Расчет сопротивления для светодиода 12в: Расчет резистора для светодиода 12в

Содержание

Расчет резистора для светодиода и различные подключения LEDs

Подключать светодиоды — дело не из сложных. Для правильного подключения достаточно знать школьный курс физики и соблюсти ряд правил.

Сегодня рассмотрим как правильно рассчитать резистор для светодиода и подключить его, чтобы он горел долго и на радость потребителю. Самые дешевые и качественные резисторы поштучно и наборами можно купить тут с бесплатной доставкой.

Главный параметр у любого светодиода — ток, а не напряжение, как считают многие. Светодиод необходимо питать стабилизированным током, величина которого всегда указана производителем на упаковке или в datasheet.

[contents]

Ток на светодиодах ограничивается резистором — это самый дешевый вариант. Но есть и более «продвинутый» — использовать светодиодный драйвер. По факту, использование резисторов — пережиток прошлого, ведь на сегодняшний день драйверов на любой вкус и цвет полным-полно и по самой привлекательной цене. К примеру, самые дешевые можно приобрести тут. Драйверы обеспечивают стабильный ток на светодиодах независимо от изменения напряжения на его входе.

Правильное подключение светодиода к драйверу следует так: сперва необходимо подключить светодиод к драйверу, только после этого включаем драйвер.

Существует несколько типов подключения светодиодов:

Расчет резистора для светодиода


Недавно мы открыли новую рубрику «калькуляторы», где Вы можете быстро и самостоятельно рассчитать резистор для одного светодиода с помощью онлайн-калькулятора, если не желаете читать дальше много букв.

Вспомним закон Ома:

U=I*R

R=U/I где,

R — сопротивление — измеряется в Омах

U — напряжение-  измеряется в вольтах (В)

I — ток- измеряется в амперах (А)

Пример расчета резистора для светодиода:

Допустим, источник питания выдает 12 В: Vs=12 В

Светодиод — 2 В и 20 мА

Чтобы рассчитать резистор нам необходимо преобразовать миллиамперы в амперы:

20 мА=0,02 А.

R=10/0.02=500 Ом

На сопротивление рассеивается 10 В (12-2)

Посчитаем мощность сопротивления:

P=U*I

P=10*0.02 A=0.2 Вт

Необходимый резистор — R=500 Ом и Р=0,2 Вт

Расчет резистора для светодиода при последовательном соединение светодиодов


Минус светодиода подключается с плюсом последующего. Так соединить можно до бесконечности. При таком соединении падение напряжения на светодиоде умножается на количество диодов в цепи. Т.е. если у нас 5 светодиодов с номинальным током 700 мА и падением напряжения 3,4 Вольта, то и драйвер нам необходим на 700 мА 3,4*5=17В

Это мы рассмотрели какие можно подбирать драйверы, а теперь вернемся непосредственно к тому, как произвести расчет резистора для светодиода при таких соединениях. Однако, можно рассчитать резистор при последовательном соединении светодиодов и в автоматическом режиме на нашем новом калькуляторе.

Выше мы рассмотрели расчет резистора для светодиода (одного). Пр последовательном соединении расчет аналогичный, но необходимо учитывать, что падение напряжения на резисторе меньше. Если «на пальцах», то от источника питания Мы отнимается суммарное падение напряжения на светодиодах Vl=3*2=6В. При условии, что у нас источник выдает 12В, то 12-6=6В.

R=6/0.02=300 Ом.

Р=6*0,02=0,12Вт

Т.е. нам нужен резистор на 300 Ом и 0,125 Вт.

Характеристики светодиода и источника питания аналогичные предыдущему примеру. 

Расчет резистора для светодиода при параллельном соединении


При таком соединении плюс светодиода соединяется с плюсом другого, минус с минусом. При таком соединении ток суммируется, а падение остается неизменным. Т.е. если мы имеем 3 светодиода 700 мА и падением 3,4 В, то 0,7*3=2,1А, то нам потребуется драйвер с параметрами 4-7 В и не менее 2,1А.

Расчет резистора для светодиода в этом случае аналогичен первому случаю.

Расчет резистора для светодиода при последовательно-параллельное соединении


Интересное соединение. При таком расположении диодов несколько последовательных цепочек соединяются параллельно. Необходимо знать, что количество светодиодов в цепочках должно быть равным. Драйвер подбирается с учетом падения напряжения на одной цепочке и произведению тока на количество цепочек. Т.е. 3 последовательные цепи с параметрами 12В и 350 мА подключаются параллельно, напряжение остается 12В, а ток 350*3=1,05А. Для долгой работы чипов нам нужен светодиодный драйвер с 12-15В и током 1050мА.

Расчет резистора для светодиода в этом случае будет таким:

Резистор аналогичен при последовательном соединении, однако, стоит учитывать, что потребление от источника питания увеличится в три раза (0,2+0,2+0,2=0,06А).

При подключении светодиодов через резистор нужен стабилизированный источник питания, т.к. при изменении напряжения будет изменяться и ток, идущий через диод.

Существует еще один способ соединения светодиодов — параллельно-последовательное с перекрестным соединением. но это достаточно сложная тема в расчетах, поэтому не буду ее тут раскрывать. Если потребуется, конечно, опишу, но думаю это нужно только узкому кругу специалистов.

В сети можно найти много онлайн-калькуляторов, которые Вам рассчитают сразу резисторы. Но слепо верить им не стоит, а лучше перепроверить, следуя поговорке: «Хочешь сделать это хорошо, сделай это сам».

Видео на тему правильного расчета резисторов для LEDs


Расчет сопротивления для диодов

Часто при изготовлении разнообразных устройств возникает необходимость использовать светодиоды и светодиодные индикаторы. Подключение светодиода к источнику питания выполняется, как правило, через ограничивающий ток резистор (гасящий резистор). Ниже описаны принципы и формулы для расчета гасящего резистора, а также небольшой калькулятор для быстрого подсчета.

Расчет гасящего резистора для светодиода

Первым делом разберемся как выполнить расчет сопротивления гасящего резистора, от чего оно зависит и какой мощности должен быть резистор для питания светодиода от источника питания.

Рис. 1. Схема подключения светодиода к источнику питания через резистор.

Как видим из схемы, ток (I) через резистор и светодиод протекает один и от же. Напряжение на резисторе равно разнице напряжений питания и напряжения на светодиоде (VS-VL). Здесь нам нужно рассчитать сопротивление резистора (R), при котором через цепь будет протекать напряжение I, а на светодиоде будет напряжение VL.

Допустим что мы будем питать светодиод от батареи напряжением 5В, как правило такое питающее напряжение используется при питании микроконтроллерных схем и другой цифровой техники.

Вычислим значение напряжения на гасящем резисторе, для этого нам нужно знать падение напряжения на светодиоде, это можно выяснить по справочнику для конкретного светодиода.

Примерные значения падения напряжения для светодиодов (АЛ307 и другие маломощные в подобном корпусе):

  • красный — 1,8. 2В;
  • зеленый и желтый — 2. 2,4В;
  • белые и синие — 3. 3,5В.

Допустим что мы будем использовать синий светодиод , падение напряжения на нем — 3В.

Производим расчет напряжения на гасящем резисторе:

Uгрез = Uпит — Uсвет = 5В — 3В = 2В.

Для расчета сопротивления гасящего резистора нам нужно знать ток через светодиод. Номинальный ток конкретного типа светодиода можно узнать по справочнику. У большинства маломощных светодиодов (наподобии АЛ307) номинальный ток находится в пределах 10-25мА.

Допустим что для нашего светодиода номинальный ток для его достаточно яркого свечения составляет 20мА (0,02А). Получается что на резисторе будет гаситься напряжение 2В и проходить ток 20мА. Выполним расчет по формуле закона Ома:

R = U / I = 2В / 0,02А = 100 Ом.

В большинстве случаев подойдет маломощный резистор с мощностью 0,125-0,25Вт (МЛТ-0,125 и МЛТ-0,25). Если же ток и напряжение падения на резисторе будет очень отличаться то не помешает произвести

расчет мощности резистора:

P = U * I = 2В * 0,02А = 0,04 Вт.

Таким образом, 0,04 Вт явно меньше номинальной мощности даже для самого маломощного резистора МЛТ-0,125 (0,125 Вт).

Произведем расчет для красного светодиода (напряжение 2В, ток 15мА).

Uгрез = Uпит — Uсвет = 5В — 2В = 3В.

R = U / I = 3В / 0,015А = 200 Ом.

P = U * I = 3В * 0,015А = 0,045 Вт.

Простой калькулятор для расчета гасящего резистора

Теперь вы знаете как по формулам рассчитать гасящий резистор для питания светодиода. Для облегчения расчетов написан несложный онлайн-калькулятор:

Форму прислал Михаил Иванов.

Заключение

При подключении светодиодов не нужно забывать что они имеют полярность. Для определения полярности светодиода можно использовать мультиметр в режиме прозвонки или же омметр.

Использование гасящих резисторов оправдано для питания маломощных светодиодов, при питании мощных светодиодов нужно использовать специальные LED-драйверы и стабилизаторы.

Вот тут я обещал рассказать о том, как можно рассчитать номинал резистора для того, чтобы бортовая сеть вашего автомобиля не сожгла светодиоды, которые вы к ней подключите.
Для начала определимся с терминологией (люди, знакомые с электроникой, могут перейти к следующему пункту).

Падение напряжения — напряжение U (измеряется в вольтах, V) — которое потребляет светодиод (да-да, совершенно нагло съедает его!).
Оно же — напряжение питания. Не путать с напряжением источника питания.
Рабочий ток — ток I (измеряется в амперах, А. мы будем измерять в миллиамперах — 1 мА = 0.001 А).
СопротивлениеR измеряется в омах — Ом. Именно в этих единицах измеряются резисторы (сопротивления).
Напряжение источника питания — в нашем случае напряжение бортовой сети автомобиля и равно примерно 12V при заглушенном двигателе и 14V при заведённом (при условии исправной работы генератора).

С терминологией вроде всё. Перейдём к теории.
Вот примерное падение напряжения для каждого из основных цветов светодиодов.

Красный — 1,6-2,03
Оранжевый — 2,03-2,1в
Жёлтый — 2,1-2,2в
Зелёный — 2,2-3,5в
Синий — 2,5-3,7в
Фиолетовый — 2,8-4в
Белый — 3-3,7в

Реальные значения могут немного колебаться в ту или иную сторону. О том, как точно выяснить сколько потребляет конкретный светодиод — ссылка ниже.
Разница связана с использованием в них разных материалов кристалла, что и даёт, собственно говоря, разную длину испускаемой волны, а равно и разный цвет.

Средний же рабочий ток для маломощных светодиодов составляет около 0.02А = 20мА

.
В чём же, спросите вы, загвоздка? Всё ведь просто — подключил светодиод соблюдая полярность и он светит тебе.
Да, всё так, но светодиод – предмет тёмный, изучению не подлежит интересный.
Тогда как напряжения питания он забирает на себя ровно столько, сколько ему требуется, ток превышающий его рабочий ток, попросту сожжёт кристалл.

Давайте возьмём пример. Имеется светодиод оранжевого цвета, который, согласно приведённой выше таблице, имеет напряжение питания порядка 2,1V, и рабочий ток 20мА. Если мы обрушим на него всю мощь бортовой сети нашего автомобиля, то напряжение в цепи, в которую он включен, снизится на

2.1V, правда, избыточный ток тут же его сожжёт…

Как же быть, если нам, например, нужно установить светодиод для подсветки замка зажигания?
Всё просто – нужно лишить участок цепи, в которую включен светодиод, избыточного тока.

Как? – спросите вы. Всё просто. Был такой дядя, Георг Ом, который вывел известную любому старшекласснику формулу (закон Ома для участка цепи) – U=I*R (где U – напряжение, I – ток, R – сопротивление.)
Переворачиваем эту прекрасную формулу, получая R=U/I.
В нашем случае R – сопротивление (номинал резистора), которое нам потребуется; U – напряжение в участке цепи, I – рабочий ток нашего светодиода.
Vs – напряжение источника питания
Vl – напряжение питания светодиода

Таким образом R=(Vs-Vl)/I=(12-2.1)/0.02=9.9/0.02=495 Ом – номинал резистора, который необходимо включить в цепь, дабы напрямую подключить светодиод к бортовой сети при выключенном двигателе.
Для работы при включенном двигателе рассчитываем так же, только Vs берём уже 14В.
Настоятельно рекомендую производить расчёты для авто, беря за напряжение бортовой сети 14В, иначе ваши светодиоды достаточно быстро выйдут из строя.

Если взять номинал больше, например 550-600 Ом, то светодиод будет светить чуть менее ярко.
Если номинал будет меньше, то «свет твоей звезды будет коротким, хоть и очень ярким».

Достоверно узнать, сколько вольт потребляет конкретный светодиод, можно подключив его к источнику постоянного напряжения в 3-5 вольт, подсоединив последовательно вольтметр (можно использовать электронный мультиметр, включив его в соответствующий режим), после чего посчитать насколько снизилось напряжение в цепи. И исходя уже их этих, конкретных данных, рассчитать требуемый вам резистор. Подробнее об этом методе читайте

здесь.

В конце хочу сказать вам, что настоятельно рекомендую использовать номинал резистора немного выше чем расчётный, что, несомненно, продлит жизнь светодиодам.
Для определения резистора по цветовой маркировке (а именно так обозначены все современные резисторы) рекомендую использовать этот онлайн-калькулятор.
www.chipdip.ru/info/rescalc

Спасибо, что читаете мой БЖ, мне очень приятно. Если остались вопросы — задавайте не стесняясь — всем отвечу.

Уже невозможно представить современное освещение без использования светодиодов. Они используются буквально во всех возможных сферах – это связано с их сравнительно просто конструкцией, которая обеспечивает эргономичное соотношение стоимости, потребляемой энергии и производимого света. Единственная сложность, с которой может столкнуться обычный потребитель – грамотная установка светодиодов, которая позволит извлечь из их работы максимальную эффективность.

Одним из важнейших параметров, который нужно учитывать при запуске, является ограничение тока, подаваемого на тело светодиода. Расчет резистора для светодиода позволит добиться стабильной работы освещения и обеспечить долгий срок работы каждого отдельно взятого элемента.

Теоретическая часть

Светодиод – полупроводниковый элемент, который излучает свет при прохождении сквозь него тока с определенными параметрами. Долговечность подключенного устройства и стабильность его работы напрямую зависит от величины тока, которая на него подается. Именно стабильность, а не сила тока; вопреки распространенному мнению, даже незначительные превышения в этом параметре значительно увеличивают скорость паспортной деградации кристаллов, излучающих светодиодный свет.

Во избежание нежелательных перегрузок была предложена система ограничения подаваемого тока, которая называется «токоограничивающий резистор». Важно отметить, что он именно ограничивает ток, поступающий в устройство, но не стабилизирует его, поэтому при неправильно подобранном резисторе его наличие может оказаться бесполезным. Для правильного подбора сопротивления к конкретному источнику света необходимо узнать некоторые технические данные и провести расчет сопротивления резистора.

Зачем нужен резистор?

Токоограничительный светодиодный резистор нужен в тех случаях, когда на первом месте стоит именно стабильность и продолжительность работы источников света, а не мощность их излучения. Такие цели преследуются в различных бытовых приборах с мигающими индикаторами, указателями и кнопками включения, а также в автомобилях, где стабильность тока в системе оставляет желать лучшего. Также он незаменим во время тестирования новых моделей светодиодов в производственных лабораториях.

В случаях, когда важна яркость света, которую выдает кристалл, нужно использовать именно стабилизатор тока – драйвер. Чаще всего драйвер имеет точные параметры и продается в комплекте с конкретным LED-изделием – светильником, лентой, или же сразу встраивается в лампочку. Также драйвер используется, если мы выбираем очень мощные источники света с огромной яркостью.

Расчет для мощного светодиода

В этом разделе будет представлена инструкция, как выбрать ограничитель на основании расчетов. Все нижеприведенные числа теоретические. Для получения точной информации о своих светодиодах изучите техническую документацию, предоставляемую производителем или поставщиком.

Как рассчитать резистор для светодиода? В качестве примера будет использован расчет сопротивления теоретического светодиода белого цвета, который необходимо подключить к источнику тока 12 В (обозначим его буквой U). Сопротивление токоограничивающего резистора будет обозначаться буквой R – наша искомая величина. Белые и голубые светодиоды обычно имеют напряжение питания 4 В, все остальные цвета – не более 2 В. Наш источник света будет иметь максимальную мощность Umax=3.8 В, и минимальную Umin=3.1 В.

Ни в коем случае не используйте для расчета значение максимальной мощности, т. к. это все равно заставит работать светодиод на пределе вне зависимости от наличия ограничительного резистора. Обязательно необходимо узнать ток самого LED, он измеряется в амперах и обозначается буквой I. Наше устройство будет иметь ток 50 мА, или же 0.05 А. На этом сбор данных о LED заканчивается, их нужно подставить в простую формулу вида:

Проводим элементарное вычисление, в ходе которого выясняем, что:

R = (12 — 3.1) / 0.05 = 178 Ом.

Однако эта формула не дает нам конечного значения, т. к. не существует резисторов под каждое точно найденное число. Для поиска необходимого элемента нужно воспользоваться специальной таблицей, которая поможет подобрать резистор с максимально приближенным значением сопротивления. Для этого можно взглянуть на ниже представленные картинки. На них стрелочкой будет показан метод определения резистора, который нужно спросить у продавцов или поискать у себя.

Проанализировав таблицу, видим, что нам очень повезло – существует именно такой резистор для LED, который нам нужен.

Однако именно его выбирать не стоит. Существует такое понятие, как запас – лучше прибавьте к этому значению 10–15% для амортизации, мало ли что в электропроводке может произойти. Выполняем действие:

R = 178 + (178 × 0.15) ≈ 205 Ом.

Подберем необходимый вариант, снова просмотрев таблицу. Видим, что существует именно такой элемент. Его и следует использовать для ограничения подаваемого тока для светодиодов.

Расчет для светодиода с тремя кристаллами

Существуют светодиоды, где используется несколько кристаллов. В этом случае нужно рассчитать необходимое сопротивление с учетом того, что каждый кристалл имеет свой собственный ток. Если светодиод одноцветный, то в ранее указанной формуле значение I нужно умножить на количество включенных кристаллов (n). Все остальные значения оставим аналогичными. Получаем:

R = (U — Umin) / I × n

R = (12 — 3.1) / 0.05 × 3= 534 Ом.

Добавляем амортизацию 15% и получаем:

R = 534 + (534 × 0.15) ≈ 614 Ом.

Ближайшим расчетным значением в таблице является сопротивление резистора в 612 Ом – это наш выбор.

Если элемент использует несколько кристаллов с разными напряжениями, расчет гасящего резистора по формуле выполняется для каждого отдельно взятого кристалла. Для подключения светодиодов к сети каждый резистор должен подавать ток на тот кристалл, для которого он рассчитывался, то есть подключение будет разветвлено на три или более контакта. Количество резисторов должно равняться количеству светящихся элементов в самом светодиоде.

Ни в коем случае не подключайте RGB-светодиоды через один общий резистор – один кристаллик может сгореть, а второй даже не засветится, нужно подбирать каждый вариант отдельно.

Простая формула позволяет рассчитать реально необходимые значения и выполнить подбор реального сопротивления. Таким образом, получаем стабильно работающие источники света, которые имеют резистор гасящего сопротивления, рассчитанного с достаточным запасом амортизации для предохранения от перепадов в сети.

Нежелательно использовать значение сопротивления меньше рассчитанного, иначе смысл наличия ограничителя пропадает совершенно. Также не стоит использовать параллельное подключение самих элементов.

Как правильно рассчитать и подобрать резистор для светодиода

Светодиод имеет очень небольшое внутреннее сопротивление, если его подключить напрямую к блоку питания, то сила тока будет достаточной высокой, чтобы он сгорел. Медные или золотые нити, которыми кристалл подключается к внешним выводам, могут выдерживать небольшие скачки, но при сильном превышении перегорают и питание прекращает поступать на кристалл. Онлайн расчёт резистора для светодиода производится на основе его номинальной рабочей силы тока.

Содержание

  • 1. Онлайн калькулятор
  • 2. Основные параметры
  • 3. Особенности дешёвых ЛЕД

Онлайн калькулятор

Предварительно составьте схему подключения, чтобы избежать ошибок в расчётах. Онлайн калькулятор покажет вам точное сопротивление  в Омах. Как правило окажется, что резисторы с таким номиналом не выпускаются, и вам будет показан ближайший стандартный номинал. Если не удаётся сделать точный подбор сопротивления, то используйте больший номинал. Подходящий номинал можно сделать подключая сопротивление параллельно или последовательно. Расчет сопротивления для светодиода можно не делать, если использовать мощный переменный или подстроечный резистор. Наиболее распространены типа 3296 на 0,5W. При использовании питания на 12В, последовательно можно подключить до 3 LED.

Резисторы бывают разного класса точности, 10%, 5%, 1%. То есть их сопротивление может погрешность в этих пределах в положительную или отрицательную сторону.

Не забываем учитывать и мощность токоограничивающего резистора, это его способность рассеивать определенное количество тепла.  Если она будет мала, то он перегреется и выйдет из строя, тем самым разорвав электрическую цепь.

Чтобы определить полярность можно подать небольшое напряжение или использовать функцию проверки диодов на мультиметре. Отличается от режима измерения сопротивления, обычно подаётся от 2В до 3В.

Основные параметры

Отличие характеристик кристаллов для дешевых ЛЕД

Так же при расчёте светодиодов следует учитывать разброс параметров, для дешевых они будут максимальны, для дорогих они будут более одинаковыми.  Чтобы проверить этот параметр, необходимо включить их в равных условиях, то есть последовательно.

Уменьшая тока или напряжение снизить яркость до слегка светящихся точек. Визуально вы сможете оценить, некоторые будут светится ярче, другие тускло.  Чем равномернее они горят, тем меньше разброс.

Калькулятор расчёта резистора для светодиода подразумевает, что характеристики светодиодных чипов идеальные, то есть отличие равно нулю.

Напряжение падения для распространенных моделей маломощных до 10W может быть от 2В до 12В. С ростом мощности увеличивается количество кристаллов в COB  диоде, на каждом есть падение. Кристаллы включаются цепочками последовательно, затем они объединяются в параллельные цепи. На мощностях от  10W до 100W снижение растёт с 12В до 36В.

Этот параметр должен быть указан в технических характеристиках LED чипа  и зависит от назначения:

  • цвета синий, красный, зелёный, желтый;
  • трёхцветный RGB;
  • четырёхцветный RGBW;
  • двухцветный, теплый и холодный белый.

Особенности дешёвых ЛЕД

Прежде чем подобрать резистор для светодиода на онлайн калькуляторе, следует убедится в параметрах диодов. Китайцы на Aliexpress продают множество led, выдавая их за фирменные. Наиболее популярны модели  SMD3014, SMD 3528, SMD2835, SMD 5050, SMD5630, SMD5730. Всё самое плохое обычно делается под брендом Epistar.

Например, чаще всего китайцы обманывают на SMD5630 и SMD5730. Цифры в маркировке обозначают лишь размер корпуса 5,6мм на 3,0мм.

В фирменных такой большой корпус используется для установки мощных кристаллов на 0,5W , поэтому у покупателей диодов СМД5630 напрямую ассоциируется с мощностью 0,5W.

Хитрый китаец этим пользуется, и в корпус 5630 устанавливает дешевый и слабенький кристалл в среднем на 0,1W , при этом указывая потребление энергии 0,5W.

Китайские светодиодные лампы кукурузы

Наглядным примером будут автомобильные лампы и светодиодные кукурузы, в которых поставлено большое количество слабеньких и некачественных ЛЕД чипов. Обычный покупатель считает, чем больше светодиодов чем лучше светит и выше мощность.

Автомобильные лампы на самых слабых лед 0,1W

Чтобы сэкономить денежку, мои  светодиодные коллеги ищут приличные ЛЕД на Aliexpress. Ищут хорошего продавца, который обещает определённые параметры, заказывают , ждут доставку месяц.

После тестов оказывается, что китайский продавец обманул, продал барахло. Повезёт, если на седьмой раз придут приличные диоды, а не барахло.

 Обычно сделают 5 заказов, и не добившись результата и идут делать заказ в отечественный магазин, который может сделать обмен.

Правильный расчет резистора для светодиода (онлайн калькулятор)

Светодиод является полупроводниковым прибором с нелинейной вольт-амперная характеристикой (ВАХ). Его стабильная работа, в первую очередь, зависит от величины, протекающего через него тока. Любая, даже незначительная, перегрузка приводит к деградации светодиодного чипа и снижению его рабочего ресурса.

Чтобы ограничить ток, протекающий через светодиод на нужном уровне, электрическую цепь необходимо дополнить стабилизатором. Простейшим, ограничивающим ток элементом, является резистор.

Важно! Резистор ограничивает, но не стабилизирует ток.

Расчет резистора для светодиода не является сложной задачей и производится по простой школьной формуле. А вот с физическими процессами, протекающими в p-n-переходе светодиода, рекомендуется познакомиться ближе.

Теория

Математический расчет

Ниже представлена принципиальная электрическая схема в самом простом варианте. В ней светодиод и резистор образуют последовательный контур, по которому протекает одинаковый ток (I). Питается схема от источника ЭДС напряжением (U). В рабочем режиме на элементах цепи происходит падение напряжения: на резисторе (UR) и на светодиоде (ULED). Используя второе правило Кирхгофа, получается следующее равенство: или его интерпретация

В приведенных формулах R – это сопротивление рассчитываемого резистора (Ом), RLED – дифференциальное сопротивление светодиода (Ом), U – напряжения (В).

Значение RLED меняется при изменении условий работы полупроводникового прибора. В данном случае переменными величинами являются ток и напряжение, от соотношения которых зависит величина сопротивления. Наглядным объяснением сказанного служит ВАХ светодиода.

На начальном участке характеристики (примерно до 2 вольт) происходит плавное нарастание тока, в результате чего RLED имеет большое значение. Затем p-n-переход открывается, что сопровождается резким увеличением тока при незначительном росте прикладываемого напряжения.

Путём несложного преобразования первых двух формул можно определить сопротивление токоограничивающего резистора: ULED является паспортной величиной для каждого отдельного типа светодиодов.

Графический расчет

Имея на руках ВАХ исследуемого светодиода, можно рассчитать резистор графическим способом. Конечно, такой способ не имеет широкого практического применения.

Ведь зная ток нагрузки, из графика можно легко вычислить величину прямого напряжения. Для этого достаточно с оси ординат (I) провести прямую линию до пересечения с кривой, а затем опустить линию на ось абсцисс (ULED).

В итоге все данные для расчета сопротивления получены.

Рассчитаем резистор для светодиода АЛ307 с номинальным током 20 мА, который необходимо подключить к источнику питания 5 В. Для этого из точки 20 мА проводим прямую линию до пересечения с кривой LED.

Далее через точку 5 В и точку на графике проводим линию до пересечения с осью ординат и получаем максимальное значение тока (Imax), примерно равное 50 мА. Используя закон Ома, рассчитываем сопротивление: Чтобы схема была безопасной и надёжной нужно исключить перегрев резистора. Для этого следует найти его мощность рассеивания по формуле:

В каких случаях допускается подключение светодиода через резистор?

Подключать светодиод через резистор можно, если вопрос эффективности схемы не является первостепенным.

Например, использование светодиода в роли индикатора для подсветки выключателя или указателя сетевого напряжения в электроприборах. В подобных устройствах яркость не важна, а мощность потребления не превышает 0,1 Вт.

Подключая светодиод с потреблением более 1 Вт, нужно быть уверенным в том, что блок питания выдаёт стабилизированное напряжение.

Если входное напряжение схемы не стабилизировано, то все помехи и скачки будут передаваться в нагрузку, нарушая работу светодиода. Ярким примером служит автомобильная электрическая сеть, в которой напряжение на аккумуляторе только теоретически составляет 12 В.

В самом простом случае делать светодиодную подсветку в машине следует через линейный стабилизатор из серии LM78XX. А чтобы хоть как-то повысить КПД схемы, включать нужно по 3 светодиода последовательно.

Также схема питания через резистор востребована в лабораторных целях для тестирования новых моделей светодиодов. В остальных случаях рекомендуется использовать стабилизатор тока (драйвер). Особенно тогда, когда стоимость излучающего диода соизмерима со стоимостью драйвера.

Вы получаете готовое устройство с известными параметрами, которое остаётся лишь правильно подключить.

Примеры расчетов сопротивления и мощности резистора

Чтобы помочь новичкам сориентироваться, приведем пару практических примеров расчета сопротивления для светодиодов.

Cree XM–L T6

В первом случае проведем вычисление резистора, необходимого для подключения мощного светодиода Cree XM–L к источнику напряжения 5 В. Cree XM–L с бином T6 имеет такие параметры: типовое ULED = 2,9 В и максимальное ULED = 3,5 В при токе ILED=0,7 А. В расчёты следует подставлять типовое значение ULED, так как. оно чаще всего соответствует действительности. Рассчитанный номинал резистора присутствует в ряду Е24 и имеет допуск в 5%. Однако на практике часто приходится округлять полученные результаты к ближайшему значению из стандартного ряда. Получается, что с учетом округления и допуска в 5% реальное сопротивление изменяется и вслед за ним обратно пропорционально меняется ток. Поэтому, чтобы не превысить рабочий ток нагрузки, необходимо расчётное сопротивление округлять в сторону увеличения.

Используя наиболее распространённые резисторы из ряда Е24, не всегда удаётся подобрать нужный номинал. Решить эту проблему можно двумя способами. Первый подразумевает последовательное включение добавочного токоограничительного сопротивления, который должен компенсировать недостающие Омы. Его подбор должен сопровождаться контрольными измерениями тока.

Второй способ обеспечивает более высокую точность, так как предполагает установку прецизионного резистора.

Это такой элемент, сопротивление которого не зависит от температуры и прочих внешних факторов и имеет отклонение не более 1% (ряд Е96).

В любом случае лучше оставить реальный ток немного меньше от номинала. Это не сильно повлияет на яркость, зато обеспечит кристаллу щадящий режим работы.

Мощность, рассеиваемая резистором, составит:

Рассчитанную мощность резистора для светодиода обязательно следует увеличить на 20–30%.

Вычислим КПД собранного светильника:

Пример с LED SMD 5050

По аналогии с первым примером разберемся, какой нужен резистор для SMD светодиода 5050. Здесь нужно учесть конструкционные особенности светодиода, который состоит из трёх независимых кристаллов.

Если LED SMD 5050 одноцветный, то прямое напряжение в открытом состоянии на каждом кристалле будет отличаться не более, чем на 0,1 В.

Значит, светодиод можно запитать от одного резистора, объединив 3 анода в одну группу, а три катода – в другую.

Подберем резистор для подключения белого SMD 5050 с параметрами: типовое ULED=3,3 В при токе одного чипа ILED=0,02 А. Ближайшее стандартное значение – 30 Ом.

Принимаем к монтажу ограничительный резистор мощностью 0,25 Вт и сопротивлением в 30 Ом ±5%.

У RGB светодиода SMD 5050 различное прямое напряжение каждого кристалла. Поэтому управлять красным, зелёным и синим цветом, придётся тремя резисторами разного номинала.

Онлайн-калькулятор

Представленный ниже онлайн калькулятор для светодиодов – это удобное дополнение, которое произведет все расчеты самостоятельно. С его помощью не придётся ничего рисовать и вычислять вручную.

Всё что нужно – это ввести два главных параметра светодиода, указать их количество и напряжение источника питания.

Одним кликом мышки программа самостоятельно произведёт расчет сопротивления резистора, подберёт его номинал из стандартного ряда и укажет цветовую маркировку. Кроме этого, программа предложит уже готовую схему включения.

Дополняя вышесказанное стоит отметить, что если прямое напряжение светодиода значительно ниже напряжения питания, то схемы включения через резистор малоэффективны. Вся лишняя энергия впустую рассеивается резистором, существенно занижая КПД устройства.

Расчёт резистора для светодиода

Светодиоды. Виды, типы светодиодов. Подключение и расчёты.

Вот так светодиод выглядит в жизни :    А так обозначается на схеме : 

 Для чего служит светодиод?  Светодиоды излучают свет, когда через них проходит электрический ток.

  Были изобретены в 70-е года прошлого века для смены электрических лампочек, которые часто перегорали и потребляли много энергии.

   Подключение и пайка    Светодиоды должны быть подключены правильным образом, учитывая их полярность + для анода и к для катода Катод имеет короткий вывод, более короткую ножку.  Если вы видите внутри светодиода его внутренности — катод имеет электрод большего размера (но это не официальные метод).

  Проверка светодиодов    Никогда не подключайте светодиодов непосредственно батарее или источнику питания!   Светодиод перегорит практически моментально, поскольку слишком большой ток сожжет его.

  Светодиоды должны иметь ограничительный резистор.Для быстрого тестирования 1кОм резистор подходит большинству светодиодов если напряжение 12V или менее.

Не забывайте подключать светодиоды правильно, соблюдая полярность!

  Цвета светодиодов   Светодиоды бывают почти всех цветов: красный, оранжевый, желтый, желтый, зеленый, синий и белый.  Синего и белого светодиода немного дороже, чем другие цвета.

  Цвет светодиодов определяется типом полупроводникового материала, из которого он сделан, а не цветом пластика его корпуса.

  Светодиоды любых цветов бывают в бесцветном корпусе, в таком случае цвет можно узнать только включив его… 

  

  Многоцветные светодиоды

  Устроен многоцветный светодиод просто, как правило это красный и зеленый объединенные в один корпус с тремя ножками.  Путём изменения яркости или количества импульсов на каждом из кристаллов можно добиваться разных цветов свечения.

  Расчет светодиодного резистора   Светодиод должен иметь резистор последовательно соединенный в его цепи, для ограничения тока, проходящего через светодиод, иначе он сгорит практически мгновенно…  Резистор R определяется по формуле :

  R = (V S — V L) / I

V S = напряжение питания  V L= прямое напряжение, расчётное для каждого типа диодов (как правилоот 2 до 4волт)  I  = ток светодиода (например 20мA), это должно быть меньше максимально допустимого для Вашего диода Если размер сопротивления не получается подобрать точно, тогда возьмите резистор большего номинала.  На самом деле вы вряд-ли заметите разницу… совсем яркость свечения уменьшится совсем незначительно. Например:  Если напряжение питания V S = 9 В, и есть красный светодиод (V = 2V), требующие I = 20мA = 0.020A,

 R = (- 9 В) / 0.02A = 350 Ом. При этом можно выбрать 390 Ом (ближайшее стандартное значение, которые больше). 

  •   Вычисление светодиодного резистора с использованием Закон Ома  Закон Ома гласит, что сопротивление резистора R = V / I, где :  V = напряжение через резистор (V = S — V L в данном случае)  I = ток через резистор
  •  Итак R = (V S — V L) / I

  Последовательное подключение светодиодов.  Если вы хотите подключить несколько светодиодов сразу – это можно сделать последовательно. Это сокращает потребление энергии и позволяет подключать большое количество диодов одновременно, например в качестве какой-то гирлянды.

  Все светодиоды, которые соединены последовательно, долдны быть одного типа.  Блок питания должен иметь достаточную мощность и  обеспечить соответствующее напряжение.

  1.  V L = 2V +  2V + 2V = 6V (три диода, их напряжения суммируются).
  2.  Резистором R = (V S — V L) / I = (9 — 6) /0,015 = 200 Ом
  3. Избегайте подключения светодиодов в параллели!  Подключение несколько светодиодов в параллели с помощью одного резистора не очень хорошая идея…

 Если напряжение питания V S 9 В и ток диода = 0.015A,  Берём резистор 220 Ом (ближайшего стандартного значения, которое больше).

  Мигающие светодиоды   Мигающие светодиоды выглядят как обычные светодиоды, они могут мигать самостоятельно потому, что содержат встроенную интегральную схему.  Светодиод мигает на низких частотах, как правило 2-3 вспышки в секунду.  Такие безделушки делают для автомобильных сигнализаций, разнообразных индикаторов или детских игрушек.

  •  Цифробуквенные светодиодные индикаторы   Светодиодные цифробуквенные индикаторы сейчас применяются очень редко, они сложнее и дороже жидкокристаллических. Раньше, это было практически единственным и самым продвинутым средством индикации, их ставили даже на сотовые телефоны 🙂 

      При последовательном соединении надо учитывать падение напряжения на каждом диоде, эту сумму сложить и из напряжения питания вычесть вышеозначенную сумму и уже для неё посчитать ток, еа который рассчитан один светодиод.

При параллельном несколько сложнее, когда ставишь в параллель второй диод, резистор, необходимый для одного, делишь пополам, а когда три — тогда номинал резистора для двух диодов надо умножить на 0.7, когда четыре диода — номинал для трёх умножаешь на 0.69, для пяти — номинал для четырёх умножаешь на 0.68 и т.д.

При последовательном соединении мощность резистора как для одного диода, независимо от колиества, а при параллельном, при каждом добавлении диода, мощность надо пропорционально увеличивать. Только в параллельном и последовательном соединении должны быть диоды одного типа.

Но я всегда ставлю на каждый диод свой резистор, потому как диоды имеют довольно большой разброс параметров. И, как показывет практика, обязательно находится слабое звено.

Основы электроники. Урок №4: Расчет резистора для светодиода

Сегодня мы начнем с изучения нового элемента, а именно светодиода. Основные сведения о светодиоде собраны в отдельной статье здесь.

Светодиод, в основном, имеет 2 вывода: длинный вывод (анод) соединяется с плюсом питания, более короткий вывод (катод) с минусом. Светодиод, подключенный наоборот не будет светиться, и кроме того, при превышении определенного напряжения может даже сгореть.

С чего следует начать при работе со светодиодом? С просмотра технических параметров на конкретный светодиод! Иногда необходимые нам сведения можно также получить при покупке в магазине. Что же нам нужно знать? То, что мы ищем – это прямой ток (forward current) и прямое напряжение (forward voltage).

Для светодиода главное — это правильно подобранный ток, так как он напрямую влияет на срок службы светодиода. Поэтому мы говорим, что светодиод — это элемент, питаемый током (не напряжением!).

При изучении datasheet для одноцветных светодиодов размером 5мм вот что было обнаружено:

  • красный светодиод: 20 мА / 2,1 В
  • зеленый светодиод: 20 мА / 2,2 В
  • желтый светодиод: 20 мА / 2,2 В
  • оранжевый светодиод: 25 мА / 2,1 В
  • синий светодиодный индикатор: 20 мА / 3,2 В
  • светодиод белый: 25 мА / 3,4 В

(параметры светодиодов могут незначительно отличаться в зависимости от экземпляра и производителя светодиодов)

Нашим источником питания, как и в предыдущих упражнениях, является кассета из 4 батареек, дающие напряжение около 6 вольт. Теперь встает вопрос: как подобрать резистор для ограничения тока красного светодиода, подключенного согласно следующей схеме:

Наша батарея обеспечивает напряжение порядка 6 вольт. Красному светодиоду необходим ток около 20мА. Плюс ко всему нужно учесть падение напряжения на этом светодиоде, т. е. 2,1 вольт:

  • UR1 = UB1 – UD1
  • UR1 = 6В – 2,1В
  • UR1 = 3,9В
  •  Теперь достаточно подставить наши данные в формулу:
  • R1 = UR1 / I
  • R1 = 3,9В / 20мА
  • R1 = 3,9В / 0,02А
  • R1 = 195 Ом

Таким вот простым способом мы рассчитали сопротивление резистора R1 для красного светодиода, который должен иметь сопротивление минимум 195 Ом. Но вы не сможете найти резистор такого номинала! Что же делать в таком случае? Надо взять из номинального ряда резистор большей величины, но с максимально близким сопротивлением.

См. Подбор сопротивления резистора по цветным полоскам

Ближайший в номинальном ряду резисторов находится резистор с сопротивлением 200 Ом, и именно такой мы должны использовать в нашей схеме. Почему? Конечно, ничто не мешает нам использовать резистор большего сопротивления, например, 470 Ом, 2,2 кОм… Но как это повлияет на свечение нашего светодиода? Давайте проверим!

На фото этого конечно не заметно, но светодиод светит очень ярко с резистором 200 Ом. Но что случится, если мы заменим резистор на другой, с большим сопротивлением, например, 470 Ом? Светодиод по-прежнему горит.

Дальше будем последовательно увеличивать сопротивление: 2,2кОм, 3,9кОм, 4,7кОм… Обратите внимание, что светодиод с увеличением сопротивления резистора светит все слабее и слабее пока, наконец, вообще не перестает светиться.

Еще одно замечание по существу — необходимо использовать резисторы немного больше, чем это следует из расчетов (например, 210 Ом вместо 200 Ом).

Почему? Наверно вы обратили внимание, что для расчетов мы взяли номинальное напряжение нашей батареи, в реальности свежие батарейки могут давать более высокое напряжение и поэтому сопротивление резистора может быть недостаточным.

Ток на светодиоде будет выше необходимого, что в конечном счете скажется на сроке его службы.

Еще один пример, из жизни (вернее из частых вопросов). Как подобрать резистор для схемы (в автомобиль) , в которой последовательно соединены два красных светодиода (прямой ток 20 мА, прямое напряжение 2,1 В)?

  1. Величину сопротивления резистора R1 рассчитываем аналогично, как в примере выше, с той лишь разницей, что от напряжения бортовой сети автомобиля (14В), необходимо вычесть падение напряжения на обоих диодах D1 и D2:
  2. UR1 = UE1 – UD1 – UD2
  3. UR1 = 14В – 2,1В – 2,1В
  4. UR1 = 9,8В
  5. Теперь подставим данные в формулу:
  6. R1 = UR1 / I
  7. R1 = 9,8В / 20мА
  8. R1 = 9,8В / 0,02А
  9. R1 = 490 Ом

Резистор R1, к которому подключены последовательно два красных светодиода, должен иметь сопротивление минимум 490 Ом. Ближайший в ряду является резистор номиналом 510 Ом. Если у вас нет резистора номиналом 510 Ом, помните, что вы можете соединить последовательно несколько резисторов, например, 5 резисторов по 100 Ом.

А можем ли мы в этой схеме последовательно подключить еще 5 светодиодов? Нет! На каждом из подключенных светодиодов возникает некоторое падение напряжения, другими словами каждый из них потребляет некоторое количество напряжения, например, каждому красному светодиоду нужно 2,1 вольт. Легко подсчитать, что наша батарея не в состоянии обеспечить такое напряжение:

  • 14В
  • 14В
  • Приведенный выше пример касается схемы, установленной в автомобиле, где источник напряжения 14В.

Таким же образом вы можете рассчитать сопротивление резистора для аналогичной схемы с напряжением питания 6 вольт. Какое получится сопротивление резистора R1? По нашим расчетам следует, что 90 Ом.

Следующий пример будет касаться параллельного соединения светодиодов, так как показано на следующем рисунке:

  1. На этот раз предположим, что светодиод — D1 красный (прямой ток 20 мА, прямое напряжение около 2,1 В), а светодиод D2 имеет белый цвет (прямой ток 25 мА, прямое напряжение 3,4 В).
  2. Из первого закона Кирхгофа мы знаем, что:
  3. I = I1 + I2
  4. I = 20мА + 25мА
  5. I =45 мА
  6. Подключая светодиоды параллельно к источнику питания, следует помнить, что каждый светодиод должен иметь свой резистор! Теперь давайте посчитаем падение напряжения на каждом из резисторов:
  7. UR1 = UB1 – UD1
  8. UR1 = 6В – 2,1В
  9. UR1 = 3,9В
  10. UR2 = UB1 – UD2
  11. UR2 = 6В – 3,4В
  12. UR2 = 2,6В
  13. Мы знаем, силу тока и напряжение, давайте посчитаем сопротивление:
  14. R1 = UR1 / I1
  15. R1 = 3,9В / 20мА
  16. R1 = 3,9В / 0,02А
  17. R1 = 195 Ом
  18. R2 = UR2 / I2
  19. R2 = 2,6В / 25мА
  20. R2 = 2,6В / 0,025А
  21. R2 = 104 Ом
  22. Резистор R1 должен иметь сопротивление как минимум 195 Ом (ближайший в номинальном ряду резистор на 200 Ом), а резистор R2 должен иметь сопротивление не менее 104 Ом (ближайший в ряду будет на 120 Ом).

Как лучше соединять светодиоды: последовательно или параллельно? Ответ не простой, потому что оба варианта имеют свои плюсы и минусы:

Вид соединения светодиодов
последовательное параллельное
для всех светодиодов достаточно одного
резистор
каждый светодиод должен иметь свой собственный резистор
повреждение одного светодиода приводит к
отключению всей цепочки светодиодов
при повреждении одного или несколько светодиодов, остальные светодиоды будут светятся
низкое значение токаток в цепи увеличивается с каждым последующим светодиодом (ток
каждой ветви суммируется)
требуется более высокое напряжение источника питания
с учетом падения напряжения на
каждый из светодиодов
напряжение питания в схеме может быть
низким

Под конец урока рассмотрим еще один популярный вид – мощные светодиоды. Благодаря им, мы можем получить яркий свет. Мощные светодиоды используются, например, в автомобилях, поэтому следующий пример будет касаться именно проблемы установки мощных светодиодов в автомобиле.

Напряжение в сети автомобиля 14 вольт. Мощный светодиод имеет прямой ток 350 мА и падение напряжения 3,3 вольт. Рассчитаем сопротивление для мощного светодиода так, как мы это делали выше:

  • UR1 = UE1 – UD1
  • UR1 = 14В – 3,3В
  • UR1 = 10,7В
  • R1 = UR1 / I
    R1 = 10,7В / 350мА
  • R1 = 31 Ом

Для нашего примера надо подобрать резистор минимум 31 Ом. Проблема в том, что мощный светодиод, как указывает само название, имеет большую мощность и здесь обычный резистор не достаточен. Помимо соответствующего сопротивления наш резистор должен иметь соответствующую номинальную мощность, т. е. допустимую мощность, которая выделяется на резисторе при его работе.

Помните, что основная задача резистора — это сопротивление току. При сопротивлении всегда будет выделяться тепло в той или иной степени. Слишком большая мощность может повредить резистор.
Мощность вычисляем по следующей формуле:

  1. P = U x I
  2. P = UR1 x I1
  3. P = 10,7В x 350мА
  4. P = 3,7 Вт

Номинальная мощность нашего резистора — это минимум 3,7 Вт. В связи с этим, наши стандартные резисторы мощностью 0,25 Вт быстро сгорят.

В приведенном выше примере необходимо применить резистор на 5 Вт, но лучшим решением использование нескольких резисторов по 5 Вт, соединенных последовательно или параллельно.

Почему? Причина в том, что резисторы плохо отводят тепло (хотя бы из-за их формы), а использование нескольких резисторов сразу увеличит общую площадь поверхности, через которую происходит отдача тепла.

При подборе резистора для мощного светодиода необходимо дополнительно учитывать значительное повышение температуры самого светодиода, что вызывает изменение прямого тока. Поэтому лучше взять резистор большего сопротивления, что обеспечит стабильную работу светодиода при увеличении прямого тока из-за его нагрева во время работы.

Но на практике для питания мощных светодиодов применяют стабилизаторы тока, которые будут обсуждаться в последующих уроках.

Общее правило при подборе резистора (резисторов) для светодиодов является использование чуть большего сопротивления, чем это следует из расчетов. Прямой ток и падение напряжения, протекающие через светодиод лучше измерить мультиметром, чтобы в расчетах учитывать реальные параметры конкретного светодиода.

Калькулятор светодиодов

Я уже прочитал статью, сразу перейти к калькулятору.

Для устойчивой работы светодиоду необходим источник постоянного напряжения и стабилизированный ток, который не будет превышать величины, допустимые спецификой конкретного светодиода. Если необходимо подключить светодиоды индикаторные, рабочий ток которых не превышает 50-100мА, можно ограничить ток посредством резисторов. Если речь идет о питании мощных светодиодов с рабочими токами от сотен миллиампер до единиц ампер, то не обойтись без специальных устройств – драйверов (подробнее об этих устройствах читайте в статье «Драйвера для светодиодов», готовые модели драйверов можно увидеть здесь.). Далее рассмотрим варианты, когда требуемый ток небольшой и обойтись резисторами все же можно.

Резисторы являются пассивными элементами – ток они просто ограничивают, но никак не стабилизируют. Сила тока будет меняться с изменением напряжения в соответствии с законом Ома. Ограничивается ток резистором банальным преобразованием «лишнего» электричества в тепло по формуле

P = I2R, где P — выделяемое тепло в ваттах, I — сила тока в цепи в амперах, R — сопротивление в омах.

Устройство при этом, естественно, греется. Способность резистора рассеивать тепло не безгранична и, при превышении допустимого тока, он сгорит. Допустимая рассеиваемая мощность определяется корпусом резистора. Это нужно учитывать при планировании подключения светодиодов и выбирать элементы с, как минимум, двойным запасом прочности.

Схема подключения одного светодиода

Если необходимо подключить один светодиод, то сопротивление резистора можно рассчитать, в соответствии с законом Ома, по простой формуле:

R = (U — UL) / I, где R — требуемое сопротивление в омах, U — напряжение источника питания, UL — падение напряжения на светодиоде в вольтах, I — нужный ток светодиода в амперах.

Очень часто нужно подключить не один, а несколько светодиодов. В этом случае возможно их последовательное или параллельное подключение.

Схема последовательного подключения светодиодов

Падение напряжения на последовательно соединенных светодиодах суммируется, через каждый из них протекает одинаковый ток. Напряжение источника питание должно быть больше, чем суммарное падение напряжения.

Рассчитывается сопротивление резистора по такому же принципу, как и в случае одного светодиода, только учитывается падение напряжения не на одном светляке, а суммарно для всей цепочки.

Последовательное подключение удобно тем, что требует минимум дополнительных деталей, кроме того, от источника питания не требуется большой ток. Но при большом количестве светодиодов может потребоваться существенное напряжение.

Кроме того, если один из последовательной цепочки сгорит, то цепь оборвется и светить перестанут все светодиоды. Также при таком варианте подключения важно использовать совершенно одинаковые светодиоды, иначе их разные параметры будут служить источником дисбаланса.

В итоге они могут либо светить неравномерно, либо значительно быстрее выходить из строя.

Схема параллельного подключения светодиодов

Параллельное подключение равносильно одновременному подключению отдельных светодиодов, которым совсем «не обязательно знать» о наличии других светодиодов. При этом напряжение источника питания должно превышать падение напряжения на одном светодиоде. Сила тока каждого светодиода может регулироваться индивидуально, выбором сопротивления подсоединенного к нему резистора.

Важно, чтобы источник питания «знал», сколько светодиодов к нему подключено, поскольку общая сила тока, которую потребуется от него предоставить, равна сумме токов, протекающих через все светодиоды. Если один из светодиодов выйдет из строя, со свечением остальных ничего не произойдет, поскольку работают они индивидуально.

Учтите, что это не относится к параллельным светодиодам, которые питаются от токоограничивающего драйвера! Драйвер стабилизирует ток, выход из строя одной из веток приведет к общему снижению тока. Это снижение драйвер немедленно компенсирует, что приведет к повышению тока на оставшихся ветках. А они могут это и не пережить.

По аналогичной причине следует избегать подключения нескольких параллельных светодиодов через один токоограничивающий резистор.

Схема правильного и неправильного параллельного подключения светодиодов

Сопротивление каждого резистора при параллельном подключении светодиодов рассчитывается, повторюсь, так же, как и при подключении одного светодиода.

Параллельное подключение светодиодов не требует высокого напряжения питания, но при его использовании необходимо обеспечить достаточную силу тока.

Требуется большее количество деталей, но можно одновременно подключить светодиоды с разными параметрами.

Также большее количество токоограничивающих резисторов, которые будут выделять тепло, даст более низкий общий КПД схемы по сравнению с последовательным подключением.

Быстро рассчитать сопротивление резистора при подключении одного или нескольких одинаковых светодиодов поможет предложенная ниже форма онлайн-калькулятора светодиодов.

Расчет резистора для светодиода

Расчет резистора для светодиода при различных соединениях

Подключать светодиоды — дело не из сложных. Для правильного подключения достаточно знать школьный курс физики и соблюсти ряд правил.

Сегодня рассмотрим как правильно рассчитать резистор для светодиода и подключить его, чтобы он горел долго и на радость потребителю.

Главный параметр у любого светодиода — ток, а не напряжение, как считают многие. Светодиод необходимо питать стабилизированным током, величина которого всегда указана производителем на упаковке или в datasheet.

Ток на светодиодах ограничивается резистором — это самый дешевый вариант. Но есть и более «продвинутый» — использовать светодиодный драйвер.

По факту, использование резисторов — пережиток прошлого, ведь на сегодняшний день драйверов на любой вкус и цвет полным-полно и по самой привлекательной цене. К примеру, самые дешевые можно приобрести тут.

Драйверы обеспечивают стабильный ток на светодиодах независимо от изменения напряжения на его входе.

Правильное подключение светодиода к драйверу следует так: сперва необходимо подключить светодиод к драйверу, только после этого включаем драйвер.

Существует несколько типов подключения светодиодов:

к оглавлению ↑

Расчет резистора для светодиода

  • Вспомним закон Ома:
  • U=I*R
  • R=U/I где,
  • R — сопротивление — измеряется в Омах
  • U — напряжение-  измеряется в вольтах (В)
  • I — ток- измеряется в амперах (А)
  • Пример расчета резистора для светодиода:
  • Допустим, источник питания выдает 12 В: Vs=12 В
  • Светодиод — 2 В и 20 мА
  • Чтобы рассчитать резистор нам необходимо преобразовать миллиамперы в амперы:
  • 20 мА=0,02 А.
  • R=10/0.02=500 Ом
  • На сопротивление рассеивается 10 В (12-2)
  • Посчитаем мощность сопротивления:
  • P=U*I

P=10*0.02 A=0.2 Вт

Необходимый резистор — R=500 Ом и Р=0,2 Вт

к оглавлению ↑

Расчет резистора для светодиода при последовательном соединение светодиодов

Минус светодиода подключается с плюсом последующего. Так соединить можно до бесконечности. При таком соединении падение напряжения на светодиоде умножается на количество диодов в цепи. Т.е. если у нас 5 светодиодов с номинальным током 700 мА и падением напряжения 3,4 Вольта, то и драйвер нам необходим на 700 мА 3,4*5=17В

Это мы рассмотрели какие можно подбирать драйверы, а теперь вернемся непосредственно к тому, как произвести расчет резистора для светодиода при таких соединениях.

Выше мы рассмотрели расчет резистора для светодиода (одного). Пр последовательном соединении расчет аналогичный, но необходимо учитывать, что падение напряжения на резисторе меньше. Если «на пальцах», то от источника питания Мы отнимается суммарное падение напряжения на светодиодах Vl=3*2=6В. При условии, что у нас источник выдает 12В, то 12-6=6В.

R=6/0.02=300 Ом.

Р=6*0,02=0,12Вт

Т.е. нам нужен резистор на 300 Ом и 0,125 Вт.

Характеристики светодиода и источника питания аналогичные предыдущему примеру.

к оглавлению ↑

Расчет резистора для светодиода при параллельном соединении

При таком соединении плюс светодиода соединяется с плюсом другого, минус с минусом. При таком соединении ток суммируется, а падение остается неизменным. Т.е. если мы имеем 3 светодиода 700 мА и падением 3,4 В, то 0,7*3=2,1А, то нам потребуется драйвер с параметрами 4-7 В и не менее 2,1А.

Расчет резистора для светодиода в этом случае аналогичен первому случаю.

к оглавлению ↑

Расчет резистора для светодиода при последовательно-параллельное соединении

Интересное соединение. При таком расположении диодов несколько последовательных цепочек соединяются параллельно. Необходимо знать, что количество светодиодов в цепочках должно быть равным.

Драйвер подбирается с учетом падения напряжения на одной цепочке и произведению тока на количество цепочек. Т.е. 3 последовательные цепи с параметрами 12В и 350 мА подключаются параллельно, напряжение остается 12В, а ток 350*3=1,05А.

Для долгой работы чипов нам нужен светодиодный драйвер с 12-15В и током 1050мА.

Расчет резистора для светодиода в этом случае будет таким:

Резистор аналогичен при последовательном соединении, однако, стоит учитывать, что потребление от источника питания увеличится в три раза (0,2+0,2+0,2=0,06А).

При подключении светодиодов через резистор нужен стабилизированный источник питания, т.к. при изменении напряжения будет изменяться и ток, идущий через диод.

Существует еще один способ соединения светодиодов — параллельно-последовательное с перекрестным соединением. но это достаточно сложная тема в расчетах, поэтому не буду ее тут раскрывать. Если потребуется, конечно, опишу, но думаю это нужно только узкому кругу специалистов.

В сети можно найти много онлайн-калькуляторов, которые Вам рассчитают сразу резисторы. Но слепо верить им не стоит, а лучше перепроверить, следуя поговорке: «Хочешь сделать это хорошо, сделай это сам».

к оглавлению ↑

Видео на тему правильного расчета резисторов для LEDs

Резисторы для светодиодов: калькулятор для правильного расчёта сопротивления

Что такое резистор и его предназначение?

Резистор — это одна из составляющих электрической сети, характеризующаяся своей пассивностью и в лучшем случае, отличающаяся показателем сопротивления электротоку. То есть, в любое время для такого устройства должен быть справедлив закон Ома.

Главное предназначение устройств — способность энергично сопротивляться электрическому току. Благодаря этому качеству, резисторы нашли широкое применение при необходимости устройства искусственного освещения, в том числе и с использованием светодиодов.

Для чего необходимо использование резисторов в случае устройства светодиодного освещения?

Большинству потребителей известно, что обыкновенная лампочка накаливания даёт свет при её прямом подключении к какому-либо источнику питания. Лампочка может работать на протяжении длительного времени и перегорает лишь тогда, когда по причине подачи слишком высокого напряжения чрезмерно нагревается накаливающая нить.

В таком случае лампочка, некоторым образом, реализует функцию резистора, потому как прохождение электротока через неё затруднительно, но чем выше подаваемое напряжение, тем легче току удаётся преодолеть сопротивление лампочки.

Конечно же, ставить в один ряд такую сложную полупроводниковую деталь, как светодиод и обыкновенную лампочку накаливания нельзя.

Важно знать, что светодиод – это такой электрический прибор, для функционирования которого предпочтительнее не сама сила тока, а напряжение, имеющееся в сети. Например, если таким устройством выбрано напряжение 1,8 В, а к нему приходит 2 В, то, вероятнее всего, он перегорит – если вовремя не снизить напряжение до требующегося приспособлению уровня. Вот именно с этой целью и требуется резистор, посредством которого осуществляется стабилизация использующегося источника питания, чтобы подаваемое им напряжение не вывело устройство из строя.

В связи с этим крайне важно:

  • определиться, какого типа резистор требуется;
  • определить необходимость использования для конкретного прибора индивидуального резистора, для чего требуется расчёт;
  • учесть вид соединения источников света;
  • планируемое число светодиодов в осветительной системе.

Видео: Зачем нужны резисторы

Схемы соединения

При последовательной схеме расстановки светодиодов, когда они располагаются один за одним, обычно хватает одного резистора, если получится правильно рассчитать его сопротивление. Это объясняется тем, что в электрической цепи имеется один и тот же ток, в каждом месте установки электрических приборов.

Но в случае параллельного соединения, для каждого светодиода требуется свой резистор. Если пренебречь этим требованием, то все напряжение придётся тянуть одному, так называемому «ограничивающему» светодиоду, то есть тому, которому необходимо наименьшее напряжение.

Он слишком быстро выйдет из строя, при этом напряжение будет подано на следующий в цепи прибор, который точно так же скоропостижно перегорит.

Такой поворот событий недопустим, следовательно, в случае параллельного подключения какого-либо числа светодиодов требуется использование такого же количества резисторов, характеристики которых подбираются расчётом.

Видео: Параллельное подключение светодиодов

Расчёт резисторов для светодиодов

При правильном понимании физики процесса, расчёт сопротивления и мощности данных устройств нельзя назвать невыполнимой задачей, с которой не под силу справиться обычному человеку. Для расчёта требующегося сопротивления резисторов, нужно обязательно учесть следующие моменты:

  • специальная маркировка, присутствующая на устройствах, обычно показывает не требующееся напряжение питания, а напряжение, выбирающееся светодиодом для своей работы, то есть напряжение падения. Это числовое значение используется для расчёта определения минимально необходимого напряжения либо для подбора резисторов питания;
  • численное значение напряжения на резисторе определяется как разница между напряжением питания светодиода и напряжением агрегата;
  • величина, протекающего через резистор электротока, получается делением остаточного напряжения на приспособлении на величину его сопротивления;
  • для расчёта необходимого сопротивления, остаточное напряжение следует разделить на требующуюся для бесперебойной работы системы величину тока.

Видео: Подбор резистора для светодиода

Расчёт резисторов при помощи специального калькулятора

Калькулятор расчёта резисторов позволяет с высокой точностью определить требуемую мощность и показатель сопротивления резистора, устанавливающегося в светодиодную цепь.

Для расчёта требующегося сопротивления необходимо в соответствующие строки онлайн-калькулятора внести:

  • напряжение питания светодиода;
  • номинальное напряжение светодиода;
  • номинальный ток.

После нажатия соответствующей кнопки выполняется расчёт и на экран монитора выводятся полученные расчётные данные, при помощи которых можно в дальнейшем без особого труда организовать искусственное светодиодное освещение.

Также в онлайн-калькуляторах имеется некоторая база, содержащая данные о светодиодах и их параметрах. Представлена возможность расчёта:

  • номинала приспособления;
  • цветовой маркировки;
  • потребляемого цепью тока;
  • рассеиваемой мощности.

Человек, не сильно разбирающийся в электрике и физике, в большинстве случаев не сможет самостоятельно рассчитать устройства для светодиодов. По этой причине, проведение расчётов при помощи функционального и удобного онлайн-калькулятора – неоценимая помощь для обычных людей, не владеющих методикой расчётов с применением физических формул.

Большинство известных производителей светодиодов и созданных на их основе лент, на своих официальных сайтах выкладывают и собственный онлайн-калькулятор, с помощью которого можно не только подобрать требующиеся резисторы и светодиоды, но и вычислить параметры использующихся токовых приборов в различных режимах эксплуатации при переменных значениях тока, температуры, подаваемого напряжения и пр.

формулы подбора гасящего сопротивления для 12в

Светодиоды разных оттенков цвета имеют разные по величине прямые рабочие напряжения. Они задаются выбором токоограничивающего сопротивления светодиода. Чтобы вывести световой прибор на номинальный режим, нужно запитать p-n переход рабочим током. Для этого производят расчет резистора для светодиода.

Таблица напряжения светодиодов в зависимости от цвета

Рабочие напряжения светодиодов разные. Они зависят от материалов полупроводникового p-n перехода и связаны с длиной волны излучения света, т.е. оттенка цвета свечения.

Таблица номинальных режимов разных оттенков цвета для расчета гасящего сопротивления приведена ниже.

Цвет свеченияПрямое напряжение, В
Оттенки белого3–3,7
Красный1,6-2,03
Оранжевый2,03-2,1
Желтый2,1-2,2
Зеленый2,2-3,5
Синий2,5-3,7
Фиолетовый2,8-4,04
ИнфракрасныйНе более 1,9
Ультрафиолетовый3,1-4,4

Из таблицы видно, что на 3 вольта можно включать излучатели всех видов свечения, кроме устройств с белым оттенком, частично фиолетовых и всех ультрафиолетовых. Это вязано с тем, что нужно какую-то часть напряжения источника питания «израсходовать» на ограничение тока через кристалл.

При источниках питания 5, 9 или 12 В можно питать единичные диоды или последовательные их цепочки из 3 и 5-6 штук.

Последовательные цепочки снижают надежность устройств, в которых они используются, примерно в число раз, соответствующее количеству светодиодов. А параллельное включение повышает надежность в той же пропорции: 2 цепочки – в 2 раза, 3 – в 3 раза и т.д.

Но небывалая для источников света длительность их работы от 30-50 до 130-150 тысяч часов оправдывает падение надежности, т.к. от нее зависит срок службы устройства. Даже 30-50 тыс. часов работы по 5 часов в сутки – 4 часа вечером и 1 утром каждый день — это 16-27 лет работы. За это время большинство светильников морально устареет и будет утилизировано. Поэтому последовательное соединение широко используется всеми производителями светодиодных устройств.

Онлайн калькулятор для расчета светодиодов

Для автоматического расчета понадобятся следующие данные:

  • напряжение источника или блока питания, В;
  • номинальное прямое напряжение устройства, В;
  • прямой номинальный рабочий ток, мА;
  • количество светодиодов в цепочке или включенных параллельно;
  • схема подключения светодиода(ов).

Исходные данные можно взять из паспорта диода.

После введения их в соответствующие окна калькулятора нажмите на кнопку «Рассчитать» и получите номинальное значение резистора и его мощность.

Расчет величины резистора-токоограничителя

На практике используют два вида расчета – графический, по ВАХ – вольтамперной характеристике конкретного диода, и математический – по его паспортным данным.

Принципиальная электрическая схема подключения излучателя к источнику питания.

На рисунке:

  • Е – источник питания, имеющий на выходе величину Е;
  • «+»/«–» – полярность подключения светодиода: «+» – анод, на схемах показывается треугольником, «-» – катод, на схемах – поперечная черточка;
  • R – токоограничивающее сопротивление;
  • Uled – прямое, оно же рабочее напряжение;
  • I – рабочий ток через прибор;
  • напряжение на резисторе обозначим как UR.

Тогда схема для расчета примет вид:

Схема для расчета резистора.

Рассчитаем сопротивление для ограничения тока. Напряжение U в цепи распределится так:

U = UR + Uled или UR + I × Rled, в вольтах,

где Rled– внутреннее дифференциальное сопротивление p-n перехода.

Математическими преобразованиями получаем формулу:

R = (U-Uled)/I, в Ом.

Величину Uled можно подобрать из паспортных значений.

Проведем расчет величины токоограничивающего резистора для LED производства компании Cree модели Cree XM–L, имеющий бин T6.

Его паспортные данные: типовое номинальное ULED = 2,9 В, максимальное ULED = 3,5 В, рабочий ток ILED=0,7 А.

Для расчета используем ULED = 2,9 В.

R = (U-Uled)/I = (5-2,9)/0,7 = 3 Ом.

Рассчитанная величина равна 3 Ом. Выбираем элемент с допуском точности ± 5%. Этой точности с избытком хватит чтобы установить рабочую точку на 700 мА.

Округлять величину сопротивления следует в большую сторону. Это уменьшит ток, световой поток диода и повысит надежность работы более щадящим тепловым режимом кристалла.

Рассчитаем требуемую мощность рассеивания для этого резистора:

P = I² × R = 0,7² × 3 = 1,47 Вт

Для надежности округлим ее до ближайшей большей величины – 2 Вт.

Схемы последовательного и параллельного включения LED широко используются и показывают особенности этих видов соединения. Последовательное включение одинаковых элементов делит напряжение источника поровну между ними. При разных внутренних сопротивлениях – пропорционально сопротивлениям. При параллельном соединении напряжение одинаковое, а ток – обратно пропорционален внутренним сопротивлениям элементов.

При последовательном соединении LED

При последовательном соединении первый в цепочке диод анодом соединен с «+» источника питания, а катодом – с анодом второго диода. И так до последнего в цепочке, катод которого соединен с «-» источника. Ток в последовательной цепи один и тот же во всех ее элементах. Т.е. через любой световой прибор он одной и той же величины. Внутреннее сопротивление открытого, т.е. излучающего свет кристалла, составляет десятки или сотни ом. Если через цепочку течет 15-20 мА при сопротивлении 100 Ом, то на каждом элементе будет по 1,5-2 В. Сумма напряжений на всех приборах должна быть меньше, чем у источника питания. Разницу обычно гасят специальным резистором, который выполняет две функции:

  • ограничивает номинальный рабочий ток;
  • обеспечивает номинальное прямое напряжение на светодиоде.

Читайте также

Подключение светодиода к 12 вольтам

 

При параллельном соединении

Параллельное включение может быть выполнено двумя способами.

Электрическая схема параллельного соединения.

Верхняя картинка показывает как включать не желательно. При таком подключении одно сопротивление обеспечит равенство токов только при идеальных кристаллах и одинаковой длине подводящих проводников. Но разброс параметров полупроводниковых приборов при изготовлении не позволяет сделать их одинаковыми. А подбор одинаковых – резко увеличивает цену. Разница может достигать 50-70% и более. Собрав конструкцию, получите разницу в свечении не менее 50-70%. Кроме того, выход из строя одного излучателя изменит работу всех: при обрыве цепи один погаснет, остальные станут светить ярче на 33% и станут больше греться. Перегрев будет способствовать их деградации – изменению оттенка свечения и уменьшению яркости.

В случае короткого замыкания в результате перегрева и сгорания кристалла возможен выход из строя токоограничивающего сопротивления.

Нижний вариант позволяет задать нужную рабочую точку любого диода даже при их разной номинальной мощности.

Схема последовательно-параллельного соединения устройств.

На напряжение 4,5 В последовательно подсоединяют по три LED-элемента и одно токоограничивающее сопротивление. Получившиеся цепочки соединяют параллельно. Через каждый диод течет 20 мА, а через все вместе – 60 мА. На каждом из них получается меньше, чем 1,5 В, а на токоограничителе – не менее, чем 0,2-0,5 В. Интересно, что если использовать источник питания 4,5 В, то с ним работать смогут только инфракрасные диоды с прямым напряжением менее 1,5 В, или нужно увеличивать питание хотя бы до 5 В.

Непосредственно параллельное соединение LED-элементов (верхняя часть схемы) использовать не рекомендуется из-за разброса параметров в 30-50% и более. Используют схему с индивидуальными сопротивлениями на каждый диод (нижняя часть) и соединяют уже пары диод-резистор параллельно.

Когда один светодиод

Резистор для одиночного LED используется только при их мощностях до 50-100 мВт. При больших значениях мощности заметно уменьшается КПД схемы питания.

Если прямое рабочее напряжение диода значительно меньше напряжения источника питания, применение ограничительного резистора ведет к большим потерям. Электроэнергия высокого качества и стабильности, с тщательно отфильтрованными пульсациями, обеспеченная 3-5 видами защиты блока питания не преобразуется в свет, а просто пассивно рассеивается в виде тепла.

На больших мощностях в ход идут драйверы – стабилизаторы тока номинальной величины.

Использование токоограничивающего резистора для задания рабочих характеристик светодиода – простой и надежный способ обеспечить его работу в оптимальном режиме.

Видео-примеры простейшего расчета сопротивления.

Но при мощности диода более сотни милливатт нужно применять автономные или встроенные источники стабилизации тока или драйверы.

Расчет резистора для светодиода + калькулятор онлайн

Светодиоды относятся к категории нелинейных полупроводниковых приборов. Поэтому правильная и надежная работа обеспечивается стабильным электрическим током. Часто из-за перегрузок светодиоды выходят из строя. Для таких случаев предусмотрено использование ограничительного резистора, последовательно включаемого в цепь. При подключении должна учитываться мощность и номинальное сопротивление. В связи с этим большую роль играет правильный расчет резистора для светодиода, основанный на общих принципах и проводимый по определенной методике.

Теоретический расчет резистора

Прикладываемое напряжение проходит между положительным и отрицательным контактом. Светодиод и резистор при последовательном соединении будут пропускать через себя одинаковый ток. В соответствии с законом Ома, сила тока находится в прямой пропорциональной зависимости от напряжения и обратно пропорциональна сумме сопротивлений резистора и светодиода.

Формула выглядит следующим образом: 

Знак R обозначает сопротивление резистора, а RLED является дифференциальным сопротивлением светодиода. Следовательно, сопротивление резистора при установленном значении тока рассчитывается по формуле:

Светодиод обладает дифференциальным сопротивлением, зависимым от нелинейной вольт-амперной характеристики. Сопротивление светодиода постоянному току есть переменная величина, снижающаяся при росте напряжения. Таким образом, значение дифференциального сопротивления характерно для отдельной точки на графике вольт-амперной характеристики. Рассчитать резистор можно по формуле , где ULED есть прямое напряжение светодиода.

Подбор сопротивления еще выполняется графическим путем. Как пример рассматривается рабочий ток в 100 мА и напряжение в 5В. На графике отмечают точку тока в 100 мА и проводят через нее и точку напряжения 5В прямую от оси абсцисс до того, пока она не пересечется с осью ординат. В точке пересечения определится значение тока в 250 мА. По формуле закона Ома сопротивление резистора рассчитывается как R=U/Iкз или 5В/0,25А=20 Ом. Перед расчетами единицы измерения приводятся к единым значениям.

Расчеты сопротивления на практике

Для расчетов сопротивления резисторов разработаны специальные программы, в которые вводятся исходные данные. Результаты рассчитываются автоматически и дают точные показатели.

При отсутствии программы расчеты выполняются вручную с применением специальных таблиц. В качестве примера можно взять светодиод белого цвета для работы с номинальным током 350 мА и напряжением 12 вольт. По таблице определяется прямое падение напряжения при заданном токе. Типовым значением в таблице будет 3,2 В, а максимальным – 3,9 В. Между ними могут быть и другие промежуточные значения. Но более вероятен ток в 3,2 В, поэтому для расчетов применяется именно это значение.

Применяя формулу R = (12В – 3,2В) /0,35А = 25,1 Ом. Значение, указанное в таблице составляет 24 Ом, поэтому, при необходимости,  в цепь можно добавить один последовательно включенный резистор сопротивлением 1 Ом. Кроме использования таблицы, нужно измерять реальные значения токов и сопротивлений. Все это в совокупности дает точные результаты.

Когда проводится расчет резистора для светодиода, учитывается номинальная мощность рассеивания, с минимальным запасом 30%. Данный запас позволяет избежать перегрева. При затрудненном отводе тепла и низкой конвекции этот показатель должен быть еще выше.

Подобрать нужный резистор можно с помощью амперметра и магазина сопротивлений. Оба прибора включаются последовательно в цепь вместе со светодиодом и подключаются к источнику питания. Значение сопротивления устанавливается на максимум, после чего его нужно постепенно уменьшать. В течение этого периода яркость светодиода или сила тока приобретают нужные качества. На основании полученных данных выбирается необходимый номинал резистора.

Калькулятор резисторов для светодиодов

Правильный расчет резистора для светодиода (онлайн калькулятор)

Светодиод является полупроводниковым прибором с нелинейной вольт-амперная характеристикой (ВАХ). Его стабильная работа, в первую очередь, зависит от величины, протекающего через него тока. Любая, даже незначительная, перегрузка приводит к деградации светодиодного чипа и снижению его рабочего ресурса.

Чтобы ограничить ток, протекающий через светодиод на нужном уровне, электрическую цепь необходимо дополнить стабилизатором. Простейшим, ограничивающим ток элементом, является резистор.

Важно! Резистор ограничивает, но не стабилизирует ток.

Расчет резистора для светодиода не является сложной задачей и производится по простой школьной формуле. А вот с физическими процессами, протекающими в p-n-переходе светодиода, рекомендуется познакомиться ближе.

Теория

Математический расчет

Ниже представлена принципиальная электрическая схема в самом простом варианте.

В ней светодиод и резистор образуют последовательный контур, по которому протекает одинаковый ток (I). Питается схема от источника ЭДС напряжением (U). В рабочем режиме на элементах цепи происходит падение напряжения: на резисторе (UR) и на светодиоде (ULED). Используя второе правило Кирхгофа, получается следующее равенство: или его интерпретация

В приведенных формулах R – это сопротивление рассчитываемого резистора (Ом), RLED – дифференциальное сопротивление светодиода (Ом), U – напряжения (В).

Значение RLED меняется при изменении условий работы полупроводникового прибора. В данном случае переменными величинами являются ток и напряжение, от соотношения которых зависит величина сопротивления. Наглядным объяснением сказанного служит ВАХ светодиода.

На начальном участке характеристики (примерно до 2 вольт) происходит плавное нарастание тока, в результате чего RLED имеет большое значение. Затем p-n-переход открывается, что сопровождается резким увеличением тока при незначительном росте прикладываемого напряжения.

Путём несложного преобразования первых двух формул можно определить сопротивление токоограничивающего резистора:

ULED является паспортной величиной для каждого отдельного типа светодиодов.

Графический расчет

Имея на руках ВАХ исследуемого светодиода, можно рассчитать резистор графическим способом. Конечно, такой способ не имеет широкого практического применения. Ведь зная ток нагрузки, из графика можно легко вычислить величину прямого напряжения. Для этого достаточно с оси ординат (I) провести прямую линию до пересечения с кривой, а затем опустить линию на ось абсцисс (ULED). В итоге все данные для расчета сопротивления получены.

Тем не менее, вариант с использованием графика уникален и заслуживает определенного внимания.

Рассчитаем резистор для светодиода АЛ307 с номинальным током 20 мА, который необходимо подключить к источнику питания 5 В. Для этого из точки 20 мА проводим прямую линию до пересечения с кривой LED. Далее через точку 5 В и точку на графике проводим линию до пересечения с осью ординат и получаем максимальное значение тока (Imax), примерно равное 50 мА. Используя закон Ома, рассчитываем сопротивление:

Чтобы схема была безопасной и надёжной нужно исключить перегрев резистора. Для этого следует найти его мощность рассеивания по формуле:

Последовательное подключение

При последовательном соединении через токоограничивающий резистор в одну цепочку собираются несколько светодиодов, причем катод предыдущего припаивается к аноду последующего:

В схеме, по всем светодиодам будет проходить один ток (20мА), а уровень напряжения будет состоять из сумм падения напряжения на каждом. Это означает, используя данную схему подключения, нельзя включить в цепь любое количество светодиодов, т.к. оно ограничено падением напряжения.

Падение напряжения – это уровень напряжения, которое светоизлучающий диод преобразует в световую энергию (свечение).

Например, в схеме падение напряжения на одном светодиоде составит 3 Вольта. Всего в схеме 3 светодиода. Источник питания 12В. Считаем, 3 Вольта * 3 led = 9 В — падение напряжения.

После несложных расчетов, мы видим, что не сможем включить в схему параллельного подключения более 4 светодиодов (3*4=12В), запитывая их от обычного автомобильного аккумулятора (или другого источника с напряжением 12В).

Если захотим последовательно подключить большее количество LEd, то понадобится источник питания с большим номиналом.

Данная схема довольно часто встречалась в елочных гирляндах, однако из-за одного существенного недостатка в современных светодиодных гирляндах применяют смешанное подключение. Что за недостаток, разберем ниже.

Недостатки последовательного подключения
  1. При выходе из строя хотя бы одного элемента, не рабочей становится вся схема;
  2. Для питания большого количества led нужен источник с высоким напряжением.

В каких случаях допускается подключение светодиода через резистор?

Подключать светодиод через резистор можно, если вопрос эффективности схемы не является первостепенным. Например, использование светодиода в роли индикатора для подсветки выключателя или указателя сетевого напряжения в электроприборах. В подобных устройствах яркость не важна, а мощность потребления не превышает 0,1 Вт. Подключая светодиод с потреблением более 1 Вт, нужно быть уверенным в том, что блок питания выдаёт стабилизированное напряжение.

Если входное напряжение схемы не стабилизировано, то все помехи и скачки будут передаваться в нагрузку, нарушая работу светодиода. Ярким примером служит автомобильная электрическая сеть, в которой напряжение на аккумуляторе только теоретически составляет 12 В. В самом простом случае делать светодиодную подсветку в машине следует через линейный стабилизатор из серии LM78XX. А чтобы хоть как-то повысить КПД схемы, включать нужно по 3 светодиода последовательно. Также схема питания через резистор востребована в лабораторных целях для тестирования новых моделей светодиодов. В остальных случаях рекомендуется использовать стабилизатор тока (драйвер). Особенно тогда, когда стоимость излучающего диода соизмерима со стоимостью драйвера. Вы получаете готовое устройство с известными параметрами, которое остаётся лишь правильно подключить.

Схема подключения светодиода

В классической схеме рекомендуют производить подключение через токоограничительный резистор. Действительно, правильно подобрав резисторное или индуктивное сопротивление, можно подключить диод, рассчитанный на напряжение питания 3В, даже к сети переменного тока.

Главное требование к параметрам питания – ограничение тока цепи.

Поскольку сила тока – параметр, отображающий плотность потока электронов по проводнику, при превышении этого параметра диод просто взорвется из-за мгновенного и значительного выделения тепла на полупроводниковом кристалле.

Примеры расчетов сопротивления и мощности резистора

Чтобы помочь новичкам сориентироваться, приведем пару практических примеров расчета сопротивления для светодиодов.

Cree XM–L T6

В первом случае проведем вычисление резистора, необходимого для подключения мощного светодиода Cree XM–L к источнику напряжения 5 В. Cree XM–L с бином T6 имеет такие параметры: типовое ULED = 2,9 В и максимальное ULED = 3,5 В при токе ILED=0,7 А. В расчёты следует подставлять типовое значение ULED, так как. оно чаще всего соответствует действительности. Рассчитанный номинал резистора присутствует в ряду Е24 и имеет допуск в 5%. Однако на практике часто приходится округлять полученные результаты к ближайшему значению из стандартного ряда. Получается, что с учетом округления и допуска в 5% реальное сопротивление изменяется и вслед за ним обратно пропорционально меняется ток. Поэтому, чтобы не превысить рабочий ток нагрузки, необходимо расчётное сопротивление округлять в сторону увеличения.
Используя наиболее распространённые резисторы из ряда Е24, не всегда удаётся подобрать нужный номинал. Решить эту проблему можно двумя способами. Первый подразумевает последовательное включение добавочного токоограничительного сопротивления, который должен компенсировать недостающие Омы. Его подбор должен сопровождаться контрольными измерениями тока.

Второй способ обеспечивает более высокую точность, так как предполагает установку прецизионного резистора. Это такой элемент, сопротивление которого не зависит от температуры и прочих внешних факторов и имеет отклонение не более 1% (ряд Е96). В любом случае лучше оставить реальный ток немного меньше от номинала. Это не сильно повлияет на яркость, зато обеспечит кристаллу щадящий режим работы.

Мощность, рассеиваемая резистором, составит:

Рассчитанную мощность резистора для светодиода обязательно следует увеличить на 20–30%.

Вычислим КПД собранного светильника:

Пример с LED SMD 5050

По аналогии с первым примером разберемся, какой нужен резистор для SMD светодиода 5050. Здесь нужно учесть конструкционные особенности светодиода, который состоит из трёх независимых кристаллов.
Если LED SMD 5050 одноцветный, то прямое напряжение в открытом состоянии на каждом кристалле будет отличаться не более, чем на 0,1 В. Значит, светодиод можно запитать от одного резистора, объединив 3 анода в одну группу, а три катода – в другую. Подберем резистор для подключения белого SMD 5050 с параметрами: типовое ULED=3,3 В при токе одного чипа ILED=0,02 А.

Ближайшее стандартное значение – 30 Ом.

Принимаем к монтажу ограничительный резистор мощностью 0,25 Вт и сопротивлением в 30 Ом ±5%.

У RGB светодиода SMD 5050 различное прямое напряжение каждого кристалла. Поэтому управлять красным, зелёным и синим цветом, придётся тремя резисторами разного номинала.

Распиновка светодиода


На принципиальных схемах распиновка наглядна. На катод мы всегда подаём «минус», поэтому и обозначается он прямой линией у вершины треугольника. Обычно катод – контакт, на котором располагается светоизлучающий кристалл. Он шире анода.
В сверхъярких LED полярность обычно маркируют на контактах либо корпусе. Если на ножках контактов маркировки нет, ножка с более широким основанием – катод.

Онлайн-калькулятор

Представленный ниже онлайн калькулятор для светодиодов – это удобное дополнение, которое произведет все расчеты самостоятельно. С его помощью не придётся ничего рисовать и вычислять вручную. Всё что нужно – это ввести два главных параметра светодиода, указать их количество и напряжение источника питания. Одним кликом мышки программа самостоятельно произведёт расчет сопротивления резистора, подберёт его номинал из стандартного ряда и укажет цветовую маркировку. Кроме этого, программа предложит уже готовую схему включения.

Дополняя вышесказанное стоит отметить, что если прямое напряжение светодиода значительно ниже напряжения питания, то схемы включения через резистор малоэффективны. Вся лишняя энергия впустую рассеивается резистором, существенно занижая КПД устройства.

Параллельное подключение

В данной ситуации все происходит наоборот. На каждом светодиоде уровень напряжения одинаковый, а сила тока состоит из суммы токов, проходящих через них.

Следуя из вышесказанного делаем вывод, если у нас есть источник в 12В и 10 светодиодов, блок питания должен выдерживать нагрузку в 0,2А (10*0,002).

Исходя из вышеупомянутых расчетов — для параллельного подключения потребуется токоограничивающий резистор с номиналом 2,4 Ом (12*0,2).

Это глубокое заблуждение!!! Почему? Ответ Вы найдете ниже

Характеристики каждого светодиода даже одной серии и партии всегда разные. Если другими словами: чтобы засветился один, необходимо пропустить через него ток с номиналом 20 мА, а для другого этот номинал может составлять уже 25 мА.

Таким образом, если в схеме установить только одно сопротивление, номинал которого был рассчитан ранее, через светодиоды будет проходить разный ток, что вызовет перегрев и выход из строя светодиодов, рассчитанных на номинал в 18мА, а более мощные будут светить всего на 70% от номинала.

Исходя из вышесказанного, стоит понимать, что при параллельном подключении, необходимо устанавливать отдельное сопротивление для каждого.

Недостатки параллельного подключения:
  1. Большое количество элементов;
  2. При выходе одного диода из строя увеличивается нагрузка на остальные.

Расчет резистора для светодиода

Надежная работа светодиода зависит от тока, протекающего через него. При заниженных значениях, он просто не будет светить, а при превышении значения тока – характеристики элемента ухудшатся, вплоть до его разрушения. При этом говорят – светодиод сгорел. Для того чтобы исключить возможность выхода из строя этого полупроводника необходимо подобрать в цепь с включенным в нее, резистором. Он будет ограничивать ток в цепи на оптимальных значениях.

Вычисление номинала сопротивления

Для работы радиоэлемента на него нужно подать питание. По закону Ома, чем больше сопротивление отрезка цепи, тем меньший ток по нему протекает. Опасная ситуация возникает, если в схеме течет больший ток, чем положено, так как каждый элемент не выдерживает большей токовой нагрузки.

Сопротивление светодиода является нелинейным. Это значит, что при изменении напряжения, подаваемого на этот элемент, ток, протекающий через него, будет меняться нелинейно. Убедиться в этом можно, если найти вольт — амперную характеристику любого диода, в том числе и светоизлучающего. При подаче питания ниже напряжения открытия p – n перехода, ток через светодиод низкий, и элемент не работает. Как только этот порог превышен, ток через элемент стремительно возрастает, и он начинает светиться.

Если источник питания соединять непосредственно со светодиодом, диод выйдет из строя, так как не рассчитан на такую нагрузку

Чтобы этого не произошло – нужно ограничить ток, протекающий через светодиод балластным сопротивлением, или произвести понижение напряжения на важном для нас полупроводнике

Рассмотрим простейшую схему подключения (рисунок 1). Источник питания постоянного тока подключается последовательно через резистор к нужному светодиоду, характеристики которого нужно обязательно узнать. Сделать это можно в интернете, скачав описание (информационный лист) на конкретную модель, или найдя нужную модель в справочниках. Если найти описание не представляется возможным, можно приблизительно определить падение напряжения на светодиоде по его цвету:

  • Инфракрасный — до 1.9 В.
  • Красный – от 1.6 до 2.03 В.
  • Оранжевый – от 2.03 до 2.1 В.
  • Желтый – от 2.1 до 2.2 В.
  • Зеленый – от 2.2 до 3.5 В.
  • Синий – от 2.5 до 3.7 В.
  • Фиолетовый – 2.8 до 4 В.
  • Ультрафиолетовый – от 3.1 до 4.4 В.
  • Белый – от 3 до 3.7 В.

Рисунок 1 – схема подключения светодиода

Ток в схеме можно сравнить с движением жидкости по трубе. Если есть только один путь протекания, то сила тока (скорость течения) во всей цепи будет одинакова. Именно так происходит в схеме на рисунке 1. Согласно закону Кирхгоффа, сумма падений напряжения на всех элементах, включенных в цепь протекания одного тока, равно ЭДС этой цепи (на рисунке 1 обозначено буквой Е). Отсюда можно сделать вывод, что напряжение, падающее на токоограничивающем резисторе должно быть равным разности напряжения питания и падения его на светодиоде.

Так как ток в цепи должен быть одинаковым, то и через резистор, и через светодиод ток получается одним и тем же. Для стабильной работы полупроводникового элемента, увеличения его показателей надежности и долговечности, ток через него должен быть определенных значений, указанных в его описании. Если описание найти невозможно, можно принять приблизительное значение тока в цепи 10 миллиампер. После определения этих данных уже можно вычислить номинал сопротивления резистора для светодиода. Он определяется по закону Ома. Сопротивление резистора равно отношению падения напряжения на нем к току в цепи. Или в символьной форме:

R = U (R)/ I,

где, U (R) — падение напряжения на резисторе

I – ток в цепи

Расчет U (R) на резисторе:

U (R) = E – U (Led )

где, U (Led) — падение напряжения на светодиодном элементе.

С помощью этих формул получится точное значение сопротивления резистора. Однако, промышленностью выпускаются только стандартные значения сопротивлений так называемые ряды номиналов. Поэтому после расчета придется сделать подбор существующего номинала сопротивления. Подобрать нужно чуть больший резистор, чем получилось в расчете, таким образом, получится защита от случайного превышения напряжения в сети. Если подобрать близкий по значению элемент сложно, можно попробовать соединить два резистора последовательно, или параллельно.

Подбор мощности резистора

Если подобрать сопротивление меньшей мощности, чем нужно в схеме, оно просто выйдет из строя. Расчет мощности резистора довольно прост, нужно падение напряжения на нём умножить на ток, протекающий в этой цепи. После чего нужно выбрать сопротивление с мощностью, не меньшей рассчитанной.

Включение светодиода через блок питания без резистора

У меня уже несколько лет работает модернизированная под LED настольная лампа. В качестве источника света используется шесть ярких светодиодов, а в качестве источника питания – старое зарядное устройство от мобильного телефона Nokia. Вот моя схема включения светодиода:

Номинальное напряжение диодов – 3,5В, ток – 140мА, мощность — 1Вт.

При выборе внешнего источника питания необходимо ограничение по току. Подключение этих светодиодов к современным зарядным устройствам с напряжением питания 5В 1-2А потребует ограничивающий резистор.

Что бы адаптировать эту схему к зарядному устройству, рассчитанному на 5В, используйте резистор на 10-20Ом мощностью 0,3А.

Если у вас другой источник питания, убедитесь, что в нем есть схема стабилизации тока.

Схема зарядного устройства от мобильного телефона Блок питания большинства низковольтных бытовых приборов

Применение токоограничивающего резистора для светодиода

Резистор применяют для ограничения силы тока

Для декоративного украшения, обеспечения хорошей видимости в затемненном коридоре и решения других практических задач используют светодиоды. Они намного экономичнее по сравнению с классическими лампами накаливания. Высокая прочность предотвращает заражение окружающей среды вредными химическими соединениями, что не исключено после повреждения колбы газоразрядного источника света.

С учетом односторонней проводимости полупроводникового перехода понятна необходимость подключения светодиода к аккумуляторной батарее, другому источнику питания постоянного тока. Напряжение стандартной бытовой сети выпрямляют, снижают до номинального уровня. Резистором ограничивают силу тока.

Расчет резистора для светодиода ⋆ diodov.net

Расчет резистора для светодиода выполняется довольно просто, быстро и не содержит ничего «военного», только закон Ома. Хотя во всемирной сети существует множество онлайн-калькуляторов, помогающие определить различные параметры, но, по моему личному мнению, лучше один раз разобраться самому и понять физику процесса, чем слепо пользоваться подобными калькуляторами.

Самый частый пример – это подключение светодиода к источнику питания с напряжением 5 В, например к USB порту компьютера. Второй пример – подключение к аккумуляторной батарее автомобиля, номинальное значение напряжения которой 12 В. Если к такому источнику питания напрямую подсоединить полупроводниковый прибор, то последний попросту выйдет из строя под действием протекающего тока, превышающего допустимое значение, ‑ произойдет тепловой пробой полупроводникового кристалла. Поэтому нужно ограничивать величину тока.

С целью лучшей наглядности возьмем два типа светодиодов с наиболее распространенными характеристиками:

напряжение:

UVD1 = 2,2 В;

UVD2 = 3,5 В;

ток:

IVD1 = 0,01 А;

IVD2 = 0,02 А.

Расчет резистора для светодиода

Определим сопротивление R1,5 для VD1 при Uип = 5 В.

Для расчета величины сопротивления, согласно закону Ома нужно знать ток и напряжение:

R=U/I.

Величина тока, протекающего в цепи и в том числе через VD нам известна из заданного условия IVD1 = 0,01 А, поэтому следует определить падение напряжения на R1,5. Оно равно разности подведенного Uип = 5 В и падения напряжения на светодиоде UVD1 = 2,2 В:



Теперь находим R1,5

Из стандартного ряда сопротивлений выбираем ближайшее в сторону увеличения, поэтому принимаем R1,5 = 300 Ом.

Таким же образом выполним расчет R для VD2:

Произведем аналогичные вычисления при значении Uип = 12 В.

Принимаем R1,12 = 1000 Ом = 1 кОм.

Принимаем R2,12 = 430 Ом.

Для удобства выпишем полученные значения сопротивлений всех резисторов:

Следует заметить, что сопротивление, выбранное из стандартного ряда, превышает расчетное, поэтому ток в цепи будет насколько снижен. Однако этим снижением можно пренебречь в виде его малого значения.

Расчет мощности рассеивания

Определить сопротивление – это только полдела. Еще резистор характеризуется важным параметром, который называется мощность рассеивания P – это мощность, которую он способен выдержать длительное время, при этом, не перегреваясь выше определенной температуры. Она зависит ток в квадрате, так как последний протекая в цепи, вызывает нагрев ее элементов.

P = I2R.

Визуально резистор более высокой Р отличается большими размерами.

 

Выполним расчет P для всех 4-х резисторов:

Из стандартного ряда мощностей выбираем ближайшие номиналы в сторону увеличения: первые три сопротивления можно взять с мощностью рассеивания 0,125 Вт, а четвертый – с 0,250 Вт.

Запишем общий расчет резистора для светодиода. Следует определить всего три параметра:

1) падение напряжения

2) сопротивление

3) мощность рассеивания.

Как видно, понять и запомнить данный алгоритм достаточно просто. Теперь, в случае применения специальных калькулятор, вы будете понимать, что и как они считают. Кстати, алгоритмы многих подобных калькуляторов не учитывают стандартный ряд номинальных значений, поэтому будьте внимательны, а лучше считайте все сами – это очень полезно делать для приобретения ценного опыта.

Еще статьи по данной теме

Светодиодный калькулятор

. Расчет токоограничивающих резисторов для одного светодиода и светодиодной матрицы • Электрические, радиочастотные и электронные калькуляторы • Онлайн-преобразователи единиц

Определения и формулы, используемые для расчета

Один светодиод

Светодиод (LED) представляет собой полупроводниковый светильник источник с двумя или более отведениями. Монохромные светодиоды обычно имеют два вывода, двухцветные светодиоды могут иметь два или три вывода, а трехцветные светодиоды и RGB-светодиоды обычно имеют четыре вывода. Светодиод излучает свет, когда на его выводы подается подходящее напряжение.

Обычный инфракрасный светодиод и его электронный символ. Квадратный полупроводниковый кристалл устанавливается на отрицательный (катодный) вывод. Тонкий провод соединяет квадратный полупроводниковый кристалл с положительным (анодным) выводом.

Для питания одного светодиода используется простая схема светодиода с последовательным резистором, ограничивающим ток. Резистор необходим, потому что падение напряжения на светодиоде примерно постоянно в широком диапазоне рабочих токов.

Цвета светодиодов, материалы, длина волны и падение напряжения
Цвет Материал полупроводника Длина волны Падение напряжения
Инфракрасный Арсенид галлия (GaAs) 850–940 нм
Красный Фосфид арсенида галлия (GaAsP) 620–700 нм 1.От 6 до 2,0 В
Янтарный Фосфид арсенида галлия (GaAsP) 590–610 нм 2,0–2,1 В
Желтый Фосфид арсенида галлия (GaAsP) 580–590 нм 2,1–2,2 В
Зеленый Фосфид алюминия-галлия (AlGaP) 500–570 нм 1,9–3,5 В
Синий Нитрид индия-галлия (InGaN) 440–505 нм 2 .48–3,6 В
Белый Светодиоды RGB или люминофор Широкий спектр 2,8–4,0 В

Светодиоды и резисторы в схемах ведут себя по-разному. Поведение резистора линейно, в соответствии с законом Ома

Вольт-амперные характеристики типичного светодиода разных цветов

Если напряжение на резисторе увеличивается, пропорционально увеличивается и ток (мы предполагаем, что номинал резистора остается равным значению. тем же).С другой стороны, светодиоды ведут себя иначе. Они ведут себя как обычные диоды согласно показанной на рисунке кривой вольт-амперной характеристики светодиодов разных цветов. Кривые показывают, что ток через светодиод не прямо пропорционален напряжению на нем. Ток через светодиод экспоненциально зависит от прямого напряжения. Это означает, что только небольшое изменение напряжения вызовет большое изменение тока.

Когда прямое напряжение светодиода небольшое, его сопротивление очень велико.Если напряжение достигает характерного значения прямого напряжения, указанного в технических характеристиках, светодиод «включается», и его сопротивление быстро падает. Если приложенное напряжение немного больше, чем прямое напряжение светодиода, прямое напряжение превышает рекомендуемое значение, которое может составлять от 1,5 до 4 В для светодиодов разных цветов. В этом случае сила тока быстро возрастает и диод может выйти из строя. Чтобы ограничить этот ток, последовательно со светодиодом подключается резистор, чтобы поддерживать ток на определенном уровне, указанном в технических характеристиках светодиода.

Расчеты

Прямоугольный светодиод с плоской вершиной, используемый в таких приложениях, как гистограмма

Значение резистора ограничения последовательного тока R s можно рассчитать по формуле закона Ома, в которой напряжение питания V s компенсируется прямым падением напряжения на диоде V f :

где V s — напряжение источника питания (например, 5 В USB-питание) в вольтах, V f — прямое падение напряжения светодиода в вольтах, а I — ток светодиода в амперах.И V f , и I f можно найти в спецификациях производителя светодиодов. Типичные значения В, , , , показаны в таблице выше. Типичный ток светодиодов, используемых для индикации, составляет 20 мА.

После того, как номинал резистора вычислен, из предпочтительных номеров резисторов выбирается ближайшее более высокое стандартное значение. Например, если наш расчет показывает, что нам нужен резистор R s = 145 Ом, мы возьмем резистор R sp = 150 Ом.

Токоограничивающий резистор рассеивает некоторую мощность, которая рассчитывается как

Оранжевые светодиоды, обычно используемые в маршрутизаторах для отображения скорости 10/100 Мбит / с; зеленые светодиоды показывают скорость 1000 Мбит / с

Обычно мощность резистора выбирается близкой к удвоенной величине, рассчитанной здесь. Например, если значение мощности составляет 0,06 Вт, мы выберем резистор с номинальной мощностью 0,125 или 1/8 Вт.

Теперь мы рассчитаем КПД, который покажет, какая часть общей мощности потребляется в схеме используется светодиод.Мощность, рассеиваемая светодиодом:

Общая потребляемая мощность

Эффективность цепи светодиода

Чтобы выбрать источник питания, мы рассчитаем ток, потребляемый от источника питания:

Светодиодная лента с 5050 диодов; цифры 50 и 50 указывают длину и ширину чипа в миллиметрах; резисторы на 150 Ом предварительно установлены на полосе.

Светодиодные матрицы

Один светодиод можно управлять с помощью токоограничивающего резистора.Светодиодные матрицы, которые все чаще используются для освещения помещений, подсветки компьютерных мониторов и телевизоров, а также для других целей, требуют специализированных источников питания. Все мы привыкли к источникам питания со стабилизацией напряжения. Однако источники питания для управления светодиодами должны стабилизировать свой ток, а не напряжение. В любом случае в светодиодных массивах всегда используются токоограничивающие резисторы.

Если для приложения необходимо более одного светодиода, можно использовать цепочки из нескольких светодиодов, соединенных последовательно. Для цепочки светодиодов, соединенных последовательно, напряжение источника должно быть больше или равно сумме напряжений на отдельных светодиодах.Если он больше, то можно использовать один токоограничивающий резистор на цепочку. Ток через каждый диод идентичен, что обеспечивает равномерную яркость. Как правило, лучше, если все последовательно соединенные светодиоды будут одного типа.

Однако в случае отказа одного светодиода в разомкнутом состоянии, который является наиболее распространенным режимом отказа, вся цепочка светодиодов гаснет. В некоторых конструкциях для предотвращения этого используется специальное устройство защиты от шунта. Для этого можно использовать стабилитроны, включенные параллельно каждому светодиоду.Этот подход хорош для маломощных светодиодов, но для мощных светодиодов, используемых, например, в уличном освещении, этот подход не рентабелен, и необходимо использовать более сложные шунтирующие устройства защиты. Конечно, это увеличивает затраты и требования к пространству. В настоящее время (2018 г.) можно наблюдать, что светодиодные уличные фонари с плановым сроком службы 10 лет служат не более года. То же касается и бытовых светодиодных ламп, в том числе ламп известных производителей.

Эта светодиодная лента используется для подсветки ЖК-панели телевизора; две такие планки устанавливаются с двух сторон от панели экрана.Такая конструкция позволяет использовать самые тонкие дисплеи. Обратите внимание, что телевизоры с ЖК-панелями со светодиодной подсветкой обычно продаются как светодиодные телевизоры. Настоящие светодиодные телевизоры используют OLED-дисплеи.

При расчете необходимого сопротивления токоограничивающего резистора R s необходимо учитывать все падения напряжения на каждом светодиодах. Например, если падение напряжения на каждом светящемся светодиоде составляет 2 В и мы подключили пять светодиодов последовательно, то общее падение напряжения на всех пяти будет 5 × 2 = 10 В.

Несколько одинаковых светодиодов также могут быть подключены параллельно. Параллельные светодиоды должны иметь согласованное прямое напряжение В, f , в противном случае через них не будет одинакового тока и, следовательно, их яркость будет разной. Для параллельного подключения светодиодов рекомендуется последовательно с каждым диодом подключить токоограничивающий резистор. При параллельном подключении отказ одного диода из-за обрыва цепи не приведет к потере света всего набора диодов — он будет работать в обычном режиме.Другой проблемой полностью параллельного подключения является выбор эффективного низковольтного и сильноточного источника питания, который при той же номинальной мощности может быть более дорогим, чем обычные источники питания для более высоких напряжений и более низких токов.

В этом обычном светодиодном светильнике для уличного освещения 8 цепочек по 5 мощных светодиодов, всего 40 светодиодов, приводятся в действие эффективным источником постоянного тока; обратите внимание, что две гирлянды (верхняя левая и нижняя правая) темные в этом приспособлении, установленном всего пару месяцев назад, потому что в каждой из них вышел из строя один диод и устройства защиты не используются или не работают

Расчет токоограничивающих резисторов

Если количество светодиодов в последовательной строке N светодиодов в строке (обозначено как N s в поле ввода) не введено, то оно будет определено здесь.Максимальное количество светодиодов в серии N светодиодов в цепочке max для заданного напряжения источника питания В с и прямого напряжения светодиода В f :

Если количество Светодиоды в последовательной строке N Светодиоды в строке (обозначается как N s в поле ввода) вводится, затем максимальное количество светодиодов в последовательной строке N светодиодов в строке max определяется как

А 3014 (3.0 × 1,4 мм) SMD-светодиод, используемый в ЖК-телевизоре со светодиодной подсветкой

Количество строк с максимальным количеством светодиодов в строке N строк :

Количество светодиодов в оставшейся более короткой строке N светодиоды остатка :

Если N светодиода остатка = 0, то дополнительной строки не будет.

Сопротивление токоограничивающего резистора для цепочек с макс. количество светодиодов:

Сопротивление токоограничивающего резистора для цепочек с меньшим количеством светодиодов, чем макс.количество светодиодов :

Общая мощность P Светодиод , рассеиваемая всеми светодиодами :

Мощность , рассеиваемая резисторами :

Гибкие светодиоды

общественное место; светодиодный дисплей использует матрицу светодиодов в качестве пикселей; из-за очень высокой яркости светодиодов они обычно используются на открытом воздухе в качестве рекламных щитов или достопримечательностей на шоссе, которые видны при ярком солнечном свете.Светодиодные экраны также могут обеспечивать общее освещение и часто используются в качестве фото- и видеосвета с переменной цветовой температурой

Номинальная мощность определяется с коэффициентом безопасности k = 2, что обеспечивает надежную работу резистора. Выберите номинальную мощность резистора, которая в два раза превышает расчетную мощность из следующих значений: 0,125; 0,25; 0,5; 1, 2, 3, 4, 5, 8, 10, 16, 25, 50 Вт.

Расчет общей мощности P R , рассеиваемой всеми резисторами :

Расчет общей мощности P всего , рассеиваемое массивом :

Расчет тока , потребляемого массивом от источника питания :

Расчет эффективности массива :

Вас также может заинтересовать преобразователи яркости, силы света и освещенности.

Эту статью написал Анатолий Золотков

Расчет сопротивления фонарей — Журнал Model Railroader

Также запомните ключевое различие между лампочкой и светодиодом. Для лампочки указан ток, равный тому, сколько она будет использовать при номинальном напряжении при включении. Для светодиода номинальный ток — МАКСИМАЛЬНЫЙ, который светодиод может выдержать без повреждений, поэтому вы всегда хотите рассчитать резистор для светодиода, используя что-то меньшее, чем текущий ПРЕДЕЛ, указанный в спецификациях.Половина обычно работает с белыми светодиодами, используемыми в локомотивах — резистор 1 кОм с типичным декодером DCC получает около 9-10 мА на светодиод, а большинство белых светодиодов рассчитаны на около 20 мА.

Монтажное напряжение прямо противоположное — для светодиода номинальное напряжение — это то, на сколько светодиод будет падать. Обычно 2,1 В для красного / зеленого / желтого и 3,2 В для белого. Это напряжение всегда будет «теряться» в светодиоде. Для лампочки напряжение, по сути, является максимальным, с которым она может работать — конечно, на какое-то время они могут подняться выше.То же самое с током в светодиодах. Подача 25 мА через тот, который рассчитан на 20 мА, не заставит его мгновенно погаснуть, но, как при пропускании 14 В через лампочку 12 В, срок службы будет сокращен.

С технической точки зрения, при расчете резистора для лампочки вы регулируете падение напряжения. Течение известно. Последовательные напряжения складываются, поэтому, если лампа рассчитана на 3 вольта, а ваш источник питания рассчитан на 12 вольт, вы знаете, что вам нужно понизить 9 вольт на резисторе. А поскольку последовательный ток разделяется, вы знаете, что если лампочка рассчитана на 50 мА, то 50 мА будет течь через резистор.Теперь вы знаете напряжение и ток и можете рассчитать требуемый резистор.

Для светодиода известно падение напряжения. Вы должны выбрать текущий уровень, что-то ниже рейтинга светодиодов. Поскольку снова у нас есть последовательная цепь, напряжения складываются, поэтому, если светодиод падает на 3,2 вольта, а напряжение питания составляет 12 вольт, мы знаем, что на резисторе должно быть упало 8,8 вольт. Ток распределяется, поэтому все, чем мы ограничиваем светодиод, зависит от того, сколько тока будет протекать через резистор. И снова у нас есть напряжение и ток, и мы можем рассчитать по ним сопротивление.

В случае лампочки, использование резистора немного большего размера снизит напряжение, так как ток постоянный. При использовании светодиода <использование большего резистора уменьшит ток, поскольку напряжение фиксировано.

— Рэнди

LED Circuit Design — Как разработать светодиодные схемы

Светодиодная схема. Узнайте, как проектировать светодиодные схемы. Как рассчитать размер резистора, как защитить светодиод, сколько времени батарея будет питать цепь, как рассчитать номинальную мощность резистора, как подключить светодиод и многое другое.

Прокрутите вниз, чтобы просмотреть руководство по YouTube.

LED

Это светодиоды или светодиоды. Если мы пропустим ток через один, он будет светить. Но, если мы превысим его предел напряжения и тока, он будет немедленно уничтожен. У светодиода есть крошечный провод внутри, он может выдерживать только определенное количество тока, проходящего через него. Когда мы смотрим на разрушаемый светодиод под микроскопом, мы видим, как внутри взрывается крошечный провод. Итак, как нам подключить светодиоды, как уменьшить ток, чтобы светодиоды были в безопасности, и как долго батарея будет питать нашу схему.Это то, о чем мы подробно расскажем в этой статье.

Светодиодная защита

Для защиты наших светодиодов мы используем резистор. Резистор затруднит прохождение электронов. Электроны столкнутся, и это приведет к выделению тепла. Резистор нагревается, и мы можем увидеть это с помощью тепловизора. Например, у этого есть более 150 градусов Цельсия при всего 12 В с током 6 миллиампер, поэтому мы определенно не хотим касаться этого.

Резистор можно разместить с любой стороны светодиода.Хотя мы традиционно устанавливаем это на положительную сторону. Причина, по которой его можно установить с любой стороны, заключается в том, что резистор ограничивает количество электронов, которое будет течь в этой простой последовательной цепи. Резистор действует как пробка, уменьшая количество протекающих электронов. Большинство людей ошибочно полагают, что это действует как лежачий полицейский, и что электроны должны замедляться непосредственно перед резистором, а затем снова ускоряться. Скорость электронов остается постоянной, меняется количество протекающих электронов.

Чем выше номинал резистора, тем ниже будет ток, и, следовательно, тем меньше будет светиться светодиод.

Нам нужно помнить, что светодиоды позволяют току течь только в одном направлении. Положительный полюс подключен к длинному проводу, а отрицательный — к короткому. Если мы подключим светодиод наоборот, он просто заблокирует ток, и светодиод не включится. Вы можете проверить схему самостоятельно, возьмите КРАСНЫЙ светодиод, батарею 9 В, резистор от 360 до 390 Ом, другой резистор более высокого номинала от 3 до 9 кОм.1 кОм и мультиметр.

Последовательно подключите низкоомный резистор и светодиод к батарее, и светодиод загорится. Я использую для этого макетную плату, которая позволяет очень быстро и легко проверять электрические схемы, но вы также можете просто скрутить провода вместе, вы можете их припаять или использовать некоторые разъемы, и все это отлично подойдет для этого простого эксперимента. .

Обратите внимание: если мы повернем светодиод, мы увидим, что он блокирует ток, поэтому он не загорится. Это работает только в одном направлении.Если мы заменим резистор на резистор высокого сопротивления 9,1 кОм, мы увидим, что светодиод очень тусклый. Мы также можем соединить их параллельно, чтобы сравнить яркость. Итак, теперь, последовательно подключив резистор на 360 Ом и светодиод, мы можем подключить наш мультиметр к цепи, убедившись, что мультиметр переведен в режим считывания тока. Мы должны видеть где-то между 17 и 20 миллиампер в зависимости от того, какой светодиод и резистор вы использовали. Мы можем переключить положение светодиода и резистора, он будет работать нормально и давать то же значение тока.

Теперь отключите мультиметр от цепи и переведите мультиметр в режим постоянного напряжения.

Измерьте на двух дальних концах цепи, и мы должны увидеть около 9 вольт. Это то, что батарея обеспечивает нашей цепи, и это также равно общему падению напряжения в цепи. Теперь измерьте напряжение на светодиоде, и мы должны увидеть около 2 вольт. Это падение напряжения светодиода, которое снимает два вольта с нашей схемы. Теперь измерьте сопротивление резистора, и мы должны увидеть падение напряжения на оставшихся 7 вольт.Итак, 2 вольта плюс 7 вольт — это 9 вольт, что соответствует нашей батарее. Вы могли заметить, что измеренные значения были не совсем 2, 7 или даже 9 вольт. Всегда будет разница между дизайном и фактическим размером. Например, этот резистор был рассчитан на 390 Ом, но когда мы его измерили, на самом деле он был 386 Ом. Каждый компонент, включая ваш мультиметр, будет иметь допуск на погрешность, он будет близок к расчетному значению, но никогда не будет точно таким же. Для большинства схем, подобных этим простым, это не имеет значения.Можно предположить, что расчетные значения верны. Просто помните, что значения, которые мы рассчитываем, всегда будут немного отличаться от наших фактических измерений.

Нам также нужно знать о прямом напряжении. По сути, это просто падение напряжения, которое мы измерили ранее.

Производитель предоставит диаграмму, подобную этой, которая показывает прямой ток при заданном прямом напряжении. Итак, если мы подключим источник напряжения к выводам и подадим 2 В, мы увидим ток в 20 миллиампер.Если мы подадим 1,6 В, то увидим 0 мА, потому что светодиод будет выключен. График для этого светодиода начинается примерно с 1,7 вольт, поэтому мы знаем, что нам нужно обеспечить минимум 1,7 вольт, чтобы светодиод начал светиться.

Мы можем проверить минимальное напряжение открытия светодиода с помощью мультиметра. Если вы выберете диодный режим на своем мультиметре, а затем подключите красный провод к длинному аноду, а черный провод к короткому катоду красного светодиода, мы должны увидеть что-то вроде 1,7 В, так что это минимальное напряжение, необходимое для включения Светодиод горит.

Большинство стандартных светодиодов рассчитаны на ток 20 миллиампер или 0,02 ампера. Мы хотим стараться придерживаться этого значения. Если мы опустимся ниже этого значения, светодиод будет тусклым, если мы перейдем слишком далеко, светодиод будет разрушен. Мы можем превысить 20 мА, но по мере того, как мы поднимаемся выше, срок службы светодиода сокращается. Мы увидим, как это вычислить, чуть позже в статье.

КРАСНЫЙ светодиод обычно имеет падение напряжения или прямое напряжение 2 В, и это приведет к 20 миллиамперному току в нашей цепи.Мы можем проверить это с помощью источника питания постоянного тока, когда я установил напряжение на постоянное значение 2 вольта, мы увидим ток 20 миллиампер. Но не все светодиоды созданы одинаково, этот не достигает 20 миллиампер, пока не будет подано 2,1 вольт, а этот не достигает 20 миллиампер, пока не будет подано 3,7 вольт. Это различие связано с используемыми материалами, а также с производственным процессом. Таким образом, вам следует попробовать использовать светодиоды из одной партии, а также от надежных производителей.

Светодиоды

бывают разных цветов, и каждый цвет имеет разное падение напряжения, поэтому вам нужно будет проверить это, или вы можете просто посмотреть это на диаграмме типичных значений, подобных этой.

Светодиоды

также бывают разных цветов, и каждый цвет также имеет разное падение напряжения. Таким образом, вам нужно будет найти эти значения на основе данных производителей, или вы также можете проверить их самостоятельно, или вы можете использовать эти типичные значения из этих стандартных диаграмм, но они могут не совпадать с светодиодом, который у вас действительно есть.

Хорошо, это основы, поэтому давайте продолжим и сделаем несколько примеров схем.

Простые светодиодные схемы

Допустим, у нас есть источник питания 3 В, и мы хотим подключить этот единственный КРАСНЫЙ светодиод.Какой резистор нам нужен? Что ж, мы знаем, что этот провод на 3 вольта, а это наш провод заземления, который будет на 0 вольт.

На светодиоде падение напряжения составляет около 2 вольт. И поэтому нашему резистору нужно снять оставшееся напряжение. Итак, 3 вольта минус 2 вольта = 1 вольт. Мы знаем, что светодиоду требуется ток около 20 миллиампер, поэтому 1 вольт, разделенный на 0,02 ампера, равняется 50 Ом сопротивления. Убедитесь, что для этого расчета вы преобразовали миллиамперы в амперы. Чтобы упростить задачу, у нас есть калькулятор на нашем веб-сайте, где вы можете просто ввести свои значения, проверьте это ЗДЕСЬ .

Хорошо, теперь ты попробуй решить эту проблему раньше меня. Допустим, у нас есть батарея на 9 вольт, и мы хотим подключить желтый светодиод, который имеет падение напряжения 2 вольта и требует 20 миллиампер тока. Итак, какой размер резистора требуется? Итак, у нас есть питание 9 вольт, поэтому вычтите 2 вольта для светодиода, и у нас останется падение на 7 вольт для резистора. Сила тока составляет 20 миллиампер, поэтому 7 разделенных на 0,02 ампер равняются сопротивлению 350 Ом.

Проблема в том, что у нас нет резистора на 350 Ом.У нас есть только 330 Ом или 390 Ом, так какой из них мы должны использовать? Как мы видели ранее, нам нужно убедиться, что ток не превышает 20 миллиампер, поэтому мы должны рассчитать, какой резистор нам подходит лучше всего.

Для этого мы просто разделим необходимое падение напряжения 7 В на значение резистора 330 Ом, чтобы получить 0,021 А, а затем, если мы сделаем то же самое для резистора 390 Ом, мы получим 0,018 А. Оба эти значения очень близки, и оба будут работать, но на всякий случай мы выбираем резистор на 390 Ом, так как поэтому наш светодиод прослужит дольше.Мы также можем комбинировать резисторы, чтобы получить точное значение, которое нам нужно, и я объясню это позже в статье.

Нам также нужно будет выбрать номинальную мощность резистора. Мы можем рассчитать это по формуле: Мощность = ток в квадрате X на сопротивление — таким образом, 0,018 А в квадрате, умноженное на 390 Ом, дает нам 0,126 Вт, поэтому для этой схемы подойдет резистор номиналом Вт.

Как долго батарея будет питать нашу схему? Допустим, эта батарея рассчитана на типичные 500 миллиампер-часов, мы просто делим это на наш общий ток цепи, который в данном случае составляет 18 миллиампер.Таким образом, 500 миллиампер часов разделить на 18 миллиампер, и мы получим около 27 часов. Хотя это тот самый максимум, на который он мог бы запитать нашу схему, на самом деле он, вероятно, этого не достигнет.

Хорошо, а что, если нам нужно несколько светодиодов? Один из вариантов — соединить их последовательно.

В этой конструкции падение напряжения каждого светодиода складывается. Таким образом, общее падение напряжения в цепи не должно превышать напряжение аккумулятора.

Следовательно, батарея на 3 вольта может достаточно питать только 1 светодиод при 20 миллиампер, а батарея на 9 вольт может достаточно питать 4 светодиода.

Если мы подключим 4 светодиода и подключим их к нашему настольному источнику питания постоянного тока, мы увидим, что они не включаются, пока их суммарное минимальное прямое напряжение не будет достигнуто на уровне около 6,3 вольт, однако оптимальные 20 миллиампер тока не будут достигнуты. пока около 8,6 вольт. При 9 В ток составляет около 35 мА, что явно слишком много, поэтому нам понадобится резистор.

Если мы подключим 5 светодиодов, они не загорятся, пока не будет около 8,3 вольт. При напряжении 9 В все они включены, но ток очень низкий, поэтому светодиоды тусклые, потому что напряжения недостаточно для полного питания светодиодов.Оптимальные 20 миллиампер в этом примере достигаются только при напряжении 10,7 В.

Таким образом, мы можем использовать этот метод, но мы ограничены напряжением батареи.

Что, если нам нужно больше светодиодов? Что ж, нам нужно соединить их параллельно.

Мы можем установить резистор на каждый светодиод или использовать один резистор для питания всех светодиодов. Начнем с первого примера.

Отдельные резисторы параллельной цепи

Такая конструкция позволяет использовать светодиоды разного цвета.Хотя легче рассчитать, все ли они одного цвета.

Допустим, мы хотим подключить 6 светодиодов к этой 9-вольтовой батарее. Каждый светодиод имеет падение напряжения 2 вольта и требует 20 миллиампер. Вся эта шина составляет 9 вольт, а вся эта шина — 0 вольт. Таким образом, на каждый светодиод будет подаваться напряжение 9 В. Это явно слишком много, поэтому нам нужно поставить резистор напротив каждого светодиода. Итак, у нас есть 9 вольт за вычетом 2 вольт для светодиода, что оставляет нам 7 вольт. Значит нам нужно сбросить 7 вольт на ветку.Мы рассчитываем номинал резистора на 7 вольт, разделенных на 0,02 ампера, что равняется 350 Ом. Затем мы находим номинальную мощность: 0,02 ампера в квадрате, умноженное на 350 Ом, дает нам 0,14 Вт, поэтому будет использоваться резистор Вт.

Затем нам нужно сложить все токи в каждой ветви. Таким образом, 0,02 ампера, умноженные на 6 светодиодов, дают нам 0,12 ампер.
Емкость 9-вольтовой батареи составляет около 500 миллиампер-часов, а наша схема использует 120 миллиампер, поэтому 500, разделенное на 120, дает нам около 4 часов автономной работы.

Мы видим, что на каждой ветви все еще достаточно напряжения для подключения дополнительных светодиодов. Допустим, мы размещаем по 3 светодиода на каждой ветви. Таким образом, каждая ветвь имеет снижение на 6 вольт, поэтому 9 вольт за вычетом 6 вольт равняются падению на резисторе 3 вольт. Таким образом, 3 вольта, разделенные на 0,02 ампер, дают резистор 150 Ом. Обратите внимание, что общий ток в каждой ветви не увеличился, поэтому мы можем добавить больше светодиодов, пока не будет достигнуто максимальное напряжение.

Если мы хотим использовать светодиоды разного цвета, мы размещаем разные светодиоды на разных ветвях и находим подходящий резистор.Например, у нас могут быть красный, синий и зеленый светодиоды.
Каждый светодиод имеет одинаковую потребность в токе 20 миллиампер, но красный светодиод имеет падение напряжения 2 вольта, синий — 3,4 вольт, а зеленый — 3 вольта. Следовательно, резистор для красного светодиода составляет 9 вольт, вычитая 2 вольта, что дает нам 7 вольт, 7 вольт, разделенные на 0,02 ампер, приведут нас к резистору 350 Ом. На синем светодиоде 9 вольт вычитают 3,4 вольта, что оставляет нам 5,6 вольт, поэтому 5,6 вольт, разделенное на ток 0,02 ампер, оставляет нам резистор 280 Ом.И зеленый светодиод будет 9 вольт, вычесть 3 вольта, что оставляет нам 6 вольт, 6 вольт, разделенных на ток, дает нам резистор 300 Ом. Таким образом, общий ток составляет 60 мА. Таким образом, заряда батареи хватит примерно на 8 часов.

Коммунальные резисторы параллельной цепи

Другой способ подключения светодиодов — это их параллельное соединение, а затем использование одного резистора для ограничения общего тока. Для этого дизайна вы должны использовать только светодиоды того же цвета или того же рейтинга, мы увидим, почему это в ближайшее время, в этой статье.

Допустим, у нас есть батарея на 9 вольт и 3 красных светодиода с падением напряжения 2 вольта, и каждому из них требуется ток 20 миллиампер. Итак, мы просто складываем токи вместе, чтобы получить 60 мА, этот ток должен протекать через этот резистор.

Теперь, когда они подключены параллельно, все они будут иметь одинаковую разницу напряжений на них. Поэтому мы рассчитываем резистор на 9 Вольт, вычитаем 2 Вольта и получаем 7 Вольт. Затем, поскольку весь ток протекает через этот резистор, нам нужно будет разделить 7 вольт на 60 миллиампер, и мы получим резистор на 116 Ом.Расчет мощности составляет 0,49 Вт, поэтому будет использоваться резистор на половину Вт.

Причина, по которой нам нужно использовать светодиоды с одинаковыми номинальными характеристиками, заключается в том, что здесь разница напряжений составляет всего 2 вольта. Поэтому, если мы используем одинаковые индикаторы рейтинга, они все загорятся. Но если мы поместим синий светодиод в схему, это потребует более высокого напряжения, которое он не сможет получить, поэтому этот светодиод не будет включаться.

Уловки с резистором

Теперь, когда мы имеем дело с этими схемами, мы часто обнаруживаем, что рассчитанное нами значение резистора не существует или его просто нет в наличии.Итак, мы можем комбинировать резисторы, чтобы получить нужное нам значение. Например, если нам нужен резистор на 200 Ом, мы могли бы разместить два резистора 100 Ом последовательно или мы могли бы разместить 2 резистора по 50 Ом и резистор 100 Ом. Значения резисторов просто складываются последовательно, что позволяет очень легко увеличить номинал резистора.

Чтобы уменьшить номинал резистора, мы просто размещаем их параллельно. Затем мы производим математические вычисления, чтобы найти эквивалентное сопротивление.

Допустим, у нас есть два резистора на 10 Ом, мы рассчитываем их по этой формуле.Это намного проще, чем кажется, просто введите это в свой калькулятор, и мы увидим, что он дает нам 5 Ом эквивалентного сопротивления.

Два резистора по 5 Ом дадут нам общее сопротивление 2,5 Ом.

Резистор на 200 Ом и 50 Ом даст нам сопротивление 40 Ом.

Три резистора по 10 Ом дадут нам сопротивление 3,33 Ом.

Считывание значений резистора

Как определить номинал резистора? Эти цветные полосы на теле подскажут нам значение, но нам нужно найти его на диаграмме.Обычно мы можем получить 4- или 5-полосные резисторы, поэтому давайте рассмотрим их несколько примеров.

Для 4-полосного типа первые 2 полосы — это цифры, которые мы объединяем, третья полоса — это множитель, а полоса 4 — это допуск.

Например, этот 4-полосный резистор коричневый, черный, коричневый, золотой. Полоса 1 равна 1, полоса 2 равна 0, что дает нам 10. Полоса 3 — это множитель, который равен 10, поэтому 10, умноженное на 10, дает 100 Ом. Тогда допуск золота составляет 5%.Таким образом, оно может быть от 95 Ом до 105 Ом. Когда мы измеряем это с помощью мультиметра, мы видим 98,2 Ом, что находится в пределах допуска. Итак, мы увидели, что предыдущий резистор не был очень точным.

Если мы хотим большей точности, нам нужен меньший допуск, такой как этот допуск 1%, тип 5 полос. Для этого типа первые 3 полосы являются цифрами, 4 — это множитель, а 5 — это допуск.

Это оранжевый, оранжевый, черный, черный, коричневый.Итак, это 3, это 3, это 0 с множителем, равным единице, что дает нам 330 Ом, а допуск составляет 1%. Таким образом, это может быть от 327 Ом до 333 Ом. Когда я измеряю его мультиметром, мы видим, что он показывает 329,9 Ом, так что это идеально.


Учебное пособие по физике

: схемы серии

Как упоминалось в предыдущем разделе Урока 4, два или более электрических устройства в цепи могут быть соединены последовательным или параллельным соединением.Когда все устройства соединены последовательным соединением, схема называется последовательной схемой . В последовательной цепи каждое устройство подключается таким образом, что существует только один путь, по которому заряд может проходить через внешнюю цепь. Каждый заряд, проходящий через контур внешней цепи, будет последовательно проходить через каждый резистор.

Краткое сравнение и контраст между последовательными и параллельными цепями было сделано в предыдущем разделе Урока 4.В этом разделе подчеркивалось, что добавление большего количества резисторов в последовательную цепь приводит к довольно ожидаемому результату — увеличению общего сопротивления. Поскольку в цепи есть только один путь, каждый заряд встречает сопротивление каждого устройства; поэтому добавление большего количества устройств приводит к увеличению общего сопротивления. Это увеличенное сопротивление служит для уменьшения скорости протекания заряда (также известной как ток).

Эквивалентное сопротивление и ток

Заряды проходят через внешнюю цепь со скоростью, которая везде одинакова.В одном месте ток не больше, чем в другом. Фактическое количество тока обратно пропорционально общему сопротивлению. Существует четкая взаимосвязь между сопротивлением отдельных резисторов и общим сопротивлением набора резисторов. Что касается батареи, которая нагнетает заряд, наличие двух последовательно соединенных резисторов сопротивлением 6 Ом было бы эквивалентно наличию в цепи одного резистора сопротивлением 12 Ом. Наличие трех последовательно соединенных резисторов сопротивлением 6 Ом было бы эквивалентно наличию в цепи одного резистора сопротивлением 18 Ом.А наличие четырех последовательно соединенных резисторов 6 Ом было бы эквивалентно наличию в цепи одного резистора 24 Ом.

Это понятие эквивалентного сопротивления. Эквивалентное сопротивление схемы — это величина сопротивления, которая потребуется одному резистору, чтобы сравняться с общим эффектом от набора резисторов, присутствующих в схеме. Для последовательных цепей математическая формула для вычисления эквивалентного сопротивления (R eq ) составляет

. R экв = R 1 + R 2 + R 3 +…

, где R 1 , R 2 и R 3 — значения сопротивления отдельных резисторов, соединенных последовательно.

Создавайте, решайте и проверяйте свои собственные проблемы, используя виджет Equivalent Resistance ниже. Создайте себе проблему с любым количеством резисторов и любыми номиналами. Решать проблему; затем нажмите кнопку «Отправить», чтобы проверить свой ответ.

Ток в последовательной цепи везде одинаковый.Заряд НЕ накапливается и не начинает накапливаться в любом заданном месте, так что ток в одном месте больше, чем в других местах. Заряд НЕ расходуется резисторами, так что в одном месте его меньше по сравнению с другим. Можно представить, что заряды движутся вместе по проводам электрической цепи и везде движутся с одинаковой скоростью. Ток — скорость, с которой течет заряд — везде одинаков. То же самое на первом резисторе, как на последнем резисторе, как в батарее.Математически можно написать

I аккумулятор = I 1 = I 2 = I 3 = …

, где I 1 , I 2 и I 3 — значения тока в отдельных местах резистора.

Эти значения тока легко вычислить, если известно напряжение батареи и известны отдельные значения сопротивления. Используя значения отдельных резисторов и приведенное выше уравнение, можно рассчитать эквивалентное сопротивление.А используя закон Ома (ΔV = I • R), ток в батарее и, следовательно, через каждый резистор можно определить, найдя соотношение напряжения батареи и эквивалентного сопротивления.

I аккумулятор = I 1 = I 2 = I 3 = ΔV аккумулятор / R экв

Разность электрических потенциалов и падения напряжения

Как обсуждалось в Уроке 1, электрохимический элемент схемы подает энергию на заряд, чтобы перемещать его через элемент и устанавливать разность электрических потенциалов на двух концах внешней цепи.Элемент с напряжением 1,5 В создает разность электрических потенциалов во внешней цепи 1,5 В. Это означает, что электрический потенциал на положительной клемме на 1,5 В больше, чем на отрицательной клемме. Когда заряд движется по внешней цепи, он теряет 1,5 вольт электрического потенциала. Эта потеря электрического потенциала называется падением напряжения . Это происходит, когда электрическая энергия заряда преобразуется в другие формы энергии (тепловую, световую, механическую и т. Д.).) внутри резисторов или нагрузок. Если электрическая цепь, питаемая элементом на 1,5 В, оснащена более чем одним резистором, то совокупная потеря электрического потенциала составляет 1,5 В. Для каждого резистора существует падение напряжения, но сумма этих падений составляет 1,5 В — то же самое, что и номинальное напряжение источника питания. Математически эту концепцию можно выразить следующим уравнением:

ΔV аккумулятор = ΔV 1 + ΔV 2 + ΔV 3 +…

Чтобы проиллюстрировать этот математический принцип в действии, рассмотрим две схемы, показанные ниже на диаграммах A и B. Предположим, вас попросили определить два неизвестных значения разности электрических потенциалов между лампочками в каждой цепи. Чтобы определить их значения, вам нужно будет использовать приведенное выше уравнение. Батарея обозначается обычным схематическим символом, а рядом с ней указывается ее напряжение. Определите падение напряжения для двух лампочек, а затем нажмите кнопку «Проверить ответы», чтобы убедиться, что вы правы.

Ранее в Уроке 1 обсуждалось использование диаграммы электрических потенциалов. Диаграмма электрического потенциала — это концептуальный инструмент для представления разности электрических потенциалов между несколькими точками электрической цепи. Рассмотрим приведенную ниже принципиальную схему и соответствующую диаграмму электрических потенциалов.

Схема, показанная на схеме выше, питается от источника энергии 12 В.В цепи последовательно соединены три резистора, каждый из которых имеет собственное падение напряжения. Отрицательный знак разности электрических потенциалов просто означает потерю электрического потенциала при прохождении через резистор. Обычный ток направляется через внешнюю цепь от положительной клеммы к отрицательной. Поскольку схематический символ источника напряжения использует длинную полосу для обозначения положительного вывода, точка A на схеме находится на положительном выводе или выводе с высоким потенциалом.В точке A электрический потенциал 12 вольт, а в точке H (отрицательный вывод) — 0 вольт. Проходя через батарею, заряд приобретает электрический потенциал 12 вольт. А при прохождении через внешнюю цепь заряд теряет 12 вольт электрического потенциала, как показано на диаграмме электрических потенциалов, показанной справа от принципиальной схемы. Эти 12 вольт электрического потенциала теряются в три этапа, каждый из которых соответствует прохождению через резистор. При прохождении через соединительные провода между резисторами происходит небольшая потеря электрического потенциала из-за того, что провод оказывает относительно небольшое сопротивление потоку заряда.Поскольку точки A и B разделены проводом, они имеют практически одинаковый электрический потенциал 12 В. Когда заряд проходит через свой первый резистор, он теряет 3 В электрического потенциала и падает до 9 В в точке C. точка D отделена от точки C простым проводом, она имеет практически тот же электрический потенциал 9 В, что и C. Когда заряд проходит через второй резистор, он теряет 7 В электрического потенциала и падает до 2 В в точке E. Поскольку точка F отделена от точки E простым проводом, она имеет практически тот же электрический потенциал 2 В, что и E.Наконец, когда заряд проходит через свой последний резистор, он теряет 2 В электрического потенциала и падает до 0 В в точке G. цепь снова. Прирост энергии обеспечивается аккумулятором по мере того, как заряд перемещается с H на A.

В Уроке 3 закон Ома (ΔV = I • R) был введен как уравнение, которое связывает падение напряжения на резисторе с сопротивлением резистора и током на резисторе.Уравнение закона Ома можно использовать для любого отдельного резистора в последовательной цепи. При объединении закона Ома с некоторыми принципами, уже обсужденными на этой странице, возникает большая идея.

В последовательных цепях резистор с наибольшим сопротивлением имеет наибольшее падение напряжения.

Поскольку в последовательной цепи ток везде одинаковый, значение I ΔV = I • R одинаково на каждом из резисторов последовательной цепи. Таким образом, падение напряжения (ΔV) будет изменяться с изменением сопротивления.Где бы сопротивление ни было наибольшим, падение напряжения будет наибольшим у этого резистора. Уравнение закона Ома можно использовать не только для прогнозирования того, что резистор в последовательной цепи будет иметь наибольшее падение напряжения, но и для расчета фактических значений падения напряжения.

Δ V 1 = I • R 1 Δ V 2 = I • R 2 Δ V 3 = I • R 3

Математический анализ последовательных цепей

Приведенные выше принципы и формулы могут быть использованы для анализа последовательной цепи и определения значений тока и разности электрических потенциалов на каждом из резисторов в последовательной цепи.Их использование будет продемонстрировано математическим анализом схемы, показанной ниже. Цель состоит в том, чтобы использовать формулы для определения эквивалентного сопротивления цепи (R eq ), тока в батарее (I до ), а также падений напряжения и тока для каждого из трех резисторов.

Анализ начинается с использования значений сопротивления отдельных резисторов для определения эквивалентного сопротивления цепи.

R экв = R 1 + R 2 + R 3 = 17 Ом + 12 Ом + 11 Ом = 40 Ом

Теперь, когда известно эквивалентное сопротивление, ток в батарее можно определить с помощью уравнения закона Ома.При использовании уравнения закона Ома (ΔV = I • R) для определения тока в цепи важно использовать напряжение батареи для ΔV и эквивалентное сопротивление для R. Расчет показан здесь:

I tot = ΔV аккумулятор / R eq = (60 В) / (40 Ом) = 1,5 А

Значение тока 1,5 А — это ток в месте расположения батареи. В последовательной цепи без точек разветвления ток везде одинаковый.Ток в месте расположения батареи такой же, как ток в каждом месте расположения резистора. Впоследствии 1,5 ампер — это значение I 1 , I 2 и I 3 .

I аккумулятор = I 1 = I 2 = I 3 = 1,5 А

Осталось определить три значения — падение напряжения на каждом из отдельных резисторов. Закон Ома снова используется для определения падений напряжения для каждого резистора — это просто произведение тока на каждом резисторе (вычисленное выше как 1.5 ампер) и сопротивление каждого резистора (указано в постановке задачи). Расчеты показаны ниже.

ΔV 1 = I 1 • R 1

ΔV 1 = (1,5 A) • (17 Ом)

ΔV 1 = 25,5 В

ΔV 2 = I 2 • R 2

ΔV 2 = (1,5 A) • (12 Ом)

ΔV 2 = 18 В

ΔV 3 = I 3 • R 3

ΔV 3 = (1.5 А) • (11 Ом)

ΔV 3 = 16,5 В

Для проверки точности выполненных математических расчетов целесообразно проверить, удовлетворяют ли вычисленные значения принципу, согласно которому сумма падений напряжения для каждого отдельного резистора равна номинальному напряжению батареи. Другими словами, ΔV батареи = ΔV 1 + ΔV 2 + ΔV 3 ?

ΔV аккумулятор = ΔV 1 + ΔV 2 + ΔV 3 ?

Это 60 В = 25.5 В + 18 В + 16,5 В?

60 В = 60 В?

Да !!

Математический анализ этой последовательной схемы включал смесь концепций и уравнений. Как это часто бывает в физике, отделение понятий от уравнений при принятии решения физической проблемы является опасным актом. Здесь необходимо учитывать концепции, согласно которым ток везде одинаков и что напряжение батареи эквивалентно сумме падений напряжения на каждом резисторе, чтобы завершить математический анализ.В следующей части Урока 4 параллельные цепи будут проанализированы с использованием закона Ома и концепций параллельных цепей. Мы увидим, что подход сочетания концепций с уравнениями будет не менее важен для этого анализа.

Мы хотели бы предложить … Зачем просто читать об этом и когда можно с этим взаимодействовать? Взаимодействие — это именно то, что вы делаете, когда используете одну из интерактивных функций The Physics Classroom.Мы хотели бы предложить вам совместить чтение этой страницы с использованием нашего интерактивного средства построения цепей постоянного тока. Вы можете найти его в разделе Physics Interactives на нашем сайте. Построитель цепей постоянного тока предоставляет учащемуся набор для построения виртуальных цепей. Вы можете легко перетащить источники напряжения, резисторы и провода на рабочее место, а также расположить и подключить их так, как захотите. Вольтметры и амперметры позволяют измерять ток и падение напряжения. Нажатие на резистор или источник напряжения позволяет изменять сопротивление или входное напряжение.Это просто. Это весело. И это безопасно (если вы не используете его в ванне).


Проверьте свое понимание

1. Используйте свое понимание эквивалентного сопротивления, чтобы заполнить следующие утверждения:

а. Два резистора сопротивлением 3 Ом, включенные последовательно, обеспечат сопротивление, эквивалентное сопротивлению одного резистора _____ Ом.

г. Три резистора сопротивлением 3 Ом, включенные последовательно, обеспечат сопротивление, эквивалентное сопротивлению одного резистора _____ Ом.

г. Три резистора сопротивлением 5 Ом, включенные последовательно, обеспечат сопротивление, эквивалентное сопротивлению одного резистора _____ Ом.

г. Три резистора с сопротивлением 2 Ом, 4 Ом и 6 Ом включены последовательно. Они обеспечили бы сопротивление, эквивалентное одному резистору _____ Ом.

e. Три резистора с сопротивлением 5 Ом, 6 Ом и 7 Ом включены последовательно. Они обеспечили бы сопротивление, эквивалентное одному резистору _____ Ом.

ф. Три резистора с сопротивлением 12 Ом, 3 Ом и 21 Ом включены последовательно. Они обеспечили бы сопротивление, эквивалентное одному резистору _____ Ом.

2. По мере увеличения количества резисторов в последовательной цепи общее сопротивление __________ (увеличивается, уменьшается, остается прежним) и ток в цепи __________ (увеличивается, уменьшается, остается прежним).


3. Рассмотрим следующие две схемы последовательных цепей. На каждой диаграмме используйте стрелки, чтобы указать направление обычного тока. Затем сравните напряжение и ток в обозначенных точках для каждой диаграммы.


4. Три одинаковые лампочки подключены к D-ячейке, как показано справа.Какое из следующих утверждений верно?

а. Все три лампочки будут иметь одинаковую яркость.

г. Лампа между X и Y будет самой яркой.

г. Лампа между Y и Z будет самой яркой.

г. Лампочка между Z и батареей будет самой яркой.

5. Три одинаковые лампочки подключены к батарее, как показано справа.Какие настройки можно было бы внести в схему, чтобы увеличить ток, измеряемый в точке X? Перечислите все подходящие варианты.

а. Увеличьте сопротивление одной из лампочек.

г. Увеличьте сопротивление двух лампочек.

г. Уменьшите сопротивление двух лампочек.

г. Увеличьте напряжение аккумулятора.

e. Уменьшите напряжение аккумулятора.

ф. Удалите одну из луковиц.


6. Три одинаковые лампочки подключены к батарее, как показано справа. W, X, Y и Z обозначают места на трассе. Какое из следующих утверждений верно?

а. Разница потенциалов между X и Y больше, чем между Y и Z.

г. Разница потенциалов между X и Y больше, чем между Y и W.

г. Разность потенциалов между Y и Z больше, чем между Y и W.

г. Разница потенциалов между X и Z больше, чем между Z и W.

e. Разность потенциалов между X и W больше, чем на батарее.

ф. Разница потенциалов между X и Y больше, чем между Z и W.


7.Сравните схему X и Y ниже. Каждый питается от 12-вольтовой батареи. Падение напряжения на резисторе 12 Ом в цепи Y равно ____ падению напряжения на единственном резисторе в цепи X.

а. меньше чем

г. больше

г. то же, что

8. Аккумулятор на 12 В, резистор на 12 Ом и лампочка подключаются, как показано на схеме X ниже.Резистор на 6 Ом добавлен к резистору на 12 Ом и лампочке, чтобы создать цепь Y, как показано. Лампочка появится ____.

а. диммер в контуре X

г. диммер в контуре Y

г. одинаковая яркость в обеих цепях


9. Три резистора включены последовательно. При размещении в цепи с источником питания 12 В.Определите эквивалентное сопротивление, полный ток цепи, падение напряжения и ток на каждом резисторе.

Подбор резистора, подходящего для вашей схемы | Родриго Соуза Коутиньо | Arduino Playground

Если вы подключите светодиод непосредственно к источнику питания 5 В на вашей Arduino, светодиод загорится… Это очень хорошо проиллюстрировано в этой симуляции с использованием EveryCircuit.

Несколько неудачная схема…

Чтобы светодиод не перегорел, нам нужно добавить резистор. Но какой резистор?

Первое, что нам нужно узнать, это характеристики светодиода. Стандартный красный светодиод имеет падение напряжения около 2 вольт и номинальный ток 20 миллиампер. Почему это важно? Из-за закона Ома !

 В = RxI 

Напряжение (В) равно сопротивлению (R), умноженному на ток (I). И что? Итак, у нас есть напряжение 5 В (это источник питания Arduino) и нам нужно 2 В (согласно спецификации светодиодов).Итак, нам нужно сбросить 5V-2V = 3V.

Кроме того, из-за технических характеристик светодиода мы знаем, что нам нужно 20 мА. Следуя закону Ома, мы получаем 3 В = R x 20 мА, поэтому R = 3 В / 20 мА = 150 Ом . Если мы вставим этот резистор, мы получим исправную схему:

Ярко-красный свет!

Посмотрите, все значения напряжения и тока там, где они должны быть! Вы можете немного увеличить сопротивление, это нормально. Свет станет тусклее, вот и все.

Если вам нужно получить подробную информацию о вашем светодиоде, проверьте эту таблицу.Если вам нужна помощь в вычислениях, воспользуйтесь этим светодиодным калькулятором.

светодиодов последовательно

Чтобы иметь более одного светодиода в вашей цепи, вы можете подключить их двумя способами: последовательно или параллельно.

Компоненты, соединенные последовательно, соединяются по единому пути, например:

Простая последовательная схема

Чтобы рассчитать резистор, который вам нужен, просто добавьте напряжение: нам нужно 4 В (2 В + 2 В), и у нас есть 5 В. Значит, нам нужно сбросить 1 В.

Для тока просто используйте 20 мА. В последовательной цепи сила тока одинакова для всей цепи.

Посчитав, мы получаем 1 В / 20 мА = 50 Ом . Посмотрите, какие хорошие значения на схеме!

Готовимся к Рождеству!

светодиодов параллельно

Другой способ подключения светодиодов — использование параллельных цепей. Примерно так:

светодиодов параллельно

Здесь математика немного другая. Напряжение одинаково для разных цепей, поэтому нам нужно будет сбросить 3 В с нашего источника питания 5 В. А ток разделен, поэтому нам понадобится 40 мА. Опять же, используя закон Ома: R = 3 В / 40 мА = 75 Ом.

Параллельное чудо!

Смешиваем все вместе

Теперь все в порядке, если у вас одинаковое количество светодиодов и, следовательно, вы можете использовать одинаковое напряжение и ток с обеих сторон … Но что, если у вас 3 светодиода?

Для этого нужно рассматривать каждый путь как отдельную цепь. Используя те же значения для резисторов, которые мы рассчитали ранее, вы можете построить эту схему:

Не все схемы созданы одинаковыми

Теперь вы можете весело провести время, добавив больше светодиодов в вашу схему. Просто обязательно проверьте спецификации светодиодов и не превышайте 500 мА для одной цепи — это столько, сколько может выдержать ваш Arduino.

Ошибка 404


или «Вы достигли конца Интернета; не паникуйте»


Разве вы просто не ненавидите числовые ошибки? Если вы прибыли сюда, это означает, что введенный вами URL (адрес веб-страницы) вел на мой сайт, но не на действующую страницу внутри него.

Наиболее вероятная причина в том, что изменение привело к изменению структуры сайта. Я пытаюсь установить перенаправления для таких перестановок, но, вероятно, не помню, чтобы сделать их все. Другая возможность заключается в том, что вы использовали URL-адрес из закладки на страницу, содержащую расширение «.hmtl »на конце. Некоторые из этих страниц были изменены с html на php. У меня были некоторые правила, чтобы попытаться скрыть это, но в конце февраля 2012 года они сломались, и пока я не смогу их исправить, вам может потребоваться исправить URL самостоятельно (или просто перейти на домашнюю страницу и перейти к текущей). Вот что происходит:

В конце ноября 2011 года я начал изменять страницы, чтобы использовать ссылки без расширения (за исключением страницы размышлений), и незаметно менял расширение с «.html» на «.php». Для страниц за пределами раздела Musings вы можете повторить попытку URL без какого-либо расширения (удалите весь файл index.html »и заканчивать его« / ») или, для размышлений, повторить попытку с« .php »вместо« .html ».

Другие причины
Вы также можете попасть сюда, если опечатали URL-адрес или если по какой-то причине я удалил страницу и не смог удалить все старые ссылки на нее (но я стараюсь избегать удаления страниц именно по этой причине ). Вы также можете попасть сюда, щелкнув ссылку, которая была повреждена или опечатана.

В любом случае то, что вы ищете, вероятно, где-то здесь.

Примечание. Этот сайт изначально был в iWeb от Apple, хотя он перешел на текущую систему в 2011 году, а некоторые из старых и (я думаю) менее интересных страниц iWeb еще не преобразованы, так что вы ищете ибо может и не быть здесь.Контент этих страниц, как правило, нуждался в серьезном обновлении (или реорганизации), и я буду работать над этим с течением времени и, как и я, добавляю больше страниц для этого материала.

Вы можете использовать поле поиска выше, чтобы искать объекты, или щелкните одно из имен на панели слева, которые являются страницами верхнего уровня, многие из которых имеют один или несколько уровней других страниц под ними.

Что изменилось по сравнению с iWeb?


Старые разделы (например, Модели поездов) были реорганизованы и превращены в каталоги со страницами, расположенными под ними.В основном это не выглядит снаружи. Однако в некоторых случаях теперь вещи состоят из двух или более слоев, и вам нужно заглянуть внутрь более широкой категории, чтобы найти более конкретную.

Это должно облегчить новым людям поиск вещей (а всем остальным — находить то, о чем они не знали), но это будет проблемой для любого, у кого есть закладки на любимую страницу. Мне очень жаль, но это изменение действительно к лучшему.

А если сомневаетесь, напишите мне письмо.Адрес находится на странице О сайте . Если материал еще не преобразован, я перенесу его в начало списка дел, если кто-то его ищет. Включите URL-адрес, по которому вы перешли на эту страницу, если можете, так как это поможет мне найти старую страницу в моих файлах.

Токоограничивающий резистор для светодиода и нагрузки

Сегодня мой сын научился использовать светодиод для батареи 3В. Как мы знаем, светодиоды имеют напряжение около 1,8 В, как наиболее правильный свет, а не тепло, а потребляемая мощность составляет примерно от 10 мА до 20 мА.Как использовать его с источником питания напряжением 3 В или более.

Резистор понижения тока или напряжения

Лучший способ, настолько простой и дешевый — это резистор понижения напряжения. Он подходит для более низкой токовой нагрузки. И текущая стабильная схема использования. Например, светодиоды, фонарики, реле и прочее.


Он измеряет напряжение двух последовательно соединенных батарей AA 1,5 В

Он использует макетную плату и держатель батареи. Тогда он сможет прочитать про 3В.

Затем он подключает 3-миллиметровый светодиод к клемме 3-вольтовой батареи и измеряет на ней напряжение, примерно равное 2.7 вольт

Светодиод получает слишком большой ток


Не следует использовать высокое напряжение, это может погасить светодиод.

На изображении напряжение на батарее составляет 3 В. Затем светодиод горит ярко, а температура слишком высокая.

Использование резистора ограничения тока

В настоящее время на светодиодах было напряжение выше, чем это было бы невыносимо. Нам нужно снизить напряжение. До уровня примерно 1,8 В.

Какой у них популярный способ уменьшить ток? Срабатывает ограничивающий резистор тока.Мы будем использовать его в последовательной цепи со светодиодом.

Сколько сопротивление-R1?
На принципиальной схеме они представляют собой последовательную цепь.


Сопротивление R1 можно найти, используя треугольник закона Ома.

R = V / I

Нам нужно сопротивление (R). Нам нужно заранее знать напряжение (В) и ток (I).

1. Теперь мы знаем ток. (IR1)
По принципу схемы

Ток, протекающий через все устройства, одинаков.

IR1 = ILED

Когда светодиод использует ток примерно 20 мА.

Значит, ток тоже 20 мА.

2. Напряжение резистора (VR1) — это то, что нужно искать!

Когда резистор и светодиод включены последовательно. Затем параллельно или поперек батареи 3 В.

Таким образом, VR1 в сочетании с VLED — напряжение светодиода — равняется батарее 3V.

Когда мы знаем, что напряжение светодиода 1,8 В, значит, напряжение резистора равно?
= 3В — 1.8 В
= 1,2 В

Следовательно:
Сопротивление R1 = 1,2 В / 2 мА
= 60 Ом

Но это значение можно купить во всех магазинах.
Итак, мы используем на 56 Ом лучше .

Мы можем резюмировать простую формулу:

R1 = (Vin-VLED) / ILED. или
R1 = (Vin — Vload) / Iload

Посмотрите на блок-схему. Ясно лучше.

Какая мощность резистора ограничения тока

Мой ребенок спросил, на сколько нам следует использовать размер резистора?

Из закона Ома: P = V x I
V = напряжение резистора = 1.2 В
I = ILED = 20 мА = 0,02 А

P = 1,2 В x 0,02 А
= 0,024 Вт

Итак, мы можем использовать резистор 0,25 Вт.

Затем он использует ElectroDroid на мобильном телефоне, чтобы найти цветовой код резистора.
Затем нарисуйте и раскрасьте его на ноутбуке как Рисунок 5

и позже мы вставляем резистор на 56 Ом в макетную плату и снова измеряем напряжение на светодиоде. Это снижает напряжение до 1,8 В, и светодиод работает нормально.

Как преобразовать напряжение 12 В в реле 6 В

Я хотел бы показать вам еще один пример.Предположим, вам нужно использовать реле на 6 В.

Это 6В 80 Ом, реле SPDT.

Но нужно использовать с аккумулятором 12 В. Это так нехорошо.

Т.к. использует большой ток. Так как сопротивление катушки составляет 80 Ом. При использовании аккумулятора 12 В. Реле имеет слишком много токов, протекающих через катушку. Это около 0,15 А (150 мА). От
I = 12 В / 80 Ом
= 0,15 А

Батарея быстро разряжается.
И главное! Катушка реле слишком горячая.

У нас есть много способов снизить напряжение.Но использование резистора — недорогой способ.

По схеме аналогична указанной выше. Мы используем катушку реле вместо светодиода.


С помощью резистора уменьшите напряжение на реле.

Диод-D1 защищает другие части от импульса высокого напряжения, который генерируется в катушке реле, когда реле выключено.

Нахождение резистора-R1

Поскольку резистор-R1 = (Vin — Vload) / Iload
Vin = батарея 12 В
Vload = напряжение катушки реле = 6 В

Iload — это ток, протекающий через катушку реле.Но сейчас мы этого не знаем. Поскольку он показывает сопротивление катушки, 80 Ом.

По закону сопротивления
I = V / R

V = 6 В, R = 80 Ом
R = 6/80

= 0,075 A или 75 мА.

Итак, Iload составляет 0,075A

Снова введите его в формулу выше.
R1 = (12В — 6В) / 0,075А
= 80 Ом Но такого сопротивления в обычном магазине не найти.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *