Вольт амперная характеристика диода – Принцип работы диода. Вольт-амперная характеристика. Пробои p-n перехода

Содержание

Принцип работы диода. Вольт-амперная характеристика. Пробои p-n перехода

Здравствуйте уважаемые читатели сайта sesaga.ru. В первой части статьи мы с Вами разобрались, что такое полупроводник и как возникает в нем ток. Сегодня мы продолжим начатую тему и поговорим о принципе работы полупроводниковых диодов.

Диод – это полупроводниковый прибор с одним p-n переходом, имеющий два вывода (анод и катод), и предназначенный для выпрямления, детектирования, стабилизации, модуляции, ограничения и преобразования электрических сигналов.

По своему функциональному назначению диоды подразделяются на выпрямительные, универсальные, импульсные, СВЧ-диоды, стабилитроны, варикапы, переключающие, туннельные диоды и т.д.

Теоретически мы знаем, что диод в одну сторону пропускает ток, а в другую нет. Но как, и каким образом он это делает, знают и понимают не многие.

Схематично диод можно представить в виде кристалла состоящего из двух полупроводников (областей). Одна область кристалла обладает проводимостью p-типа, а другая — проводимостью n-типа.

На рисунке дырки, преобладающие в области p-типа, условно изображены красными кружками, а электроны, преобладающие в области n-типа — синими. Эти две области являются электродами диода анодом и катодом:

Анод – положительный электрод диода, в котором основными носителями заряда являются дырки.

Катод – отрицательный электрод диода, в котором основными носителями заряда являются электроны.

На внешние поверхности областей нанесены контактные металлические слои, к которым припаяны проволочные выводы электродов диода. Такой прибор может находиться только в одном из двух состояний:

1. Открытое – когда он хорошо проводит ток;
2. Закрытое – когда он плохо проводит ток.

Прямое включение диода. Прямой ток.

Если к электродам диода подключить источник постоянного напряжения: на вывод анода «плюс» а на вывод катода «минус», то диод окажется в открытом состоянии и через него потечет ток, величина которого будет зависеть от приложенного напряжения и свойств диода.

При такой полярности подключения электроны из области n-типа устремятся навстречу дыркам в область p-типа, а дырки из области p-типа двинутся навстречу электронам в область n-типа. На границе раздела областей, называемой электронно-дырочным или p-n переходом, они встретятся, где происходит их взаимное поглощение или рекомбинация.

Например. Oсновные носители заряда в области n-типа электроны, преодолевая p-n переход попадают в дырочную область p-типа, в которой они становятся неосновными. Ставшие неосновными, электроны будут поглощаться основными носителями в дырочной области – дырками. Таким же образом дырки, попадая в электронную область n-типа становятся неосновными носителями заряда в этой области, и будут также поглощаться основными носителями – электронами.

Контакт диода, соединенный с отрицательным полюсом источника постоянного напряжения будет отдавать области n-типа практически неограниченное количество электронов, пополняя убывание электронов в этой области. А контакт, соединенный с положительным полюсом источника напряжения, способен принять из области p-типа такое же количество электронов, благодаря чему восстанавливается концентрация дырок в области p-типа. Таким образом, проводимость p-n перехода станет большой и сопротивление току будет мало, а значит, через диод будет течь ток, называемый прямым током диода Iпр.

Обратное включение диода. Обратный ток.

Поменяем полярность источника постоянного напряжения – диод окажется в закрытом состоянии.

В этом случае электроны в области n-типа станут перемещаться к положительному полюсу источника питания, отдаляясь от p-n перехода, и дырки, в области p-типа, также будут отдаляться от p-n перехода, перемещаясь к отрицательному полюсу источника питания. В результате граница областей как бы расширится, отчего образуется зона обедненная дырками и электронами, которая будет оказывать току большое сопротивление.

Но, так как в каждой из областей диода присутствуют неосновные носители заряда, то небольшой обмен электронами и дырками между областями происходить все же будет. Поэтому через диод будет протекать ток во много раз меньший, чем прямой, и такой ток называют обратным током диода (Iобр). Как правило, на практике, обратным током p-n перехода пренебрегают, и отсюда получается вывод, что p-n переход обладает только односторонней проводимостью.

Прямое и обратное напряжение диода.

Напряжение, при котором диод открывается и через него идет прямой ток называют прямым (Uпр), а напряжение обратной полярности, при котором диод закрывается и через него идет обратный ток называют обратным (Uобр).

При прямом напряжении (Uпр) сопротивление диода не превышает и нескольких десятков Ом, зато при обратном напряжении (Uобр) сопротивление возрастает до нескольких десятков, сотен и даже тысяч килоом. В этом не трудно убедиться, если измерить обратное сопротивление диода омметром.

Сопротивление p-n перехода диода величина не постоянная и зависит от прямого напряжения (Uпр), которое подается на диод. Чем больше это напряжение, тем меньшее сопротивление оказывает p-n переход, тем больший прямой ток Iпр течет через диод. В закрытом состоянии на диоде падает практически все напряжение, следовательно, обратный ток, проходящий через него мал, а сопротивление p-n перехода велико.

Например. Если включить диод в цепь переменного тока, то он будет открываться при положительных полупериодах на аноде, свободно пропуская прямой ток (Iпр), и закрываться при отрицательных полупериодах на аноде, почти не пропуская ток противоположного направления – обратный ток (Iобр). Эти свойства диодов используют для преобразования переменного тока в постоянный, и такие диоды называют выпрямительными.

Вольт-амперная характеристика полупроводникового диода.

Зависимость тока, проходящего через p-n переход, от величины и полярности приложенного к нему напряжения изображают в виде кривой, называемой вольт-амперной характеристикой диода.

На графике ниже изображена такая кривая. По вертикальной оси в верхней части обозначены значения прямого тока (Iпр), а в нижней части — обратного тока (Iобр).
По горизонтальной оси в правой части обозначены значения прямого напряжения Uпр, а в левой части – обратного напряжения (Uобр).

Вольт-амперная характеристика состоит как бы из двух ветвей: прямая ветвь, в правой верхней части, соответствует прямому (пропускному) току через диод, и обратная ветвь, в левой нижней части, соответствующая обратному (закрытому) току через диод.

Прямая ветвь идет круто вверх, прижимаясь к вертикальной оси, и характеризует быстрый рост прямого тока через диод с увеличением прямого напряжения.
Обратная ветвь идет почти параллельно горизонтальной оси и характеризует медленный рост обратного тока. Чем круче к вертикальной оси прямая ветвь и чем ближе к горизонтальной обратная ветвь, тем лучше выпрямительные свойства диода. Наличие небольшого обратного тока является недостатком диодов. Из кривой вольт-амперной характеристики видно, что прямой ток диода (Iпр) в сотни раз больше обратного тока (Iобр).

При увеличении прямого напряжения через p-n переход ток вначале возрастает медленно, а затем начинается участок быстрого нарастания тока. Это объясняется тем, что германиевый диод открывается и начинает проводить ток при прямом напряжении 0,1 – 0,2В, а кремниевый при 0,5 – 0,6В.

Например. При прямом напряжении Uпр = 0,5В прямой ток Iпр равен 50mA (точка «а» на графике), а уже при напряжении Uпр = 1В ток возрастает до 150mA (точка «б» на графике).

Но такое увеличение тока приводит к нагреванию молекулы полупроводника. И если количество выделяемого тепла будет больше отводимого от кристалла естественным путем, либо с помощью специальных устройств охлаждения (радиаторы), то в молекуле проводника могут произойти необратимые изменения вплоть до разрушения кристаллической решетки. Поэтому прямой ток p-n перехода ограничивают на уровне, исключающем перегрев полупроводниковой структуры. Для этого используют ограничительный резистор, включенный последовательно с диодом.

У полупроводниковых диодов величина прямого напряжения Uпр при всех значениях рабочих токов не превышает:
для германиевых — 1В;
для кремниевых — 1,5В.

При увеличении обратного напряжения (Uобр), приложенного к p-n переходу, ток увеличивается незначительно, о чем говорит обратная ветвь вольтамперной характеристики.
Например. Возьмем диод с параметрами: Uобр max = 100В, Iобр max = 0,5 mA, где:

Uобр max – максимальное постоянное обратное напряжение, В;
Iобр max – максимальный обратный ток, мкА.

При постепенном увеличении обратного напряжения до значения 100В видно, как незначительно растет обратный ток (точка «в» на графике). Но при дальнейшем увеличении напряжения, свыше максимального, на которое рассчитан p-n переход диода, происходит резкое увеличение обратного тока (пунктирная линия), нагрев кристалла полупроводника и, как следствие, наступает пробой p-n перехода.

Пробои p-n перехода.

Пробоем p-n перехода называется явление резкого увеличения обратного тока при достижении обратным напряжением определенного критического значения. Различают электрический и тепловой пробои p-n перехода. В свою очередь, электрический пробой разделяется на туннельный и лавинный пробои.

Электрический пробой.

Электрический пробой возникает в результате воздействия сильного электрического поля в p-n переходе. Такой пробой является обратимый, то есть он не приводит к повреждению перехода, и при снижении обратного напряжения свойства диода сохраняются. Например. В таком режиме работают стабилитроны – диоды, предназначенные для стабилизации напряжения.

Туннельный пробой.

Туннельный пробой происходит в результате явления туннельного эффекта, который проявляется в том, что при сильной напряженности электрического поля, действующего в p-n переходе малой толщины, некоторые электроны проникают (просачиваются) через переход из области p-типа в область n-типа без изменения своей энергии. Тонкие p-n переходы возможны только при высокой концентрации примесей в молекуле полупроводника.

В зависимости от мощности и назначения диода толщина электронно-дырочного перехода может находиться в пределах от 100 нм (нанометров) до 1 мкм (микрометр).

Для туннельного пробоя характерен резкий рост обратного тока при незначительном обратном напряжении – обычно несколько вольт. На основе этого эффекта работают туннельные диоды.

Благодаря своим свойствам туннельные диоды используются в усилителях, генераторах синусоидальных релаксационных колебаний и переключающих устройствах на частотах до сотен и тысяч мегагерц.

Лавинный пробой.

Лавинный пробой заключается в том, что под действием сильного электрического поля неосновные носители зарядов под действием тепла в p-n переходе ускоряются на столько, что способны выбить из атома один из его валентных электронов и перебросить его в зону проводимости, образовав при этом пару электрон — дырка. Образовавшиеся носители зарядов тоже начнут разгоняться и сталкиваться с другими атомами, образуя следующие пары электрон – дырка. Процесс приобретает лавинообразный характер, что приводит к резкому увеличению обратного тока при практически неизменном напряжении.

Диоды, в которых используется эффект лавинного пробоя используются в мощных выпрямительных агрегатах, применяемых в металлургической и химической промышленности, железнодорожном транспорте и в других электротехнических изделиях, в которых может возникнуть обратное напряжение выше допустимого.

Тепловой пробой.

Тепловой пробой возникает в результате перегрева p-n перехода в момент протекания через него тока большого значения и при недостаточном теплоотводе, не обеспечивающем устойчивость теплового режима перехода.

При увеличении приложенного к p-n переходу обратного напряжения (Uобр) рассеиваемая мощность на переходе растет. Это приводит к увеличению температуры перехода и соседних с ним областей полупроводника, усиливаются колебания атомов кристалла, и ослабевает связь валентных электронов с ними. Возникает вероятность перехода электронов в зону проводимости и образования дополнительных пар электрон — дырка. При плохих условиях теплоотдачи от p-n перехода происходит лавинообразное нарастание температуры, что приводит к разрушению перехода.

На этом давайте закончим, а в следующей части рассмотрим устройство и работу выпрямительных диодов, диодного моста.
Удачи!

Источник:

1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Горюнов Н.Н. Носов Ю.Р — Полупроводниковые диоды. Параметры, методы измерений. 1968г.

sesaga.ru

Вольт-амперная характеристика полупроводниковых диодов, типовые ВАХи

Электровакуумный диод представляет собой прибор, работающий за счет контроля интенсивности нагрева положительного и отрицательного полюсов устройства. Вход устройства при подаче электрического тока нагревается, после чего появляется эффект выхода электронов из металла. Если подавать электрический ток с отрицательным напряжением, осуществляется процесс обратный термоэлектронной эмиссии. За счет этого идет выпрямление мощности, которая подается на радиодеталь.

Вах полупроводникового прибора

Вольтамперная характеристика вакуумного диода

Данная характеристика состоит из классических трех ступеней:

  1. Нелинейная часть. Вольт амперная характеристика диода в месте подачи тока возрастает небольшими темпами. Это объясняется эффектом противодействия полю анода отрицательного напряжения свободных электронов. На данном участке ток анода крайне низок. Влияние напряжения на силу экспоненциально.
  2. Вторая часть кривой описывается законом степени 3/2. Влияние электричества на аноде от подаваемого напряжения в данном случае записывается формулой трех вторых, в которой напряжение на аноде умножается на константу, характеристики габаритов электрода.
  3. Напряжение насыщения. Если напряжение на аноде продолжает увеличиваться соразмерно предыдущим показателям, скорость увеличения выходного тока снижается. Повысить мощность на выходе невозможно из-за отсутствия свободных электронов.

Как работает диод

Диод – полупроводниковое устройство, которое обладает односторонней проводимостью. Эта характеристика появляется из-за особенностей pn перехода и сопротивления на его концах. Односторонняя проводимость обозначает, что радиодеталь пропустит электрический ток только в том случае, если на аноде (входе) будет больший потенциал. Если мощность выше на катоде, появляется обратный ток. Однако из-за высокой степени сопротивления величины такого электрического тока критически малы. Таким образом строится вольт амперная характеристика полупроводникового устройства.

Принцип функционирования диода вакуумного типа

При подаче электричества на выход электровакуумного диода электроны покидают поверхность из-за эффекта термоэлектронной эмиссии. При этом с накоплением свободных заряженных частиц в атмосфере появляется область, которая характеризуется негативным потенциалом. Характерной особенностью вакуумного прибора является то, что в это время поверхности анода начнут положительно заряжаться. Из-за этого последующим заряженным частицам потребуется более высокий уровень заряда для отрыва. В результате переходных процессов вокруг катода формируется облако заряженных частиц.

Интересно. Незначительная часть электронов возвращается на выход радиодетали. При температуре, которая соответствует требуемой, и стабилизации облака выход и возврат заряженных частиц из катода уравниваются, чем обеспечивают стабильное движение заряженных частиц.

Электрический ток в вакууме

Чтобы появилась возможность передавать ток в вакууме, требуется добавить в пространство свободные заряженные частицы при помощи явлений эмиссии:

  • Термоэлектронная – представляет собой процесс освобождения заряженных частиц металлами во время нагрева. Скорость процесса зависит от площади, условий нагрева и свойств материала. Когда кинетическая энергия превышает мощь электронных связей, происходит освобождение частиц;
  • Фотоэлектронная – возникает под действием освещения.
  • Автоэлектронная эмиссия происходит из-за влияния электрического поля.

Прямое и обратное напряжение диода

Уровень мощности, при котором прибор открыт, и через него течет электричество, называется ток. Обратное напряжение – отрицательная мощность, которая течет с катода на анод. В случае прямого напряжения уровень препятствия движению заряженных частиц не выше 100 Ом, однако при обратном напряжении уровень сопротивления возрастает в несколько сотен раз и может достигать миллионов Ом.

Прямое и обратное напряжение диода

Обратное включение диода, обратный ток

Обратный ток возникает, когда напряжение на катоде выше, чем на аноде. В такой ситуации заряженные частицы из области n перехода начнут смещаться к положительной части детали и передвигаться к отрицательному полюсу. Это приводит к возникновению области, которая содержит малое количество заряженных частиц, из-за чего повысится сопротивление. Однако течение электронов будет продолжаться.

Прямое включение диода, прямой ток

При подключении к аноду большего напряжения, чем на катоде, возникает прямой ток. В таком случае агрегат находится в открытом состоянии. Итоговое значение на выходе зависит от технических характеристик и уровня напряжения на входе. При этом свободные участки из области n типа передвигаются к заряженным частицам из Р типа и, наоборот. На месте pn перехода происходит встреча дырок и электронов, и осуществляется рекомбинация.

ВАХ и выпрямительный диод

ВАХ диода состоит из нескольких квадрантов:

  • В первом случае прибору присуща высокая проводимость, которая соответствует приложенному напряжению;
  • Во второй части радиоэлектронное устройство получает ток до состояния насыщения, затем сбрасывается;
  • В последующем сегменте присутствует обратная ветвь ВАХ диода. Аппроксимация данного состояния свидетельствует о низкой проводимости.

ВАХ стабилитрона

Идеализированная ВАХ полупроводникового диода

Данная характеристика присуща идеальному диоду. Главной задачей такого устройства является пропуск электричества исключительно в одну сторону. В таком случае сопротивление идеального радиоэлемента равно нулю в случае подключения положительного заряда к аноду, и может равняться бесконечности при обратном способе включения в цепь.

Практическое использование выпрямительного диода

Используют устройства в таких узлах:

  • БП силовых агрегатов автомобилей и кораблей;
  • В диодном мосту;
  • В устройствах для выпрямления переменного тока и гальванических емкостей;
  • В трансформаторах для передачи электричества посредством высоковольтной линии.

Выбор выпрямительных диодов

Во время подбора выпрямительных деталей требуется учитывать большое количество факторов:

  • Частота тока;
  • Значения входного тока в амперах;
  • Параметр входного напряжения в вольтах;
  • Устойчивость к условиям внешней среды..

Что обозначает маркировка

Типичная маркировка:

  • Первый символ – Д – диод;
  • Второй – нумерация, которая соответствует типу элемента, материалу и способу применения;
  • Третий – разновидность устройства.

Вольт амперная характеристика диода показывает основные параметры диода. При помощи графика можно получить точную информацию о зависимости значения напряжения на выходе диода от напряжения на входе. Существует несколько видов диодов: идеальный и реальный, выпрямительный и стабилитрон, кремниевый и германиевый, а также светодиод и вакуумный. Отличия между ними – в выполняемой работе. При этом формула выходного напряжения в цепи будет незначительно отличаться. Так как лабораторные условия встречаются редко, то возможны незначительные погрешности во время включения и последующего выполнения функций устройством. ВАХ полупроводникового агрегата существенно различается от типа к типу, отличные характеристики могут быть значительными.

Видео

amperof.ru

Вольт-амперная характеристика (ВАХ) | Практическая электроника

ВАХ – это вольт-амперная характеристика, а если точнее, зависимость тока от напряжения в каком-либо радиоэлементе. Это может быть резистор, диод, транзистор и другие радиоэлементы. Так как транзистор имеет более двух выводов, то он имеет множество ВАХ.

Немного теории

Думаю, не все, кто читает эту статью, хорошо учились в школе. Поэтому, давайте разберемся, что представляет из себя зависимость одной величины от другой. Как вы помните из школы, мы строили графики зависимости игрек (У) от икс (Х). Та переменная, которая зависит от другой переменной, мы откладывали по вертикали, а та, которая независима – по горизонтали. В результате у нас получалась система отображения зависимости “У” от “Х”:

Так вот, мои дорогие читатели,  в электронике, чтобы описать зависимость тока от напряжения, вместо “У”  у нас будет сила тока, а вместо Х – напряжение.  И система отображения у нас примет вот такой вид:

Именно в такой системе координат мы будет чертить вольт-амперную характеристику. И начнем с самого распространенного радиоэлемента – резистора.

ВАХ резистора

Для того, чтобы начертить этот график, нам потребуется пропускать через резистор напряжение и смотреть соответствующее значение силы тока тока. С помощью крутилки я добавляю напряжение и записываю значения силы тока для каждого значения напряжения. Для этого берем блок питания,  резистор и начинаем  делать замеры:

Вот у нас появилась первая точка на графике. U=0,I=0.

Вторая точка: U=2.6, I=0.01

Третья точка: U=4.4, I=0.02

 

Четвертая точка: U=6.2, I=0.03

Пятая точка: U=7.9, I=0.04

Шестая точка: U=9.6, I=0.05

Седьмая точка: U=11.3, I=0.06

 

Восьмая точка: U=13, I=0.07

Девятая точка: U=14.7, I=0.08

 

Давайте построим график по этим точкам:

Да у нас получилась почти прямая линия! То, что она чуть кривая, связана с погрешностью измерений и  погрешностью самого прибора. Следовательно, так как у  нас получилась прямая линия, то значит такие элементы, как резисторы называются элементами с линейной  ВАХ.

ВАХ диода

Как вы знаете, диод пропускает электрический ток только в одном направлении. Это свойство диода мы используем в диодных мостах, а также для проверки диода мультиметром.      Давайте  построим ВАХ для диода.  Берем блок питания, цепляем его к диоду (плюс на анод, минус на катод) и начинаем точно также делать замеры.

Первая точка: U=0,I=0.

Вторая точка: U=0.4, I=0.

Третья точка: U=0.6, I=0.01

 

Четвертая точка: U=0.7, I=0.03

Пятая точка: U=0.8,I=0.06

Шестая точка: U=0.9, I=0.13

 

Седьмая точка: U=1, I=0.37

 

 Строим график по полученным значениям:

Ничего себе загибулина :-). Вот это и есть вольт-амперная характеристика диода. На графике мы не видим прямую линию, поэтому такая вольт-амперная характеристика называется НЕлинейной. Для кремниевых диодов она начинается со значения 0,5-0,7 Вольт. Для германиевых диодов ВАХ начинается со значения 0,3-0,4 Вольт.

ВАХ стабилитрона

Стабилитроны  работают в режиме лавинного пробоя. Выглядят они  также, как и диоды.

Мы подключаем стабилитрон как диод в обратном направлении: на анод минус, а на катод – плюс. В результате, напряжение на стабилитроне остается  почти таким же, а сила тока может меняться в зависимости от  подключаемой нагрузки на стабилитроне. Как говорят электронщики, мы используем  в стабилитроне обратную ветвь ВАХ.

Резюме

ВАХ  – это вольт-амперная характеристика. Она показывает зависимость тока от напряжения на радиоэлементе.

Элементы, имеющие прямую ВАХ называются линейными элементами. Элементы, которые имеют ВАХ в виде какой-либо функции называются элементами с нелинейной ВАХ.

www.ruselectronic.com

применение характеристики для поиска сложных неисправностей полупроводниковых элементов

Широкое применение в области электроники получили полупроводниковые элементы, одним из которых является диод. Они используются практически во всех устройствах, но чаще — в различных блоках питания и для обеспечения электробезопасности. Каждый из них имеет свое конкретное предназначение и технические характеристики. Для выявления различного рода неисправностей и получения технических сведений нужно знать ВАХ диода.

Общие сведения

Диод (Д) — полупроводниковый элемент, служащий для пропускания тока через p-n-переход только в одном направлении. При помощи Д можно выпрямлять переменное U, получая из него постоянное пульсирующее. Для сглаживания пульсаций применяют фильтры конденсаторного или индуктивного типа, а иногда их и комбинируют.

Д состоит только из p-n-перехода с выводами, которые называются анодом (+) и катодом (-). Ток, при прохождении через проводник, оказывает на него тепловое действие. При нагреве катод испускает отрицательно заряженные частицы — электроны (Э). Анод притягивает электроны, так как обладает положительным зарядом. В процессе образуется эмиссионное поле, при котором возникает ток (эмиссионный). Между (+) и (-) происходит генерация пространственного отрицательного заряда, мешающего свободному движению Э. Э, достигшие анода, образуют анодный ток, а не достигшие — катодный. Если анодный и катодный токи равны нулю, Д находится в закрытом состоянии.

Устройство полупроводника

Д состоит из корпуса, изготавливаемого из прочного диэлектрического материала. В корпусе находится вакуумное пространство с 2 электродами (анод и катод). Электроды, представляющие металл с активным слоем, обладают косвенным накалом. Активный слой при нагревании испускает электроны. Катод устроен таким образом, что внутри его находится проволока, которая накаливается и испускает электроны, а анод служит для их приема.

В некоторых источниках анод и катод называют кристаллом, который изготавливается из кремния (Si) или германия (Ge). Одна из его составных частей имеет искусственный недостаток электронов, а другая — избыток (рис. 1). Между этими кристаллами существует граница, которая называется p-n-переходом.

Рисунок 1 — Схематическое изображение полупроводника p-n-типа.

Сферы применения

Д широко применяется в качестве выпрямителя переменного U в построении блоков питания (БП), диодных мостов, а также в виде одиночного элемента конкретной схемы. Д способен защитить цепь от несоблюдения полярности подключения источника питания. В цепи может произойти пробой какой-либо полупроводниковой детали (например, транзистора) и повлечь за собой процесс выхода из строя цепочки радиоэлементов. При этом применяется цепочка из нескольких Д, подключенных в обратном направлении. На основе полупроводников создаются переключатели для коммутации высокочастотных сигналов.

Д применяются в угольной и металлургической промышленностях, особенно при создании искробезопасных цепей коммутации в виде диодных барьеров, ограничивающих U в необходимой электрической цепи. Диодные барьеры применяются вместе с ограничителями тока (резисторами) для уменьшения значений I и повышения степени защиты, а следовательно, электробезопасности и пожаробезопасности предприятия.

Вольт-амперная характеристика

ВАХ — это характеристика полупроводникового элемента, показывающая зависимость I, проходящего через p-n-переход, от величины и полярности U (рис. 1).

Рисунок 1 — Пример вольт-амперной характеристики полупроводникового диода.

ВАХ отличаются между собой и это зависит от типа полупроводникового прибора. Графиком ВАХ является кривая, по вертикали которой отмечены значения прямого I (вверху). Внизу отмечены значения I при обратном подключении. По горизонтали указаны показания U при прямом и обратном включении. Схема состоит из 2 частей:

  1. Верхняя и правая — Д функционирует в прямом подключении. Показывает пропускной I и линия идет вверх, что свидетельствует о росте прямого U (Uпр).
  2. Нижняя часть слева — Д находится в закрытом состоянии. Линия идет практически параллельно оси и свидетельствует о медленном нарастании Iобр (обратного тока).

Из графика можно сделать вывод: чем круче вертикальная часть графика (1 часть), тем ближе нижняя линия к горизонтальной оси. Это свидетельствует о высоких выпрямительных свойствах полупроводникового прибора. Необходимо учитывать, что ВАХ зависит от температуры окружающей среды, при понижении температуры происходит резкое понижение Iобр. Если температура повышается, то повышается и Iобр.

Построение графика

Построить ВАХ для конкретного типа полупроводникового прибора несложно. Для этого необходимы блок питания, мультиметр (вольтметр и амперметр) и диод (можно построить для любого полупроводникового прибора). Алгоритм построения ВАХ следующий:

  1. Подключить БП к диоду.
  2. Произвести измерения U и I.
  3. Внести данные в таблицу.
  4. На основании табличных данных построить график зависимости I от U (рис. 2).

Рисунок 2 — Пример нелинейной ВАХ диода.

ВАХ будет различна для каждого полупроводника. Например, одним из самых распространенных полупроводников является диод Шоттки, названный немецким физиком В. Шоттки (рисунок 3).

Рисунок 3 — ВАХ Шоттки.

Исходя из графика, носящего асимметричный характер, видно, что для этого типа диода характерно малое падение U при прямом подключении. Присутствует экспоненциальное увеличение I и U. Ток в барьере обусловлен отрицательно заряженными частицами при обратном и прямом смещениях. Шоттки обладают высоким быстродействием, так как диффузные и рекомбинационные процессы отсутствуют. I зависит от U благодаря изменению количества носителей, принимающих участие в процессах переноса заряда.

Кремниевый полупроводник широко применяется практически во всех электрических схемах устройств. На рисунке 4 изображена его ВАХ.

Рисунок 4 — ВАХ кремниевого Д.

На рисунке 4 ВАХ начинается с 0,6-0,8 В. Кроме кремниевых Д существуют еще германиевые, которые при нормальной температуре будут нормально работать. Кремниевый имеет меньший Iпр и Iобр, поэтому тепловой необратимый пробой у германиевого Д наступает быстрее (при подаче высокого Uобр), чем у его конкурента.

Выпрямительный Д применяется для преобразования переменного U в постоянное и на рисунке 5 приведена его ВАХ.

Рисунок 5 — ВАХ выпрямительного Д.

На рисунке изображена теоретическая (пунктирная кривая) и практическая (экспериментальная) ВАХ. Они не совпадают из-за того, что в теории не учитывались некоторые аспекты:

  1. Наличие R (сопротивления) эмиттерной области кристалла, выводов и контактов.
  2. Токи утечки.
  3. Процессы генерации и рекомбинации.
  4. Пробои различных типов.

Кроме того, температура окружающей среды значительно влияет на измерения, и ВАХ не совпадают, так как теоретические значения получают при температуре +20 градусов. Существуют и другие важные характеристики полупроводников, которые можно понять по маркировке на корпусе.

Существуют и дополнительные характеристики. Они нужны для применения Д в определенной схеме с U и I. Если использовать маломощный Д в устройствах с U, превышающем максимально допустимое Uобр, то произойдет пробой и выход из строя элемента, а также это может повлечь за собой цепочку выхода других деталей из строя.

Дополнительные характеристики: максимальные значения Iобр и Uобр; прямые значения I и U; ток перегрузки; максимальная температура; рабочая температура и так далее.

ВАХ помогает определить такие сложные неисправности Д: пробой перехода и разгерметизация корпуса. Сложные неисправности могут привести к выходу из строя дорогостоящих деталей, следовательно, перед монтажом Д на плату необходимо его проверить.

Возможные неисправности

Согласно статистике, Д или другие полупроводниковые элементы выходят из строя чаще, чем другие элементы схемы. Неисправный элемент можно вычислить и заменить, но иногда это приводит к потере функциональности. Например, при пробое p-n-перехода, Д превращается в обыкновенный резистор, а такая трансформация может привести к печальным последствиям, начиная от выхода из строя других элементов и заканчивая пожаром или поражением электрическим током. К основным неисправностям относятся:

  1. Пробой. Диод утрачивает способность пропускать ток в одном направлении и становится обычным резистором.
  2. Конструктивное повреждение.
  3. Утечка.

При пробое Д не пропускает ток в одном направлении. Причин может быть несколько и возникают они при резких ростах I и U, которые являются недопустимыми значениями для определенного Д. Основные виды пробоев p-n-перехода:

  1. Тепловой.
  2. Электрический.

При тепловом на физическом уровне происходит значительный рост колебания атомов, деформация кристаллической решетки, перегрев перехода и попадание электронов в проводимую зону. Процесс необратим и приводит к повреждению радиодетали.

Электрические пробои носят временный характер (кристалл не деформируется) и при возвращении к нормальному режиму работы его функции полупроводника возвращаются. Конструктивным повреждением являются физические повреждения ножек и корпуса. Утечка тока возникает при разгерметизации корпуса.

Для проверки Д достаточно выпаять одну ножку и прозвонить его мультиметром или омметром на наличияе пробоя перехода (должен звониться только в одном направлении). В результате появится значение R p-n-перехода в одном направлении, а в другом прибор покажет бесконечность. Если звониться в 2 направления, то радиодеталь неисправна.

Если отпала ножка, то ее нужно припаять. При повреждении корпуса — деталь необходимо заменить на исправную.

При разгерметизации корпуса понадобится построение графика ВАХ и сравнение его с теоретическим значением, взятым из справочной литературы.

Таким образом, ВАХ позволяет не только получить справочные данные о диоде или любом полупроводниковом элементе, но и выявить сложные неисправности, которые невозможно определить при проверке прибором.


220v.guru

Вольт-амперная характеристика диода (ВАХ). — КиберПедия

Вольт-амперная характеристика диодаэто графическая зависимость тока, проходящего через диод, от приложенного к нему напряжения при прямом и обратном включении. Вид вольт-амперной характеристики (сокращенно ВАХ) определяется в основном свойствами р – n-перехода. На рис. 8.4 показана вольт-амперная характеристика выпрямительного диода. При включении диода в прямом направлении ВАХ имеет круто восходящий участок (ток по закону Ома меняется пропорционально напряжению). Чем больше этот ток, тем больше нагревается диод, поэтому для каждого диода существует предельный ток, который может быть длительно пропущен через диод, не вызывая его перегрева выше допустимой температуры. Это значение прямого тока является номинальным токомдиода.

При включении диода в обратном, т.е. в непроводящем, направлении через него протекает малый обратный ток (единицы или десятки микроампер). Этот ток мало изменяется при возрастании обратного напряжения. Однако при достижении обратным напряжением некоторого значения Uпроб (напряжение пробоя) обратный ток резко возрастает. В этом случае происходит электрический пробой диода и обычный диод выходит из строя (в р – n-переходе прожигается отверстие). Но у лавинных диодов ток пробоя проходит по всей площади р – n-перехода, поэтому они пробоя «не боятся» и после снижения обратного напряжения свои свойства восстанавливают.

Лавинные диоды, предназначенные работать при обратном включении и напряжении пробоя для стабилизации напряжения при изменении тока на определенном участке цепи, называются стабилитроны.

Прим. Маркировка диодов.

Маркировка полупроводниковых диодов, рассчитанных на сравнительно небольшие токи (до 10 А) состоит из шести буквенных и цифровых элементов:

· первый элемент обозначает исходный материал: К или 2 – кремний; Г или 1 – германий; А или 3 — арсенид галлия.

· второй буквенный элемент обозначает тип прибора: Д – диоды выпрямительные; А – сверхвысокочастотные диоды; В – варикапы; И – туннельные диоды; С – стабилитроны; Л — светодиоды.

· третий, четвертый, пятый элементы – цифры, характеризующие некоторые электрические параметры прибора, в частности мощность рассеяния.

· шестой элемент – буква (от А до Я), обозначающая последовательность разработки.

Полупроводниковые диоды, рассчитанные на токи от 10 А до 2000 А и более часто называют силовыми неуправляемыми вентилями и маркируют буквой В (вентиль), после которой проставляется число, указывающее значение прямого номинального тока. В качестве силовых, в основном используют кремниевые диоды, которые делятся на группы, классы и подклассы.


 

Вместо понятия напряжения пробоя Uпр. обычно используют понятие Uзаг.( напряжение загиба ВАХ), так как напряжение пробоя всегда чуть больше напряжения загиба. Напряжение загиба – это максимальное напряжение цепи, которое выдерживает вентиль не пробиваясь. Класс диода (вентиля) определяют по значению допустимого напряжения отношением . Допустимое напряжение – это максимальное напряжение цепи, в которую может быть поставлен данный вентиль. Т.е. для определения класса вентиля в значении допустимого напряжения мысленно убирают две последние цифры, тогда оставшееся число показывает класс вентиля. Класс вентиля показывает количество сотен Вольт допустимого напряжения.

Допустимое напряжение принимается для обычных диодов равным половине напряжения загиба, а для лавинных диодов 0.7 Uзаг.

Пример. Если напряжение загиба обычного вентиля составляет 850 В, то допустимое напряжение – 425В, т.е. класс вентиля – 4.

Прим. по назначению диоды разделяются на следующие:

· выпрямительные диоды (как разновидность выпрямительных – силовые), которые предназначены для выпрямления переменного тока низкой частоты (рис. 8.3, а). В качестве выпрямительных диодов используют плоскостные диоды, допускающие большие выпрямительные токи;

· высокочастотные диоды, предназначенные для выпрямления переменного тока в широком диапазоне частот, а также для детектирования. В качестве высокочастотных диодов применяют диоды точечной конструкции;

· импульсные диоды, которые применяют в схемах генерирования и усиления импульсов микросекундного и наносекундного диапазонов;

· туннельные диоды (рис. 8.3, в), применяемые в качестве усилителей и генераторов высокочастотных колебаний;


· светодиоды (рис. 8.3, е), которые используют в качестве световой индикации наличия тока и которые имеют разные цвета свечения;

· стабилитроны (рис. 8.3, б), предназначенные для стабилизации уровня напряжения при изменениях значения протекающего через них тока;

· варикапы (рис. 8.3, г) – полупроводниковые диоды, емкость которых можно изменять в широких пределах;

· фотодиоды (рис. 8.3, д), которые являются источниками тока, преобразующими световую энергию в электрическую, причем сила тока пропорциональна освещенности фотодиода.

Транзисторы

cyberpedia.su

Вольт-амперная характеристика (ВАХ) полупроводникового диода

Что такое идеальный диод?


Основная задача обычного выпрямительного диода – проводить электрический ток в одном направлении,
и не пропускать его в обратном
. Следовательно, идеальный диод должен быть очень хорошим проводником
с нулевым сопротивлением при прямом подключении напряжения (плюс — к аноду, минус — к катоду),
и абсолютным изолятором с бесконечным сопротивлением при обратном.


Вот так это выглядит на графике:


Такая модель диода используется в случаях, когда важна только логическая функция прибора.
Например, в цифровой электронике.

ВАХ реального полупроводникового диода

Однако на практике, в силу своей полупроводниковой структуры,
настоящий диод обладает рядом недостатков и ограничений по сравнению с
идеальным диодом. Это можно увидеть на графике, приведенном ниже.

Vϒ(гамма) — напряжение порога проводимости


При прямом включении напряжение на диоде должно достигнуть определенного порогового значения — Vϒ.
Это напряжение, при котором PN-переход в полупроводнике открывается достаточно, чтобы диод начал хорошо проводить ток.
До того как напряжение между анодом и катодом достигнет этого значения, диод является очень плохим проводником.
Vϒ у кремниевых приборов примерно 0.7V, у германиевых – около 0.3V.

ID_MAX — максимальный ток через диод при прямом включении


При прямом включении полупроводниковый диод способен выдержать ограниченную силу тока ID_MAX.
Когда ток через прибор превышает этот предел, диод перегревается.
В результате разрушается кристаллическая структура полупроводника, и прибор становится непригодным.
Величина данной силы тока сильно колеблется в зависимости от разных типов диодов и их производителей.

IOP – обратный ток утечки


При обратном включении диод не является абсолютным изолятором и имеет конечное сопротивление, хоть и очень высокое.
Это служит причиной образования тока утечки или обратного тока IOP.
Ток утечки у германиевых приборов достигает до 200 µА, у кремниевых до нескольких десятков nА.
Самые последние высококачественные кремниевые диоды с предельно низким обратным током имеют этот показатель около 0.5 nA.

PIV(Peak Inverse Voltage) — Напряжение пробоя


При обратном включении диод способен выдерживать ограниченное напряжение – напряжение пробоя PIV.
Если внешняя разность потенциалов превышает это значение, диод резко
понижает свое сопротивление и превращается в проводник. Такой эффект
нежелательный, так как диод должен быть хорошим проводником только при
прямом включении. Величина напряжения пробоя колеблется в зависимости
от разных типов диодов и их производителей.

Паразитическая емкость PN-перехода


Даже если на диод подать напряжение значительно выше Vϒ, он не начнет мгновенно проводить ток.
Причиной этому является паразитическая емкость PN перехода, на наполнение которой требуется определенное время.
Это сказывается на частотных характеристиках прибора.

Приближенные модели диодов


В большинстве случаев, для расчетов в электронных схемах, не используют
точную модель диода со всеми его характеристиками. Нелинейность этой
функции слишком усложняет задачу. Предпочитают использовать, так
называемые, приближенные модели.

Приближенная модель диода «идеальный диод + Vϒ»


Самой простой и часто используемой является приближенная модель первого уровня.
Она состоит из идеального диода и, добавленного к нему, напряжения порога проводимости Vϒ.

Приближенная модель диода «идеальный диод + Vϒ + rD»


Иногда используют чуть более сложную и точную приближенную модель второго уровня.
В этом случае добавляют к модели первого уровня внутреннее сопротивление диода,
преобразовав его функцию из экспоненты в линейную.

hightolow.ru

Полупроводниковый диод. ВАХ специальных диодов. — Help for engineer

Полупроводниковый диод. ВАХ специальных диодов.

Существует три вида диодов:

— газонаполненные;

— электровакуумные;

— полупроводниковые диоды, про которые и будет идти речь дальше.

В чистом полупроводнике отсутствуют свободные электроны, поэтому его электропроводность, как и у диэлектрика крайне мала. Если добавить в полупроводник примесь, то проводимость увеличится. Для того чтоб заметить изменение электропроводимости, достаточно в чистый полупроводник добавить очень малое количество примеси – 1 атом примеси на 106 атомов полупроводника. Электрическая проводимость любого вещества зависит от наличия в атоме свободных, слабо связанных электронов на внешней орбите.

Если электрон освободился от соседнего атома, то на месте оборванного электрона появилась новая дырка. Электроны двигаются от отрицательного к положительному потенциалу, а дырки можно рассматривать как такие, что двигаются в обратном направлении. Также дырки можно рассматривать как элемент положительного заряда. Примеси, которые образовывают свободные электроны в полупроводнике, называются донорными, а которые делают дырки – акцепторными. Процесс заполнения неполных валентных связей называется рекомбинация.

Рисунок 1 – Проводимость полупроводникового диода

p-n переход – это переходной слой, полученный на границе полупроводников разной проводимости.

Различают два типа перехода:

— плоскостной;

— точечный.

Принцип работы полупроводникового диода основан на особенности p-n перехода — ярко выраженная проводимость, которая зависит от полярности приложенного напряжения (рисунок 1).

На основании представленных характеристик материалов создан полупроводниковый прибор – диод.

Рисунок 2 – Обозначение диода

Обозначение диода в электрических схемах – VD.

Основные электрические параметры диода:

1. Іном – максимальное значение действующего тока через диод, которое его не перегревает.

2. Максимальный импульсный ток – Іі.max.

3. Обратное максимальное напряжение Uобр.

Все полупроводниковые приборы очень чувствительны к примесям в воздухе, поэтому их размещают в герметичном корпусе из стекла или керамики.

Работа диода при прямом приложенном напряжении имеет следующий вид (ток — черная кривая, напряжение — красная):

Рисунок 3 – Ток и напряжение на диоде

С рисунка видно, что при положительном напряжении диод VD открывается и напряжение имеет малое значение, при отрицательном напряжении диод закрывает мгновенно, переставая пропускать через себя ток.

Широко применяются при необходимости преобразования переменного напряжения в постоянное. Выпрямленное напряжение будет иметь пульсирующий вид, как изображено на рисунке 3 – однополупериодное выпрямление, если же применять диодный мост, то будет осуществлено двухполупериодное выпрямление. В полученном пульсирующем напряжении для электрических приборов будет важно действующее значение напряжения. Для трехфазных сетей применяют выпрямитель Ларионова.

Специальные диоды

Стабилитрон – разновидность диода, которому характерна вертикально спадающая ВАХ, на которой стабилитрон предназначен продолжительно работать.

Рисунок 4 – Вольт-амперная характеристика (ВАХ) стабилитрона

Предназначается для работы в источниках питания для стабилизации напряжения.

Основные характеристики: Uстабилизации, Іmin, Imax– граничные значения тока через стабилитрон.

Туннельный диод – это диод, которому характерно наличие в прямой ветке вольт-амперной характеристики участок с обратным сопротивлением. При увеличении прямого напряжения монотонно увеличивается выходное значение тока. Напряжение пробоя такого полупроводника практически равно нулю.

Рисунок 5 – ВАХ туннельного диода

Используются в схемах переключения и генераторах электрических колебаний.

Динистор – специальный диод, который сохраняет высокое сопротивление до определенного значения прямого напряжения, после чего сопротивление резко спадает и равно величине сопротивления открытого диода.

Рисунок 6 – Вольт-амперная характеристика динистора

Используют в схемах автоматики и генераторах переменно-линейного напряжения.

Варикап – диод, у которого изменяется емкость в зависимости от значения приложенного обратного напряжения.

Рисунок 7 – ВАХ варикапа

Применяются в электрических схемах, где необходима настройка частоты контура колебания, деление или умножение частоты.

Характерные для варикапа параметры:

— общая емкость – измеренная емкость при определенном обратном напряжении;

— коэффициент перекрытия по емкости – при двух некоторых значениях напряжения отношения емкостей варикапа.

— температурный коэффициент емкости – относительное изменение емкости, вызванное сменой температуры.

— предельная частота – та, на которой реактивная составляющая варикапа становится равна активной.

Фотодиод – спец диод, обратная проводимость которого изменяется от величины светового потока Ф.

Рисунок 8 – ВАХ фотодиода

Используются в измерителях светового потока и приборах автоматики.

Светодиод излучает свет при прохождении через него в прямом направлении электрического тока, цвет свечения определяется химическим составом кристалла.

Отличительной особенностью светодиода является экономичность – очень малое потребление тока (2-5мА).

Добавить комментарий

h4e.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о