Светодиодная лампа схема принципиальная: Схемы и доработка светодиодных ламп – СамЭлектрик.ру

Содержание

причины поломок и как починить

Из предметов роскоши в приборы бытового пользования перешли светодиодные лампы. В настоящее время подобные источники света производят многие компании, так как для их изготовления не нужна сложная аппаратура, а схема сборки проста. Купить чудо источник освещения теперь может каждый, но что делать, если он вдруг перестал работать. Хорошо если есть гарантия, а если она закончилась или ее вообще не было? Можно ли сделать ремонт светодиодных ламп своими руками – попробуем разобраться в сегодняшнем обзоре.

Источники освещения светодиодного типа отличаются параметром мощности и разнообразием конфигураций

Прежде чем решить, как разобрать светодиодную лампу, нужно разобраться с ее устройством. Конструкция данного источника освещения не сложна: светофильтр, плата питания и корпус с цоколем.

В дешевых изделиях часто используются конденсаторы, которые призваны ограничивать напряжение и ток. В лампочке присутствует 50-60 светодиодов, которые представляют собой последовательную цепь. Они образуют светоизлучающий элемент.

Принцип работы изделий похож с функционированием полупроводниковых диодов. При этом ток от анода к катоду перемещается только прямо. Что способствует возникновению потоков света в светодиодах. Детали обладают незначительной мощностью, поэтому лампы производятся со множеством светодиодов. Чтобы убрать неприятные ощущения от производимых лучей используется люминофор, который устраняет этот недочет. Прибор устраняет нагрев от точечных светильников, так как световые потоки снижаются при потерях тепла.

Драйвер в конструкции используется для подачи напряжения к диодным группам. Они применяется в качестве преобразователя. Диодные детали представляют собой полупроводники незначительного размера. Напряжение перемещается на специальный трансформатор, где производится некоторое замедление рабочих параметров. На выходе образуется постоянный ток, который позволяет включить диоды. Установка дополнительного конденсатора позволяет предотвратить пульсацию напряжения.

Светодиодные лампы бывают разных видов. Они различаются по особенностям устройства, а также по количеству деталей полупроводников.

Статья по теме:

Об этом подробнее поговорим в статье, чтобы помочь вам сократить расходы при покупке и в процессе эксплуатации, и решить другие практические задачи.

Причины для ремонта светодиодных ламп: устройство, электрические схемы

Перед тем как приступить к ремонту светодиодных ламп своими руками, важно выяснить причины их сбоя. Заявленный эксплуатационный срок ламп может не совпадать с реальными сроками. Это происходит из-за кристаллов плохого качества.

Существуют такие причины неисправностей осветительных приборов:

  • перепады напряжения не так сильно влияют на работу электрических деталей, заметные колебания показателей напряжений могут спровоцировать появление неисправности;
  • неподходящий светильник. Если выбран неправильный плафон, то может произойти перегрев источника освещения.
  • светоизлучающие элементы плохого качества способствуют быстрому выходу из строя изделий;
  • неправильная установка системы освещения оказывает негативное влияние на электропроводку;
  • сильные вибрации и удары могут способствовать поломке подобного оборудования.

Чтобы не пришлось делать ремонт светодиодной лампочки своими руками, нужно минимизировать воздействие перечисленных факторов на лампу.

Обратите внимание! Если нет визуально определяемых деформаций, то надо искать причину поломок при помощи специальных приспособлений: мультиметра и тестера.

Частые проблемы, возникающие с лед – устройствами

Часто требуется провести ремонт светодиодных ламп своими руками, при проблемах с конденсатором. Чтобы осуществить проверку, его придется выпаять из платы. Можно измерить напряжение элемента мультиметром. Этим же прибором осуществляется проверка рабочего состояния диодов.

В некоторых случаях наблюдается моргание светодиодных элементов. Подобное происходит, если неисправен токоограничивающий конденсатор. Причиной поломки может стать сгоревший излучатель. Неисправность можно увидеть далеко не по всем светодиодам, поэтому придется проверять каждую деталь. Чтобы найти проблемный диод применяется тестер.

Делая ремонт, вы можете поэкспериментировать со светодиодными элементами. Например, подобрать теплые или холодные температуры света. В некоторых устройствах нет сглаживающего конденсатора и выпрямителя. Их можно установить с помощью паяльника.

Совет! Если сгорел только один светодиод, то можно замкнуть его контакты.

Статья по теме:

Высокотехнологическое осветительное оборудование позволяет создать комфортную обстановку в помещении. Давайте выясним, какую информацию следует знать, чтобы выбрать подобную продукцию.

Как отремонтировать светодиодную лампу своими руками

Если вам интересно, как починить светодиодную лампу на 220v, то познакомьтесь со стандартными схемами ремонта. Самая часта причина поломки – замена конденсатора. Для проверки этой детали используется мультиметр. В случае поломки вставляется новая деталь. К частым неисправностям стоит отнести проблемы с драйвером. При замене данной детали, важно подобрать подходящий вариант.

Токоограничительные резисторы ломаются не часто, но такое происходит. Проверить неисправность можно при помощи мультиметра в режиме прозвонки. Если отклонение показателя будет более, чем на 20 %, то прибор неисправен.

Часто требуется замена светодиодов. Их проверку стоит выполнять только после того, как будет ясно, что с источником питания все в порядке. Для замены этих деталей потребуется паяльник. Все неисправные элементы выпаиваются.

Причиной мерцания светодиодных источников освещения является некачественный конденсатор. Чтобы устранить подобную неисправность стоит приобрести более мощный механизм.

Можно попробовать сделать своими руками ремонт лед ламп LL – corn (лампы кукурузы).

Перед любым ремонтом обязательно проверяется наличие напряжения. При этом включается нужный выключатель. Если напряжения нет, проверяется электрическая проводка и устраняется неисправность.

Важно проверить на работоспособность лампочки, а также целостность предохранителей. Можно прозвонить не только целостность, но и возможное присутствие короткого замыкания. Также проверяется блок питания и светодиоды. Светодиоды можно проверить с помощью батарейки. Для этого через резистор подается напряжение на каждый светодиод.

Если в лампе перегорело большее количество светодиодных элементов, то нужно выпаять все старые, а потом к обратной стороне припаять исправные элементы.

Ремонт светодиодной лампы (видео)

Возможно Вам также будет интересно:

Схема подключения светодиодной ленты 220в к сети – выполняем правильно Как повесить люстру на натяжной потолок: видео и основные этапы

Схема светодиодной лампы на 220 В позволяет не только понять принцип работы данного устройства, но и изготовить его своими руками. Попытки сделать лампочки типа е27 самостоятельно обусловлены тем, что далеко не всегда удается приобрести осветительный прибор с необходимыми характеристиками. Да и просто те, кто любит «возиться» с электроникой, не прочь попробовать что-то новое.

  • Важные нюансы
  • Схемы
    • С диодным мостом
    • Резисторная

Важные нюансы

Схема балласта и непосредственно схема светодиодной лампы — интересующий многих момент. Не редко мы задаемся вопросами относительно того, можно ли сделать светодиодную лампочку самостоятельно. Ответ однозначный — да.

Такое устройство может быть изготовлено своими руками. Существует множество систем, согласно которым светодиодное освещение функционирует от переменного тока номиналом 220 Вольт. Причем все они, вместе со схемой балласта, призваны решать три основные задачи.

  • Преобразовать переменный ток сети 220в в пульсирующий ток;
  • Выровнять пульсирующий ток, сделав его постоянным;
  • Добиться показателей силы тока в 12 Вольт.

Если вы хотите собрать устройство своими руками, питающееся от обычной сети в 220 Вольт, для подключения придется разобраться с некоторыми основными проблемами.

  1. Где расположить схемы и непосредственно само устройство на основе светодиодов. Ведь для диодов потребуется свое место.
  2. Как можно изолировать устройство осветительного светодиодного прибора.
  3. Как обеспечить необходимый теплообмен для подключения лампы.

Конечно, можно спокойно приобрести популярную светодиодную лампу е27. Диодное устройство е27 является одним из наиболее востребованных на рынке, отлично работает от обычной бытовой сети на 220 Вольт. Но это слишком просто и для многих не интересно.

Схемы

Чтобы собрать схему и получить на ее основе светодиодное устройство для освещения дома от питания 220 Вольт, вам потребуется:

  • Выровнять переменный ток;
  • Добиться требуемых параметров мощности;
  • Обеспечить необходимое сопротивление.

Все это можно сделать двумя способами. Существует две основные вариации.

  1. Схема на основе диодного моста.
  2. Резисторная схема, где используется четкое количество светодиодов.

Они достаточно простые, потому устройство собирается без особых проблем. Рассмотрим сами схемы и оценим их преимущества.

С диодным мостом

  • Конструкция диодного моста включает 4 разнонаправленных светодиода;
  • Задача диодного моста — сделать пульсирующий ток из синусоидального переменного;
  • Полуволны проводят через 2 диода, за счет чего минус теряет полярность;
  • В схеме необходимо подсоединить на плюс конденсатор со стороны источника переменного тока перед диодным мостом;
  • Перед минусом устанавливается сопротивление с номиналом 100 Ом;
  • Параллельному мосту, сзади него, потребуется закрепить еще один конденсатор. Он будет сглаживать перепады напряжения;
  • При элементарных навыках работы с паяльником, собрать подобную схему не будет сложно для начинающего мастера.
Светодиоды
  • Светодиодную плату можно использовать стандартную, позаимствованную у нефункционирующего светильника;
  • Перед сборкой обязательно проверьте каждый элемент на предмет работоспособности. Чтобы сделать это, воспользуйтесь 12 Вольтным аккумулятором;
  • Если есть нерабочие компоненты, их контакты нужно отпаять и установить новые;
  • Особое внимание уделяйте ножкам катода и анода. Их следует соединять последовательно;
  • Если вы просто меняете несколько деталей старого светильника, достаточно нерабочие элементы заменить функционирующими, установив их на старые места;
  • Если вы решили собрать устройство самостоятельно, запомните важное правило — лампы светодиодов соединяются последовательно по 10 единиц, после чего цепи следует подключить параллельно.

В результате схема у вас должна выглядеть следующим образом.

  1. 10 светодиодов идут в один ряд. Затем ножки анода и катода спаиваются так, чтобы получилось 9 соединений и по 1 хвостику по краям, которые находятся в свободном положении.
  2. Все полученные цепи соединяют с проводами. К одному идут концы катода, а к другому — концы анода.
  3. Не забывайте, что катод является положительным и соединяется с минусом. Анод — отрицательный, и его необходимо соединять с плюсом.
  4. Следите за тем, чтобы на схеме спаянные между собой концы не прикасались к другим концам. Если подобная ситуация случится, схема сгорит, возникнет короткое замыкание.

Резисторная

Схема электронного балласта может обеспечивать требуемую мощность работы светодиодных светильников, питающихся от 220в.


Другая и достаточно простая схема создания светодиодного устройства для питания от 220 Вольт предназначена для тех, кто хочет все сделать своими руками. Создание балласта и подключения здесь не сложное, потому с подобной задачей способен справиться относительно новичок в сфере электроники.

  • Резисторная схема для светодиодов состоит из пару резисторов 12 К и пары цепочек;
  • Цепочки состоят из одинакового количества светодиодных элементов;
  • Светодиодные элементы припаиваются последовательно и имеют разную направленность;
  • Со стороны R1 выполняется припаивание одной полосы светодиодных элементов катодом, а вторая полоса — анодом;
  • Второй отвод, идущий к R2, выполняется наоборот;
  • За счет такой схемы свечение светодиодных ламп получается мягким. Это обусловлено тем, что светодиодные элементы начинают гореть по очереди, потому пульсирующие вспышки человеческому глазу практически не видны;
  • Подобное светодиодное устройство, питающееся от 220 Вольт, может применяться для освещения рабочего стола, подсветки определенных зон. Потому им можно заменить традиционные светильники, получив аналогичный по эффективности свет или даже свечение более высокого качества;
  • Практика показывает, что резисторная схема светодиодного устройства эффективнее всего себя показывает при использовании минимум 20 светодиодов. А еще предпочтительнее задействовать 40 элементов;
  • За счет такого количества светодиодов и особенностей схемы, вы получаете высококачественное освещение. Проблем со сборкой схемы совершенно нет, все очень просто;
  • Единственными нюансами схемы с 20-40 светодиодами является то, что пайку осуществлять требуется очень аккуратно, дабы не повредить соседние контакты. Плюс собрать все это в единый компактный корпус — еще одна задача.

Возможности светодиодов безграничные. Их применение становится повсеместным. Одновременно с этим работа со светодиодами не вызывает практически никаких сложностей.

Ремонт светодиодных ламп на 220 вольт, при желании, можно сделать в домашних условиях, но для этого непременно нужно иметь в наличии паяльник и мультиметр.

Светодиодные лампы такого типа на английском называются “LL-CORN”, что в переводе означает (лампа-кукуруза), по внешнему виду действительно похоже на початок кукурузы. Такие “початки” выпускаются в множестве видов. Выбрать действительно качественную продукцию сложно. Большинство подобных лампочек производится в Китае и являются подделками, но данная статья будет не о борьбе с поддельной продукцией, а поговорим на тему: ремонт светодиодных ламп кукуруза.

Лампы такого типа как на фотографии выпускают на 24, 30, 36, 48, 56, 69, 72 светодиода. В настоящее время эти лампы оснащают светодиодами SMD5730 или SMD5733. Их данные:

SMD5730 – размеры указаны в названии 5.7 мм. на 3.0 мм. Мощность – 0.5 ватта. Напряжение 3.4 вольта. Ток 150 мА. Световой поток 30 – 45 люмен.

SMD5733 – размеры указаны в названии 5.7 мм. на 3.3 Мощность – 0.5 ватта. Напряжение 3.4 вольта. Ток 150 мА. Световой поток 35 – 50 люмен. Но нужно сказать, что светодиоды, выпущенные в Китае, часто не соответствуют заявленным характеристикам.

Если светодиодная лампа перестала светить, то её не нужно сразу выбрасывать, ремонт такой лампы не сложен и может быть сделан практически любым человеком, кто умеет держать в руках паяльник. Но до ремонта лампы нужно убедиться, что лампа получала питание в месте, где она стояла. Это значит, что на место выкрученной лампы нужно вкрутить другую и убедиться, что не работает именно лампа, а не сам светильник.

Для ремонта, нужно добраться до внутренностей, и тут возникает вопрос как вскрыть светодиодную лампу? Ответ прост – при помощи обыкновенного кухонного ножа. Нужно нож вставить в место где соединяется корпус лампы с защитным прозрачным кожухом и повернуть до выхода паза кожуха из выступа корпуса.

Кожух выскочит с лёгким щелчком.

Перед нами открывается вся “начинка” лампы. Первым делом осматриваем всё внутри и убеждаемся, что пайка деталей качественная (если нет, то пропаиваем сомнительные места). Если есть почерневшие детали, то меняем их на аналогичные.

Для определения номиналов деталей, в статье ниже приведена общая схема для подобных ламп и дано перечисление номиналов деталей, в зависимости от мощности лампы. Если есть почерневшие светодиоды, то они однозначно подлежат замене на точно такие же. При замене светодиодов, обязательно обращайте внимание на полярность. Если перепутаете плюс с минусом, то он работать не будет.

Если у Вас мощный паяльник, то для пайки маленьких светодиодов, нужно намотать на жало паяльника кусок медной проволоки подходящего диаметра и паять при её помощи.

Вздутый конденсатор – меняем. Есть трещина на детали – меняем. Трещина на печатной плате – припаиваем перемычку на дорожки схемы или зачищаем лак по обеим сторонам трещины и наносим паяльником каплю олова. Если нет подходящих деталей, то эту сгоревшую лампочку оставляем как донора для будущих ремонтов.

Бывает, что внешний вид детали нормальный, но у неё есть внутренние повреждения. В этом случае без мультиметра не обойтись. Конденсаторы проверяем на пробой, а резисторы на обрыв. В схеме светодиодных ламп деталей мало и проверить их все не составляет большого труда.

Исключение составляют лампы, где питание реализовано на драйверах из микросхем. Ремонт драйвера светодиодной лампы, состоящего из микро компонентов в домашних условиях можно сделать, но ограниченно и это под силу только профессионалам. В нашей лампе схема простая.

У всех лампочек серии, которую мы рассматриваем, схема одинакова. Отличается только количество светодиодов и номиналы некоторых элементов. Для ремонта важно знать принцип работы схемы и какую роль выполняют детали. Начнём сначала.

Конденсатор C1, является гасящим и заменяться может точно таким же, как в лампе, рассчитанным на 400 вольт.

Для лампы с 24 светодиодами он 0.56 микрофарад. Для лампы 30 светодиодов – 0.68 мкф. 36 – 48 светодиодов – 0.82 мкф. 56 – 69 светодиодов – 1.2 мкф. Обозначается 564J400v, 684J400v, 824J400v, L105J400v, соответственно.

Конденсатор C2 служит для сглаживания пульсаций выпрямленного диодной сборкой тока и может быть заменён любым полярным конденсатором от 2.2 до 10 микро фарад напряжением от 100 до 400 вольт. Но эти номиналы лучше взять по максимуму. Чем больше номинал, тем меньше будет мерцание светодиодов. Проведите эксперимент с фотокамерой телефона, наставив объектив на включенную светодиодную лампочку.

Резисторы R1 и R2 служат для разряда конденсаторов, параллельно которым они подключены, и могут быть заменены любыми от 500 кило ом до 1.5 мега ом.

Диодная сборка используется MB6S и может быть заменёна любой подобной или можно использовать четыре диода, например 1N4007 или любые подобные, включенные по схеме моста.

Резистор R3 ограничивает ток светодиодов и его номинал зависит от количества их в лампе. 24 – 30 светодиодов – 33 ома. 36 светодиодов – 36 ом. 48 светодиодов – два параллельно подключенных по 100 ом, получается 50 ом. 56 светодиодов – 100 ом. 69 светодиодов – два параллельных по 390. Заменять можно такими же по мощности или больше. От сопротивления этого резистора зависит ток, который проходит через светодиоды и, значит яркость их свечения. Если номинал резистора взять меньше, то свечение повысится, но срок службы светодиода существенно понизится и наоборот.

Теперь Вы сами сможете сделать ремонт светодиодных ламп на 220 своими руками.

Удачи Вам в Ваших делах.

Небольшая лабораторка на тему «какой драйвер лучше?» Электронный или на конденсаторах в роли балласта? Думаю, что у каждого есть своя ниша. Постараюсь рассмотреть все плюсы и минусы и тех и других схем. Напомню формулу расчёта балластных драйверов. Может кому интересно?

Свой обзор построю по простому принципу. Сначала рассмотрю драйверы на конденсаторах в роли балласта. Затем посмотрю на их электронных собратьев. Ну а в конце сравнительный вывод.
А теперь перейдём к делу.
Берём стандартную китайскую лампочку. Вот её схема (немного усовершенствованная). Почему усовершенствованная? Эта схема подойдёт к любой дешёвой китайской лампочке. Отличие будет только в номиналах радиодеталей и отсутствии некоторых сопротивлений (в целях экономии).


Бывают лампочки с отсутствующим С2 (очень редко, но бывает). В таких лампочках коэффициент пульсаций 100%. Очень редко ставят R4. Хотя сопротивление R4 просто необходимо. Оно будет вместо предохранителя, а также смягчит пусковой ток. Если в схеме отсутствует, лучше поставить. Ток через светодиоды определяет номинал ёмкости С1. В зависимости от того, какой ток мы хотим пропустить через светодиоды (для самодельщиков), можно рассчитать его ёмкость по формуле (1).


Эту формулу я писАл много раз. Повторюсь.
Формула (2) позволяет сделать обратное. С её помощью можно посчитать ток через светодиоды, а затем и мощность лампочки, не имея Ваттметра. Для расчётов мощности нам ещё необходимо знать падение напряжения на светодиодах. Можно вольтметром измерить, можно просто посчитать (без вольтметра). Вычисляется просто. Светодиод ведёт себя в схеме как стабилитрон с напряжением стабилизации около 3В (есть исключения, но очень редкие). При последовательном подключении светодиодов падение напряжения на них равно количеству светодиодов, умноженному на 3В (если 5 светодиодов, то 15В, если 10 — 30В и т.д.). Всё просто. Бывает, что схемы собраны из светодиодов в несколько параллелей. Тогда надо будет учитывать количество светодиодов только в одной параллели.
Допустим, мы хотим сделать лампочку на десяти светодиодах 5730smd. По паспортным данным максимальный ток 150мА. Рассчитаем лампочку на 100мА. Будет запас по мощности. По формуле (1) получаем: С=3,18*100/(220-30)=1,67мкФ. Такой ёмкости промышленность не выпускает, даже китайская. Берём ближайшую удобную (у нас 1,5мкФ) и пересчитываем ток по формуле (2).
(220-30)*1,5/3,18=90мА. 90мА*30В=2,7Вт. Это и есть расчетная мощность лампочки. Всё просто. В жизни конечно будет отличаться, но не намного. Всё зависит от реального напряжения в сети (это первый минус драйвера), от точной ёмкости балласта, реального падения напряжения на светодиодах и т.д. При помощи формулы (2) вы можете рассчитать мощность уже купленных лампочек (уже упоминал). Падением напряжения на R2 и R4 можно пренебречь, оно незначительно. Можно подключить последовательно достаточно много светодиодов, но общее падение напряжения не должно превышать половины напряжения сети (110В). При превышении этого напряжения лампочка болезненно реагирует на все изменения напряжения. Чем больше превышает, тем болезненнее реагирует (это дружеский совет). Тем более, за этими пределами формула работает неточно. Точно уже не рассчитать.
Вот появился очень большой плюс у этих драйверов. Мощность лампочки можно подгонять под нужный результат подбором ёмкости С1 (как самодельных, так и уже купленных). Но тут же появился и второй минус. Схема не имеет гальванической развязки с сетью. Если ткнуть в любое место включенной лампочки отвёрткой-индикатором, она покажет наличие фазы. Трогать руками (включенную в сеть лампочку) категорически запрещено.
Такой драйвер имеет практически 100%-ный КПД. Потери только на диодах и двух сопротивлениях.
Его можно изготовить в течение получаса (по-быстрому). Даже плату травить необязательно.
Конденсаторы заказывал эти:

Диоды вот эти:


Но у этих схем есть ещё один серьёзный недостаток. Это пульсации. Пульсации частотой 100Гц, результат выпрямления сетевого напряжения.


У различных лампочек форма незначительно будет отличаться. Всё зависит от величины фильтрующей ёмкости С2. Чем больше ёмкость, тем меньше горбы, тем меньше пульсации. Необходимо смотреть ГОСТ Р 54945-2012. А там чёрным по белому написано, что пульсации частотой до 300Гц вредны для здоровья. Там же формула для расчёта (приложение Г).

Но это не всё. Необходимо смотреть Санитарные нормы СНиП 23-05-95 «ЕСТЕСТВЕННОЕ И ИСКУССТВЕННОЕ ОСВЕЩЕНИЕ». В зависимости от предназначения помещения максимально допустимые пульсации от 10 до 20%.
В жизни ничего просто так не бывает. Результат простоты и дешевизны лампочек налицо.
Пора переходить к электронным драйверам. Здесь тоже не всё так безоблачно.
Вот такой драйвер я заказывал. Это ссылка именно на него в начале обзора.


Почему заказал именно такой? Объясню. Хотел сам «колхозить» светильники на 1-3Вт-ных светодиодах. Подбирал по цене и характеристикам. Меня устроил бы драйвер на 3-4 светодиода с током до 700мА. Драйвер должен иметь в своём составе ключевой транзистор, что позволит разгрузить микросхему управления драйвером. Для уменьшения ВЧ пульсаций по выходу должен стоять конденсатор. Первый минус. Стоимость подобных драйверов (US $13.75 /10 штук) отличается в бОльшую сторону от балластных. Но тут же плюс. Токи стабилизации подобных драйверов 300мА, 600мА и выше. Балластным драйверам такое и не снилось (более 200мА не рекомендую).
Посмотрим на характеристики от продавца:

ac85-265v» that everyday household appliances.»
load after 10-15v; can drive 3-4 3w led lamp beads series
600ma
А вот диапазон выходных напряжений маловат (тоже минус). Максимум, можно подцепить последовательно пять светодиодов. Параллельно можно подцеплять сколько угодно. Светодиодная мощность считается по формуле: Ток драйвера умножить на падение напряжения на светодиодах [количество светодиодов (от трёх до пяти) и умножить на падение напряжения на светодиоде (около 3В)].
Ещё один большой недостаток этих драйверов – большие ВЧ помехи. Некоторые экземпляры слышит не только ФМ радио, но и пропадает приём цифровых каналов ТВ при их работе. Частота преобразования составляет несколько десятков кГц. А вот защиты, как правило, никакой (от помех).


Под трансформатором что-то типа «экрана». Должно уменьшить помехи. Именно Этот драйвер почти не фонит.
Почему они фонят, становится ясно, если посмотреть на осциллограмму напряжения на светодиодах. Без конденсаторов ёлочка куда серьёзнее!


На выходе драйвера должен стоять не только электролит, но и керамика для подавления ВЧ помех. Высказал своё мнение. Обычно стоит либо то либо другое. Бывает, что ничего не стоит. Это бывает в дешёвых лампочках. Драйвер спрятан внутри, предъявить претензию будет сложно.
Посмотрим схему. Но предупрежу, она ознакомительная. Нанёс только основные элементы, которые необходимы нам для творчества (для понимания «что к чему»).



Погрешность в расчётах присутствует. Кстати, на мелких мощностях приборчик тоже подвирает.
А теперь посчитаем пульсации (теория в начале обзора). Посмотрим, что же видит наш глаз. К осциллографу подключаю фотодиод. Два снимка объединил в один для удобства восприятия. Слева лампочка выключена. Справа – лампочка включена. Смотрим ГОСТ Р 54945-2012. А там чёрным по белому написано, что пульсации частотой до 300Гц вредны для здоровья. А у нас около 100Гц. Для глаз вредно.


У меня получилось 20%. Необходимо смотреть Санитарные нормы СНиП 23-05-95 «ЕСТЕСТВЕННОЕ И ИСКУССТВЕННОЕ ОСВЕЩЕНИЕ». Использовать можно, но не в спальне. А у меня коридор. Можно СНиП и не смотреть.
А теперь посмотрим другой вариант подключения светодиодов. Это схема подключения к электронному драйверу.


Итого 3 параллели по 4 светодиода.
Вот, что показывает Ваттметр. 7,1Вт активной мощности.


Посмотрим, сколько доходит до светодиодов. Подключил к выходу драйвера амперметр и вольтметр.


Посчитаем чисто светодиодную мощность. Р=0,49А*12,1В=5,93Вт. Всё, что не хватает, взял на себя драйвер.
Теперь посмотрим, что же видит наш глаз. Слева лампочка выключена. Справа – лампочка включена. Частота повторения импульсов около 100кГц. Смотрим ГОСТ Р 54945-2012. А там чёрным по белому написано, что вредны для здоровья только пульсации частотой до 300Гц. А у нас около 100кГц. Для глаз безвредно.

Всё рассмотрел, всё измерил.
Теперь выделю плюсы и минусы этих схем:
Минусы лампочек с конденсатором в роли балласта по сравнению с электронными драйверами.
-Во время работы КАТЕГОРИЧЕСКИ нельзя касаться элементов схемы, они под фазой.
-Невозможно достичь высоких токов свечения светодиодов, т.к. при этом необходимы конденсаторы больших размеров. А увеличение ёмкости приводит к большим пусковым токам, портящим выключатели.
-Большие пульсации светового потока частотой 100Гц, требуют больших фильтрующих ёмкостей на выходе.
Плюсы лампочек с конденсатором в роли балласта по сравнению с электронными драйверами.
+Схема очень проста, не требует особых навыков при изготовлении.
+Диапазон выходных напряжений просто фантастический. Один и тот же драйвер будет работать и с одним и с сорока последовательно соединёнными светодиодами. У электронных драйверов выходные напряжения имеют намного более узкий диапазон.
+Низкая стоимость подобных драйверов, которая складывается буквально из стоимости двух конденсаторов и диодного моста.
+Можно изготовить и самому. Большинство деталей можно найти в любом сарае или гараже (старые телевизоры и т.д.).
+Можно регулировать ток через светодиоды подбором ёмкости балласта.
+Незаменимы как начальный светодиодный опыт, как первый шаг в освоении светодиодного освещения.
Есть ещё одно качество, которое можно отнести как к плюсам, так и к минусам. При использовании подобных схем с выключателями с подсветкой, светодиоды лампочки подсвечиваются. Лично для меня это скорее плюс, чем минус. Использую повсеместно как дежурное (ночное) освещение.
Умышленно не пишу, какие драйверы лучше, у каждого есть своя ниша.
Я выложил по максимуму всё, что знаю. Показал все плюсы и минусы этих схем. А выбор как всегда делать вам. Я лишь постарался помочь.
На этом всё!
Удачи всем.

Планирую купить +71 Добавить в избранное Обзор понравился +68 +157

Я всегда говорил, что будущее за светодиодами. Это, прежде всего, благодаря их долговечности и экономии электроэнергии. Однако, сегодня, технология изготовления этих ламп ещё не совершенна, уже сама высокая цена говорит об этом, и приобретать это новшество ещё рано. Но ведь не слушает никто, и покупают, а потом с претензиями, — вот гляди, уже не работает.
Но для меня это было похоже на разминку, когда на мой стол положили пару бракованных ламп.

Сказать по правде я впервые разглядывал эти лампы, сделанные из толстого стекла, они казались неразборными, что только подтверждало мою теорию об их несовершенстве, и пока я вслухрассуждал об этом, один из слушателей взяв фен, просто нагрел по контуру стеклянный цилиндр и приклеенный круг стекла сам вышел из объятий. При высокой температуре увеличиваются линейные размеры, а клей становится эластичным.В глаза сразу бросились два не запаянных светодиода (они были приподняты с одной стороны, такое бывает при падении). В другой лампе взорвался электролитический конденсатор. Но причина не только в нём, а в неисправности одного светодиода, который разорвав цепь, тем самым превратил напряжение на конденсаторе равное 100 вольтам в разность потенциалов 300 вольт, что и привело к взрыву.

Вот самая простая, а потому наиболее распространённаяэлектрическая схема светодиодных ламп без трансформаторов.С неё и начнём. Но сначала немного теории.

Конденсатор С1 играет роль гасящего резистора, поскольку на частоте переменного тока имеет сопротивление, но в отличие от резистора не рассеивает тепло и служит для уменьшения напряжения последовательной цепи. Иногда вместо одного конденсатора ставят два в параллель, для достижения необходимой яркости свечения. Для надёжной работы лампы их рабочее напряжение должно быть больше 450 вольт.

Диодный мост служит для преобразования переменного тока в постоянный.

Конденсатор С2 сглаживает пульсации 100 Гц выпрямленного напряжения моста. Его рабочее напряжение должно быть более 300 вольт.

Высокоомные резисторы R1, R2, параллельно конденсаторам С1 и С2, служат цели электробезопасности, для снятия зарядов с этих конденсаторов, чтобы не тряхнуло током, если коснуться цоколя только что снятой лампы.

Низкоомные резисторы R3, R4 — защитного назначения, ограничивающие броски тока, в ряде случаев срабатывают как предохранители, перегреваясь и выходя из строя, размыкая цепь питания при коротком замыкании.

Из всех перечисленных радиокомпонентов меньше всего выходят из строя высокоомные резисторы и выпрямительные мосты.

Дедка за репку, бабка за дедку и т. д.


Как правило чаще выходит из строя один из светодиодов матрицы по причине короткого замыкания конденсатора С1. При замыкании этого конденсатора, увеличивается напряжение и ток на светодиодной матрице, и яркое свечение лампы длиться недолго, до момента, пока не выйдет из строя самый слабый элемент матрицы. Вышедший из строя светодиод, размыкает цепь, и напряжение на конденсаторе С2 достигает значения 300 вольт. Конденсатор С2 (его рабочее напряжение было 100 вольт) взрываясь, закорачивает цепь питания и выводит из строя низкоомные резисторы R3, R4, которые от предельно высокого тока моментально нагреваются, и их проводящий слой трескается, разрывая цепь питания.

Наверно это самая худшая сказка из моего детства, но намёк остаётся в силе – мало найти причину отсутствия свечения, необходимо также отыскать следствие.

Поиск неисправных компонентов


Итак, лампа вскрыта. Первое, что я сделал, тщательным образом посмотрел монтаж.

1. Самое простое – провод отвалился от цоколя лампы. Такое уже было с энергосберегающими лампами. Сам провод можно нарастить, а вместо паяногоили сварного соединения с алюминиевым цоколем можно применить резьбовое соединение.

2. Разбухший или выгоревший электролитический конденсатор С2, я просто удалил. Для надёжности использовал конденсатор с рабочим напряжением более 300 вольт. Лампа будет функционировать и без него.

3. Тестером прозвонил низкоомные резисторы R3, R4, показания должны быть в пределах 100 – 560 Ом (101 – 561 обозначение чип-резисторов). Один из резисторов не показывал своего значения, и я егозаменил.

4. Теперь очередь конденсатора С1. Он заблокирован защитным резистором R1 от 100 кОм (104) и выше 510 кОм, (514, последняя цифра чип-резисторов подразумевает количество нолей) номинал которого покажет омметр, что говорит об исправности самого конденсатора, по крайней мере он не пробит. Этот конденсатор необходимо поставить на напряжение не менее 450 вольт. Иногда, в целях уменьшения габаритов, производители ламп ставят конденсаторы на меньшее рабочее напряжение, что приводит к их выходу из строя.

5. Теперь можно включить схему в сеть и измерить тестером постоянное напряжение на конденсаторе С2 или на токопроводящих площадках, где он стоял. Свечение отсутствовало, и при этом постоянное напряжение было 1,4 раза больше переменного напряжения сети 220 вольт и составило 308 вольт, что указывало на обрыв светодиодной матрицы, но на исправность диодного моста.

6. Поиск неисправного светодиода начинаю с визуального осмотра, отключенной от сети лампы. Внешне такой элемент отличается от других черной точкой на поверхности кристалла. Итак, подозреваемый элемент найден, но для уверенности можно воспользоваться тестером и сравнивать сопротивление перехода каждого светодиода в прямом включении. Оно должно составлять около 30 кОм.

Если все элементы матрицы показывают одинаковое сопротивление, и при её подключении свечение отсутствует, а постоянное напряжение на конденсаторе С2 резко упало до единиц вольт, то это говорит о неисправности конденсатора С1. Скорее всего он будет в обрыве.

Не советую делать так, как делал сам. Завернув свободную руку за спину, другой рукой, острым пинцетом у включённой лампы замыкал токопроводящие площадки каждого светодиода по очереди, до момента, пока не загорится вся матрица. Так легко отыскать элемент, из-за которого лампа будет тускло светить, моргать или включаться на непродолжительное время. Возможно, сам элемент будет просто иметь плохой контакт с проводящей дорожкой из-за плохой пайки.

Рис.4.

Есть ещё один способ проверки светодиодной матрицы (рис. 4.). С помощью питания от контейнера с двумя батарейками с общим напряжением 3 вольта или от одной батарейкис таким напряжением. С помощью последовательно соединённого резистора R = 100 Ом подсоединяю выводы с напряжением 3 вольта в соответствующей полярности к каждому светодиоду D, не выпаивая его из схемы и убеждаюсь в его свечении (он будет светиться только в прямом включении).

Внимание!

Прогресс не стоит на месте, и мне попалась светодиодная лампа, в которой светодиоды представлены в виде двух последовательно соединённых полупроводниковых кристаллов в одном корпусе, а это значит, что от напряжения 3 вольта они не загорятся. Для проверки используется та же схема (рис. 4), только с контейнером на 4-е батарейки, то есть необходимо иметь напряжение 6 вольт и резистор 100 Ом, ограничивающий ток.

Эта лампа на 220 вольт выполнена с преобразователем на пониженное напряжение, что не даёт ей полностью погаснуть при выходе из строя одного светодиода. Что делать если её уровень освещённости упал и задрожал, словно от холода? Причина – в избытке тепла внутри цоколя. Жару не любят электролитические конденсаторы и сохнут от этого, их ёмкость падает, из-за чего и растёт пульсация выпрямленного диодным мостом напряжения, которая и вызывает дрожание света. Просто необходимо было заменить электролитический конденсатор.

Фото 3.

Светодиодная лампа на 12 вольт.




Рис. 5 Схема соединений.

Мне попался такой вариант ее схемы.

Опять теория.

Диодный мост (D 1-D 4) на клеммах лампы делает её универсальной, что позволяет подключаться к постоянному напряжению, не беспокоясь о переполюсовке, кроме того, даёт возможность использовать лампу с низковольтным источником переменного напряжения с интервалом от 6 до 20 вольт, (для постоянного с интервалом от 8 до 30 вольт).

За такой большой разброс напряжения отвечает преобразователь (микросхема CL 6807, R 1, R 2, L1 , D 5). Его задача ограничивать ток с ростом напряжения. В отличие от ограничивающего тока резистора, данный преобразователь, обладает высоким КПД = 95 процентам, он же экономит электроэнергию и, не выделяя излишки тепла, занимает меньше места, чем резистор.

Сами светодиоды — D6 — D9.

Всё вроде хорошо, но лампы выходят из строя . Основная причина – некачественные светодиоды, (если точнее, некачественная сварка кристалла полупроводника к отводам для распайки). В этой схеме отключение будет парами, предварительно лампа будет подавать сигналы миганием. Нахожу неисправный светодиод, поочерёдно подключаясь 3-х вольтовой конструкцией (рис. 4) к каждому светодиоду отключенной лампы. Таким образом, из двух ламп можно восстановить одну, оставив запчасти для лучших времён, (кстати, красивые радиаторы для транзисторов).

Но как быть, если вы не смогли починить лампу? Не расстраивайтесь. Из сломанной лампы можно сделать массу разнообразных поделок.

Фото 5 Заходите на огонёк.

Диммер для светодиодных ламп своими руками схемы и устройство | Своими руками

Светодиодные лампы, гирлянды, ленты сегодня очень популярны. Однако из соображений дополнительного энергосбережения у многих возникают вопросы по их подключению с возможностью регулировки яркости — например, с помощью диммера.

Светодиодные лампы, гирлянды, ленты сегодня очень популярны. Однако из соображений дополнительного энергосбережения у многих возникают вопросы по их подключению с возможностью регулировки яркости — например, с помощью диммера.

Благодаря своей экономичности, интенсивному свечению и малому потреблению электроэнергии светодиодные лампы нашли широкое применение как в промышленности, так и в быту. В отличие от ламп дневного света и так называемых энергосберегающих светодиодные лампы не содержат токсичной ртути, которая попадает в окружающую среду при малейших механических повреждениях корпуса лампы. Поэтому светодиодные лампы являются оптимальными источниками освещения для квартир, детских садов, школ, крытых спортивных площадок.

Способы регулировки яркости светодиодных ламп

Иногда яркость светодиодных ламп оказывается избыточной, и ею приходится каким-то образом управлять. Для регулировки яркости используются диммеры, которые представлены двумя разновидностями: одни изменяют напряжение и, соответственно, ток через нагрузку, а другие модели за счёт широтно- импульсной модуляции (ШИМ) регулируют интервалы включения и отключения нагрузки, то есть светодиода. Длительность периода следования импульсов остаётся при этом постоянной (рис. 1).

Диммеры, функционирующие по принципу изменения напряжения на нагрузке, — устройства довольно громоздкие и дорогие. Кроме того, они малопригодны для низковольтных светодиодных ламп или лент, рассчитанных на напряжение 12-24 В, поскольку в зависимости от конструкции такие лампы (ленты) включаются при напряжении 9 и 18 В соответственно.

Диммеры на основе ШИМ очень компактны и эффективны. Их легко реализовать на микроконтроллерах, снабдив устройство дополнительными функциями. К сожалению, при отказе микроконтроллерного устройства отремонтировать его практически невозможно: простая замена ; микроконтроллера ничего не исправит, поскольку он содержит управляющую программу, разработанную производителем устройства и представляющую коммерческую тайну.

Вместе с тем при отказе микроконтроллерного диммера его довольно легко заменить самодельным, поскольку широтно-импульсное управление несложно реализовать на цифровых микросхемах малой степени интеграции. Эти микросхемы совсем недорогие, а собранные на них конструкции доступны для повторения даже новичкам, только начавшим освоение электроники.


Ссылка по теме:  Светодиодная лампа (led) своими руками вместо энергосберегающей


Аналого-цифровой диммер

Самый простой по конструкции — диммер, выполненный на интегральном таймере NE555. Этот таймер был создан почти 45 лет тому назад инженером компании Signetics Гансом Камензиндом. В таймере объединены аналоговая и цифровая части. Аналоговая представлена двумя компараторами, цифровая — RS-триггером, который можно считать элементарной ячейкой памяти и инвертором. Благодаря столь замечательному союзу аналоговой и цифровой электроники возникло совершенно уникальное устройство, на основе которого можно построить импульсные преобразователи, широтно-импульсные модуляторы, таймеры, генераторы. Добавим, что таймер не критичен к напряжению питания и стабильно работает в диапазоне от 3 до 18 В, обеспечивая выходной ток до 0,2 А. То есть к выходу таймера напрямую можно подключить реле, тем самым ещё больше упростив конструкцию,

Принципиальная схема устройства

Рассмотрим схему, предназначенную для управления светодиодными лампами (рис. 2).

Длительность периода колебаний задается генератором, выполненным на резисторе R1 и конденсаторе С1. Разряд и заряд конденсатора С1 происходит по разным цепям, разделенным диодами VD1 и VD2. Если перемещать ползунок резистора R1 вверх, уменьшится длительность разряда и увеличится время заряда конденсатора С1. А это значит, что при изменении положения движка резистора R1 будет меняться только скважность импульсов на выходе 3 таймера DA1 и, соответственно, интервал между включением и отключением нагрузки.

Поскольку максимальный ток на выходе микросхемы NE555 не превышает 0,2 А, управлять мощной нагрузкой, которой являются светодиодные лампы (ленты) следует через усилитель мощности, выполненный на полевом транзисторе.

В данной конструкции использован полевой транзистор с индуцированным каналом п-типа, например 2SK1505, 2SK1946, или любой другой с допустимым прямым током нагрузки, в 1,5-2 раза превышающим максимальный суммарный ток нагрузки, подключенной к диммеру.

Транзистор следует установить на теплоотвод, если мощность нагрузки превышает 1 А. Площадь теплоотвода должна соответствовать мощности, рассеиваемой на транзисторе.

При обращении с полевым транзистором следует иметь в виду, что он весьма чувствителен к статическому электричеству. Даже слабого статического разряда бывает достаточно, чтобы необратимо испортить транзистор. Поэтому перед монтажом все электроды полевого транзистора следует закоротить, например, алюминиевой фольгой (фото 1) или оголённым медным проводом.

Монтаж и сборка диммера своими руками

Монтаж диммера удобно выполнять на печатной плате из одностороннего фольгированного стеклотекстолита размерами 35 х 50 мм. Разводка печатных проводников и схема монтажа компонентов представлены на рис. 4 и 5 соответственно.

Сборку устройства целесообразно производить в такой последовательности. Сначала установите разъём

для подключения внешних цепей и резисторы, затем — конденсаторы, диоды, микросхему и последним припаяйте полевой транзистор. После пайки обязательно удалите перемычку с выводов транзистора, иначе собранное устройство сгорит при первом же подключении! Внешний вид смонтированного диммера показан на фото 2 и 3.

Диммер можно разместить в подходящем пластмассовом корпусе, например в мыльнице, просверлив отверстия для подвода кабеля и под переменный резистор R1.

При перемещении движка переменного резистора скважность импульсов меняется от 5 до 100 %, а освещённость — почти в 20 раз (фото 4).

Применение диммеров

Собранный диммер можно использовать для регулировки освещенности рабочего места, например, в домашней мастерской. Известно, что яркий свет при длительной работе утомляет зрение.

Еще один вариант применения диммера — это система аварийного освещения. При работе от автономного источника питания — аккумулятора — ресурс работы системы аварийного освещения существенно увеличится за счет снижения яркости светодиодных ламп.

И, наконец, диммер можно подключить к полноцветным RGB-лампам или RGB-лентам для синтеза цвета. Правда, диммеры потребуется изготовить в трех экземплярах — по одному на красный, зелёный и синий каналы. Таким образом, регулируя яркость в каждом канале, вы без труда установите любой желаемый цвет или оттенок. Подобная замена может пригодиться в случае отказа штатного контроллера, входящего в комплект светодиодных ламп или лент, поскольку приобрести отдельно от комплекта этот контроллер бывает весьма затруднительно.

Диммер для светодиодных лам: схемы – фото


Ссылка по теме:  Освещение искусственное и естественное – расчет и требования. Лампы.


Рис. 1.При широтно-импульсной модуляции остаются неизменными амплитуда и период следования (повторения) импульсов, меняется лишь длительность импульса.

Рис. 2. Принципиальная схема диммера на микросхеме NE555 с усилителем мощности на полевом транзисторе.

Рис. 3. Схема разводки печатных проводников на монтажной плате.

Рис. 4. Схема расположения элементов на печатной плате.

1. Перед монтажом выводы полевого транзистора следует закоротить — во избежание пробоя статическим электричеством.

2-3. Внешний вид собранного диммера с регулировкой переменным резистором.

4. Собранный диммер обеспечивает регулировку яркости светодиода до 20 раз!

©Автор Игорь Цаплин, Краснодар

ИНСТРУМЕНТ ДЛЯ МАСТЕРОВ И МАСТЕРИЦ, И ТОВАРЫ ДЛЯ ДОМА ОЧЕНЬ ДЕШЕВО. БЕСПЛАТНАЯ ДОСТАВКА. ЕСТЬ ОТЗЫВЫ.

Ниже другие записи по теме «Как сделать своими руками — домохозяину!»


Подпишитесь на обновления в наших группах и поделитесь.

Будем друзьями!

Самодельная светодиодная лампа для холодильника

Категория

Светодиод и его применение

материалы в категории

А. КАРПАЧЕВ, г. Железногорск Курской обл.
Сегодня в продаже появилось множество ярких светодиодов различных типов, позволяющих изготавливать из них осветительные лампы. Например, в статьях [1] и [2] их авторы делятся опытом изготовления простейших ламп для лестничной площадки, состоящих из двух светодиодов. Несомненные достоинства этих ламп — экономичность, долговечность, дешевизна и возможность изготовить их всего за пару часов. Если требуется более совершенная лампа, то её изготовление описано в статье [3].
Хотелось бы поделиться своим опытом в области самостоятельного изготовления светодиодных ламп. Очень неплохую лампу для холодильника вполне можно сделать за вечер. Кстати, её срок службы будет побольше, чем у самого холодильника, ведь светодиодам не страшны частые включения при низкой температуре. Такие лампы можно использовать не только в холодильниках, но и в швейных машинках, СВЧ-печах, различных светильниках.
Для того чтобы не возникло проблем с установкой изготовленной светодиодной лампы в холодильник, её габариты не должны превышать размеров лампы накаливания 230 В 15 Вт, которую она заменит.
Было решено использовать светодиоды ASS28-WW120B21 типоразмера 3528 (3,5×2,8 мм) для поверхностного монтажа. В габаритах лампы накаливания можно разместить 60 таких светодиодов. Их рабочее напряжение — 3,2…3,4 В при токе 20 мА. Значит, на цепь последовательно соединённых светодиодов потребуется подавать напряжение около 180 В. Погасить резистором придётся всего около 40…50 В, и мощность, рассеиваемая на нём, не превысит 1 Вт.
Естественно, взамен указанных выше светодиодов можно применить любые имеющиеся для поверхностного монтажа, причём не обязательно точно знать их номинальный ток и рабочее напряжение. Чтобы рассчитать сопротивление и мощность гасящего резистора, вполне достаточно с помощью регулируемого блока питания ориентировочно определить напряжение, при котором через светодиод течёт ток 8… 10 мА, и он светится с достаточной яркостью.
Если же использовать обычные светодиоды с выводами для пайки в отверстие, то в допустимых габаритах их уместится всего несколько штук. Гасить резистором придётся почти всё напряжение сети. Это значительно увеличит рассеиваемую резистором мощность, следовательно, придётся увеличить размеры этого резистора и самой лампы. В этом случае лампа может и не уместиться на отведённом ей месте, да и «печка» в холодильнике не совсем уместна.

Схема лампы

Измеренный ток через светодиоды при включении оказался равным 6,5 мА, повышаясь до 8 мА через несколько минут работы, что более чем в два раза меньше предельно допустимого рабочего тока. Но даже при таком токе яркость получившейся лампы визуально намного больше, чем лампы накаливания мощностью 15 Вт. Цвет свечения светодиодной лампы с указанными светодиодами — голубоватый. По моему субъективному восприятию, он гораздо больше подходит для холодильника, чем тусклый желтоватый свет обычной лампы накаливания.
Теперь подробно опишу технологию, по которой изготавливалась светодиодная лампа. Берём неисправную лампу накаливания 230 В 15 Вт, обёртываем её бумагой и разбиваем стеклянную колбу. Очищаем внутреннюю боковую поверхность цоколя от остатков стекла и клея, которым к нему была приклеена колба. При этом стараемся не изменить форму цоколя — он должен остаться круглым. Работать необходимо очень осторожно, чтобы не порезаться осколками стекла и желательно в защитных очках, чтобы не поранить осколками глаза.
Затем склеиваем простейшее приспособление. Из любого твёрдого листового материала толщиной 2…3 мм (гетинакса, текстолита или другого пластика) вырезаем три детали: квадрат размерами 50×50 мм и два прямоугольника шириной 5…10 мм и длиной 50 мм. Квадратная пластина будет служить основанием. На неё приклеиваем параллельно с зазором около 2,8 мм между ними прямоугольные пластины. Это направляющие, между которыми будем укладывать светодиоды.
Зазор нужно выдержать таким, чтобы уложенные в него светодиоды можно было передвигать с небольшим усилием. Удобнее всего для сборки приспособления использовать термоклей, так как пока он остывает, положение направляющих можно корректировать.
Кладём между направляющими десять светодиодов выводом анода следующего плотно к выводу катода предыдущего. У светодиодов в корпусе 3528 вывод катода находится у скошенного угла корпуса. Затем наносим на каждую пару соприкасающихся выводов по капле нейтрального флюса и маломощным паяльником производим пайку. Паять нужно быстро, чтобы не перегреть светодиоды. Желательно проверить готовую полоску, подав на неё постоянное напряжение 30…32 В, соблюдая полярность. Все светодиоды должны светиться.
Всего делаем шесть полосок, каждая из десяти светодиодов, соединённых последовательно. Затем кладём полоски параллельно так, чтобы рядом с положительным выводом первой из них оказался отрицательный вывод второй, а рядом с плюсом второй — минус третьей и так далее и соединяем их пайкой. Получаем модуль размерами 35×18 мм из 60 светодиодов, соединённых последовательно.
К свободным выводам первого и последнего (шестидесятого) светодиода припаиваем отрезки выводов от старых транзисторов МП25, МП26, МП38— МП42. Выводы этих транзисторов изготовлены из сплава, хорошо проводящего электрический ток, но плохо проводящего тепло. Конечно, можно использовать обычный одножильный монтажный провод, но есть вероятность, что в момент припаивания вывода к плате он отпаяется от светодиода.
Далее из фольгированного с одной стороны текстолита вырезаем плату шириной 20 мм и длиной 45 мм. При
этом один из узких краёв платы сужаем до ширины около 17 мм на длину 5 мм — этим краем плата будет вставлена в цоколь от лампы накаливания. Подгоняем этот размер, понемногу стачивая плату надфилем и постоянно примеряя её к цоколю. Нужно добиться того, чтобы плата вставлялась в цоколь с заметным усилием и прочно удерживалась в нём. Приклеивать её не следует, потому что после ввинчивания лампы в патрон холодильника положение платы придётся корректировать, поворачивая её относительно цоколя, чтобы направить свет в холодильную камеру.
После того как плата подогнана к цоколю, кладём на неё со стороны, где нет фольги, изготовленный светодиодный модуль, размечаем отверстия под его выводы и сверлим их. Затем вырезаем в фольге печатные проводники, соединяющие светодиодный модуль, диодный мост и гасящие резисторы в соответствии с принципиальной схемой лампы. Отверстия для выводов моста VD1 и резисторов R1, R2 не сверлим, а припаиваем их к фольге «внакладку».
Можно установить параллельно светодиодному модулю сглаживающий оксидный конденсатор ёмкостью 10…20 мкФ на 400 В, но заметного возрастания яркости светодиодов это не даёт (я проверял), а их мерцание с частотой 100 Гц в отсутствие конденсатора для глаз незаметно.
Вместо моста КЦ407А подойдут четыре любых диода с допустимыми обратным напряжением не менее 300…400 В и выпрямленным током не менее 50 мА.
Многожильным изолированным проводом соединяем свободный вывод диодного моста с винтовой частью цоколя, а свободные выводы резисторов R1 и R2 — с его центральным контактом. Провода, идущие к цоколю, должны иметь небольшой запас по длине, чтобы была возможность проворачивать плату относительно цоколя для регулировки лампы после установки в холодильник. Собранная лампа показана на рис. 2.

Перед ввинчиванием в патрон холодильника проверяем лампу на столе. При безошибочном монтаже она загорается сразу после подключения к сети. Если лампа не загорелась, ищем ошибку. Обычно это неправильная полярность включения одного или нескольких светодиодов или соединения диодного моста со светодиодным модулем. Правила работы при сетевом напряжении 230 В см. на с. 54.
В заключение, ввернув лампу в патрон холодильника, корректируем направление светового потока, поворачивая плату в цоколе. При этом следует соблюдать осторожность, поскольку прикосновение к токоведущим частям лампы, которые находятся под напряжением сети, небезопасно.
Чтобы защититься от случайного поражения электрическим током при эксплуатации лампы, нужно изготовить для её платы кожух из полиэфирного листа, широко используемого для блистерной упаковки различных товаров, или другой подобной прозрачной пластмассы.
Возьмём ровный отрезок листа выбранного для кожуха материала толщиной 0,3…1 мм и размерами не менее 80х 60 мм. Нарисуем на нём маркёром для нанесения надписей на компакт-диски развёртку параллелепипеда шириной 21, толщиной 14 и высотой 40мм. Не забудем предусмотреть в нужных местах клапаны для склеивания. Чтобы сгибы получились ровными, их линии продавливаем обратной стороной ножа. Если материал толстый (около миллиметра), места сгиба лучше надрезать на глубину около трети толщины.
Вырезав развёртку, согнём из неё параллелепипед и склеим его. Лучше использовать для этого термо- пистолет, тогда процесс склеивания займёт минимум времени, склейка будет прозрачной и выглядеть аккуратно. Надев получившийся кожух на плату, закрепим его двумя каплями термоклея. Время изготовления кожуха по этому способу— 15…20 мин.

Второй вариант кожуха, представленный на фотоснимке рис. 3, сделан из коробочки от конфет «tic-tac», которые очень популярны и продаются во всех магазинах, павильонах и ларьках. Её размеры идеально подходят для изготовления кожуха. Коробочку нужно обрезать на длину 40 мм, затем сделать всего два разреза, один сгиб и одну склейку — и кожух готов. Время изготовления этого варианта кожуха ещё меньше — 5…10 мин.
Гасящие резисторы выбраны так, что ток через светодиоды почти в два раза меньше допустимого, поэтому светодиодам не страшны колебания сетевого напряжения в сторону увеличения. А небольшое уменьшение яркости при снижении сетевого напряжения не играет никакой роли при освещении камеры холодильника. Впрочем, у лампы накаливания при снижении питающего напряжения яркость тоже уменьшается.
Яркость изготовленной лампы легко можно увеличить практически в два раза, уменьшив сопротивление гасящих резисторов (лучше подбирать их опытным путём). Но увеличивать ток через светодиоды более чем до 15 мА не стоит, иначе при повышенном сетевом напряжении он может превысить 20 мА. Лампа, конечно, не перегорит, поскольку дверцу холодильника открытой долго не держат, но каждая перегрузка будет понемногу снижать срок службы светодиодов.
ЛИТЕРАТУРА
1.  Тертышник Э. Простая светодиодная лампа для лестничной площадки. — Радио, 2010, №8, с. 46.
2.  Мороз К. Экономичная светодиодная лампа для лестничной площадки. — Радио, 2013, № 12, с. 30.
3.  Нечаев И. Сетевая лампа из светодио-дов фонаря. — Радио, 2013, № 2, с. 26.
Радио №5/2015

Примечание:
Источник, судя-по всему журнал «Радио», а сам материал был подсмотрен на сайте http://www.radioamator.ru/

Сетевая лампа на светодиодах своими руками

В настоящее время стоимость электроэнергии значительно выросла. Для того чтобы оптимизировать бюджет можно воспользоваться двумя вариантами: увеличить свои месячные доходы или начать экономить. Второй способ займет гораздо меньше времени и усилий. Поэтому в качестве одного из решений проблемы выступает замена обычных лам накаливания на более энергосберегающие. В качестве альтернативы обычно рассматривают ЛДС или LED-светодиоды. Однако последние имеют гораздо больший срок службы и мощность всего 8 Ватт.

Принципиальная схема лампы на светодиодах представлена на следующем рисунке:

Изготовить сетевую лампу на светодиодах своими руками не так сложно, как может показаться с первого взгляда. Для этого придется купить в магазине радиотоваров несколько деталей:

  1. Светодиод мощностью 1 Ватт – 8 шт.;
  2. Радиатор – 1 шт.;
  3. Мост диодный – 1 шт.;
  4. Кусок оргстекла или пластмассы – 1 шт.;
  5. Резистор на 56 Ом – 1 шт.;
  6. Резистор на 100 Ом – 1 шт.;
  7. Резистор на 1,2 кОм – 1 шт.;
  8. Резистор на 3,9 кОм – 1 шт.;
  9. Конденсатор неполярный 680 нФ с напряжением 400 В – 1 шт.;
  10. Конденсатор полярный 2мкФ с напряжением 400 В – 1 шт.;
  11. Транзистор 13001 – 2 шт.

Желательно приобрести готовую диодную сборку. Если такую не удалось найти, что основу для LED-лампы можно спаять самостоятельно. Когда все элементы будущей конструкции есть в наличии, то можно приступать к работе.

На кусочке оргстекла необходимо сделать разметку под светодиоды, она должна совпадать с формой радиатора. После этого в материале высверливают небольшие отверстия.

После этого заготовку нужно зашкурить наждачной бумагой или шлифовальной машинкой. Обрабатываю поверхность детали до тех пор, пока она не станет матовой. Затем на светодиодах выравнивают лапки, концы проводов не должны касаться радиатора.

Далее светодиоды нужно прикрепить к оргстеклу. После установки их спаивают между собой, соблюдая полярность.

Когда все элементы установлены на свои места, то нужно подпаять проводки. Для отвода тепла стоит воспользоваться термопастой. Оптимальным по свойствам является состав КПТ-8, его следует наносить непосредственно на светодиоды.

Затем светодиоды крепят на радиаторе и собирают электронную часть. Специалисты рекомендуют паять все по схеме навесом. В итоге должна получится следующая конструкция:

После этого можно переходить к проверке работоспособности устройства. В равнении с обычной лампой накаливания светодиоды более яркие. Они имеют больший срок эксплуатации и прочность.


 

Электрическая принципиальная схема подключения осветительных мощных светодиодов

вопрос:
Какое напряжение нужно светодиодам

LEDs

К статье Простая схема подключения светодиодов для освещения — Включение светодиодов без специального драйвера

LED-светильник из самых эффективных мощных светодиодов

Потребляемая мощность схемы со светодиодами — 23 ватта,
источник питания светодиодов — сетевой трансформатор переменного тока 50 гц 220-230 на 12,6 вольта в и выпрямитель на диодном мостике с сглаживающим конденсатором конденсатором плюс автомобильный аккумулятор. (Фактически, это начало сети 12 вольт в доме, к которой сейчас подключены вентилятор печи-камина, канальный воздушный вентилятор вентиляции, освещение, 200 ватт галогеновых ламп подсветки растений в парнике и прочие мелочи.)
На сглаживающем конденсаторе (выходное напряжение блока питания на холостом ходу — без нагрузки) — 17,6 В.

Мощность, потребляемая светодиодами — 9,9 ватта.
Схема — без использованиния электронного источника тока (драйвера светодиодов), а использованы балластные сопротивления, одно из сопротивлений — автомобильная лампа накаливания.

Электрическая принципиальная схема включения осветительных мощных светодиодов

на схеме:

Красным указано реальное измеренное напряжение на светодиодах и резисторах, вольты (относительно анода или катода, без учета полярности).

Фиолетовым — величина тока через соответствующий участок цепи, в амперах.

Детали, примененные в электросхеме

по схеме:
D1-D5
Красно-оранжевые светодиоды
Luxeon K2 Power LED — LXK2-Ph22-S00 — red orange — 100 Lumen
5 штук

резистор R1 сопротивлением 2,76 Ом
отрезок 1,2 м высокоомного нихромового провода — для электроподогрева пола («теплый электропол»)

резистор R2 сопротивление 3,7 Ом
лампа накаливания (обыкновенная) автомобильная 12 вольт 21 ватт (стопы, повороты)

Да, действительно мощные светодиоды начинанаются с амперов и люменов (световой поток). А если указаны mA или яркость — канделы (кд, мКд) — то это яркость свечения САМОГО СВЕТОДИОДА, но не освещаемой поверхности.
Это индикаторные светодиоды для световой индикации в пультах, приборах. Конечно, можно читать инструкцию и в свете от приборной панели.

«Паспорт» светодиодов

Официальные ТТД (тактико-технические данные) светодиодов Филипс-Люксеон К2 находятся по линку
philipslumileds.com/uploads/54/DS51-pdf
power light source LUXEON K2

Почему светодиоды power light LUXEON K2?

«LUXEON® K2 is the most robust and powerful LED available.
… industry leading lumen perform performance, > 140—175 lumens in 6500K white
… Industry Best Lumen Maintenance—50,000 hours life at 1000 mA with 70% lumen maintenance»
(источник — официальный сайт, ссылка — выше)

LUXEON K2 являются наиболее надежными и мощными светодиодами из доступных.
…в отрасли — лидер, >140-175 люмен, белый просвет выполнять работы, более 140-175 люмен в 6500К — белый

О 70% мощности… В ходе малонаучных опытов по выжиманию максисального света-яркости (люменов) из светодиодов, я сжег 1/3 белых светодиодов при подборе балластных сопротивлений, и 1/3 — при эксплуатации втечение 3 лет.
Поэтому не добивайтесь максимально выозможной яркости свечения светодиода без источника стабилизированного тока — поверьте моему опыту, 50% запас мощности сохранит больше работоспособных светодиодов.

У «без-звездочных» светодиодов К2 отсутствует крепление к радиатору, у самого корпуса светодиода наблюдается отвратительный тепловой контакт с радиатором через термопасту — перегреваются и перегорают.

Однако 3 года назад это действительно были самые дешевые светодиоды из обнаруженных в свободной продаже, и были куплены в интернет-магазине в Германии (это к вопросу об НДС и таможне): я — в Евросоюзе, Германия — там же.

Дешевые светодиоды — это дешевые люмен/доллар, а не за штуку или метр гибких сборок-светодиодных лент. Световой поток — вот конечный результат функционирования светодиода.
Светоизлучающие диоды, у которых паспортным параметром является яркость (то есть яркость, когда СМОТРИШЬ НА СВЕТОДИОД) — это индикаторные СИД, а не осветительные, «яркость» которых определяется в люменах (световой поток ОТ СВЕТОДИОДА).

Светодиодные лампы дают световые потоки подозрительно «тусклой силы» — я не видел ни одной LED-лампы пригодной для яркого освещения. LED-лампочки — это так, одна видимость света, как и «энергосберегающие лампы» — люминисцентные компактные лампы. Поэтому пришлось делать светильник из отдельных мощных светодиодов.
Так вот, LED-лампы из магазина я бы отнес к ИНДИКАТОРНЫМ лампочкам, а не к осветительным.

Почему применены красные светодиоды, а не белые

Специфика применения обуславливает красный цвет. … что? Нет, не в Амстердаме.

Светодиоды применены для круглосуточного освещения растений в теплице (искусственный полярный день) для интенсификации роста без химических удобрений (см. Самодом — супер-автономная жизнь без потребительских сетей — супермаркетов, «ЖКХ», и даже почти без денег).
Нет, на схеме-фото изображена не конопля, а рассада помидоров 🙂
Подробнее о подсветке растений — био-технико-экономический Расчёт затрат на освещение мощными светодиодами.
и
LiveJournal Дневник теплицы с обогревом и освещением

Также о светодиодах для освещения и их применениях:
Самодом, светодиоды

 
25мар2013

Электронные схемы диммеров

Диммер лампы переменного тока 120 В, полноволновой тиристор — Схема полноволнового фазового управления, приведенная ниже, была найдена в книге силовых цепей RCA от 1969 года. Нагрузка размещена последовательно с линией переменного тока, и четыре диода обеспечивают полнополупериодное выпрямленное напряжение на анод SCR. Два транзистора с малым сигналом соединены в конфигурацию переключателя, так что, когда напряжение на конденсаторе 2,2 мкФ достигает примерно 8 вольт, транзисторы включаются и разряжают конденсатор через затвор SCR, заставляя его проводить ток.Временная задержка от начала каждого полупериода до момента включения тиристора регулируется резистором 50 кОм, который регулирует время, необходимое для зарядки конденсатора 2 мкФ до 8 вольт. По мере уменьшения сопротивления время уменьшается, и тиристор будет работать раньше в течение каждого полупериода, что приводит к увеличению среднего напряжения на нагрузке. Если сопротивление установлено на минимум, тиристор сработает при повышении напряжения примерно до 40 вольт или 15 градусов цикла. __ Разработан Биллом Боуденом

12v Light Dimmer V2 — Эта версия управляет освещением, светодиодами и даже двигателями всего с 10 компонентами — до 50 Вт __ Свяжитесь с P.Тауншенд — EduTek Ltd

14-вольтный диммер лампы (с помощью кастрюли). Вот диммер лампы на 12 вольт / 2 ампера, который можно использовать для уменьшения яркости стандартного 25-ваттного автомобильного тормоза или резервной лампы, управляя рабочим циклом нестабильного генератора таймера 555. Когда стеклоочиститель потенциометра находится в крайнем верхнем положении, конденсатор будет быстро заряжаться через оба резистора 1K __ Разработано Биллом Боуденом

Диммер 230 В — Узнайте, как собрать простую, но эффективную схему ШИМ-диммера для светодиодов.__ Разработано REUK-Renewable Energy UK, сайт

2-проводной диммер для ламп постоянного тока заменяет реостаты — 23.10.97 Идеи дизайна EDN — Недорогой диммер для ламп постоянного тока (рис. 1), изначально предназначенный для использования в коммерческих грузовиках, может управлять освещением панелей накаливания мощностью более 100 Вт и заменяет собой реостат большой мощности, обогрев которого затемняет панель приборов. __ Схема проектирования Кевана О’Мира, KO Systems, Чатсуорт, Калифорния

Стойка для 5-канального диммера — Примечание. В этом документе описывается мой проект светорегулятора, который я сделал.Этот документ не является полным строительным проектом, и в нем могут отсутствовать некоторые детали. Документ разработан в качестве примера для тех, кто может подумать о разработке и создании своей собственной схемы диммера. Если вы планируете взяться за такой проект, я должен предупредить вас, что вы должны знать немало вопросов безопасности, прежде чем даже думать о создании такого типа устройства, которое напрямую подключается к сети и контролирует большую мощность (ошибки могут означать электробезопасность и опасности пожарной безопасности). __ Дизайн Томи Энгдал

Балласт, который можно уменьшить с помощью бытового диммера с фазовым вырезом.- В настоящее время разработана система на основе IR2156, в которой балласт может работать с минимальным мерцанием в значительной части диапазона регулировки диммера, а световой поток можно регулировать в этом диапазоне от максимальной мощности до примерно 10%. __

Адресный диммирующий балласт DALI — был разработан цифровой диммирующий балласт с цифровой адресацией. Он соответствует стандарту DALI, требует очень мало деталей и работает с очень низким энергопотреблением. Приложения включают управление зданием или студийное освещение, где желательно управлять отдельными лампами или группами для экономии энергии, выполнения технического обслуживания ламп или обеспечения идеального качества света.Конструкция включает цифровой диммер балласта, код микроконтроллера и платформу для управления балластом с помощью ПК. __ Разработано Сесилией Контенти и Томом Рибарич, инженером по приложениям, International Rectifier, Lighting Group

Автоматический одноканальный диммер света — он полностью автоматический, имеет множество функций и может управлять лампами накаливания мощностью до 2400 Вт .__ SiliconChip

Автоматический одноканальный диммер света — Часть 2 — Вторая (и последняя) статья содержит все детали конструкции и настройки.__ SiliconChip

Балласт, который можно уменьшить с помощью бытового диммера с фазовой отсечкой. — В настоящее время разработана система на основе IR2156, в которой балласт может работать с минимальным мерцанием в значительной части диапазона регулировки диммера, а световой поток можно регулировать в этом диапазоне от максимальной мощности до примерно 10%. __

Basic оптимизирует полосу пропускания фототранзистора — 09/04/98 EDN-Design Ideas — (Файл содержит несколько схем. Прокрутите, чтобы найти эту) Простая схема может улучшить динамические характеристики фототранзистора для использования в приложениях с низкой и средней скоростью, например скорость до 100 кбит / с, например, оптическая изоляция последовательной линии RS-232C (рисунок 1).В недорогих приложениях содержится много схем, прокрутите до этой __ Circuit Design Дэвида Маглиокко, CDPI, Scientrier, Франция

Control Room Light Intensity Digital — 11-Nov-04 EDN-Design Ideas — Многие люди предпочитают разные настройки освещения и температуры для разных комнат в зависимости от их настроения, от того, работают они или отдыхают. Схема на Рисунке 1 регулирует интенсивность искусственного света в комнате и __ Дизайн схемы Донал Макнамара и Киран Келли Analog Devices, Лимерик, Ирландия

Цифровой балласт DALI

с цифровым затемнением для входа 32 Вт / T8 110 В — Эта эталонная конструкция представляет собой высокоэффективный электронный балласт с цифровым затемнением и высоким коэффициентом мощности, предназначенный для управления типами люминесцентных ламп с быстрым запуском.Конструкция содержит схему активной коррекции коэффициента мощности для универсального входа напряжения, а также схему управления балластом с использованием IR21592. Конструкция также включает микроконтроллер PIC16F628 и схему развязки для подключения к интерфейсу освещения с цифровой адресацией (DALI). __

Цифровой балласт DALI с регулируемой яркостью для входа 36 Вт / T8 220 В — Эта эталонная конструкция представляет собой высокоэффективный электронный балласт с цифровым затемнением и высоким коэффициентом мощности, предназначенный для управления типами люминесцентных ламп с быстрым запуском.Конструкция содержит схему активной коррекции коэффициента мощности для универсального входа напряжения, а также схему управления балластом с использованием IR21592. Конструкция также включает микроконтроллер PIC16F628 и схему развязки для подключения к интерфейсу освещения с цифровой адресацией (DALI). __

DALI Dimming Ballast с цифровой адресацией — Разработан цифровой диммирующий балласт с цифровой адресацией. Он соответствует стандарту DALI, требует очень мало деталей и работает с очень низким энергопотреблением.Приложения включают управление зданием или студийное освещение, где желательно управлять отдельными лампами или группами для экономии энергии, выполнения технического обслуживания ламп или обеспечения идеального качества света. Конструкция включает цифровой диммер балласта, код микроконтроллера и платформу для управления балластом с помощью ПК. __ Разработано Сесилией Контенти и Томом Рибарич, инженером по приложениям, International Rectifier, Lighting Group

Цифровое управление освещением в комнате — 11-ноя-2004 Идеи дизайна EDN. Многие люди предпочитают разные настройки освещения и температуры для разных комнат в зависимости от их настроения, от того, работают они или отдыхают.Схема на Рисунке 1 регулирует интенсивность искусственного света в комнате и __ Дизайн схемы Донал Макнамара и Киран Келли, Analog Devices, Лимерик, Ирландия

Настольная светодиодная лампа с регулируемой яркостью — 30 ноября 2012 г. — Новости дизайна: Эндрю Моррис разработал схему регулируемого светодиодного драйвера, которая является простой и энергоэффективной. Затем он установил схему в переносную люминесцентную лампу. __ Дизайн Эндрю Р. Морриса, Gadget Freak-Case № 230

Диммерный переключатель — Следующая схема представляет собой простую схему диммера, состоящего из основных электронных компонентов.Схема регулятора освещенности построена с использованием таких компонентов, как диоды, резисторы, провода и конденсаторы. Основной принцип работы схемы регулирования яркости — сначала зарядить конденсатор от источника питания, а затем позволить конденсатору медленно разрядиться. Это гарантирует снижение мощности источника, к которому прикреплен диммер. __ Освещение Unlimited Company

Диммер / Контроль скорости двигателя — Диммеры для ламп, использующие тракты, могут быть довольно простыми, не более чем потенциометром, резистором, конденсатором и триаком со встроенным диаком.(См. Примеры и другие технические данные в примечании к приложению Teccor.) Схема ниже аналогична __ Контактное лицо: Чарльз Венцель из Wenzel Associates, Inc.

Диммирующий балласт DALI для входа 32 Вт / T8 110 В — Эта эталонная конструкция представляет собой высокоэффективный цифровой диммирующий электронный балласт с высоким коэффициентом мощности, предназначенный для управления типами люминесцентных ламп с быстрым запуском. Конструкция содержит схему активной коррекции коэффициента мощности для универсального входа напряжения, а также схему управления балластом с использованием IR21592.Конструкция также включает микроконтроллер PIC16F628 и схему развязки для подключения к интерфейсу освещения с цифровой адресацией (DALI). __

Диммирующий балласт DALI для входа 36 Вт / T8 220 В — Эта эталонная конструкция представляет собой высокоэффективный цифровой диммирующий электронный балласт с высоким коэффициентом мощности, предназначенный для управления типами люминесцентных ламп с быстрым запуском. Конструкция содержит схему активной коррекции коэффициента мощности для универсального входа напряжения, а также схему управления балластом с использованием IR21592.Конструкция также включает микроконтроллер PIC16F628 и схему развязки для подключения к интерфейсу освещения с цифровой адресацией (DALI). __

Диммер купольной лампы — лампа для чтения внутри автомобиля значительно помогает пассажирам в ночное время, но часто лампа внутреннего купола слишком яркая и отвлекает водителя. Линейный регулятор, такой как …__ Electronics Projects for You

Диммер купольной лампы

— Эта уникальная схема придаст вашему купольному свету стильный вид. Обычно, когда дверь машины закрыта, плафон просто гаснет.С помощью этой схемы вы можете сделать так, чтобы наш купольный свет медленно угасал. __ Контактное лицо: Чарльз Венцель из Wenzel Associates, Inc.

Диммер купольного света (с задержкой) — для всех тех, кому нужен исчезающий купольный свет (он же свет вежливости или театральное освещение) без необходимости платить за него, вы можете построить свой собственный. Я приложил схемы, и вы можете построить его за несколько долларов, учитывая, что у вас нет никаких запасных компонентов, иначе это может вам абсолютно ничего не стоить. Конечно, вы можете скопировать некоторые части с вашего телевизора, проигрывателя компакт-дисков, радио и т. Д., но я не несу ответственности за ущерб, который вы причиняете таким образом [b: e43bc460fa] Как это работает [/ b: e43bc460fa] Я не буду беспокоить вас техническими __

Расширитель купольного света — В сети и в журналах можно найти бесчисленное количество расширителей купольного света, но большинство из них страдают от одной сложности. Хорошо, на самом деле они не являются сложными, но большинство из них намного сложнее, чем нужно. Некоторые из них совершенно чрезмерны и требуют дополнительной автомобильной проводки, печатной платы, микросхем, подстроечных резисторов и многого другого, в то время как другие кажутся чьей-то непроверенной идеей или, может быть, просто мозговой пердой — некоторые схемы, которые я видел, никогда не будут работать.Моей целью была предельная простота, и я думаю, что она была достигнута. __ Разработан Род Эллиоттом ESP

Контроллер мощности — подходит в качестве диммера для 100-вольтовых ламп мощностью до 1200 Вт __ Разработано Seiichi Inoue

Экспериментальный кроссфейдер — идеи по модификации простых поворотных диммеров для создания кроссфейдера __

Flasher / Dimmer Lantern — Электронная схема управления фонарем добавляет высокоэффективное затемнение и мигание к существующему фонарю или фонарику с батарейным питанием или к индивидуальной конструкции.Для автомобиля это отличный фонарь для замены спущенного колеса, чтения заднего сиденья или аварийной работы двигателя. Режим флешера __ Дизайн Тони ван Роон VA3AVR

Стойка для четырехканального диммера

— Примечание. В этом документе описывается мой проект регулятора освещенности, который я сделал. Этот документ не является полным строительным проектом, и в нем могут отсутствовать некоторые детали. Документ разработан в качестве примера для тех, кто может подумать о разработке и создании своей собственной схемы диммера. Если вы планируете взяться за такой проект, я должен предупредить вас, что вы должны знать немало вопросов безопасности, прежде чем даже думать о создании такого типа устройства, которое напрямую подключается к сети и контролирует большую мощность (ошибки могут означать электробезопасность и опасности пожарной безопасности).__ Дизайн Томи Энгдал

Галогенный диммер света обеспечивает бесконечное управление — 16.03.00 Идеи дизайна EDN — В современных системах освещения используются галогенные лампы, большинство из которых работают от трансформатора на 12 В переменного тока. Схема диммера на Рисунке 1 может изменять интенсивность света от нуля до максимума. Диммер работает при напряжении приблизительно 12 В, в отличие от обычных, которые работают за счет регулировки угла включения источника питания 110 или 220 В __ Схема схемы Suded Emmanuel

Высокоэффективный галогенный диммер для велосипедных фонарей — в этой схеме используется микроконтроллер PIC16F84 с некоторым программным обеспечением для управления галогенной лампой постоянного тока мощностью 20 Вт и напряжением 12 В __

Контроллер подсветки ЖК-дисплея высокой мощности для настольных ПК поддерживает широкий диапазон затемнения, увеличивая срок службы лампы — DN264 Примечания по конструкции__ Линейная технология / Analog Devices

Описание схемы драйвера светодиода

и доступные решения

Прошли дни ламп накаливания.В настоящее время преобладает светодиодное освещение, поскольку оно намного более энергоэффективно. Светодиодные лампы, с другой стороны, требуют хорошей схемы управления для правильной работы, и это так называемая схема драйвера светодиода. Светодиоды в основном представляют собой диод, который излучает свет при прямом смещении. Диод рассчитан на прямое напряжение 0,3 В или 0,7 В для германия и кремния соответственно. Для светодиодных фонарей прямое напряжение выше, чем у диода, и обычно может достигать 2–3,5 В на светодиод. Некоторые светодиоды, для которых указано более высокое напряжение, уже представляют собой комбинацию нескольких светодиодов.

Светодиоды

имеют постоянный ток по своей природе, но почему светодиоды используются непосредственно вместо ламп накаливания и CFL в розетках переменного тока? Это стало возможным благодаря схеме драйвера светодиода. Схема драйвера светодиода преобразует переменный ток в постоянный уровень, который безопасно используется светодиодами. Есть несколько доступных решений для схемы драйвера светодиода. Драйверы светодиодов бывают линейными или переключаемыми. Ознакомимся с этими решениями.

Схема линейного драйвера светодиодов

использует линейное устройство для управления током светодиодов.Это схемное решение совершенно неэффективно и ограничивается только приложениями малой мощности. Линейный драйвер светодиода может быть простым источником напряжения и только резистором, ограничивающим ток; это действительно очень просто, поэтому до сих пор популярное решение для управления светодиодами. Еще одним преимуществом линейного драйвера светодиода является то, что он может обеспечивать очень чистый свет, я имею в виду, что чистый — это отсутствие эффекта размытия или мерцания.

Простая схема линейного драйвера светодиода

Схема ниже представляет собой очень простой способ управления светодиодами.

В основном он состоит только из источника постоянного напряжения и ограничительного резистора Rlimit. Однако в этом решении источником напряжения должен быть чистый постоянный ток или линейный уровень, чтобы ток, установленный для светодиодов, не изменился. В случае, если ток на светодиоды будет изменяться, освещение будет несколько показывать изменение интенсивности, и это неприятно видеть глазами. Еще один недостаток изменения тока светодиода заключается в том, что светодиоды могут перегреться и выйти из строя.

В приведенной выше примерной схеме источником напряжения является чистый постоянный ток, а ток светодиода, устанавливаемый ограничивающим резистором, составляет 600 мА.Это дает общую мощность светодиода 8,332 Вт . Токоограничивающий резистор рассеивает 3,67 Вт. Общая мощность, подаваемая на схему, составляет 12 Вт , а КПД составляет всего 69,43%, что очень мало.

Эффективность светодиода = 8,332 Вт / 12 Вт = 69,43%

Линейный регулятор как светодиодный драйвер

Приведенный выше пример представляет собой очень простой и элементарный подход к управлению светодиодами. В случае источника переменного напряжения можно использовать линейный регулятор.Линейный регулятор может принимать переменное входное напряжение, сохраняя при этом выходное напряжение постоянным. Это все еще решение управления светодиодами с потерями, но оно лучше первого подхода с точки зрения стабильности тока светодиодов.

На схеме ниже представлена ​​типичная схема линейного регулятора. VOUT — это узел, к которому приложена нагрузка, и он регулируется до уровня напряжения, установленного пользователем. Предположим, что диапазон входного напряжения составляет 9-16 В, выходное напряжение останется прежним; например 7,5 В на настройку.Когда разница между входом и выходом огромна, линейный регулятор рассеивает огромную мощность, чтобы поддерживать регулируемое выходное напряжение. Свойство линейного регулятора поддерживать выходное напряжение делает его популярным для управления светодиодами.

Ниже представлена ​​схема драйвера светодиода с использованием линейного регулятора от Linear Technology, LT1083-12. Выход этого регулятора — фиксированный 12 В. Тем не менее, необходим последовательный резистор, чтобы установить безопасный для светодиодов уровень тока. Ток светодиода в этой цепи — 261.6 мА .

Ток светодиода = (12 В — (3 X 3,128 В)) / 10 Ом = 261,6 мА

Мощность светодиода всего 2.452Вт .

Индикатор питания = 3 X 3,128 В X 261,6 мА = 2,45 Вт

Мощность, рассеиваемая ограничительным резистором, составляет 0,684 Вт.

Ограничительный резистор мощности = (261,6 мА) 2 X 10 Ом = 0,684 Вт

Мощность, рассеиваемая линейным регулятором, составляет

.

Регулятор мощности = (VIN — VOUT) X (ток светодиода + ток покоя) = (16V-12V) X (261.6 мА + 5 мА) = 1,0664 Вт.

(Ток покоя указан в паспорте регулятора. Это лишь небольшое значение, и в большинстве случаев им можно пренебречь для упрощения расчетов.)

КПД схемы

КПД цепи = индикатор питания / (индикатор питания + резистор ограничения мощности + регулятор мощности) = 2,45 Вт / (2,45 Вт + 0,684 Вт + 1,0664 Вт) = 58,33%

Эффективность очень низкая, как и у предыдущего решения. При работе с более высоким входным напряжением КПД еще больше снизится.

Специализированный линейный светодиодный контроллер

Существуют специальные линейные ИС, разработанные исключительно для приложений светодиодных драйверов. Однако концепция и анализ со стороны силовой части
аналогичны приведенному выше примеру.

Преимущество этих микросхем заключается в возможности управления несколькими цепочками светодиодов и встроенной защите от коротких и открытых светодиодов. Еще одно преимущество — включение функции затемнения. Обычный линейный регулятор не имеет функции диммирования.

Одним из примеров этого решения является BD8374HFP-M от ROHM semiconductor. Ниже представлена ​​схема приложения. Это только один канал, с возможностью диммирования, защитой от короткого замыкания и короткого замыкания, защитой от перенапряжения и перегрева.

Для этого контроллера способ установки тока светодиода — через резистор RVIN_F. Этот резистор расположен на входе, в отличие от приведенных выше примеров, который расположен последовательно со светодиодами. В этом решении напряжение светодиода будет устанавливать выходное напряжение микросхемы контроллера.При использовании типичного регулятора напряжения на выходе будет фиксированное напряжение, но здесь выход может изменяться в зависимости от общего прямого напряжения светодиода.

Общая мощность светодиода — это просто сумма прямых напряжений светодиода, умноженная на IOUT или установленный ток светодиода резистором R VIN_F . Мощность, рассеиваемая линейной ИС (BD8374HFP-M), представляет собой разницу между входным напряжением и общим прямым падением напряжения светодиода, умноженное на установленный выходной ток. С другой стороны, рассеиваемая мощность резистора установки тока RVIN_F — это просто падение его напряжения, умноженное на выходной ток, или квадрат выходного тока, умноженный на сопротивление.Расчет эффективности можно сделать так же, как в приведенном выше примере.

В драйвере светодиодов линейного режима изменение входного напряжения невелико, что ограничивается рассеиваемой мощностью линейного контроллера. Потери огромны и в линейном решении. Эти недостатки устраняются переключателем режима работы драйвера светодиода. Драйвер светодиода режима переключения может быть понижающим (понижающим), повышающим (повышающим) или комбинированным (понижающим-повышающим). Драйвер светодиода с режимом переключения может использоваться непосредственно от универсальной линии переменного тока; скажем, 90-264Vrms.

Принцип переключения

Режим переключения означает, что управляющее устройство работает в состоянии непрерывного переключения между включением и выключением переключающего устройства, такого как MOSFET или BJT. При включении переключателя в идеале имеется нулевое сопротивление, а значит, в идеале нулевые потери мощности. С другой стороны, при выключении ток в идеале равен нулю, следовательно, нет потери мощности. Такое поведение делает решение с переключением режима более эффективным, чем линейное решение. Однако подход с переключением режимов более сложен, чем линейное решение, и будет стоить дороже.

Понижающий преобразователь Светодиодный драйвер

Ниже представлена ​​принципиальная схема силовой части понижающего преобразователя. Понижающий преобразователь — это понижающий преобразователь. Его выход всегда ниже, чем его вход. MOSFET Q1 приводится в насыщение и отключается сигналом ШИМ, чтобы генерировать выходное напряжение. Катушка индуктивности L1 служит накопителем энергии, которая заряжается, когда полевой МОП-транзистор Q1 приводится в состояние насыщения. Он разряжается, когда полевой МОП-транзистор Q1 находится в отключенном состоянии.

Конденсатор C1 также служит резервуаром для минимизации колебаний напряжения на выходной шине. Он заряжается, когда Q1 приводится в состояние насыщения, а разряжается, когда Q1 находится в режиме отсечки. Диод D1 служит каналом для тока индуктивности при его разряде, он работает только тогда, когда полевой МОП-транзистор Q1 находится в состоянии отключения.

И МОП-транзистор, и диод проводят только часть периода переключения. Соотношение между входным и выходным напряжением определяется так называемым рабочим циклом.Идеальный рабочий цикл понижающего преобразователя —

Рабочий цикл

, бак = Vout / Vin

Пример рабочей схемы драйвера светодиода, полученной с помощью понижающего преобразователя

Ниже приведена схема драйвера светодиода на основе понижающей топологии. Это хорошо работает как в симуляции, так и в реальности. Управляющее устройство — LT3474 от Linear Technology.

Силовой путь проходит от IN к внутреннему переключателю U1 (Q1 в стандартном понижающем преобразователе выше), к L1 и C3 (C1 в стандартном понижающем преобразователе выше).D1 — это диод разрядного тракта индуктора, как и D1 в общей схеме понижающего преобразователя выше. Схема допускает широкое изменение входного напряжения в отличие от линейного решения.

Расчеты силовой части этой схемы драйвера такие же, как и для обычного понижающего преобразователя, который мы обсуждали выше. Эта схема драйвера светодиода имеет возможность регулирования яркости ШИМ путем подачи сигнала ШИМ на вывод ШИМ.

Смоделированный ток светодиода с ШИМ-регулировкой яркости:

Как вы можете видеть на диаграмме выше, напряжение светодиода, которое является выходным напряжением понижающего преобразователя, меньше входного напряжения, равного 10 В, поскольку понижающий преобразователь является понижающим преобразователем.Ток светодиода модулируется для уменьшения яркости.

Повышающий преобразователь Производный светодиодный драйвер

Ниже представлена ​​типичная схема силовой части повышающего преобразователя. Q1 модулируется и быстро работает в режиме насыщения и отсечки. Как и в случае понижающего преобразователя, коммутационное устройство будет иметь идеальные нулевые потери, так как в идеале во время насыщения нет сопротивления, а во время отсечки нет тока. Когда Q1 включен, L1 заряжается, а D1 имеет обратное смещение. Когда Q1 выключается, L1 меняет полярность и смещает прямое смещение D1, тогда ток достигнет выходного узла.C1 служит резервуаром, так что при зарядке индуктора в нагрузку поступает энергия. Повышающий преобразователь также управляется рабочим циклом, его идеальное уравнение рабочего цикла:

Рабочий цикл, Boost = 1 — (VIN / VOUT)

Пример рабочей схемы драйвера светодиодов с повышением мощности

Схема ниже представляет собой простой драйвер светодиода, созданный на основе повышающего преобразователя.

При использовании повышающего драйвера входное напряжение всегда должно быть ниже по сравнению с общим прямым напряжением светодиодов.В этой схеме входное напряжение равно 3, в то время как общее напряжение светодиодов составляет 9,64 В на основе моделирования.

Драйвер для светодиодов Buck-Boost

Если приложению требуется очень широкий диапазон напряжений, который не может быть обеспечен только повышением или понижающим коэффициентом, рассмотрите возможность использования драйвера светодиодов, производного от понижающего-повышающего напряжения. Пример этого — ниже схема от Linear Technology.

Схема драйвера светодиода, полученная из линии переменного тока

Решения, которые мы обсуждали выше, являются приложениями DCDC.Как насчет того, что нам нужен светодиодный светильник, который можно напрямую подключить к розетке переменного тока, как коммерческие светодиодные фонари, доступные в настоящее время, что нам делать? В этой связи нам понадобится еще одна схема драйвера светодиода, подходящая для работы с переменным током постоянного тока. Есть несколько вещей, которые делают это возможным.

неизолированный драйвер светодиодов ACDC с потерями

Схема ниже представляет собой простой неизолированный драйвер светодиода ACDC. Он состоит только из пассивных устройств и стабилитрона и диода. Это экономичное решение, но не эффективное и безопасное в использовании.Будь осторожен.

неизолированный светодиодный драйвер ACDC без потерь

Нижеприведенное решение все еще неизолированное, так как в нем отсутствует изолирующий трансформатор. Это решение, предоставленное Richtek с использованием контроллера RT8402. Однако этот драйвер более эффективен по сравнению с первой схемой, описанной выше. Это конкретное решение — доллар

.



производный драйвер светодиодов AC-DC. Мостовой выпрямитель преобразует переменный ток в постоянный, а Q1, D1, L1 и EC1 являются силовой частью понижающего преобразователя.Это эффективный драйвер, поскольку Q1 работает между насыщением и отсечкой. Тем не менее, будьте осторожны, это решение неизолированное.

Еще одно решение от Richtek с контроллером RT8487:

Оба решения обычно используются в коммерческих маломощных и недорогих светодиодных лампах.

Изолированный драйвер светодиодов ACDC без потерь с использованием обратной производной топологии

Для мощных светодиодных фонарей или ламп предпочтительна схема, указанная ниже.Это решение от Richtek с использованием RT7306. Это драйвер светодиода с обратным ходом. Наличие трансформатора обеспечивает изоляцию между линией переменного тока и светодиодами. При случайном прикосновении к выходной стороне нет опасности поражения электрическим током.

Будучи обратноходовой топологией, драйвер может работать в широком диапазоне входного напряжения от 90 до 264 В переменного тока. Это решение также эффективно при мощности менее 50 Вт. Однако при мощности более 50 Вт эффективность может снизиться, но все же достаточно высока по сравнению с линейным решением.

Связанные

Методы затемнения для светодиодных драйверов

Стремление к энергоэффективности побудило производителей исследовать способы затемнения всех видов технологий освещения, в том числе тех, которые обычно не регулируются. Рассмотрим, например, люминесцентные лампы. При использовании относительно дорогих электронных балластов с регулируемой яркостью яркость люминесцентных ламп может быть снижена до уровня ниже 5% от максимальной светоотдачи. Но даже с электронными балластами яркость HID-ламп (высокоинтенсивных газоразрядных) не может быть больше половины их максимальной светоотдачи.Падение выше этой точки может привести к заметному изменению цвета и нестабильности плазменной дуги.

Еще больше усложняет ситуацию то, что большинство флуоресцентных ламп с регулируемой яркостью и все системы HID несовместимы со стандартными фазовыми диммерами на основе симисторов. Вместо этого они используют специализированные контроллеры диммирования, часто требующие дополнительных аналоговых или цифровых кабелей управления диммированием.

Люминесцентные и HID лампы представляют собой дуговые газоразрядные лампы. Одна из причин, по которой их так сложно уменьшить, заключается в том, что импеданс плазменных дуг нелинейный и значительно изменяется в зависимости от тока и температуры.Кроме того, существуют рабочие точки, в которых сопротивление лампы быстро изменяется в ответ на небольшие изменения тока дуги. Это заставляет схему регулирования яркости включать в себя систему регулирования тока с обратной связью, способную быстро реагировать на такие изменения.

В отличие от этого, гораздо проще затемнить светодиоды из-за их состава. Светодиоды состоят из твердотельного p-n перехода с довольно постоянным прямым падением напряжения. Это представляет собой стабильную нагрузку, которая может управляться источником постоянного постоянного тока.

Автономные драйверы светодиодов

состоят из импульсных источников питания постоянного тока, обычно оснащенных выходами постоянного тока. Светодиоды, в отличие от газоразрядных ламп, не нуждаются в высоковольтном зажигании. Таким образом, диммирование светодиодов может использовать широтно-импульсную модуляцию (ШИМ), при которой выходной ток включается и выключается с постоянной частотой с переменной скважностью. Это действие регулирует средний ток, который пропорционален светоотдаче.

Частота затемнения ШИМ должна быть выше 120 Гц, чтобы соответствовать требованиям Energy Star по предотвращению видимого мерцания.В качестве альтернативы светодиоды можно затемнить, уменьшив постоянный ток. Однако этот метод приводит к изменению цвета некоторых белых светодиодов, и управлять им труднее при низких уровнях затемнения.

Стоит отметить, что срок службы светодиодных источников света зависит от рабочей температуры и силы тока, которую видит отдельный светодиодный кристалл. Затемнение снижает оба этих параметра и, таким образом, потенциально увеличивает срок службы светодиода.

Световой поток для светодиодов определяется параметром L70, который указывает среднее количество часов работы до тех пор, пока световой поток не снизится до 70% от его первоначального количества.Любой из описанных выше методов диммирования расширяет параметр L70 за счет работы светодиода с пониженной выходной мощностью. Одна из причин, по которой возможность диммирования важна для светодиодных драйверов, заключается в том, что Министерство энергетики США обязало такую ​​возможность для любой лампы, надеющейся получить рейтинг Energy Star.

Некоторые ранние продукты для замены светодиодных ламп не имеют диммирования. Но законодательство, отменяющее лампы накаливания, делает неизбежным то, что светодиодные продукты с регулируемой яркостью в конечном итоге будут доминировать на рынке.

Существует несколько альтернативных подходов к затемнению светодиодов, которые применяются в разных сегментах рынка.Светодиодные заменители ламп накаливания или CFL должны регулироваться стандартными настенными диммерами. Они широко используются и составляют подавляющее большинство всех бытовых диммеров. Настенные диммеры используют чрезвычайно простую и дешевую схему на основе симистора, изначально разработанную для работы с чисто резистивными лампами накаливания. (КЛЛ являются емкостными, а не резистивными. Поскольку они потребляют относительно небольшой ток из линии переменного тока, они принципиально несовместимы с диммерами на основе симисторов.)

Симистор — это переключающий элемент в прилагаемой цепи диммера.Он срабатывает в определенной точке цикла линии переменного тока, который можно регулировать с помощью потенциометра, позволяя току течь до конца цикла. Красная осциллограмма показывает линейное напряжение переменного тока на входе регулятора яркости. Синим цветом показана форма волны напряжения среза фазы, поступающего от диммера к лампе.

Точка зажигания симистора определяет период цикла переменного тока, в течение которого лампа получает ток. В лампе накаливания это напрямую контролирует уровень освещенности. Но светодиоды питаются от импульсного источника питания переменного тока в постоянный, поэтому диммирование не работает таким же образом.Важно понимать, что симистор включается импульсом и будет продолжать проводить до тех пор, пока ток не упадет до низкого уровня, называемого током удержания, после чего он отключится, пока снова не сработает.

Продолжить на следующей странице

Базовая схема импульсного источника питания драйвера светодиода не может регулировать яркость симистора без дополнительных схем. Для обеспечения совместимости симисторных диммеров можно использовать четыре метода: цепь сброса, накачка заряда, простой источник питания ШИМ и сложный источник питания ШИМ.

Цепь утечки решает проблему, вызванную использованием драйверами светодиодов диодного моста и сглаживающего конденсатора на входе. Эти элементы не обеспечивают ток для удержания симистора включенным до конца полупериода переменного тока; ток перестает течь после зарядки конденсатора входной шины. Если симистор выключается до окончания цикла, схема диммера снова подает питание на него. Это может происходить несколько раз за цикл, вызывая мерцание в процессе. Это также может повредить компоненты драйвера светодиода из-за переходных процессов высокого напряжения и скачков тока.

Цепь утечки, по сути, представляет собой источник тока, предназначенный для отвода фиксированного тока от симистора, чтобы поддерживать его под напряжением от точки зажигания до конца цикла, даже когда нагрузка не потребляет ток. Существует несколько реализаций схемы. Некоторые из них спроектированы так, чтобы потреблять меньший ток на пике линейного напряжения и ближе к точке пересечения нуля, чтобы минимизировать потери мощности. Хотя метод сглаживания рассеивает примерно половину ватта, преимущества эффективности и срока службы светодиодных ламп намного перевешивают эти потери.

На прилагаемом рисунке показана типичная внешняя схема драйвера светодиода с простой схемой прокачки. Цепь утечки состоит из высоковольтного полевого МОП-транзистора, сконфигурированного как источник тока. Фиксированное напряжение, подаваемое на затвор, в сочетании с резистором от источника до 0 В определяют ток утечки. Этот ток обычно устанавливается на 20 мА. Этот пример включает в себя сеть коррекции коэффициента мощности с «пассивным заполнением впадин».

Использование подкачки заряда — альтернативный способ держать симистор включенным до конца цикла.Обратите внимание, что драйвер светодиода состоит из импульсного источника питания с частотой от 50 до 100 кГц. Небольшая часть этой высокой частоты может быть возвращена на линейный вход через конденсаторы, таким образом поддерживая ток в симисторе. Этот метод может быть эффективным, но вынуждает разработчиков следить за тем, чтобы не вносить кондуктивные электромагнитные помехи в линию переменного тока, что может нарушить стандарты электромагнитной совместимости.

Как описано ранее, ШИМ — это эффективный метод управления яркостью светодиодов путем регулировки среднего тока.Простая система ШИМ для драйвера светодиода с регулируемой яркостью симистора активирует вывод светодиода только в то время, когда включен симистор в диммере. Драйвер светодиода содержит накопительный конденсатор шины постоянного тока, поэтому он обычно может продолжать работать на накопленной энергии в течение большей части периода, когда симистор выключен. Он будет пополняться во время «включенных» периодов.

Можно добавить простую схему для определения включения симистора и включения управления выходным током светодиода только в этот период.Это позволяет затемнять светодиоды по мере регулировки светорегулятора. Однако этот метод не может точно регулировать яркость при низких уровнях освещенности, поэтому современные системы не используют информацию об угле включения симистора для непосредственного управления выходом светодиода.

Вместо этого информация об угле включения симистора преобразуется в уровень постоянного тока, который изменяется при регулировке диммера вверх и вниз. Затем этот уровень постоянного тока сравнивается с формой кривой линейного изменения яркости на высокой частоте, чтобы устранить мерцание, и формирует ее для обеспечения наилучшей линейности и диапазона затемнения.В результате сравнения этих сигналов формируется сигнал ШИМ, который используется для включения и выключения выходного сигнала драйвера светодиода и обеспечения плавного затемнения в широком диапазоне.

Конечно, использование схем для совместимости со стандартными диммерами несколько снижает эффективность. Это считается приемлемым для маломощных бытовых приложений. Другое дело — промышленные приложения. Там схемы диммирования светодиодов, скорее всего, будут созданы с нуля.

Методы, используемые для затемнения целых систем люминесцентного освещения в зданиях, могут быть одинаково хорошо применены к системам на основе светодиодов.Типичные подходы включают аналоговое регулирование яркости от 0 до 10 В, регулирование яркости цифрового адресного интерфейса освещения (DALI) и несущей линии питания.

Все вышеперечисленные системы в основном сетевые балласты, поэтому ими можно управлять с помощью центральных контроллеров. Контроллер в системе от 0 до 10 В отправляет аналоговый сигнал, который регулирует выход балласта в соответствии с напряжением в цепи управления. DALI, с другой стороны, включает двустороннюю связь. Каждый балласт имеет отдельный адрес, поэтому контроллер DALI может управлять выходом каждого из них индивидуально.Наконец, методы передачи данных по линии электропередачи делают то же самое, но используют линию электропередачи переменного тока для передачи информации между контроллерами и лёгкими балластами.

Принципиальная схема, работа и ее применение

Аварийное освещение используется в экстренных ситуациях, например, при отключении основного источника питания или выходе из строя обычного электрического освещения. Таким образом, внезапная потеря электричества может привести к пожару, в противном случае — к отключению электричества. Эта система освещения используется в зданиях и включает в себя батарею для автоматического включения света при сбое питания.В аварийной ситуации эти фонари играют ключевую роль в обеспечении безопасности жителей. В случае сбоя питания аварийный свет может включиться с помощью батареек, чтобы визуально показать безопасный маршрут, по которому жители должны покинуть здание. В этой статье обсуждается обзор аварийного освещения и его работы.

Что такое аварийный свет и как он работает?

Определение: Аварийный свет используется для автоматического включения лампы, работающей от батареи.Это предотвращает попадание пользователя в трудную ситуацию из-за неожиданной темноты и помогает пользователю получить доступ к мгновенному аварийному свету. В этой схеме вместо ламп накаливания используются светодиоды; Следовательно, создание схемы очень энергоэффективно, а также становится ярче благодаря своему световому переключению. Кроме того, схема использует новаторскую теорию для улучшения экономических характеристик устройства.

Аварийное освещение подключено к электросети здания.У каждого светильника своя схема. Эти фонари включают в себя батарею, поэтому они работают как резервный источник питания, когда здание теряет питание. Здесь срок службы аккумулятора невелик, если сравнивать его с другими видами систем освещения. Поэтому необходимо проверить все аварийные огни, чтобы убедиться, что батарея может давать аварийное освещение в течение как минимум 90 минут. Эти тесты необходимы, чтобы каждые полгода проверять работоспособность аккумулятора у профессионалов.

Как загораются аварийные огни?

На рынке доступны различные виды светильников разных размеров и форм.Каждый свет разработан на основе приложения. Есть несколько распространенных систем аварийного освещения, используемых в зданиях:

  • Выходные огни
  • Лампы для планок
  • Oyster Lights
  • Точечные огни

Как сделать аварийное освещение / Аварийное освещение своими руками

Аварийное освещение DIY можно спроектировать в пошаговом процессе, как показано ниже. Необходимые компоненты схемы аварийного освещения 12 В в основном включают LDR, 50 кОм VR, резистор 10 кОм, транзистор BD139 и BD140, резистор 33 Ом, белый светодиод и аккумулятор на 12 В.

Подключите схему на макетной плате в соответствии со схемой, показанной ниже, используя указанные выше компоненты.
В этой схеме свет на основе LDR активирует белый светодиод высокой мощности, когда в комнате становится темно. Его можно использовать как простую лампу в детской комнате, чтобы избежать паники при отключении электричества. Эта схема дает достаточно света в комнате.

Схема аварийного освещения с использованием аккумулятора 12 В

Схема очень проста в конструкции, поэтому ее можно разместить в небольшой коробке.В качестве источника питания используется небольшая батарея на 12 В, обеспечивающая питание цепи. Транзисторы, такие как T1 и T2, используются в качестве электронных переключателей для включения / выключения белых светодиодов.

Когда в комнате достаточно света, активируется LDR, так что на клемме базы транзистора T1 становится высокий уровень. Оставшийся транзисторный Т2 также отключается, так как его базовая клемма заземлена. В этом состоянии белый светодиод выключится. Как только свет, падающий на LDR, уменьшается, транзистор T1 при прямом смещении будет подавать базовый ток на транзистор «T2».Этот транзистор «T2» включится, и загорится белый светодиод.

Здесь светодиод представляет собой яркий светодиод Luxeon мощностью 1 Вт. Он использует ток примерно 300 мА. Поэтому лучше выключить лампу, чтобы сэкономить энергию в батарее, через несколько минут

Схема цепи аварийного освещения

Система аварийного освещения используется для автоматического включения лампы, когда обычный источник переменного тока перестает работать и выключается как только основной источник питания вернется.

Этот свет важен там, где часто случаются перебои в подаче электроэнергии, поэтому он может уберечь пользователя от сложной ситуации при неожиданном отключении сетевого питания.Это позволяет пользователю получить доступ к альтернативе, например, включить инвертор или генератор, пока основное питание не будет восстановлено.

Описание схем и работа

Здесь есть две схемы, которые работают от батареи 6 В и батареи 12 В. Конструкция этих схем показана ниже. Эти схемы могут быть построены со светодиодами вместо лампы накаливания, поэтому это чрезвычайно энергоэффективно и ясно с его выходной мощностью.

Схема аварийного освещения на 6 В

Принципиальная схема аварийного освещения на 6 В показана ниже.Необходимые компоненты этой схемы в основном включают резисторы 10 кОм и 470 Ом, конденсатор (C1) -100 мкФ / 25 В, мостовые диоды, такие как D1, D2 (1N4007), D3 — D5 (1N5408), T1 (BD140), Tr1 (от 0 до 6 В. & 500 мА), светодиоды и переключатель S1, включая переключающие контакты с помощью батареи 6 В.

Схема аварийного освещения с использованием батареи 6В

В приведенной выше схеме стандартный источник питания в основном включает трансформатор, конденсатор и мостовую схему. Основным компонентом, используемым в этой схеме, является транзистор PNP.Здесь этот транзистор используется как переключатель.

Как только основной источник питания включен, положительный источник питания попадает на базовый вывод транзистора «T1», поэтому он будет отключен.

Таким образом, напряжение от батареи не может достигать группы светодиодов, поэтому она остается выключенной. Тем временем аккумулятор заряжается от напряжения источника питания и заряжается через систему непрерывной зарядки.

Однако, как только основное питание прерывается, тогда + ve на выводе базы транзистора исчезнет, ​​и он будет в прямом смещении через резистор-10K.

Если транзистор «T1» включается, сразу же начинают мигать светодиоды. Сначала все диоды подключены в линию напряжения и медленно обходят один за другим, когда светодиод становится более тусклым.

Области применения аварийного освещения

Области применения этих фонарей включают следующее.

  • Аварийное освещение используется там, где свет включается автоматически при отключении питания.
  • Они используются в качестве аварийных ламп в зданиях, домах, на рабочих местах, в учебных помещениях, чтобы избежать непредвиденных сбоев в электроснабжении.
  • Эти огни используются в нескольких отраслях промышленности

Часто задаваемые вопросы

1). Какие самые лучшие аварийные светильники?

Это Wipro coral & amber, Philips ujjwal, голубиная лампа и т. Д.

2) Как работают аварийные огни?

Эти светильники подключаются через провода к источнику питания здания для непрерывной зарядки внутренних батарей для обеспечения резервного питания, используемого для освещения.

3). Какая мощность аварийного освещения?

Эти огни могут работать до 90 минут.

4). Когда нужно тестировать аварийное освещение?

Эти фонари необходимо проверять один раз в месяц.

5). Есть ли в этих лампах аккумулятор?

Да, в комплект входит аккумулятор.

Итак, это все обзор аварийного освещения с принципиальной схемой и его работой. Вот вам вопрос. Какие бывают типы аварийного освещения?

Новый подход к проектированию светодиодных двигателей переменного тока без водителя — LED professional

Рисунок 8: Входные и выходные токи прототипа с двигателем без водителя на светодиодах мощностью 5 Вт

Изображение полного светодиодного двигателя без водителя мощностью менее 5 Вт показано на рисунке 9.

Этот пример включает предохранитель и защиту от перенапряжения, необходимых для длительного срока службы в электросети общего пользования.

Поскольку свет излучается попеременно верхней и нижней цепочками светодиодов,
особенностью конструкции является то, что каждый светодиод из верхней цепочки расположен близко к соответствующему светодиоду из нижней цепочки, так что комбинация два излучают свет непрерывно. Это гарантирует, что весь световой механизм не будет воспринимать мерцание, даже если отдельные элементы массива активируются только с частотой 60 Гц (в США).

Рисунок 9: Пример автономного светодиодного двигателя мощностью менее 5 Вт

Как уже было сказано, индекс мерцания этого продукта составляет 0,03. Это сопоставимо с 0,32 для лучших доступных на сегодняшний день легких двигателей переменного тока с ИС-управлением или 0,15 для ламп накаливания. КПД составляет чуть более 90%, по сравнению с 80% для большинства доступных сегодня легких двигателей переменного тока с ИС-управлением.Стоимость ниже, потому что для управления им не требуется дорогая высоковольтная ИС. Эта конструкция идеальна для недорогих приложений без затемнения при уровне мощности менее 5 Вт.

Решение для двигателя переменного тока без водителя для


5 Вт и выше

При уровнях мощности более 5 Вт правила Energy Star в США требуют, чтобы коэффициент мощности превышал 0,7. Схема, отвечающая этим требованиям, показана на рисунке 10.

Рисунок 10:
Светодиодный двигатель переменного тока без водителя для уровней мощности более 5 Вт с коэффициентом мощности> 0.7

Важные рабочие формы сигналов для одной из этих схем, работающих на уровне мощности 12 Вт, показаны на рисунке 11.

Рисунок 11: Важные рабочие формы сигналов для светодиодного светового двигателя
без водителя мощностью 12 Вт

Эта схема в некоторых отношениях аналогична предыдущей.
Светодиодные цепочки теперь разделены на четыре равных подсегмента.Во время положительных полупериодов закорачивается верхний подсегмент, а во время отрицательных полупериодов закорачивается нижний подсегмент. Когда входное напряжение начинает становиться положительным, C2 начинает заряжаться через R1, в то время как одновременно C3, который ранее был заряжен до отрицательного пика линейного напряжения, получает ток, проходящий через нижние три цепочки. Это приводит к появлению первого скачка в общей кривой тока светодиода, характерной для тока смещения. Когда C3 заряжен достаточно, чтобы достичь нуля вольт, гальванический ток вместо этого начинает проходить через R2, и это вызывает второй горб на общей кривой тока светодиода.Во время отрицательных полупериодов происходит точно дополняющая серия событий зарядки и разрядки. C3 разряжается до отрицательного напряжения, равного отрицательному пику линейного напряжения. Это причина того, почему в начале положительного полупериода ток светодиода начинается сразу же, когда линейное напряжение становится положительным, что дает такую ​​короткую продолжительность между импульсами тока.

Рисунок 12: Основные рабочие характеристики 12-ваттного двигателя светодиодного освещения
без водителя

Основные рабочие характеристики одной из этих схем, работающих на уровне мощности
12 Вт, показаны на рисунке 12.Индекс мерцания формы волны выходного тока составляет 0,29, что ниже, чем достижимые лучшими двигателями света, использующими высоковольтные переключающие микросхемы, которые имеют индекс мерцания 0,32. КПД составляет 87,5% по сравнению с 80% или около того, характерными для сегодняшних светодиодных двигателей переменного тока. Коэффициент мощности составляет 0,72, что достаточно для удовлетворения требований Energy Star для потребительских товаров в США.

При уровне мощности 12 Вт конденсаторы C2 и C3 — 2,0 мкФ / 250 В, удобный размер для сборок для поверхностного монтажа.Очевидно, что таким образом можно производить гораздо более крупные легкие двигатели, а конденсаторы для поверхностного монтажа можно разместить параллельно, чтобы обеспечить более высокие уровни мощности.

Выводы

Из двух продуктов, которые были описаны выше, можно предсказать, что простые, не диммирующие светодиодные драйверы могут стать менее распространенными в будущем, потому что сами светодиодные массивы могут быть легко скомпонованы в качестве светодиодных двигателей переменного тока без драйверов, которые работают напрямую. от линий электропередачи переменного тока с более низкой стоимостью, более высокой эффективностью и адекватным коэффициентом мощности.Эти простые и недорогие схемы превосходят существующие традиционные светодиодные продукты переменного тока с более высокой эффективностью и более низким индексом мерцания. Исключениями из этого прогноза могут быть случаи, когда по какой-либо оптической причине источником света должен быть только один светодиод высокой мощности, а не массив светодиодов. Кроме того, приложения для регулирования яркости, вероятно, будут и дальше разрабатываться в том виде, в каком они есть сейчас. Хотя этот вариант еще не изучен, высоковольтные светодиоды, доступные в настоящее время от многих производителей, хорошо подходят для этих светодиодных двигателей переменного тока без водителя, если прямое напряжение устройств спроектировано так, чтобы соответствовать потребностям схемы.

(PDF) Дизайн светодиодной лампы для дома постоянного тока на основе возобновляемых источников энергии

 ISSN: 2088-8694

Int J Pow Elec & Dri Syst, Vol. 9, No. 3, September 2018: 987 — 996

Результат эксперимента по эффективности разработанной светодиодной лампы был относительно близок к результатам моделирования.

Светодиодная лампа может нормально работать при напряжении шины постоянного тока 48 В постоянного тока. Результаты экспериментов со световым потоком

и световой отдачей показывают, что полученная конструкция светодиодной лампы соответствует критериям освещения

помещения.Тепло, выделяемое конструкцией, все еще может хорошо отводиться через алюминиевый радиатор, используемый

, даже несмотря на то, что его установка на соответствующий MCPCB все еще не была идеальной.

БЛАГОДАРНОСТИ

Авторы хотели бы поблагодарить Группу исследований по проектированию энергосистем и энергетического менеджмента

Group (PseemRG) и Международное бюро научных публикаций Университета Бравиджая, Индонезия,

за возможность распространения результатов этого исследования

СПРАВОЧНИКИ

[1] Techakittiroj K, Patumtaewapibal S, Wongpaibool V, Threevithayanon W., «Дорожная карта по внедрению системы DC

в дома будущего», 2008 13-я Международная конференция по гармоникам и качеству электроэнергии. 2008, стр. 1–5.

[2] Тауфик, Мускарелла М., «Разработка прототипов домов постоянного тока в качестве демонстрационных площадок для альтернативного решения для электрификации сельской местности

», 6-й Международный ежегодный инженерный семинар 2016 г. (InAES). 2016. С. 262–265.

[3] Какигано Х., Номура М., Исэ Т., «Оценка потерь распределения постоянного тока для жилых домов по сравнению с системой переменного тока

», Международная конференция по силовой электронике 2010 г. — ECCE ASIA.2010. С. 480–486.

[4] Кимура Н., Моризан Т., Омори Х., «Блок управления питанием для фидера постоянного тока (DC Smart House)», 2012 Международная конференция

по исследованиям и применению возобновляемых источников энергии (ICRERA). 2012, стр. 1–5.

[5] Мансур TMNT, Бахарудин Н.Х., Али Р., «Оптимальный размер и экономический анализ солнечной фотоэлектрической системы с собственным потреблением энергии

для жилого дома с постоянным током», 4-я Международная конференция IEEE по интеллектуальным приборам, измерения

, 2017 г. и приложение (ICSIMA).2017. С. 1–5.

[6] Какигано Х, Миура Й, Исэ Т., «Конфигурация и управление микросетью постоянного тока для жилых домов», 2009

Конференция и выставка по передаче и распределению: Азиатско-Тихоокеанский регион. 2009, стр. 1-4.

[7] Лян К., «Дизайн лампочки постоянного тока для проекта дома постоянного тока», дипломный проект. Сан-Луис-Обиспо, Калифорния: Университет штата Калифорния

; 2012.

[8] Амин М., Арафат Ю., Лундберг С., Мангольд С., «Эффективное устройство для низковольтного дома постоянного тока», 2011 IEEE

Конференция по электроэнергетике.2011. С. 334–339.

[9] Кабай М., «Проектирование и строительство модели дома постоянного тока», старший проект. Сан-Луис-Обиспо, Калифорния: Университет штата Калифорния

; 2012.

[10] Наваби М.Дж., «Эффективный драйвер светодиодов в понижающем режиме 48 В обеспечивает 50 мА», журнал Linear Technology. Январь

2008. http://www.linear.com.

[11] Epistar Co. EPISTAR LAB запустила новую платформу для получения белого светодиодного чипа 3,0 В при работе 1 А.

октября

г. 2011. http: // www.epistar.com.tw/_english/04_pr/02_detail.php?SID=29

[12] Линейная технология. LT3590, драйвер светодиодов понижающего режима 48 В в SC70 и лист данных DFN 2 мм x 2 мм.

http://www.linear.com.

[13] BSN. Энергосбережение в системе освещения (на бахаса, Индонезия). Индонезийская национальная стандартизация

Совет. Джакарта: 2001.

[14] Мухаймин., «Световые технологии (на бахаса, Индонезия)», Бандунг: PT.Refika Aditama; 2001.

Простая и дешевая светодиодная схема обнаружения темноты

Вот простая проблема: «Как сделать так, чтобы светодиод загорелся, когда он темнеет?» Вы можете назвать это «проблемой ночника», но такой же вопрос возникает во многих знакомых ситуациях — аварийное освещение, уличные фонари, глупая подсветка компьютерной клавиатуры и этот список можно продолжить.

Решения? Много. Старинная традиция — использовать схему с фоторезистором CdS, иногда называемым фотоэлементом или LDR, для обозначения «светозависимого резистора». (Пример схемы 1, Пример 2.) Фоторезисторы надежны и стоят около 1 доллара каждый, но уходят с рынка , потому что они содержат кадмий, токсичный тяжелый металл, использование которого все чаще регулируется. Есть много других решений. Поищите здесь схемы фотодетекторов на базе операционных усилителей со светодиодным выходом и ознакомьтесь с некоторыми хитростями, используемыми в хорошо продуманных солнечных садовых светильниках, которые включают такие драгоценности, как использование самого солнечного элемента в качестве датчика.(Наша собственная коллекция солнечных схем находится здесь.)

В этой статье мы покажем, как построить очень простую — возможно, даже самую простую — светодиодную схему, активируемую темнотой. К нашему светодиоду и батарее мы добавляем всего три компонента, которые в целом стоят менее тридцати центов (и намного меньше, если вы покупаете оптом). Вы можете построить его менее чем за пять минут или меньше (намного меньше с практикой).

Что можно сделать с такой недорогой светодиодной схемой с регулируемым светом? На самом деле почти все. Но есть одно интересное применение — сделать светодиодные пледы, которые отключаются в дневное время для экономии энергии.Броски обычно могут длиться до двух недель. Добавление такого переключателя уровня освещенности может значительно продлить срок их службы.

Вот наши компоненты: Сверху: литиевая батарейка CR2032 (3 В). Внизу (слева направо): светодиод, фототранзистор LTR-4206E, транзистор 2N3904 и резистор 1 кОм.
Этот светодиод красный, ослепляюще яркий при 60 канделах, в корпусе 10 мм. Он излучает видимый луч, видимый примерно с двадцати футов в хорошо освещенной комнате. У нас есть светодиоды и батареи на eBay, а другие детали от Digi-Key, но они есть и у Mouser.Как мы уже упоминали, последние три стоят около 0,30 доллара вместе, и намного меньше в большом количестве.

LTR-4206E — фототранзистор в черном корпусе толщиной 3 мм. Черный корпус блокирует видимый свет, поэтому он чувствителен только к инфракрасному свету — он видит солнечный свет и лампы накаливания, но не люминесцентные или (большинство) газоразрядные лампы — он действительно сработает на ночью .

Нашей отправной точкой является простейшая светодиодная схема: светодиодная лампа, в которой светодиод работает непосредственно от литиевого батарейного элемента 3 В.(Забавно выглядящий пример
здесь.) Из этого мы добавляем фототранзистор, который определяет наличие света, и мы используем его выход для управления транзистором, который включает светодиод.

Принципиальная схема выглядит так; пожалуйста, не обращайте внимания на грязный почерк. 😉

Когда свет падает на фототранзистор, он начинает проводить примерно до 1,5 мА, что снижает напряжение на нижней стороне резистора на 1,5 В, выключая транзистор, который выключает светодиод.В темноте транзистор может проводить через светодиод около 15 мА. Таким образом, схема использует только 1/10 тока, когда светодиод не горит. Одно замечание по поводу этой схемы: мы используем красный светодиод. Это связано с тем, что падение напряжения на транзисторе допускает менее полных 3 В. В любом случае полные три вольта на самом деле лишь маргиналы для управления синими светодиодами, так что двухточечное напряжение действительно не помогает. (Возможно, удастся обойти это с помощью дешевого полевого транзистора — еще не пробовал.)

А теперь давайте построим. Вы, конечно, можете собрать это на макете, но есть что-то более приятное в компактной и развертываемой сборке, которую мы здесь рассмотрим.

Сначала возьмите транзистор и резистор. Контакты 2N3904 называются (слева направо) эмиттером, базой, коллектором, если смотреть на него спереди, так что вы можете прочитать надпись. Мы собираемся припаять резистор между выводами базы и коллектора транзистора.Необычная деталь: во время пайки держите резистор так, чтобы его выводы были под углом 90 градусов к выводам транзистора.

Оставайтесь в безопасности, когда делаете это: используйте мистера Хэндса.

После пайки обрежьте лишний вывод резистора, прикрепленный к базе транзистора (средний контакт), а также лишнюю длину штыря коллектора.

Далее добавляем фототранзистор. Обратите внимание, что у него плоская сторона, как у светодиода. Этот вывод на той стороне является коллектором фототранзистора.Припаяйте коллектор (плоская сторона) к среднему выводу (базе) транзистора, снова под углом 90 градусов. Другой вывод фототранзистора, эмиттер , на данный момент оставлен неподключенным. (Вот альтернативный вариант того, как это должно выглядеть, когда вы закончите.)

Наконец, нам нужно добавить светодиод. Для этого нам нужно знать, какая сторона является «положительной» или анодной стороной устройства.

К сожалению, маркировка светодиодов непоследовательна, поэтому лучший способ убедиться в этом — проверить это с помощью литиевого монетного элемента. Поместите светодиод на клеммы элемента и, когда он загорится, обратите внимание, какая сторона касается (+ ) Терминал.(Обычно это тот, у которого более длинный вывод.) Припаяйте «положительный» вывод светодиода к эмиттерному выводу транзистора — он находится слева, к которому ничего не припаяно. Обрежьте лишний вывод светодиода, который проходит мимо паяного соединения. Припаяйте другой вывод светодиода («отрицательный» вывод или катод) к эмиттеру фототранзистора, вывод на не сплющенной стороне, к которой еще ничего не подключено.


К этому моменту под компонентами торчат только два контакта: один идет к резистору и коллектору (крайний правый контакт) транзистора, а второй — к эмиттеру фототранзистора и катоду светодиода. .


Для проверки цепи зажать монетный элемент между этими двумя выводами, положительная сторона идет к проводу, касающемуся резистора. Вы не видите здесь светодиода, потому что эти фотографии были сделаны при освещении лампой накаливания — он не включается.


Согнув провода для более надежного контакта с литиевым элементом, вы можете попробовать это немного легче. На фотографии справа я положил руку на схему — так что светодиод загорелся.

Чтобы превратить это в настоящий «бросок», вам все равно нужно добавить немного ленты и магнит, но это довольно легко сделать.Из этого получается неплохой ночник, прикрепленный к верхней части дверной коробки — когда свет в комнате выключен, он освещает яркое яркое пятно на потолке.

Куда идти дальше? Хотя эта маленькая схема может что-то делать сама по себе, она, вероятно, также будет счастлива как часть более крупной схемы. Как минимум, обратите внимание, что если вы работаете с батареями, которые имеют более низкое внутреннее сопротивление, чем литиевые круглые элементы, вам следует подключить соответствующий резистор последовательно с батареей, прежде чем пытаться управлять этой схемой — иначе вы можете пропустить слишком большой ток через ВЕЛ.Безусловно, это один из самых простых и наименее дорогих способов управления светодиодом с помощью фотодатчика. (В отличие, скажем, от этого метода?) Вы также можете рассмотреть возможность скрещивания его с некоторыми более экстремальными модами, такими как
Talkie Throwies, которые знают азбуку Морзе, или для более экстремальных хакеров, рогаликами.


Примечание добавлено в мае 2012 г .:

Этот набор компонентов работает хорошо и представляет собой довольно изящный маленький детектор темноты.

Мы получили сотни ответов на эту статью как здесь, в комментариях (которые сейчас закрыты из-за злоупотреблений), так и по электронной почте, спрашивая (а) как бы вы изменили эту схему, чтобы она работала X , Y , или Z , (b) можете ли вы использовать компонент THX1138 для фототранзистора, потому что это единственный доступный на тропическом острове, где вы живете, или (c) почему ваша схема не работает, потому что вы сделали только две замены .

По большей части мы не можем отвечать на подобные запросы. Разработка схем не всегда тривиальна, и мы не хотим давать легкомысленные (или, что еще хуже, неправильные) ответы, когда люди пытаются решить проблемы.

Чтобы дать быстрые ответы на некоторые популярные вопросы:

  • Это особый набор деталей, выбранных для совместной работы, и было сделано несколько упрощений в зависимости от того, какие именно компоненты используются — например, мы полагаемся на внутреннее сопротивление монетного элемента, так что нам не нужен внешний токоограничивающий резистор.Из-за этого не так много простых прямых замен, которые хорошо работают.
  • Существует множество отличных схем на фототранзисторах CdS («LDR»). Хорошо это или плохо, но это не один из них. (Мы думаем, что лучше по ряду причин.)
  • Вы не можете просто заменить белый (или УФ, или синий и т. Д.) Светодиод напрямую, потому что нет достаточного напряжения для его нормальной работы. (Мы действительно показали, как это сделать — см. Ниже.)
  • Нельзя просто заменить 12 В, потому что ток будет слишком высоким и светодиод погаснет.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *