдельной сети. Как и Lutron Caseta, он позволит вам управлять светом со смартфона и может работать с предложениями Amazon Alexa.Если вы обновляете только один или несколько коммутаторов, Wemo подойдет вам, но ему не хватает поддержки HomeKit, как у Lutron, и я предпочитаю дизайн Lutron и надежность его отдельной сети. Любой из этих переключателей позволит вам управлять освещением с помощью приложения (iOS или Android).

Редакторы Wirecutter постоянно отвечают на вопросы читателей (гораздо чаще, чем раз в неделю). Отправьте электронное письмо на адрес [email protected] или свяжитесь с нами в Twitter и Facebook. Опубликованные вопросы отредактированы для большей ясности.

Управление люминесцентными лампами — DNREC Alpha

Ниже приведены ответы на часто задаваемые вопросы относительно обращения с отработанными люминесцентными лампами, которые превышают нормативный предел для ртути с помощью процедуры выщелачивания характеристик токсичности (TCLP).

В Делавэре с отработанными люминесцентными лампами, производимыми на предприятиях, можно обращаться одним из трех способов:

В качестве твердых отходов , если доказано, что отработанные люминесцентные лампы не превышают нормативный предел TCLP (0.2 мг / л) для ртути.

Как опасные отходы при отсутствии аналитических данных, подтверждающих, что отработанные люминесцентные лампы не опасны, или если аналитические испытания показывают, что отработанные люминесцентные лампы опасны

или в соответствии с Правилом универсальных отходов (UWR) , содержащимся в Правилах штата Делавэр , регулирующих опасные отходы , часть 273.

Единственное исключение составляют опасные бытовые отходы, как определено в нормативных актах (см. §261.4 (b)), который включает любые отходы, обычно получаемые из домашних хозяйств.

Заявление об ограничении ответственности: Информация, приведенная ниже, предназначена для использования в качестве руководства по ответственному обращению с отходами и не заменяет Правила штата Делавэр , регулирующие обращение с опасными отходами (7 DE Admin. Code 1302). Специальные правила для универсальных отработанных ламп можно найти в части 273 правил.

Как обращаться с лампами, если они не являются опасными отходами?

Поскольку все люминесцентные лампы содержат определенное количество ртути, наилучшей практикой обращения с ними является надлежащая переработка.Люминесцентные лампы, не являющиеся опасными отходами, нельзя выбрасывать на свалку твердых отходов в Делавэре, за исключением свалок твердых бытовых отходов, находящихся в ведении Управления по твердым отходам Делавэра (DSWA).

Перед утилизацией на полигоне DSWA необходимо получить разрешение. Для получения дополнительной информации свяжитесь с DSWA по телефону 302-739-5361.

Как обращаться с лампами, если они являются опасными отходами?

Лампы для опасных отходов или лампы без аналитических данных производителя или производителя, подтверждающие обратное, должны обрабатываться как опасные отходы, и вы должны соблюдать применимые правила , регулирующие опасные отходы в отношении образования, транспортировки и утилизации отходов в соответствии с требованиями вашего генератора. категориальная классификация.

Альтернативой может быть обращение с лампами в соответствии с Правилом универсальных отходов.

Какая польза от обращения с лампами в соответствии с правилом об универсальных отходах?

Универсальное правило утилизации отходов разработано для упрощения обращения с ртутьсодержащими устройствами.

Обработчик универсальных отходов небольшого количества может накапливать до 5 000 кг (11 000 фунтов) универсальных отходов в течение одного года.

В отличие от опасных отходов, универсальные отходы не требуется перевозить разрешенным в Делавэре перевозчиком опасных отходов.Кроме того, использование декларации об опасных отходах не требуется.

Требования к производителям универсальных отходов, а также требования по обращению с такими отходами содержатся в части 273 Правил штата Делавэр , регулирующих опасные отходы .

Могу ли я использовать устройство для дробления ламп?

Если вы желаете утилизировать отработанные люминесцентные лампы в соответствии с Правилом универсальных отходов, дробление люминесцентных ламп запрещено.

Генераторы, желающие раздавить лампы, перерабатывают опасные отходы и должны, как минимум, соответствовать требованиям по обработке и утилизации, изложенным в Правилах штата Делавэр, регулирующих опасные отходы .

Также может потребоваться разрешение от отдела качества воздуха DNREC. Свяжитесь с Отделом соответствия и разрешений для получения дополнительной информации.

Могу ли я утилизировать опасные отходы люминесцентных ламп?

Люминесцентные лампы по-прежнему считаются опасными отходами (если нет данных, указывающих на иное), даже если они отправляются на предприятие по переработке. Поэтому с отработанными люминесцентными лампами следует обращаться как с универсальными отходами или опасными отходами в полном соответствии с Правилами обращения с опасными отходами штата Делавэр.

Можно ли накапливать люминесцентные лампы для опасных отходов в зоне скопления спутников?

Производители малых и больших количеств опасных отходов могут обращаться с этими отходами как с опасными отходами в соответствии с правилами зоны спутникового накопления. (§262.15 (а))

Помните, что все контейнеры должны быть закрыты, если только не добавляются или не удаляются отходы, и они помечаются словами «Опасные отходы» и описанием опасности их содержимого. Контейнеры должны быть совместимы с отходами внутри и поддерживаться в хорошем состоянии.(§262.15 (а) (1-5))

Секция соответствия и разрешений (CAPS) позволяет производителям люминесцентных ламп с опасными отходами обслуживать одну спутниковую зону, при условии, что эта зона расположена рядом с персоналом, ответственным за обслуживание и замену люминесцентных ламп на объекте, и находится под его непосредственным контролем.

После того, как лампы накапливаются, необходимо датировать каждую коробку или контейнер с лампами и переместить их в зону накопления опасных отходов. Оказавшись в зоне накопления, отработанные люминесцентные лампы могут накапливаться до количества дней, предусмотренных классификацией категории генераторов площадки, например.g., 90 дней для крупных производителей опасных отходов или 180 дней для небольших производителей опасных отходов.

Отработанные лампы, которые накапливаются как опасные отходы, должны учитываться в ежемесячном количестве образующихся опасных отходов и соответствовать всем применимым требованиям к производителям опасных отходов. Отработанные лампы, которые накапливаются как опасные отходы, не подлежат утилизации в соответствии с положениями правила об универсальных отходах.

Может ли очень маленький генератор утилизировать опасные отходы люминесцентных ламп на свалке в Делавэре?

Нет, Правила штата Делавэр, регулирующие опасные отходы , запрещают удаление любых опасных отходов предприятий на свалки твердых отходов, например, те, которые находятся в ведении Управления по твердым отходам штата Делавэр (DSWA).Производители опасных отходов в Делавэре не могут использовать эти свалки в качестве варианта захоронения.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *