Генератор импульсов с регулировкой частоты и скважности – Генератор импульсов с регулируемой скважностью и частотой

Генератор импульсов с регулируемой скважностью и частотой

Иногда в радиолюбительском деле нужен генератор с изменяемым коэффициентом заполнения (КЗ) для проверки различных схем, силовых выходных каскадов ИИП и тп. А также для проверки самой микросхемы ШИМ.

Генератор собран на распространённом ШИМе UC3843 компании Unitrode или аналогичном.

Для увеличения надёжности по питанию на входе стоит интегральный стабилизатор LM7812, так как потребляемый ток непосредственно самим генератором (без нагрузки) не превышает 25..30мА, я применил стабилизатор в ТО92 исполнении.

Диод D1 защита от дурака (или просто невнимательности).

Резистор R5 ограничивает выходной ток, защищая микросхему в случае короткого замыкания выхода. Резистор R1 ограничивает максимальную частоту и является времязадающим вместе с конденсатором С1. Конденсаторы С4, С5 шунтируют питание стабилизатора,

С3 питание ШИМа, а конденсатор С2 фильтрует выходное напряжение источника опорного напряжения, которое при исправной микросхеме должно быть около 5 вольт.

Далее, переменники:
RV1 (50 кОм) — является частью времязадающей RC цепочки и, соответственно, регулирует частоту генератора, в верхнем положении частота минимальна.
RV2 (5 кОм) — регурирует коэффициент заполнения генератора (КЗ, скважность).
RV3 (1 кОм) — позволяет подстроить более точно рабочую точку цепи обратной связи для того, чтобы регулятор RV2 позволял регулировать КЗ от минимума до максимума.

Конструкция в налаживании не нуждается и при исправных деталях и правильном монтае начинает работать сразу. Буржуйский 2N2222 можно заменить на наш КТ3102 или любой подобный. Конденсаторы

С2, С3, С4 и С5 являются не обязательными для работоспособности схемы, как впрочем и R5.

При указанных на схеме номиналах частота генератора регулируется примерно от 16,9 кГц до 250 кГц, ближе к максимальной частоте фронты немного пологие и составляют около 0.2мксек, максимальная скважность ограничена примерно на уровне 90%

Схема работоспособна в диапазоне от 12 до 30в, если удалить стабилизатор, то нижняя граница расширится до 9в, но тогда будет опасно питать конструкция напряжением выше 20в: как показала практика при 30в питания UC3843 разлетается на куски, стараясь попасть в глаза или лицо. Я выполнил конструкцию на одностороннем стеклотекстолите толщиной 1,5мм при помощи ЛУТ, размеры платы 30х37мм, перемычек нет.

После распайки компонентов и промывки от флюса рекомендую покрыть сторону с дорожками цапонлаком.

Я применял как smd, так и классически компоненты, желающие могут изменить разводку, как им будет удобнее.
Микросхема вставляется в DIP8 панельку, что позволяет проверять микросхемы, ничего не перепаивая. Плату в формате lay для Sprint Layout можно скачать по этой ссылке.

Вот так это выглядит:

Возможно, вам это будет интересно:

meandr.org

ГЕНЕРАТОР ИМПУЛЬСОВ С РЕГУЛИРОВКОЙ ЧАСТОТЫ

   Как-то попросили меня сделать простую мигалку, чтоб реле управлять или маломощной лампочкой мигать. Собирать простейший мультивибратор, будь то симметричный или не симметричный, как-то банально, да и схема нестабильна и не совсем надежна, при том что работать она должна при напряжение 24 вольта в грузовом автомобиле, да и еще размеры иметь не слишком большие.

Схема

ГЕНЕРАТОР ИМПУЛЬСОВ С РЕГУЛИРОВКОЙ ЧАСТОТЫ - схема

   Поискав по сети схемы, решил по даташиту включить популярную микросхему NE555N. Прецизионный таймер, стоимость которого очень мала – порядка 10 рубликов за микросхему в дип корпусе! Но так как нагрузка у нас не совсем слабая, и может потребоваться большие токи относительно питания таймера, то нам нужен какой-то ключ, которым и будет управлять сам таймер.

ГЕНЕРАТОР ИМПУЛЬСОВ С РЕГУЛИРОВКОЙ ЧАСТОТЫ - плата

   Можно взять обычный транзистор, но он будет греться ввиду больших потерь из-за больших падений на переходах – поэтому взял высоковольтный полевой транзистор на несколько ампер тока, такому ключу при токе даже в 2 ампера не потребуется радиатор вообще.

ГЕНЕРАТОР ИМПУЛЬСОВ С РЕГУЛИРОВКОЙ на 555

   Сам таймер 555 имеет ограничения в питающем напряжение – порядка 18 вольт, хотя уже и при 15 может смело вылететь, поэтому собираем цепочку из ограничительного резистора и стабилитрона с фильтрующим конденсатором по входу питания!

ГЕНЕРАТОР ИМПУЛЬСОВ Самодельный 12 в

   В схему введен регулятор, дабы можно было вращая ручку регулятора изменить частоту импульсов вспышки лампочки или срабатывания реле. Если же регулировка не требуется, можно подстроить частоту на нужные, замерить сопротивление и впаять потом готовое. На приведённой выше — сразу 2 регулятора, которыми меняется скважность (отношение включенного состояния выхода к выключенному). Если требуется соотношение 1:1 — убираем всё кроме одного переменного резистора.

ГЕНЕРАТОР ИМПУЛЬСОВ С РЕГУЛИРОВКОЙ ЧАСТОТЫ

Видео

   Часть элементов выполнено в дип корпусах, часть в смд — для компактности и лучшей компоновки в целом. Схема генератора импульсов заработала после включения практически сразу, осталось только подстроить под нужную частоту. Плату желательно залить термоклеем или поставить в корпус из пластика, дабы автовладельцы не догадались ее прикрутить напрямую к корпусу или положить на что-то металлическое.

   Схемы автоматики

elwo.ru

Генератор импульсов с независимым регулированием частоты и скважности

Р/л технология

Главная  Радиолюбителю  Р/л технология



Не так давно мне потребовалось собрать генератор прямоугольных импульсов со сравнительно мощным выходом и плавным ручным регулированием частоты и скважности. Имея некоторый опыт, я сразу решил, что основой генератора должна стать микросхема-таймер NE555 (КР1006ВИ1). Её выпускают не один десяток лет, она дёшева, надежна, имеет отличные характеристики и легко согласуется с логическими микросхемами структуры КМОП и ТТЛ. Напряжение питания таймера может лежать в пределах от 5 до 15 В, а выход выдерживает ток нагрузки до 200 мА.

К сожалению, поиск в Интернете подходящей схемы генератора не дал результата. Все найденные страдали одним и тем же недостатком — при изменении частоты менялась и скважность выходных импульсов. Или же регулировка скважности плавная, а частота — ступенчатая, с помощью переключателя. В результате нужный генератор был разработан самостоятельно.

Как известно, в таймере NE555 имеются два компаратора напряжения. Порог срабатывания одного из них (условно верхнего) без подключения дополнительных резисторов равен 2/3 напряжения питания, а второго (нижнего) — в два раза меньше. Напряжение на времязадающем конденсаторе при работе генератора колеблется между этими порогами. Для изменения скважности известен классический приём — подать напряжение с выхода микросхемы через разнонаправленные диоды на крайние выводы переменного резистора, регулирующего скважность, а его движок соединить с времязадающим конденсатором. При такой регулировке частота импульсов не изменяется, так как сумма сопротивлений резисторов, через которые заряжается и разряжается конденсатор, остаётся постоянной.

Но как плавно регулировать частоту, не изменяя скважность? Я решил делать это, управляя разностью порогов срабатывания компараторов. Чем она меньше, тем меньше при прочих равных условиях уходит времени на перезарядку конденсатора от одного порога до другого и обратно, тем выше становится частота импульсов.

В микросхеме NE555 верхнее пороговое напряжение выведено на вывод 5, а для нижнего внешний вывод, к сожалению, не предусмотрен. Если подключить между выводом 5 и общим проводом переменный резистор, он будет одновременно регулировать оба порособрать генератор прямоугольных импульсов со сравнительно мощным выходом и плавным ручным регулированием частоты и скважности. Имея некоторый опыт, я сразу решил, что основой генератора должна стать микросхема-таймер NE555 (КР1006ВИ1). Её выпускают не один десяток лет, она дё-

га. Однако нижний останется равным половине верхнего, «отдаляясь» от плюса напряжения питания генератора медленнее, чем верхний порог «приближается» к его минусу. Это сказывается на относительной скорости нарастания и спада напряжения на конденсаторе и приводит к изменению скважности импульсов при регулировке частоты.

Рис. 1

Проблему удаётся решить, собрав генератор по схеме, изображённой на рисунке. Здесь внутренний нижний компаратор таймера DA2 заменён внешним, собранным на отдельной микросхеме DA1. Его неинвертирую-щий вход соединён с времязадающим конденсатором С1, а к инвертирующему входу подключён делитель напряжения из резисторов R2, R3, R6-R8, задающий порог срабатывания. При разомкнутой цепи переменного резистора R7 или при его очень большом сопротивлении порог срабатывания компаратора DA1 точно такой же, как у отключённого внутреннего компаратора таймера DA2 — 1/3 напряжения питания. Этого равенства добиваются подстроенным резистором R3. Уменьшая сопротивление переменного резистора R7, симметрично относительно половины напряжения питания сближают пороги верхнего компаратора таймера DA2 и внешнего компаратора DA1. В результате частота импульсов растёт, а их скважность, установленная переменным резистором R4, остаётся неизменной.

Нужно сказать, что в первом варианте генератора, схему которого я опубликовал на форуме интернет-портала KAZUS.RU http://kazus.ru/forums/ showthread.php?t=94852, резистор R6 отсутствует. Но, как выяснилось, без него не удаётся добиться полной симметрии порогов, мешает имеющийся внутри таймера соединённый с его выводом 5 делитель напряжения, формирующий из верхнего порога нижний. Резистор R6, сопротивление которого равно сумме сопротивлений резисторов этого делителя, компенсирует его влияние, делая симметричной полную схему формирования порогов.

Субъективно качество балансировки можно оценить, подключив между выводом 3 таймера и общим проводом вольтметр постоянного напряжения. Его показания должны зависеть только от положения переменного резистора R4. При регулировке частоты переменным резистором R7 они изменяться не должны. Этого добиваются с помощью подстроенного резистора R3. Если частота импульсов настолько низка, что стрелка вольтметра колеблется им в такт, следует подключить вольтметр к таймеру через интегрирующую RC-цепь с достаточно большой постоянной времени или временно повысить частоту импульсов, установив конденсатор С1 меньшей ёмкости.

При указанных на схеме номиналах элементов и напряжении питания 15 В переменный резистор R7 регулирует частоту импульсов приблизительно от 50 до 830 Гц. Однако снижение напряжения питания до 5 В ведёт к уменьшению частоты почти в два раза. В связи с этим желательно питать генератор стабилизированным напряжением.

Нагрузочная способность выхода таймера NE555 позволяет напрямую управлять довольно мощными исполнительными устройствами и ключевыми элементами. Это обстоятельство, а также возможность независимого регулирования частоты и скважности может обусловить широкий спектр применения генератора.

Автор: П. Галашевский, г. Херсон, Украина

Дата публикации: 05.10.2012

Мнения читателей
  • Андрей / 08.06.2017 — 22:13
    Две микросхемы — уже увеличение габаритов устройства
  • Михаил / 20.03.2016 — 21:58
    2 — инверсный выход, полагаю…
  • Александр / 20.10.2014 — 20:47
    Люди добые допомогите хто чем может : частота нужна до 5 МегаГерц на генераторе прямоугольных импульсов минимальной длительности регулируемой скважности , для управления транзисторным ключём. Дома горы металолома и не знаю что куда и для чего , но радимантажник . Может на транзисторах можно сделать.
  • Следопыт. / 12.10.2014 — 14:42
    Тоже нужен ген.пр.имп. Пол интернета перевернул, изготовил по рекомендуемым схемам три ген. и ничего путнего из них не выдавил, получаю на выходе, самое лучшее трапецию со скругленными углами, либо узор отдаленно напоминающий ее. Схемы я конечно читаю, но в электронике не совсем силен. Но когда смотрю на подобные схемы появляется мысль, что их выкладывают на форум вообще дилетанты. Думаю придется обратить внимание на более сложные схемы.
  • владимир / 14.04.2014 — 09:34
    в80годы была публикация цыфрового фильтра построенного наттл логике к155ла3 суть втом что любая частота есть опроксимация длительности имея двапараметра длительности можно фиксировать скважность меняя эти параметры можно управлять скважностью причем изменение частоты не приводитк изменению скважности схема состоит из двух корпусов ла 3 и ви1 как задающий гениратор с уважением ко всем кто творит внастоящее время работаю над темой влияние низких потенциалов на рост растений вчасности картофеля за 20 дней урожай 300килограм с1кв метра в теплице яживу вказахстане 87013535332 звоните
  • алексей / 25.02.2014 — 15:20
    мое мнение , если бы открытие нижнего компаратора происходило быстрей или медленней тогда бы при обычном запуске таймера импульсы были бы уже не симметричны , а такого же не происходит . я собирал данный девайс который на сайте ,но увы он близко не рабочий . на частое 400 герц при регулировки скважности частота уходит на 100 герц вверх или вниз . проверено на мультиметре и на осциллографе .
  • Алексей / 20.02.2014 — 20:09
    собрал данный генератор . ничего подобного что скважность независимая с частотой. при регулировки скважности частота разъезжаетсяесли частота 500 герц то она уезжает на 100 . или этонормально ?
  • Алекс / 10.01.2013 — 00:21
    «К сожалению, поиск в Интернете подходящей схемы генератора не дал результата. Все найденные страдали одним и тем же недостатком — при изменении частоты менялась и скважность выходных импульсов.» «Но как плавно регулировать частоту, не изменяя скважность?» (скорее всего на высоких частотах?) а меня наоборот проблемка — меняешь скважность — идут изменения в частоте (один резистор через два встречных диода на 55 микрухе) в пределах нескольких десятков герц Например, при меандре — 8Гц, ползунок влево — 18Гц, вправо — 25Гц…. В данной схеме такая проблема решена? СПСБ.
  • Олег / 01.11.2012 — 13:42
    Не работает. При регулировке скважности частота «уходит», или может так и было задумано?. И зачем «Выход 2» ?

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:


www.radioradar.net

Лабораторный генератор ШИМ с широким диапазоном частот для проектирования высокочастотных импульсных стабилизаторов, преобразователей и испытания различных схем.

Лабораторный генератор ШИМ с широким диапазоном частот для проектирования высокочастотных импульсных стабилизаторов, преобразователей и испытания различных схем.

 

В наше время весь мир крутится вокруг широтно-импульсной модуляции (ШИМ), да что и говорить, даже день и ночь – и те подвластны ШИМу (зимой день короче чем ночь и наоборот J ). ШИМ сейчас используется везде, где только можно представить его применение: регуляторы, стабилизаторы, преобразователи, блоки питания и прочие устройства. Учитывая тенденцию увеличения мощности, неуклонного роста используемых частот в силовой и преобразовательной технике, а также уменьшению массо — габаритных показателей, я решил что иметь у каждого в домашней лаборатории широкодиапазонный генератор ШИМ просто обязательно. Но это, конечно же, должен быть не просто генератор. Нужно что бы он имел регулировку частоты в широком диапазоне, регуляторы коэффициента заполнения, регуляторы DEAD TIME, однотактный и двухтактный выходы, а также инверсию выходов  для каждого. Инверсия выходов необходима для проверки мостового преобразователя. Да и мало ли чего ещё захочется исследовать. Но в тоже время он должен быть простым для сборки, наладки и повторения. В данном случае будет достаточно перекрыть диапазон частот в однотактном режиме от 60  кГц до 2 МГц, в двухтактном режиме  от 30 кГц до 1 МГц. Регулировать коэффициент заполнения в  однотактном режиме от 1 % до 99%, а в двухтактном режиме  от 2 % до 98%, с возможностью регулирования паузы DEAD TIME («мертвая зона»). Генератор должен иметь минимальное число переключателей по диапазонам. Все должно регулироваться плавно и без скачков. Желательно иметь настройку грубо и точно на каждый параметр регулирования.

С помощью  такого генератора можно проверять качество работы драйверов управления полевых транзисторов, скоростные показатели работы различных компонентов и многое–многое другое.

Чтобы не утомлять прочтением всей статьи, сразу покажу, какой сигнал получился на выходах в разных режимах и на разных частотах:

 

 

С помощью этого генератора я запускаю любой блок питания, в котором микросхема не дает импульсов на запуск, или уходит в защиту по непонятной причине. Плавно увеличивая коэффициент заполнения, смотрю, что происходит на выходе блока, или токовом шунте ключевого транзистора. Отыскание неисправности в любых импульсных блоках с этим генератором — просто сказка и занимает по времени считанные минуты. Откидываю, например, затвор силового транзистора от родной микросхемы, и цепляю его к своему генератору с драйвером. Для того что бы подключаться например по высокой стороне к двухтактникам, иногда такое надо, необходимо использовать оптодрайвер на 6N137 или любых других быстрых оптопарах.

Ещё можно проверять на что годны операционные и аудио усилители. Поскольку самые низкие искажения имеют только повторители напряжения, проверку буду производить именно в этом режиме. Приведу пример проверки самого распространенного операционного усилителя типа LM358. Тем самым ввергну в шок некоторых аудиофилов. Так вот, использовать LM358 в аудиоусилителях даже низкого класса категорически не рекомендую.

 

 

Ради прикола, беру самый первый советский операционник К140УД1Б и загоняю его на испытания. Показатели у него значительно лучше, чем у LM358.

 

 

Можно проверять время задержки в логических элементах и минимальную длительность импульса для триггеров.

 

 

Даже проверил, как себя поведет стабилитрон TL431 на частоте 1,3 МГц:

 

 

Желтым — вход, синим — выход.

А также испытать и проверить многое другое…….

Вот, вкратце, возможности моего генератора.

Когда я поставил перед собой задачу, попробовал погуглить и найти готовое решение. Поиски не увенчались успехом. В итоге было решено самому создать схему отвечающую запросам. Теперь я ознакомлю вас с результатами моих исследований длившихся около года

Мои исследования

 

   На первый взгляд самой привлекательной и простой схемой, найденной в даташитах и интернете, показалась схема на основе готового PULSE WIDTH MODULATION контроллера типа TL494 и её аналогах КА7500.  TL 494 и ее последующие версии — наиболее часто применяемая микросхема для построения двухтактных преобразователей питания.

 Но на деле это решение подходит под наши задачи только на 1/10 решения и её нельзя использовать на частотах более 100 кГц — в однотактном режиме и до 50 кГц — в двухтактном режиме.  Почему? Хотя по даташиту она может использоваться и до 300кГц, мне не понравилось, как она себя ведет на частотах выше 100 кГц.

Что гласит даташит:

Допустимы рабочие частоты от 1 до 300 кГц, рекомендованный диапазон Rt = 1…500кОм, Ct=470пФ…10мкФ. При этом типовой температурный дрейф частоты без учета дрейфа навесных компонентов +/-3%, а уход частоты в зависимости от напряжения питания — в пределах 0.1% во всем допустимом диапазоне.  Да только дело то не в уходе частоты, а в непостоянстве регулирования коэффициента заполнения в зависимости от частоты.

Я попробовал испытать её возможности, и хотел перекрыть нужный мне диапазон в 2 МГц, но на частоте выше 1 МГц она нормально так и не запустилась. Пришлось пока ограничиться только 1 МГц. Сделал пять диапазонов регулирования частоты, поставил стабилизатор напряжения на 12 вольт по питанию с блокировочными конденсаторами, чтобы не нарушалась чистота эксперимента и начал испытание.

 

Схема:

 

 

Макетная плата подопытной схемы:

 

 

 

Джамперы для выбора частоты:

 

 

Результаты проведенного испытания возможностей TL494:

Данная микросхема для моего требования к генератору не подходит, и никакие средства и ухищрения разогнать её на большую частоту так ни к чему и не привели. Предел мечтаний с ней это 100 кГц (с большой натяжкой 150 кГц). На более высокой частоте даёт о себе знать очень уж медленный компаратор, использующийся в схеме кристалла. Также мешает повышению частоты и встроенная коррекция. Читаем из даташита особенности данной микросхемы:

Для стабильной работы триггера — время переключения цифровой части TL494 составляет 200 нс. На тактовых частотах до 150 кГц при нулевом управляющем напряжении фаза покоя = 3% периода (эквивалентное смещение управляющего сигнала 100..120 мВ), на больших частотах встроенная коррекция расширяет фазу покоя до 200..300 нс. Так как в ней очень медленные усилители ошибки  (фактически, операционные усилители с Ку = 70..95 дБ по постоянному напряжению, Ку = 1 на 300 кГц), я их не использую в схеме испытания вообще, и они заблокированы. Эти усилители не предназначены для работы в пределах одного такта рабочей частоты. При задержке распространения сигнала внутри усилителя в 400 нс они для этого слишком медленные, да и логика управления триггером не позволяет (возникали бы побочные импульсы на выходе). В реальных схемах преобразователей напряжения частота среза цепи ОС выбирается порядка 2  — 10кГц.

    Замечания по работе микросхемы 494 на повышенной частоте, которые меня не устраивают:

1. Встроенный генератор пилообразного напряжения на большое время замыкает конденсатор, вследствие этого перед новым циклом заряда появляется площадка с нулевым потенциалом.

    Осциллограммы работы генератора на разных частотах:

     

     2. Сильная зависимость коэффициента заполнения от частоты, которая проявляется с нарастающим эффектом после прохождения частоты 100 кГц.

      Рассматривая осциллограммы работы ШИМ регулятора с TL494 на разных частотах, при максимальном и минимальном коэффициенте заполнения, чётко заметны изменения минимального и максимального коэффициента заполнения в зависимости от частоты.

       

       

       

      Как видно, изменение минимального коэффициента заполнения на частоте 50 кГц =5% и на частоте 1 МГц = 14,3% отличаются почти в три раза. А вот изменение максимального коэффициента заполнения, тут вообще удивляет: на частоте 50 кГц = 93% и на частоте 1 МГц = 60,7% отличаются на 32%!!!

         Вот почему эту простую и удобную схему я отложил в сторонку. Она мне еще пригодится в дальнейшем: я к ней все-таки вернусь, но уже на дискретных быстрых компараторах и нормальных быстрых триггерах.

       

       

         Дальше на пути у меня была схема на NE555 таймере, которую я использовал лишь только в качестве генератора пилообразного напряжения. Я и не предполагал, что он тоже окажется довольно медленным, но все же, немного лучше, чем предыдущая TL494. С ним можно подняться к частотам около 200 кГц в однотактном режиме. Только надо добавить компаратор и триггер с логикой ИЛИ-НЕ.

      Схема генератора на 555 таймере:

       

       

      Осциллограммы работы генератора пилообразного напряжения на 555 таймере на частотах  332 кГц и 462 кГц.

       

       

      Тут видно округление вершин и спада импульса. На частоте более 500 кГц пила становится неузнаваема.

       

      Разочаровавшись в готовых решениях только на аналоговых элементах, я пробовал синтезировать ШИМ чисто на цифровых логических элементах и счетчиках с триггерами, без использования аналоговых компонентов, но там меня подстерегали другие, куда более сложные проблемы. Выравнивание задержек распространения сигнала по элементам и т.п. Особенно большую проблему составляют триггеры и счетчики, которые совсем не хотят щелкать на малой длительности импульса и просто тупо пропускают счет. А это значит, что ключам, на которые будет работать генератор, очень скоро придет конец. Отказался от этой затеи через неделю боя с 561 логикой. Она, оказывается, ну уж очень медленная для таких частот — 20 МГц при делении ШИМа по 10 %. Ещё через две недели отказался и от 1533 тоже.

      Финальная схема генератора.

       

           После нескольких неудачных попыток воплотить мечту в реальность (иметь в своей домашней лаборатории генератор с 2 МГц ШИМа), недельку- другую отдохнул, подумал, набрался сил и снова приступил к решению проблемы. На этот раз без выкрутасов и лёгких путей, учитывая предыдущие наработки и ошибки. Из всех опробованных решений самое большее удобство пользования предоставляла схема на TL494 или на таймере. Поэтому было решено клонировать начинку NE555 и TL494 на быстродействующих компонентах и собирать некий «симбиоз» двух микросхем на отдельных  компараторах и логике. Компараторы с ТТЛ выходом я взял те, что были у меня в столе — КР597СА2, но можно и любые другие, главное быстродействующие и с ТТЛ выходом. Ну, если вдруг захочется позверствовать, то ЭСЛ будет куда круче (тогда и 20 МГц не предел), но мне пока не нужна такая большая частота (разве для преобразователя с индуктивностью без ферритового сердечника). Тогда надо ставить КР597СА1, и логику серии К500.

      После первого запуска схемы обнаружилось много казусов, но по мере отладки многие грабли были убраны, и схема заработала как часы.

       

      Схема:

       

       

       

            Схема состоит из генератора пилообразного напряжения (состоящего из стабилизатора тока на транзисторах VT1, VT2, VT3; двух компараторов DA1, DA2; триггера DD1 и разрядного транзистора VT4), схемы выделения прямоугольных импульсов (с шириной зависящей от порогового напряжения на DA3), двух стабилизаторов опорного напряжения (2,5в и 2,9в), формирователя двухтактного сигнала (на триггере DD2  и элементах DD3 DD4 2-ИЛИ-НЕ), повторителя и инвертора для однотактного выхода (на DD5, DD6).

      Фото макетной платы:

       

       

      Для облегчения процесса настройки я приведу осциллограммы напряжений в каждой важной точке схемы. Итак…

      Генератор пилообразного напряжения. Конденсатор заряжается через стабилизатор тока. Канал 1 – напряжение на конденсаторе С5, канал 2 – напряжение на базе разрядного транзистора VT4.

       

       

       

       

      По графикам заметен необъяснимый факт ухода напряжения в область отрицательных значений, но это работе не мешает, так как в схему выделения прямоугольных импульсов в задающее напряжение позже я также внесу небольшое отрицательное смещение с помощью делителя R6, R10 для охвата всего диапазона изменения напряжения «пилы». R1 подбирается для ограничения верхней максимальной частоты (я ограничился лишь 2 МГц, хотя вся схема нормально работает и до 5 МГц).

      Осциллограммы напряжений на выходах компараторов DA1, DA2 на разной частоте. Канал 1 – напряжение на компараторе DA1 вывод 14, канал 2 – напряжение на компараторе DA2 вывод 14:

       

       

       

      Для борьбы со «звоном» компаратора вблизи зоны переключения, в схеме выделения прямоугольных импульсов на DA3, я ввел резисторы ПОС (положительной обратной связи) R16, R15 на одноименных входах — выходах компаратора. ПОС нужна на частоте ниже 1 МГц. На частоте в 2МГц данная цепь не требуется и сама перестает участвовать в работе, что видно по осциллограммам.  Осциллограммы напряжений на входах компаратора DA3 на разной частоте. Канал 2 – напряжение на компараторе DA3 вывод 2 – задание порога переключения, канал 1 – напряжение на компараторе DA3 вывод 3 с генератора «пилы». Осциллограмма на частоте 96 кГц. Канал 2 увеличено. Видна волнистая линия синхронно переключению компаратора – это и есть работа ПОС для задания гистерезиса. Глубину гистерезиса можно было бы и уменьшить, но на карту поставлены ключи, которыми будет управлять генератор, поэтому оставим все без изменения.

       

       

       

      Далее схема выделения прямоугольных импульсов с шириной зависящей от порогового напряжения на DA3. На прямой вход компаратора подается пилообразное напряжение, а на инверсный вход – напряжение задания порога переключения компаратора. На выходе получается прямоугольный импульс. Смотрим осциллограммы, разбираемся и вникаем.

       

       

       

      Здесь все понятно. Только если нужен для работы двухтактный выход, то увлекаться очень малым (99%) коэффициентом заполнения не стоит. Так как триггер на малой длительности входного импульса не успевает переключаться, и будет просто пропускать периоды,  выдавая на выходе вместо двухтактных импульсов по очереди – два одинаковых, однотактных, а это чревато нехорошими последствиями, типа сквозного пробоя одновременно открытых ключей.

      Дальше я покажу, как переключается триггер, когда длительность импульса достаточна для его нормальной работы на разных входных частотах. Частота на выходе D триггера равна половине  частоты на входе, и всегда имеет коэффициент заполнения 50% независимо от коэффициента заполнения на входе. Все это видно ниже на графиках.

       

      А вот так хулиганит триггер при входных импульсах недостаточной длительности:

       

      Видно как сбивается развертка и просматривается тот самый пропуск импульса. А это приводит например в полумостовом преобразователе к сквозному «кототоку».

       

      Далее покажу, как формируется полтакта двухтактного импульса, пройдя компаратор,  триггер и логический элемент 2ИЛИ-НЕ:

       

      То, что получилось на выходных контактах, я поместил в первой картинке. Внимательно смотрим, изучаем.  Как видно из графиков, минимальная длительность импульсов на двухтактном выходе завышена до 5%, для того, чтобы триггер четко переключался при входной частоте 2 МГЦ. На частотах до 500 кГц её можно установить и 1 % не опасаясь за пропуски импульса.

      Основной нюанс по настройке генератора: самое главное – чтобы стояли блокировочные керамические конденсаторы типа КМ-5 по 0,1 мкф минимум, или SMD импортные, на каждом корпусе микросхемы. Без них схема работает очень неустойчиво.  Одна сторона платы используется для дорожек, а вторая  используется как экран, её нужно соединить с корпусом в нескольких точках.

      Блок питания каких–либо особенностей не имеет. Для канала +12в используется КРЕНка или 7812, а для канала – 6в используется 7906

      Об выходных драйверах на 2 МГц напишу позже, а то и так много читать надо. Можно использовать готовые микросхемы драйверов, можно собирать на дискретных элементах.

      Спасибо за внимание, и за терпение, и за то, что хватило сил дочитать до этой строки.

      Ещё поздравляю и желаю много валерианки!!!

       

       

      Макетная плата в Layout 5, видео работы генератора в разных режимах и картинки отдельно в файлах.

      Файлы:
      плата
      архив картинок
      видео

      Все вопросы в Форум.

      www.radiokot.ru

      Генератор на базе таймера NE555

      Микросхема интегрального таймера 555 была разработана 44 года назад, в 1971 году и до сих пор популярна. Пожалуй, ещё ни одна микросхема так долго не служила людям. Чего только на ней не собирали, даже поговаривают, что номер 555 — это число вариантов её применения 🙂 Одно из классических применений 555 таймера — регулируемый генератор прямоугольных импульсов.
      В этом обзоре будет описание генератора, конкретное применение будет в следующий раз.

      Плату прислали запечатанной в антистатический пакетик, но микросхема очень дубовая и статикой её так просто не убить.

      Качество монтажа нормальное, флюс не отмыт


      Схема генератора стандартная для получения скважности импульсов ≤2

      Даташит NE555

      Красный светодиод подключен на выход генератора и при малой выходной частоте — мигает.
      По китайской традиции, производитель забыл поставить ограничивающий резистор последовательно с верхним подстроечником. По спецификации, он должен быть не менее 1кОм, чтобы не перегружать внутренний ключ микросхемы, однако, реально схема работает и при меньшем сопротивлении — вплоть до 200 Ом, при котором происходит срыв генерации. Добавить ограничивающий резистор на плату затруднительно из-за особенности разводки печатной платы.
      Диапазон рабочих частот выбирается установленной перемычной в одной из четырёх позиций
      Частоты продавец указал неверно.

      Реально измеренные частоты генератора при питающем напряжении 12В
      1 — от 0,5Гц до 50Гц
      2 — от 35Гц до 3,5kГц
      3 — от 650Гц до 65кГц
      4 — от 50кГц до 600кГц
      On-Line расчёт цепей генератора (примерный)
      Нижний резистор (по схеме) задаёт длительность паузы импульса, верхний резистор задаёт период следования импульсов.
      Напряжение питания 4,5-16В, максимальная нагрузка на выходе — 200мА

      Стабильность выходных импульсов на 2 и 3 диапазонах невысока из-за применения конденсаторов из сегнетоэлектрической керамики типа Y5V — частота сильно уползает не только при изменении температуры, но даже при изменении питающего напряжения (причём в разы). Рисовать графики не стал, просто поверьте на слово.
      На остальных диапазонах стабильность импульсов приемлемая.

      Вот что он выдаёт на 1 диапазоне
      На максимальном сопротивлении подстроечников

      В режиме меандр (верхний 300 Ом, нижний на максимуме)

      В режиме максимальной частоты (верхний 300 Ом, нижний на минимум)

      В режиме минимальной скважности импульсов (верхний подстроечник на максимуме, нижний на минимуме)

      Для китайских производителей: добавьте ограничивающий резистор 300-390 Ом, замените керамический конденсатор 6,8мкФ на электролитический 2,2мкФ/50В, и замените конденсатор 0,1мкФ Y5V на более качественный 47нФ X5R (X7R)
      Вот готовая доработанная схема

      Себе генератор не переделывал, т.к. указанные недостатки для моего применения не критичны.

      Вывод: полезность устройства выясняется, когда какая-либо Ваша самоделка потребует подать на неё импульсы 🙂
      Продолжение следует…

      mysku.ru

      Генератор импульсов с независимой регулировкой длительности и скважности

      Генератор импульсов с независимой регулировкой длительности и скважности и возможностью сгенерировать заданное число импульсов в пачке от 1 до 256 в режиме одиночного запуска или последовательности пачек. Частота генератора при данных RC цепях приблизительно от 1 МГц до единиц герц. В любом из режимов возможна регулировка параметров импульсов. Кроме того есть возможность циклической генерации пачек с заданным количеством импульсов в пачке. В этом режиме есть возможность регулировать расстояние (задержку) между сформированными пачками.

      Этот генератор отстраивался и испытывался отдельными узлами на макетных платах. После чего был собран воедино в единственном экземпляре . Теперь он честно трудится при проведении научных изысканий в Воронежском строительном институте на кафедре сварки.

      Схема принципиальная генератора

      Схему нарисовал достаточно информативно, дополнив диаграммами ключевых процессов, потому надеюсь в понимании принципа работы вопросов возникнуть не должно.

      В верхней части схемы на к155аг3 собран собственно сам генератор с раздельной регулировкой длительности и скважности импульсов. В режиме формирования пачки, число импульсов в пачке формируется и определяется DIP-переключателями S1-S8. НО это число в двоичном коде. Т.е. если нужно 2 импульса, то надо замкнуть переключатель S2. Если нужно 5 импульсов в пачке- замкнуть S1 и S3 . И так далее… Максимальное число импульсов определяется количеством счетчиков, и в данной схеме это 256.

      В нижней части схемы на к155аг3 собран узел формирования временного расстояния между пачками.Задержка плавно регулируется переменным резистором

      Теперь про перемычки.

      1. Перемычка «калибровка генератора». Если ее снять,то задающий генератор «отвязывается» от схемы и работает как простой генератор прямоугольных импульсов с регулируемыми длительностью и скважностью.
      2. Перемычка «однократный запуск пачки». Для однократного запуска пачки нужно снять перемычку и нажать одноименную кнопку. По нажатию кнопки на выходе генератора сформируется пачка из заданного количества импульсов с заданными длительностью и скважностью.

      Если обе перемычки установлены, то генератор после нажатия кнопки «старт пачек» будет выдавать непрерывные пачки импульсов.

      Схема получилась очень надежной и стабильной.Фронты не подрезаются,что было одним из условий техзадания. Кроме того, ее можно гибко наращивать и оптимизировать. В первом варианте генератора использовались 2 мс 555. Но на частотах к 100 кГц первые два импульса в пачке «слипались» После чего и было принято решение перейти на к155аг3.

      radioskot.ru

      Эксперимент 16. Собираем генератор импульсов на микросхеме NE555

      Я собираюсь представить вам наиболее удачную среди всех выпускаемых микросхем — это таймер 555 (Рис.1). Поскольку в Интернете вы можете найти большое количество руководств, в которых рассматривается это устройство, и, следовательно, можете спросить, зачем же нам нужно здесь его обсуждать, то у меня для этого есть, по меньшей мере, три причины:

      1. Этого нельзя избежать. Вы просто должны знать эту микросхему. По оценке некоторых источников ежегодное производство этих микросхем составляет более 1 миллиона штук ежегодно. Микросхема таймера 555 будет использоваться тем или иным способом в большинстве схем, которые нам еще придется рассмотреть.

      2. Микросхема таймера 555 представляет собой отличное введение в интегральные микросхемы, поскольку она является надежными, универсальным устройством и демонстрирует сразу две функции, с которыми мы познакомимся позднее: функцией компаратора и триггера (flip-flop).

      3. После чтения всех руководств по ИС 555, которые я смог найти, начиная с исходного текста оригинального технического описания от компании Fairchild Semiconductor и завершая различными описаниями, посвященными электронике в качестве хобби, я пришел к заключению, что его внутреннее функционирование редко объясняется достаточно понятно. Я хочу предоставить вам графическое изображение того, что происходит внутри, поскольку, если вы не будете иметь его, то не получите возможность творческого использования данной микросхемы.

      Рис.1. Внешний вид микросхемы 555 (полное название NE555)

      Вам понадобятся:

      1.    Источник питания с напряжением 9 В.

      2.    Макетная плата, провода для перемычек и мультиметр.

      3.    Потенциометр с линейной характеристикой и сопротивлением 5 кОм. Количество — 1 шт.

      4.    Микросхема таймера 555. Количество — 1 шт.

      5.    Набор резисторов и конденсаторов.

      6.    Однополюсные однопозиционные кнопки без фиксации. Количество — 2 шт.

      7.    Светодиод (любого типа). Количество — 1 шт.

      Порядок действий

      Микросхема таймера 555 очень надежный электронный компонент, но все же, теоретически, разрядом статического электричества вы можете вывести ее из строя. Поэтому, чтобы это исключить, перед тем, как начинать работу с микросхемой, вам надо будет заземлиться. Эта процедура подробно описана далее в Эксперименте 18. в примечании «Заземление себя». Хотя это примечание прежде всего относится к такому типу микросхем, которые называются CMOS (от англ. Complementary Metal-Oxide Semiconductor — комплементарный металлооксидный полупроводник — КМОП) и которые особенно уязвимы, заземление это именно та предосторожность, которой не следует пренебрегать в любом случае.

      Посмотрите на маленький идентификационный элемент в форме круглого точечного углубления, на корпусе микросхемы и поверните корпус таким образом, чтобы эта метка (или иначе ключ) находилась в левом верхнем углу при направленных от вас выводах микросхемы. Если же на вашей микросхеме идентификационный элемент (ключ) выглядит как полукруглая выемка на середине одного из торцов корпуса, то надо повернуть микросхему таким образом, чтобы эта выемка находилась вверху.

      При таком расположении микросхемы ее выводы нумеруются против часовой стрелки, начиная с левого верхнего вывода (находящегося рядом с ключом). Обратите внимание на рис. 2, на котором, кроме того, приведены наименования выводов микросхемы таймера 555, хотя вам пока нет необходимости знать о них что-то больше.

      Рис. 2. Обозначение выводов микросхемы таймера 555. Выводы всех подобных микросхем нумеруются против часовой стрелки, начиная с левого верхнего угла. При этом метка (ключ) на корпусе должна находиться в верхней части корпуса

      Вставьте микросхему в вашу макетную плату таким образом, чтобы его выводы попали в отверстия посередине платы. Теперь можно легко подать напряжение питания на одни выводы и получить сигналы с других выводов. Для более точного определения положения микросхемы в первом устройстве посмотрите на рис. 3. Таймер на нем обозначен, как «IC1», поскольку «IC» является общепринятым сокращением словосочетания «Integrated Circuit» (интегральная схема — ИС).

      Рис. 3. Эта схема дает возможность исследовать поведение микросхемы таймера 555. Используйте ваш мультиметр, чтобы осуществлять контроль напряжения на выводе 2, как это показано на рисунке. Обращаю ваше внимание на то, что на схеме нет резисторов с обозначениями R1, R2 или R3 и нет конденсаторов C1 или C2, поскольку они будут добавлены в схему позднее. В схеме используются следующие элементы: R4 — резистор с сопротивлением 100 кОм; R5 — резистор с сопротивлением 2,2 кОм; R6 — резистор с сопротивлением 10 кОм; R7 — резистор с сопротивлением 1 кОм; R8 — потенциометр с линейный характеристикой и сопротивлением 5 кОм; C3 — конденсатор электролитический емкостью 100 мкФ; C4 — конденсатор электролитический емкостью 47 мкФ; C5 — конденсатор керамический 0,1 мкФ; IC1 — микросхема таймера 555; S1, S2 — кнопочные однополюсные однопозиционные переключатели без фиксации; D1 — светодиод общего назначения. Резистор R5 поддерживает положительный потенциал на выводе 2 (Запуск) до тех пор, пока не будет нажата кнопка S1, которая понижает напряжение в этой точке до значения, задаваемого положением оси потенциометра R8. Когда напряжение на входе «Запуск» падает ниже 1/3 напряжения питания, выход микросхемы (вывод 3) переходит в состояние высокого уровня в течение периода времени, которое определяется номиналами R4 и C4. Кнопочный переключатель S2 осуществляет сброс таймера путем уменьшения напряжения на выводе 4 (Сброс). Конденсатор C3 сглаживает пульсации напряжения питания, а конденсатор С5 изолирует вывод 5 (Управляющее напряжение), чтобы он не смог оказать влияние на функционирование этой схемы. (Мы будем использовать вывод 5 в следующем эксперименте.)

      Для всех интегральных схем необходим источник питания. На микросхему таймера 555 напряжение питания должно быть подано следующим образом — отрицательное напряжение на вывод 1, а положительное на вывод 8. Если вы случайно перепутаете полярность, то это может привести к выходу ИС из строя, поэтому будьте очень внимательны при подключении ваших перемычек для подачи питания.

      Установите на вашем сетевом адаптере выходное напряжение равным 9 В. Это вполне подходящее значение напряжения для выполнения эксперимента, если вы присоедините плюс питания к правой стороне макетной платы, а минус к левой стороне, как это показано на рис. 3. C3 — это электролитический конденсатор большой емкости, по меньшей мере 100 мкФ, который подключен параллельно источнику напряжения для сглаживания его пульсаций и для обеспечения накопления определенного заряда при подаче напряжения питания на микросхему, которая осуществляет переключения. Кроме этого, он также ограничивает другие быстрые перепады напряжения. Хотя микросхема таймера 555 не является устройством, которое было специально спроектировано для очень быстрого переключения. Однако существуют и другие микросхемы, являющиеся таковыми, и поэтому вы должны взять за правило применять такого рода средства защиты от быстрых переключений.

      Сначала повернем ось потенциометра против часовой стрелки до конца для того, чтобы максимально увеличить сопротивление между точками, к которым он подключен. После этого, когда вы приложите измерительный провод вашего тестера к выводу 2, то вы должны получить напряжение 6 В после нажатия кнопки S1.

      Теперь поверните потенциометр по часовой стрелке и снова нажмите кнопку S1. Если светодиод D1 не загорится, то продолжайте вращать потенциометр и нажимать и отпускать эту кнопку. Когда вы повернете ось потенциометра примерно на две трети ее полного хода, то вы должны увидеть, что светодиод после каждого нажатия кнопки S1 будет загораться и светиться примерно 5 сек. Далее приведены некоторые факты, в справедливости которых вам следует убедиться самостоятельно.

      •    Светодиод продолжает гореть после того, как вы отпускаете кнопку S1.

      •    Вы можете удерживать нажатой кнопку S1 достаточно долго (но меньше продолжительности цикла таймера) и светодиод всегда будет выдавать световой импульс одной и той же длительности.

      •    Таймер срабатывает после снижения напряжения на выводе 2. Вы можете проверить это своим мультиметром.

      •    Светодиод D1 будет либо полностью включен, либо полностью выключен. Вы не сможете увидеть слегка мерцающий светодиод, когда он находится в выключенном состоянии, а переход из положения «выключено» и «включено» происходит очень быстро и четко.

      Посмотрите на соответствующую электрическую схему устройства (рис. 4) и на расположение всех компонентов на вашей макетной плате (рис. 5). Согласно справочной информации, представленной в листах технических данных таймера 555, в схему нужно будет добавить некоторые компоненты, которые мы обозначим как R1, R2, C1 и C2. Поэтому в этой исходной схеме резисторы обозначены, начиная с R4, а конденсаторы, начиная с C3.

      Рис. 4. Графическое представление электрической схемы устройства, монтажная схема которого показана на рис. 3. Мы будем рассматривать принципиальные схемы, которые выполнены таким образом, что они максимально похожи на расположение компонентов на макетной плате. Это не всегда самое оптимальное изображение компоновки, но пользуясь этим изображением проще всего выполнять монтаж. Номиналы всех компонентов схемы представлены на рис. 3

      Когда кнопка S1 не нажата, на вывод 2 таймера 555 через резистор R5, который имеет сопротивление 2,2 кОм, поступает положительное напряжение. Поскольку внутреннее входное сопротивление таймера на выводе 2 имеет очень высокое значение, то напряжение на нем будет почти равно напряжению источника питания, т. е. 9 В.

      Рис. 5. Здесь показано, как выглядят компоненты схемы после их установки на макетную плату. Зажимы типа «крокодил» присоединены к проводу, который соединяет электролитический конденсатор С3 емкостью 100 мкФ с потенциометром R8. Напряжение питания на плату не подано

      Если же нажать на кнопку S1, то помимо этого к выводу 2 через резистор R8 (потенциометр с сопротивлением 5 кОм) будет подключен еще и минусовой вывод источника питания. Таким образом, для вывода 2 резисторы R8 и R5 образуют делитель напряжения. Вы, наверное, можете вспомнить аналогичное решение, когда вы выполняли тестирование транзисторов. Напряжение между этими резисторами будет меняться в зависимости от значений их сопротивлений.

      Если ось потенциометра R8 повернуть примерно наполовину, то сопротивление потенциометра будет примерно равно сопротивлению резистора R5, т. е. в средней точке делителя, подключенной к выводу 2, напряжение будет равно примерно половине напряжения источника питания. Но когда вы будете поворачивать ось потенциометра таким образом, чтобы его сопротивление уменьшалось, напряжение на выводе 2 микросхемы начнет постепенно уменьшаться.

      Если у вас есть зажимы на измерительных проводах вашего мультиметра, то вы можете закрепить их на соответствующих выводах элементов, а затем следить за тестером при повороте потенциометра в одну и в другую сторону, после чего каждый раз следует нажимать на кнопку S1.

      Графики на рис. 6 иллюстрируют происходящее. На верхнем графике показано напряжение, которое приложено к выводу 2 микросхемы при произвольных нажатиях кнопки и различных положениях оси потенциометра. На нижнем графике показано, что микросхема таймера 555 срабатывает тогда, и только тогда, когда напряжение на выводе 2 становится меньше напряжения 3 В. Что такого особенного в этой величине 3 В? Это одна треть от напряжения питания 9 В.

      Рис. 6. На верхнем графике показано напряжение запуска (вывод 2), когда нажата кнопка, причем интервалы нажатия и отпускания кнопки разные при различных положениях оси потенциометра. Нижний график иллюстрирует выходной сигнал (вывод 3), который скачкообразно меняется от нуля до напряжения питания, в тот момент времени, когда напряжение на выводе 2 станет меньше 1/3 напряжения питания

      Далее следуют пункты, которые надо проверить при выполнении домашнего задания.

      • Выход микросхемы таймера 555 (вывод 3) выдает положительный импульс только тогда, когда напряжение запуска (вывод 2) становится меньше одной трети напряжения питания схемы.

      • Микросхема таймера 555 каждый раз формирует положительной импульс одной и той же длительности (начиная с момента выдачи запускающего напряжения на выводе 2).

      • Чем больше сопротивление резистора R4 или емкость конденсатора C4, тем больше длительность выходного импульса.

      • Когда на выходе (вывод 3) будет напряжение высокого уровня, то это напряжение будет практически равно напряжению питания. Когда на выходе напряжение низкого уровня, то оно почти равно нулю.

      Микросхема таймера 555 преобразует хаотичный мир входных запускающих импульсов в прецизионный и регулируемый на выходе. Микросхема на самом деле не включается и не выключается абсолютно мгновенно, но все-таки достаточно быстро, чтобы каждый раз можно было бы считать ее изменяющейся мгновенно.

      Теперь осталась еще одна вещь, которую следует попробовать. Срабатывание таймера приводит к тому, что загорается светодиод D1. Если же в это время нажать на кнопку S2, то она на вывод 4 (Сброс) подаст нулевое напряжение. При этом светодиод должен мгновенно погаснуть.

      Когда напряжение на выводе «Сброс» станет низким, выход тоже становится низким вне зависимости от напряжения, которое приложено к выводу «Запуск».

      Есть еще одна вещь, о которой я хотел бы упомянуть до начала использования таймера в более интересных схемах. Я включил резисторы R5 и R6 таким образом, что как только вы подадите питание на таймер, он не должен формировать импульсы, но был бы готов к выполнению этого. Данные резисторы задают положительные напряжения соответственно на выводах «Запуск» и «Сброс», что создает такие условия, при которых таймер 555 будет готов запуститься, как только на него подадите напряжение питания.

      Пока напряжение на выводе «Запуск» будет оставаться высоким, таймер не будет генерировать импульсы. (Он генерирует импульсы только, когда это напряжение будет меньше некоторого порогового значения.)

      Пока напряжение на выводе «Сброс» будет оставаться высоким, таймер будет в состоянии формировать импульсы. (Генерация прекращается, когда напряжение на этом выводе будет иметь низкий уровень.)

      Резисторы R5 и R6 известны, как подтягивающие резисторы, поскольку подтягивают напряжение в точках их подключения к напряжению питания. Вы с легкостью можете подавить это напряжение, используя непосредственное подключение этих точек к отрицательному выводу источника питания. Типичное значение сопротивления подтягивающего резистора для таймера 555 составляет 10 кОм. В соответствии с законом Ома при наличии источника питания с напряжением 9 В через резистор будет протекать ток, равный 0,9 мА.

      Наконец, вы можете задаться вопросом о назначении конденсатора C5, присоединенного к выводу 5. Этот вывод известен, как вывод «Управляющего напряжения», что означает, что если вы подаете на него напряжение, то вы можете управлять чувствительностью таймера. Я вернусь и рассмотрю это более подробно несколько позднее. Поскольку мы не используем эту функцию прямо сейчас, то в качестве нормального решения будет подключение к выводу 5 конденсатора, чтобы защитить его от колебаний напряжения питания и предотвратить попадание на него какого-либо сигнала, который окажет на этот вывод негативное воздействие при нормальном функционировании.

      Прежде чем продолжите чтение, убедитесь, что вы знакомы с основными функциями таймера 555.

      Теория

      Внутри таймера 555.Режим одновибратора (моностабильный)

      Пластмассовый корпус таймера 555 содержит пластинку кремния (кристалл), на которой вытравлены сотни транзистор­ных переходов согласно схеме, которая слишком сложна, чтобы ее можно было сразу. Тем не менее я смог обобщить функции этих внутренних элементов, разделив их на основные группы, которые показаны на рис. 7. Кроме этого на этой схеме показаны внешний резистор R4 и два внешних конденсатора С4 и С5, которые обозначены так же, как и на схе­ме, приведенной на рис. 4.

      Символами питания с минусом «-» и плюсом «+» внутри ин­тегральной микросхемы отмечено напряжение питания, кото­рое подается на ее выводы 1 и 8 соответственно. Я опустил вну­тренние соединения этих выводов, чтобы сделать схему более понятной.

      Два желтых треугольника, обозначенных буквами «А» и «В», означают два внутренних компаратора. Каждый компаратор сравнивает два напряжения на двух входах (в основании тре­угольника) и выдает выходное напряжение (из вершины тре­угольника) в зависимости от того, одинаковый сигнал на входах или различный. В дальнейшем мы обязательно будем использовать компараторы для различных целей.

      Прямоугольник зеленого цвета, который внизу обозна­чен буквами «FF», означает триггер (flip-flop) . На структурной схеме я показал его в виде двухполюсного двухпозиционного переключателя, поскольку в данном случае он функционирует именно так, хотя, естественно, это твердотельный полупроводниковый переключатель.

      Рис. 7. Внутренняя структурная схема таймера 555. Белыми линиями показаны резисторы и соединения внутри микросхемы. Треугольниками с буквами «А» и «В» обозначены два компаратора. Прямоугольник, обозначенный «FF» — это триггер (flip-flop), который находится либо в одном, либо в другом стабильном состоянии, аналогично двухполюсному двух-позиционному переключателю. Снижение уровня напряжения на выводе 2 контролируется компаратором «А», который при определенном значении напряжения переключает триггер (переключатель) в нижнее по схеме положение (DOWN), и таким образом формирует положительный импульс на выходе микросхемы (вывод 3). Когда конденсатор C4 зарядится до напряжения, равного 2/3 напряжения питания, что определяется компаратором «В», который в это время переключает триггер (переключатель) в верхнее по схеме положение (UP). В этом состоянии триггера заряженный ранее конденсатор C4 разряжается через вывод 7

      Изначально, когда вы подаете напряжение питания на микросхему, триггер находится в верхнем по схеме положении (которое и показано на рис. 7), когда отрицательный (общий) вывод источника питания, обозначенный символом «-», поступает на выход микросхемы (вывод 3). Если на триггер приходит сигнал (DOWN) от компаратора «А», то он переключается в нижнее по схеме положение и затем какое-то время остается в этом состоянии. Когда же на триггер приходит сигнал (UP) от компаратора «В», то он снова переключается в верхнее по схеме положение и фиксируется уже в этом состоянии. Обозначения «UP» (вверх) и «DOWN» (вниз) на выходах соответствующих компараторов будут напоминать вам, что каждый из них делает, когда переходит в активное состояние.

      Триггер является основным элементом в цифровой электронике. Компьютеры не смогли бы функционировать без использования этого элемента.

      Обратите внимание на внешний провод, который присоединяет вывод 7 к конденсатору С4. Пока триггер находится в верхнем по схеме положении, на этот вывод поступает «-» источника питания, что препятствует заряду конденсатора от «+» источника питания через резистор R4.

      Если напряжение на выводе 2 падает до 1/3 напряжения питания, то компаратор «А», замечая это, выполняет переключение триггера. Это приводит к началу формирования положительного импульса на выводе 3, а также к отключению «-» источника питания от вывода 7. Поэтому в это время конденсатор C4 через резистор R4 начинает заряжаться от «+» источника питания. Пока выполняется заряд конденсатора, на выходе таймера продолжает присутствовать «+» источника питания, т. е. продолжается формирование положительного импульса.

      По мере заряда конденсатора C4 компаратор «В» через вывод 6, который называется «Порог» (Threshold), отслеживает возрастающее на конденсаторе напряжение. Когда конденсатор зарядится до значения, равного 2/3 напряжения источника питания, компаратор «В» сработает и выдаст сигнал «UP» (вверх) на триггер, возвращая его обратно в исходное состояние, которое показано на рисунке. Это приводит к разряду конденсатора через вывод 7, который так и называется «Разряд» (Discharge). В это время триггер прекращает формирование положительного импульса на выходе микросхемы (вывод 3) и выдает на него «-» источника питания. Таким образом таймер 555 возвращается в исходное состояние.

      Обобщая все предыдущее, приведу последовательность основных выполняемых событий:

      1.    Изначально триггер через источник питания закорачивает (разряжает) конденсатор C4 и выдает на выходе микросхемы (вывод 3) низкий уровень сигнала («-» источника питания).

      2.    После уменьшения напряжения на выводе 2 до значения, равного 1/3 напряжения питания или менее того, микросхема на выходе (вывод 3) начинает формирование положительного импульса и предоставляет возможность конденсатору C4 начать заряжаться через резистор R4.

      3.    Когда конденсатор достигает 2/3 напряжения питания, микросхема разрядит конденсатор C4, завершится формирование положительного импульса и на выходе (вывод 3) снова будет напряжение низкого уровня.

      В рассмотренном случае таймер 555 работает в режиме ждущего одновибратора, что означает, что он выдает только по одному импульсу, а вы, чтобы получить каждый следующий импульс, должны заставить его сработать.

       

      Длительность формируемого импульса можно регулировать за счет изменения значений сопротивления резистора и емкости конденсатора С4. Каким же образом вам узнать какие значения надо выбрать? Обратитесь к следующему разд. «Фундаментальные сведения» и посмотрите на табл. 1 с приблизительными уже рассчитанными данными. В этом же разделе имеется формула, воспользовавшись которой, вы можете рассчитать и свои собственные значения.

      Я не побеспокоился о том, чтобы в данную таблицу включить импульсы длительностью менее 0,01 сек, поскольку одиночный импульс такой длительности, как правило, не имеет практической ценности. Кроме того, я округлил значения в таблице до 2 цифр после запятой, поскольку значения емкости конденсатора редко бывают более точными.

      Фундаментальные сведения

      Таблица. 1 показывает длительность фор­мируемого таймером 555 импульса в режиме одновибратора.

      •  Длительность импульса приводится в секундах с округлени­ем до двух значащих цифр после запятой.

      •  Горизонтальная шкала показывает значение сопротивления меж­ду выводом 7 и положительным выводом источника питания.

      •  Вертикальная шкала показывает общие значения емкости меж­ду выводом 6 и отрицательным выводом источника питания. Чтобы рассчитать различную длительность импульса, надо

      выполнить умножение по формуле:

      tи = сопротивление х емкость х 0,0011,

      где сопротивление приводится у килоомах, емкость в микрофа­радах, а длительность получается в секундах.

       Таблица 1.

      Базовые сведения

      Как родился таймер

      В конце 1970 года, когда имелось полдюжины корпораций, пустивших корни на плодородной почве Силиконовой долины, компания Signetics приобрела идею у инженера по имени Ханс Камензинд (Hans Camenzind). Это не была такая уж революцион­ная идея — имелось всего 23 транзистора и набор резисторов, которые могли работать, как программируемый таймер. Таймер обещал быть универсальным, стабильным и простым, но все эти достоинства бледнели при обращении к его начальной стои­мости. Используя революционную технологию создания инте­гральных микросхем, компания Signetics смогла оформить все устройство в одном кремниевом чипе.

      Рис. 8. Ханс Камерзинд (Hans Camenzind) изобретатель и разработчик микросхемы таймера 555 производства компании Signetics

      Разработка предполагала пройти некоторый путь проб и ошибок. Камензинд, работая один, выполнил все устройства в большом масштабе, используя имеющиеся в наличии транзисто­ры, резисторы и диоды, установленные на макетной плате. Он начал с того, что немного поменял номинальные значения раз­ных компонентов, следя за тем, каким образом схема будет реа­гировать на разные изменения в процессе производства и такие факторы, как, например, изменение температуры в процессе эксплуатации. Он сделал, по меньшей мере, около 10 различных вариантов схемы. На это ушло несколько месяцев работы.

      Затем настало время ручной работы. Камензинд садился за рабочий стол и, используя специально изготовленный компа­нией нож «X-Acto», наносил свою схему на большой лист пла­стика. Компания Signetics затем уменьшила это изображение с помощью фотографии в масштабе примерно 300 : 1. Они про­травили ее в тонкой кремниевой пластине, а затем поместили всю эту конструкцию в прямоугольный пластмассовый корпус с номером изделия, который был отпечатан на крышке. Таким образом родился таймер 555.

      Ему была уготована судьба наиболее популярной микросхе­мы в истории, как по количеству проданных единиц (десятки миллионов, и этот счет растет) и продолжительности существо­вания конструкции (она остается неизменной вот уже сорок лет). Микросхема таймера 555 использовалась везде — от ракет до детских игрушек. Он может заставить мигать огни, приводить в действие охранную сигнализацию, менять длительность меж­ду звуковыми сигналами и создавать сами звуковые сигналы.

      В настоящее время ИС разрабатываются большими коман­дами производителей и тестируются путем моделирования их поведения с помощью программного обеспечения компьютера. Таким образом, микросхемы, расположенные внутри компьюте­ра, предоставляют возможность спроектировать новые ИС. Зо­лотые дни конструкторов-одиночек, таких как Ханс Камерзинд, давно прошли, но его гений до сих пор живет внутри каждого таймера 555, который выходит с заводского конвейера.

       

       

      Фундаментальные сведения

      Почему таймер 555 так полезен?

      В своем режиме одновибратора (моностабильном), кото­рый мы только что рассмотрели, таймер 555 генерирует один импульс фиксированной (но программируемой) длительности. Есть ли у вас какие-либо мысли, как можно было бы использо­вать этот прибор? Подумайте о продолжительности времени, когда импульс от таймера 555 управляет некоторым другим компонентом. Датчик движения для включения наружного освещения, например. Когда инфракрасный детектор «видит», что что-то движется, то загорается свет на определенный пери­од времени, который может задаваться таймером 555.

      Другим применением может быть тостер. Когда кто-то опу­скает кусок хлеба, переключатель замыкает контакты, что при­водит к включению цикла работы тостера. Чтобы изменять длительность этого цикла, вы вместо сопротивления R4 можете использовать потенциометр и присоединить его к ручке, уста­новленной на корпусе устройства, чтобы с его помощью за­давать необходимый уровень прожаренности хлеба. В конце цикла тостера выходной сигнал от таймера 555 должен пройти через мощный транзистор, который в свою очередь подает на­пряжение питания на катушку электромагнита (это что-то вроде реле, за исключением того, что у нее нет контактов для включе­ния/выключения), выбрасывающего прожаренный кусок хлеба.

      Еще одно применение. Периодически включаемые дворни­ки автомобиля могут управляться таймером 555 — и в прежних моделях автомобилей это было именно так.

      А что можно сказать об охранной сигнализации, которую мы описывали в Эксперименте 15? Одна из функций, которую я упо­минал, и которая не была реализована, это возможность само­стоятельного отключения системы сигнализации через опреде­ленный, фиксированный интервал времени. Для выполнения этого мы можем использовать регулируемый выходной сигнал таймера.

      Эксперимент, который вы сейчас будете выполнять, выгля­дит примитивным, но в нем фактически реализуются все его возможности.

       

      Ограничения при использовании микросхемы таймера 555

      1.    Таймер может запускаться от стабильного источника питания с напряжением от 5 до 15 В.

      2.    Большинство производителей рекомендуют регулирующий резистор, присоединенный к выводу 7, в диапазоне сопротивлений от 1 кОм до 1 МОм.

      3.    Величина емкости времяопределяющего конденсатора может быть настолько высокой, насколько продолжительным вы хотите получить временной интервал, но точность при увеличении длительности интервала будет падать.

      4.    На выходе микросхемы может быть получена мощность до 100 мА при напряжении питания 9 В. Этого достаточно для большинства небольших реле или миниатюрных динамиков, что вы увидите в следующих экспериментах.

      Остерегайтесь, чтобы не перепутать выводы!
      Во всех схемах я привожу микросхемы точно с таким расположением, как было показано ранее — вывод 1 находится вверху слева. В других схемах, которые вы можете найти на веб-сайтах, все может быть показано иначе. Для удобства изображения схем некоторые часто указывают номера выводов микросхем таким образом, что вывод 1 необязательно находится рядом с выводом 2.

      Рис. 9. Многие рисуют схемы, в которых номера выводов микросхем располагаются в произвольном порядке, что значительно уменьшает схему и упрощает понимание ее функций. Это не помогает, когда вы начинаете реально выполнять подключения. Здесь приведена точно такая же схема, как и на рис. 4. Однако этот вариант схемы будет труднее реализовать на макетной плате

      Автор: Чарльз Платт

      Возможно, вам это будет интересно:

      meandr.org

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *