Полярность диодов на схеме – мультиметром, по внешнему виды или подачей питания

Содержание

Методы определения полярности у светодиодов — DRIVE2

Известно, что светодиод в рабочем состоянии пропускает ток только в одном направлении. Если его подключить инверсионно, то постоянный ток через цепь не пройдет, и прибор не засветится. Происходит это потому, что по своей сущности прибор является диодом, просто не каждый диод способен светиться. Получается, что существует полярность светодиода, то есть он чувствует направление движения тока и работает только при определенном его направлении.

Определить полярность прибора по схеме не составит труда. Светодиод обозначают треугольником в кружке. Треугольник упирается всегда в катод (знак «−», поперечная черточка, минус), положительный анод находится с противоположной стороны.

Но как определить полярность, если вы держите в руках сам прибор? Вот перед вами маленькая лампочка с двумя выводами-проводками. К какому проводку подключать плюс источника, а к какому минус, чтобы схема заработала? Как правильно установить сопротивление где плюс?

Определяем зрительно

Первый способ – визуальный. Предположим, вам необходимо определить полярность абсолютно нового светодиода с двумя выводами. Посмотрите на его ножки, то есть выводы. Один из них будет короче другого. Это и есть катод. Запомнить, что это катод можно по слову «короткий», поскольку оба слова начинаются на буквы «к». Плюс будет соответствовать тому выводу, который длиннее. Иногда, правда, на глаз определить полярность сложновато, особенно когда ножки согнуты или поменяли свои размеры в результате предыдущего монтажа.

Глядя в прозрачный корпус, можно увидеть сам кристаллик. Он расположен как будто в маленькой чашечке на подставке. Вывод этой подставки и будет катодом. Со стороны катода также можно увидеть небольшую засечку, как бы срез.

Но не всегда эти особенности заметны у светодиода, поскольку некоторые производители отходят от стандартов. К тому же есть много моделей, изготовленных по другому принципу. На сложных конструкциях сегодня производитель ставит значки «+» и «−», делают отметку катода точкой или зеленой линией, чтобы все было предельно понятно. Но если таких отметок нет по каким-то причинам, то на помощь приходит электрическое тестирование.

Применяем источник питания

Более эффективный способ определить полярность – подключить светодиод к источнику питания. Внимание! Выбирать надо источник, напряжение которого не превышает допустимое напряжение светодиода. Можно соорудить самодельный тестер, используя обычную батарейку и резистор. Это требование связано с тем, что при обратном подключении светодиод может перегореть или ухудшить свои световые характеристики.

Некоторые говорят, что подключали светодиод и так и сяк, и он от этого не портился. Но все дело в предельном значении обратного напряжения. К тому же, лампочка может сразу и не погаснуть, но срок ее работы уменьшится, и тогда ваш светодиод проработает не 30-50 тысяч часов, как указано в его характеристиках, а в несколько раз меньше.

Если мощности элемента питания для светодиода не хватает, и прибор не светится, к

www.drive2.ru

Обозначение светодиодов и других диодов на схеме

Название диод переводится как «двухэлектродный». Исторически электроника берёт своё начало от электровакуумных приборов. Дело в том, что лампы, которые многие помнят из старых телевизоров и приёмников, носили названия типа диод, триод, пентод и т.д.

Название заключало в себе количество электродов или ножек прибора. Полупроводниковые диоды были изобретены в начале прошлого века. Их использовали для детектирования радиосигнала.

Главное свойство диода – характеристики проводимости, зависящие от полюсовки приложенного к выводам напряжения. Обозначение диода указывает нам на проводящее направление. Движение тока совпадает со стрелкой на УГО диода.

УГО – условное графическое обозначение. Иначе говоря, это значок, которым обозначается элемент на схеме. Давайте разберем как отличать обозначение светодиода на схеме от других подобных элементов.

Диоды, какие они бывают?

Кроме отдельных выпрямительных диодов их группируют по области применения в один корпус.

Обозначение диодного моста

Например, так изображается диодный мост для выпрямления однофазного напряжения переменного тока. А ниже внешний вид диодных мостов и сборок.

Внешний вид диодного моста

Другим видом выпрямительного прибора является диод Шоттки – предназначен для работы в высокочастотных цепях. Выпускается как в дискретном виде, так и в сборках. Их часто можно встретить в импульсных блоках питания, например БП для персонального компьютера AT или ATX.

Обычно на сборках Шоттки на корпусе указывается его цоколевка и внутренняя схема включения.

Диод Шоттки

Специфичные диоды

Выпрямительный диод мы уже рассмотрели, давайте взглянем на диод Зенера, который в отечественной литературе называют – стабилитрон.

Обозначение стабилитрона (диод Зенера)

Внешне он выглядит как обычный диод – черный цилиндр с меткой на одной из сторон. Часто встречается в маломощном исполнении – небольшой стеклянный цилиндр красного цвета с черной меткой на катоде.

Обладает важным свойством – стабилизация напряжения, поэтому включается параллельно нагрузке в обратном направлении, т.е. к катоду подключается плюс питания, а анод к минусу.

Следующий прибор – варикап, принцип его действия основан на изменении величины барьерной емкости, в зависимости от величины приложенного напряжения. Используется в приемниках и в цепях, где нужно производить операции с частотой сигнала. Обозначается как диод, совмещенный с конденсатором.

Варикап — обозначение на схеме и внешний вид

Динистор – обозначение которого выглядит как диод, перечеркнутый поперек. По сути так и есть – он из себя представляет 3-х переходный, 4-х слойный полупроводниковый прибор. Благодаря своей структуре обладает свойством пропускать ток, при преодолении определенного барьера напряжения.

Например, динисторы на 30В или около того часто используются в лампах «энергосберегайках», для запуска автогенератора и других блоках питания, построенных по такой схеме.

Обозначение динистора

Светодиоды и оптоэлектроника

Раз диод излучает свет, значит обозначение светодиода должно быть с указанием этой особенности, поэтому к обычному диоду добавили две исходящие стрелки.

Обозначение светодиодов на электрической схеме

В реальности есть много разных способов определить полярность, подробнее об этом есть целая статья. Ниже, для примера, распиновка зеленого светодиода.

Обычно у светодиода маркировка выводов выполняется либо меткой, либо ножками разной длины. Короткая ножка – это минус.

Распиновка зеленого светодиода

Фотодиод, прибор обратный по своему действию от светодиода. Он изменяет состояние своей проводимости в зависимости от количества света, попадающего на его поверхность. Его обозначение:

Фотодиод BPD-BQA914

Такие приборы используются в телевизорах, магнитофонах и прочей аппаратуре, которая управляется пультом дистанционного управления в инфракрасном спектре. Такой прибор можно сделать, спилив корпус обычного транзистора.

Часто применяется в датчиках освещенности, на устройствах автоматического включения и выключения осветительных цепей, например таких:

Датчик освещения

Оптоэлектроника – область которая получила широкое распространения в передаче данных и устройствах связи и управления. Благодаря своему быстродействию и возможности осуществить гальваническую развязку, она обеспечивает безопасность для питаемых устройств в случае возникновения высоковольтного скачка на первичной стороне. Однако не в таком виде как указано, а в виде оптопары.

Схема с оптопарой

В нижней части схемы вы видите оптопару. Включение светодиода здесь происходит замыканием силовой цепи с помощью оптотранзистора в цепи светодиода. Когда вы замыкаете ключ, ток идёт через светодиод в оптопаре, в нижнем квадрате слева. Он засвечивается и транзистор, под действием светового потока, начинает пропускать ток через светодиод LED1, помеченный зеленым цветом.

Такое же применение используется в цепях обратной связи по току или напряжению (для их стабилизации) многих блоков питания. Сфера применения начинается от зарядных устройств мобильных телефонов и блоков питания светодиодных лент, до мощных питающих систем.

Диодов существует великое множество, некоторые из них похожи по своим характеристикам, некоторые имеют совершенно необычные свойства и применения, их объединяет наличие всего лишь двух функциональных выводов.

Вы можете встретить эти элементы в любой электрической схеме, нельзя недооценивать их важность и характеристики. Правильный подбор диода в цепи снаббера, например, может значительно повлиять на КПД и тепловыделение на силовых ключах, соответственно на долговечность блока питания.

Если вам было что-нибудь непонятно – оставляйте комментарии и задавайте вопросы, в следующих статьях мы обязательно раскроем все непонятные вопросы и интересные моменты!

Понравилась статья? Расскажите о ней! Вы нам очень поможете:)

svetodiodinfo.ru

Как определить полярность светодиода — 2 простых способа

Светодиод – полупроводниковый оптический прибор, пропускающий электрический ток в прямом направлении. При подключении инверсионно тока в цепи не будет, и, естественно, не произойдет свечения. Чтобы этого не случилось, нужно соблюдать полярность светодиода.

Светодиод на схеме обозначается треугольником в кружке с поперечной чертой – это катод, который имеет знак «-» (минус). С противоположной стороны находится анод, имеющий знак «+» (плюс).

Обозначение светодиода в схеме

В монтажных схемах должна присутствовать цоколевка (или распиновка) выводов для идентификации всех контактов соединения.

Как определить полярность диода, держа в руках крохотную лампочку? Ведь для правильного подключения нужно знать, где у него минус, а где плюс. Если распайка выводов будет попутана, схема не заработает.

Визуальный метод определения полярности

Первый способ определения – визуальный. У диода два вывода. Короткая ножка будет катодом, анод у светодиода всегда длиннее. Запомнить легко, так как присутствует начальная буква «к» и в том и другом слове.

Длина выводов светодиода

Когда оба вывода согнуты или прибор снят с другой платы, их длину бывает сложно определить. Тогда можно попробовать разглядеть в корпусе небольшой кристалл, который выполнен из прозрачного материала. Он располагается на небольшой подставке. Этот вывод соответствует катоду.

Также катод светодиода можно определить по небольшой засечке. В новых моделях светодиодных лент и ламп применяются полупроводники для поверхностного монтажа. Имеющийся ключ в виде скоса указывает на то, что это отрицательный электрод (катод).

Иногда на светодиодах стоит маркировка «+» и «-». Некоторые производители отмечают катод точкой, иногда линией зеленого цвета. Если нет никакой отметки или ее трудно разглядеть из-за того, что светодиод был снят с другой схемы, нужно произвести тестирование.

Тестирование с применением мультиметра или аккумулятора

Хорошо, если под рукой есть мультиметр. Тогда определение полярности светодиода произойдет за одну минуту. Выбрав режим омметра (измерение сопротивлений), нетрудно произвести следующее действие. Приложив щупы к ножкам светодиода, производится замер сопротивления. Красный провод должен подключаться к плюсу, а черный – к минусу.

При правильном включении прибор выдаст значение, примерно равное 1,7 кОм, и будет наблюдаться свечение. При обратном включении на дисплее мультиметра отобразится бесконечно большая величина. Если проверка показывает, что в обе стороны диод показывает малое сопротивление, то он пробит, и его следует утилизировать.

Определение полярности светодиода при помощи мультиметра

В некоторые приборах существует специальный режим. Он предназначен для проверки полярности диода. Прямое включение будет сигнализировать подсветкой диода. Этот метод подходит для красных и зеленых полупроводников.

Синие и белые светодиоды выдают индикацию только при напряжении более 3 вольт, поэтому нельзя достигнуть нужного результата. Для их тестирования можно использовать мультиметры типа DT830 или 831, в которых предусмотрен режим определения характеристик транзисторов.

Используя PNP-часть, один вывод светодиода вставляют в коллекторное гнездо, второй – в эмиттерное отверстие. В случае прямого подключения появится индикация, инверсионное включение не даст подобного эффекта.

Как определить полярность светодиода, если под рукой нет мультиметра? Можно прибегнуть к обычной батарейке или аккумулятору. Для этого понадобится еще любой резистор. Это нужно для защиты светодиода от пробоя и выхода из строя. Последовательно соединенный резистор, величина сопротивления которого должна быть примерно 600 Ом, позволит ограничить ток в цепи.

Проверка полярности при помощи источника питания

И еще несколько советов:

  • если известна полярность светодиода, впредь нельзя подавать на него обратное напряжение. В противном случае есть вероятность пробоя и выхода из строя. При правильной эксплуатации светодиод будет служить исправно, так как он долговечен, а также его корпус хорошо защищен от попадания влаги и пыли;
  • некоторые типы светодиодов чувствительны к воздействию статического электричества (синие, фиолетовые, белые, изумрудные). Поэтому их нужно предохранять от влияния «статики»;
  • при тестировании светодиода мультиметром желательно это действие произвести быстро, касание к выводам должно быть кратковременным, чтобы избежать пробоя диода и вывода его из строя.

lampagid.ru

Полярность светодиода • Самоделки своими руками

Электрический ток, проходящий через светодиод в прямом направлении, вызывает излучение. Обратное же его подключение к электрической цепи не даст никакого эффекта и может даже привести к поломке светодиода. Поэтому для того чтобы предотвратить неисправности в работе или поломку светодиода, необходимо его протестировать — определить полярность светодиода. Ниже приведены методы определения вывода минуса и плюса, которые часто применяются для маломощных диодов диаметром от 3.5 до 10 мм.

Методы определения полярности светодиода:

1) Метод визуального различия выводов светодиода

Новый светодиод имеет два вывода (ножки), один из них немного длиннее другого. Длинный вывод (ножка) – это анод, его нужно подключать к плюсу источника питания. Короткий вывод (ножка) – это катод, который подсоединяют к минусу.

Если светодиод был уже в эксплуатации, то он имеет укороченные выводы одной длины. В таком случае можно определить плюс/минус путём рассмотрения кристалла в пластиковой линзе. Анод (плюс) выполнен меньшим размером контакта по сравнению с катодом. Катод (минус) выполнен в виде флажка, на котором расположен кристалл.

2) Метод определения полярности с помощью источника питания

Также для быстрого тестирования можно воспользоваться источником тока с напряжением от 1,5 до 6 вольт (батарейка) и пригодится резистор сопротивлением 300–470 Ом любой мощности. Резистор необходимо припаять к одной из ножек. Затем нужно коснутся светодиодом контактов источника питания, при правильном подключении светодиод будет светиться. Отсюда будет известно, где находится анодом (плюс), а где катодом (минус).

3) Метод определения полярности с помощью мультиметра

Мультиметр – тестер, с помощью него можно диагностировать электронные компоненты, выявлять короткое замыкание, измерять электрические параметры и т.п. Проверка мультиметром светодиода позволяет легко определить полярность (анод, катод) и его целостность. Устанавливаем переключатель мультиметра в положение «прозвонка, проверка диода». Приложив красный щуп к аноду, а чёрный к катоду, светодиод начнет светится.

Спасибо, что дочитали до конца. Поделитесь с друзьями этими полезными способами, если данная статья вам помогла определить полярность светодиодов.

samodelof.ru

Как определить полярность светодиода?

Светодиод, как и обычный диод, имеет два вывода: анод и катод.

Выводы светодиода на схеме указываются таким образом, что стрелка диода обозначает прямое направление тока, от анода (+) к катоду (-), следовательно, анод подключается к положительному полюсу, а катод к отрицательному.

 

Как определить где катод, а где анод? Это можно сделать несколькими способами, самый простой – визуально. Обычно длинная ножка светодиода указывает на то, что это анод, его подключаем к “+” источника питания.

Если же это SMD светодиод, то метка указывает на сторону, где расположен катод светодиода. Зачастую в SMD светодиодах расположено несколько кристаллов, поэтому вывод может быть не один, а к примеру 3 как на светодиоде 5050.

С помощью батарейки

Если светодиод не новый, по ножкам определить уже нельзя, но есть еще один простой способ — воспользоваться батарейкой CR2032, которую можно найти в брелоке от сигнализации или материнской плате компьютера. Ее напряжение 3 В, этого вполне хватит практически для всех маломощных светодиодов.

Необходимо поочередно приложить выводы диода к полюсам батарейки, в том положении, в котором он засветится к “+” батарейки приложен анод, соответственно к “-“ – катод.

С помощью мультиметра

Определить полярность светодиода можно также с помощью мультиметра. Необходимо просто поставить в режим прозвонки диодов (или измерения сопротивления) и поочередно приложить к выводам. Когда красный щуп мультиметра будет приложен к аноду, диод начнет светиться.

Этот способ крайне полезен, когда светодиод имеет очень малые размеры (SMD) или смонтирован на плате. Также с помощью мультиметра можно проверить исправность светодиода, если он не начнет светиться при любом положении щупов, вероятно, он вышел из строя.

  • Просмотров:
  • electroandi.ru

    Графическое обозначение радиодеталей на схемах

    AM амплитудная модуляция
    АПЧ автоматическая подстройка частоты
    АПЧГ автоматическая подстройка частоты гетеродина
    АПЧФ автоматическая подстройка частоты и фазы
    АРУ автоматическая регулировка усиления
    АРЯ автоматическая регулировка яркости
    АС акустическая система
    АФУ антенно-фидерное устройство
    АЦП аналого-цифровой преобразователь
    АЧХ амплитудно-частотная характеристика
    БГИМС большая гибридная интегральная микросхема
    БДУ беспроводное дистанционное управление
    БИС большая интегральная схема
    БОС блок обработки сигналов
    БП блок питания
    БР блок развертки
    БРК блок радиоканала
    БС блок сведения
    БТК блокинг-трансформатор кадровый
    БТС блокинг-трансформатор строчный
    БУ блок управления
    БЦ блок цветности
    БЦИ блок цветности интегральный (с применением микросхем)
    ВД видеодетектор
    ВИМ время-импульсная модуляция
    ВУ видеоусилитель; входное (выходное) устройство
    ВЧ высокая частота
    Г гетеродин
    ГВ головка воспроизводящая
    ГВЧ генератор высокой частоты
    ГВЧ гипервысокая частота
    ГЗ генератор запуска; головка записывающая
    ГИР гетеродинный индикатор резонанса
    ГИС гибридная интегральная схема
    ГКР генератор кадровой развертки
    ГКЧ генератор качающейся частоты
    ГМВ генератор метровых волн
    ГПД генератор плавного диапазона
    ГО генератор огибающей
    ГС генератор сигналов
    ГСР генератор строчной развертки
    гсс генератор стандартных сигналов
    гг генератор тактовой частоты
    ГУ головка универсальная
    ГУН генератор, управляемый напряжением
    Д детектор
    дв длинные волны
    дд дробный детектор
    дн делитель напряжения
    дм делитель мощности
    дмв дециметровые волны
    ДУ дистанционное управление
    ДШПФ динамический шумопонижающий фильтр
    ЕАСС единая автоматизированная сеть связи
    ЕСКД единая система конструкторской документации
    зг генератор звуковой частоты; задающий генератор
    зс замедляющая система; звуковой сигнал; звукосниматель
    ЗЧ звуковая частота
    И интегратор
    икм импульсно-кодовая модуляция
    ИКУ измеритель квазипикового уровня
    имс интегральная микросхема
    ини измеритель линейных искажений
    инч инфранизкая частота
    ион источник образцового напряжения
    ип источник питания
    ичх измеритель частотных характеристик
    к коммутатор
    КБВ коэффициент бегущей волны
    КВ короткие волны
    квч крайне высокая частота
    кзв канал записи-воспроизведения
    КИМ кодо-импульсная модуляции
    кк катушки кадровые отклоняющей системы
    км кодирующая матрица
    кнч крайне низкая частота
    кпд коэффициент полезного действия
    КС катушки строчные отклоняющей системы
    ксв коэффициент стоячей волны
    ксвн коэффициент стоячей волны напряжения
    КТ контрольная точка
    КФ катушка фокусирующая
    ЛБВ лампа бегущей волны
    лз линия задержки
    лов лампа обратной волны
    лпд лавинно-пролетный диод
    лппт лампово-полупроводниковый телевизор
    м модулятор
    MA магнитная антенна
    MB метровые волны
    мдп структура металл-диэлектрик-полупроводник
    МОП структура металл-окисел-полупроводник
    мс микросхема
    МУ микрофонный усилитель
    ни нелинейные искажения
    нч низкая частота
    ОБ общая база (включение транзистора по схеме с общей базой)
    овч очень высокая частота
    ои общий исток (включение транзистора *по схеме с общим истоком)
    ок общий коллектор (включение транзистора по схеме с обшим коллектором)
    онч очень низкая частота
    оос отрицательная обратная связь
    ОС отклоняющая система
    ОУ операционный усилитель
    ОЭ обший эмиттер (включение транзистора по схеме с общим эмиттером)
    ПАВ поверхностные акустические волны
    пдс приставка двухречевого сопровождения
    ПДУ пульт дистанционного управления
    пкн преобразователь код-напряжение
    пнк преобразователь напряжение-код
    пнч преобразователь напряжение частота
    пос положительная обратная связь
    ППУ помехоподавляющее устройство
    пч промежуточная частота; преобразователь частоты
    птк переключатель телевизионных каналов
    птс полный телевизионный сигнал
    ПТУ промышленная телевизионная установка
    ПУ предварительный усили^егіь
    ПУВ предварительный усилитель воспроизведения
    ПУЗ предварительный усилитель записи
    ПФ полосовой фильтр; пьезофильтр
    пх передаточная характеристика
    пцтс полный цветовой телевизионный сигнал
    РЛС регулятор линейности строк; радиолокационная станция
    РП регистр памяти
    РПЧГ ручная подстройка частоты гетеродина
    РРС регулятор размера строк
    PC регистр сдвиговый; регулятор сведения
    РФ режекторный или заграждающий фильтр
    РЭА радиоэлектронная аппаратура
    СБДУ система беспроводного дистанционного управления
    СБИС сверхбольшая интегральная схема
    СВ средние волны
    свп сенсорный выбор программ
    СВЧ сверхвысокая частота
    сг сигнал-генератор
    сдв сверхдлинные волны
    СДУ светодинамическая установка; система дистанционного управления
    СК селектор каналов
    СКВ селектор каналов всеволновый
    ск-д селектор каналов дециметровых волн
    СК-М селектор каналов метровых волн
    СМ смеситель
    енч сверхнизкая частота
    СП сигнал сетчатого поля
    сс синхросигнал
    сси строчный синхронизирующий импульс
    СУ селектор-усилитель
    сч средняя частота
    ТВ тропосферные радиоволны; телевидение
    твс трансформатор выходной строчный
    твз трансформатор выходной канала звука
    твк трансформатор выходной кадровый
    ТИТ телевизионная испытательная таблица
    ТКЕ температурный коэффициент емкости
    тки температурный коэффициент индуктивности
    ткмп температурный коэффициент начальной магнитной проницаемости
    ткнс температурный коэффициент напряжения стабилизации
    ткс температурный коэффициент сопротивления
    тс трансформатор сетевой
    тц телевизионный центр
    тцп таблица цветных полос
    ТУ технические условия
    У усилитель
    УВ усилитель воспроизведения
    УВС усилитель видеосигнала
    УВХ устройство выборки-хранения
    УВЧ усилитель сигналов высокой частоты
    УВЧ ультравысокая частота
    УЗ усилитель записи
    УЗЧ усилитель сигналов звуковой частоты
    УКВ ультракороткие волны
    УЛПТ унифицированный ламповополупроводниковый телевизор
    УЛЛЦТ унифицированный лампово полупроводниковый цветной телевизор
    УЛТ унифицированный ламповый телевизор
    УМЗЧ усилитель мощности сигналов звуковой частоты
    УНТ унифицированный телевизор
    УНЧ усилитель сигналов низкой частоты
    УНУ управляемый напряжением усилитель.
    УПТ усилитель постоянного тока; унифицированный полупроводниковый телевизор
    УПЧ усилитель сигналов промежуточной частоты
    УПЧЗ усилитель сигналов промежуточной частоты звук?
    УПЧИ усилитель сигналов промежуточной частоты изображения
    УРЧ усилитель сигналов радиочастоты
    УС устройство сопряжения; устройство сравнения
    УСВЧ усилитель сигналов сверхвысокой частоты
    УСС усилитель строчных синхроимпульсов
    УСУ универсальное сенсорное устройство
    УУ устройство (узел) управления
    УЭ ускоряющий (управляющий) электрод
    УЭИТ универсальная электронная испытательная таблица
    ФАПЧ фазовая автоматическая подстройка частоты
    ФВЧ фильтр верхних частот
    ФД фазовый детектор; фотодиод
    ФИМ фазо-импульсная модуляция
    ФМ фазовая модуляция
    ФНЧ фильтр низких частот
    ФПЧ фильтр промежуточной частоты
    ФПЧЗ фильтр промежуточной частоты звука
    ФПЧИ фильтр промежуточной частоты изображения
    ФСИ фильтр сосредоточенной избирательности
    ФСС фильтр сосредоточенной селекции
    ФТ фототранзистор
    ФЧХ фазо-частотная характеристика
    ЦАП цифро-аналоговый преобразователь
    ЦВМ цифровая вычислительная машина
    ЦМУ цветомузыкальная установка
    ЦТ центральное телевидение
    ЧД частотный детектор
    ЧИМ частотно-импульсная модуляция
    чм частотная модуляция
    шим широтно-импульсная модуляция
    шс шумовой сигнал
    эв электрон-вольт (е • В)
    ЭВМ. электронная вычислительная машина
    эдс электродвижущая сила
    эк электронный коммутатор
    ЭЛТ электронно-лучевая трубка
    ЭМИ электронный музыкальный инструмент
    эмос электромеханическая обратная связь
    ЭМФ электромеханический фильтр
    ЭПУ электропроигрывающее устройство
    ЭЦВМ электронная цифровая вычислительная машина

    www.radioelementy.ru

    Принцип работы и назначение диодов

    Диод является одной из разновидностей приборов, сконструированных на полупроводниковой основе. Обладает одним p-n переходом, а также анодным и катодным выводом. В большинстве случаев он предназначен для модуляции, выпрямления, преобразования и иных действий с поступающими электрическими сигналами.

    Принцип работы:

    1. Электрический ток воздействует на катод, подогреватель начинает накаливаться, а электрод испускать электроны.
    2. Между двумя электродами происходит образование электрического поля.
    3. Если анод обладает положительным потенциалом, то он начинает притягивать электроны к себе, а возникшее поле является катализатором данного процесса. При этом, происходит образование эмиссионного тока.
    4. Между электродами происходит образование пространственного отрицательного заряда, способного помешать движению электронов. Это происходит, если потенциал анода оказывается слишком слабым. В таком случае, частям электронов не удается преодолеть воздействие отрицательного заряда, и они начинают двигаться в обратном направлении, снова возвращаясь к катоду.
    5. Все электроны, которые достигли анода и не вернулись к катоду, определяют параметры катодного тока. Поэтому данный показатель напрямую зависит от положительного анодного потенциала.
    6. Поток всех электронов, которые смогли попасть на анод, имеет название анодный ток, показатели которого в диоде всегда соответствуют параметрам катодного тока. Иногда оба показателя могут быть нулевыми, это происходит в ситуациях, когда анод обладает отрицательным зарядом. В таком случае, возникшее между электродами поле не ускоряет частицы, а, наоборот, тормозит их и возвращает на катод. Диод в таком случае остается в запертом состоянии, что приводит к размыканию цепи.

    Устройство

    Ниже приводится подробное описание устройства диода, изучение этих сведений необходимо для дальнейшего понимания принципов действия этих элементов:

    1. Корпус представляет собой вакуумный баллон, который может быть изготовлен из стекла, металла или прочных керамических разновидностей материала.
    2. Внутри баллона имеется 2 электрода. Первый является накаленным катодом, который предназначен для обеспечения процесса эмиссии электронов. Самый простейший по конструкции катод представляет собой нить с небольшим диаметром, которая накаливается в процессе функционирования, но на сегодняшний день более распространены электроды косвенного накала. Они представляют собой цилиндры, изготовленные из металла, и обладающие особым активным слоем, способным испускать электроны.
    3. Внутри катода косвенного накала имеется специфический элемент – проволока, которая накаливается под воздействием электрического тока, она называется подогреватель.
    4. Второй электрод является анодом, он необходим для приема электронов, которые были выпущены катодом. Для этого он должен обладать положительным относительно второго электрода потенциалом. В большинстве случаев анод также имеет цилиндрическую форму.
    5. Оба электрода вакуумных приборов полностью идентичны эмиттеру и базе полупроводниковой разновидности элементов.
    6. Для изготовления диодного кристалла чаще всего используется кремний или германий. Одна из его частей является электропроводимой по p-типу и имеет недостаток электронов, который образован искусственным методом. Противоположная сторона кристалла также имеет проводимость, но n-типа и обладает избытком электронов. Между двумя областями имеется граница, которая и называется p-n переходом.

    Такие особенности внутреннего устройства наделяют диоды их главным свойством – возможностью проведения электрического тока только в одном направлении.

    Назначение

    Ниже приводятся основные области применения диодов, на примере которых становится понятно их основное назначение:

    1. Диодные мосты представляют собой 4, 6 или 12 диодов, соединенных между собой, их количество зависит от типа схемы, которая может быть однофазной, трехфазной полумостовой или трехфазной полномостовой. Они выполняют функции выпрямителей, такой вариант чаще всего используется в автомобильных генераторах, поскольку внедрение подобных мостов, а также использование вместе с ними щеточно-коллекторных узлов, позволило в значительной степени сократить размеры данного устройства и увеличить степень его надежности. Если соединение выполнено последовательно и в одну сторону, то это повышает минимальные показатели напряжения, которое потребуется для отпирания всего диодного моста.
    2. Диодные детекторы получаются при комбинированном использовании данных приборов с конденсаторами. Это необходимо для того, чтобы было можно выделить модуляцию с низкими частотами из различных модулированных сигналов, в том числе амплитудно-модулированной разновидности радиосигнала. Такие детекторы являются частью конструкции многих бытовых потребителей, например, телевизоров или радиоприемников.
    3. Обеспечение защиты потребителей от неверной полярности при включении схемных входов от возникающих перегрузок или ключей от пробоя электродвижущей силой, возникающей при самоиндукции, которая происходит при отключении индуктивной нагрузки. Для обеспечения безопасности схем от возникающих перегрузок, применяется цепочка, состоящая из нескольких диодов, имеющих подключение к питающим шинам в обратном направлении. При этом, вход, которому обеспечивается защита, должен подключаться к середине этой цепочки. Во время обычного функционирования схемы, все диоды находятся в закрытом состоянии, но если ими было зафиксировано, что потенциал входа ушел за допустимые пределы напряжения, происходит активация одного из защитных элементов. Благодаря этому, данный допустимый потенциал получает ограничение в рамках допустимого питающего напряжения в сумме с прямым падением показателей напряжение на защитном приборе.
    4. Переключатели, созданные на основе диодов, используются для осуществления коммутации сигналов с высокими частотами. Управление такой системой осуществляется при помощи постоянного электрического тока, разделения высоких частот и подачи управляющего сигнала, которое происходит благодаря индуктивности и конденсаторам.
    5. Создание диодной искрозащиты. Используются шунт-диодные барьеры, которые обеспечивают безопасность путем ограничения напряжения в соответствующей электрической цепи. В совокупности с ними применяются токоограничительные резисторы, которые необходимы для ограничения показателей электрического тока, проходящего через сеть, и увеличения степени защиты.

    Использование диодов в электронике на сегодняшний день весьма широко, поскольку фактически ни одна современная разновидность электронного оборудования не обходится без этих элементов.

    Прямое включение диода

    На p-n-переход диода может оказывать воздействие напряжение, подаваемое с внешних источников. Такие показатели, как величина и полярность, будут сказываться на его поведении и проводимом через него электрическом токе.

    Ниже подробно рассмотрен вариант, при котором происходит подключение плюса к области p-типа, а отрицательного полюса к области n-типа. В этом случае произойдет прямое включение:

    1. Под воздействием напряжения от внешнего источника, в p-n-переходе сформируется электрическое поле, при этом его направление будет противоположным относительно внутреннего диффузионного поля.
    2. Напряжение поля значительно снизится, что вызовет резкое сужение запирающего слоя.
    3. Под воздействием этих процессов значительное количество электронов обретет возможность свободно переходить из p-области в n-область, а также в обратном направлении.
    4. Показатели тока дрейфа во время этого процесса остаются прежними, поскольку они напрямую зависят только от числа неосновных заряженных носителей, находящихся в области p-n-перехода.
    5. Электроны обладают повышенным уровнем диффузии, что приводит к инжекции неосновных носителей. Иными словами, в n-области произойдет повышение количества дырок, а в p-области будет зафиксирована повышенная концентрация электронов.
    6. Отсутствие равновесия и повышенное число неосновных носителей заставляет их уходить вглубь полупроводника и смешиваться с его структурой, что в итоге приводит к разрушению его свойств электронейтральности.
    7. Полупроводник при этом способен восстановить свое нейтральное состояние, это происходит благодаря получению зарядов от подключенного внешнего источника, что способствует появлению прямого тока во внешней электрической цепи.

    Обратное включение диода

    Теперь будет рассмотрен другой способ включения, во время которого изменяется полярность внешнего источника, от которого происходит передача напряжения:

    1. Главное отличие от прямого включения заключается в том, что создаваемое электрическое поле будет обладать направлением, полностью совпадающим с направлением внутреннего диффузионного поля. Соответственно, запирающий слой будет уже не сужаться, а, наоборот, расширяться.
    2. Поле, находящееся в p-n-переходе, будет оказывать ускоряющий эффект на целый ряд неосновных носителей заряда, по этой причине, показатели дрейфового тока останутся без изменений. Он будет определять параметры результирующего тока, который проходит через p-n-переход.
    3. По мере роста обратного напряжения, электрический ток, протекающий через переход, будет стремиться достичь максимальных показателей. Он имеет специальное название – ток насыщения.
    4. В соответствии с экспоненциальным законом, с постепенным увеличением температуры будут увеличиваться и показатели тока насыщения.

    Прямое и обратное напряжение

    Напряжение, которое оказывает воздействие на диод, разделяют по двум критериям:

    1. Прямое напряжение – это то, при котором происходит открытие диода и начинается прохождение через него прямого тока, при этом показатели сопротивления прибора являются крайне низкими.
    2. Обратное напряжение – это то, которое обладает обратной полярностью и обеспечивает закрытие диода с прохождением через него обратного тока. Показатели сопротивления прибора при этом начинают резко и значительно расти.

    Сопротивление p-n-перехода является постоянно меняющимся показателем, в первую очередь на него оказывает влияние прямое напряжение, подающееся непосредственно на диод. Если напряжение увеличивается, то показатели сопротивления перехода будут пропорционально уменьшаться.

    Это приводит к росту параметров прямого тока, проходящего через диод. Когда данный прибор закрыт, то на него воздействует фактически все напряжение, по этой причине показатели проходящего через диод обратного тока являются незначительными, а сопротивление перехода при этом достигает пиковых параметров.

    Работа диода и его вольт-амперная характеристика

    Под вольт-амперной характеристикой данных приборов понимается кривая линия, которая показывает то, в какой зависимости находится электрический ток, протекающий через p-n-переход, от объемов и полярности напряжения, воздействующего на него.

    Подобный график можно описать следующим образом:

    1. Ось, расположенная по вертикали: верхняя область соответствует значениям прямого тока, нижняя область параметрам обратного тока.
    2. Ось, расположенная по горизонтали: область, находящаяся справа, предназначена для значений прямого напряжения; область слева для параметров обратного напряжения.
    3. Прямая ветвь вольт-амперной характеристики отражает пропускной электрический ток через диод. Она направлена вверх и проходит в непосредственной близости от вертикальной оси, поскольку отображает увеличение прямого электрического тока, которое происходит при увеличении соответствующего напряжения.
    4. Вторая (обратная) ветвь соответствует и отображает состояние закрытого электрического тока, который также проходит через прибор. Положение у нее такое, что она проходит фактически параллельно относительно горизонтальной оси. Чем круче эта ветвь подходит к вертикали, тем выше выпрямительные возможности конкретного диода.
    5. По графику можно наблюдать, что после роста прямого напряжения, протекающего через p-n-переход, происходит медленное увеличение показателей электрического тока. Однако постепенно, кривая достигает области, в которой заметен скачок, после которого происходит ускоренное нарастание его показателей. Это объясняется открытием диода и проведением тока при прямом напряжении. Для приборов, изготовленных из германия, это происходит при напряжении равном от 0,1В до 0,2В (максимальное значение 1В), а для кремниевых элементов требуется более высокий показатель от 0,5В до 0,6В (максимальное значение 1,5В).
    6. Показанное увеличение показателей тока может привести к перегреву полупроводниковых молекул. Если отведение тепла, происходящее благодаря естественным процессам и работе радиаторов, будет меньше уровня его выделения, то структура молекул может быть разрушена, и этот процесс будет иметь уже необратимый характер. По этой причине, необходимо ограничивать параметры прямого тока, чтобы не допустить перегрева полупроводникового материала. Для этого, в схему добавляются специальные резисторы, имеющие последовательное подключение с диодами.
    7. Исследуя обратную ветвь можно заметить, что если начинает увеличиваться обратное напряжение, которое приложено к p-n-переходу, то фактически незаметен рост параметров тока. Однако в случаях, когда напряжение достигает параметров, превосходящих допустимые нормы, может произойти внезапный скачок показателей обратного тока, что перегреет полупроводник и будет способствовать последующему пробою p-n-перехода.

    Основные неисправности диодов

    Иногда приборы подобного типа выходят из строя, это может происходить из-за естественной амортизации и старения данных элементов или по иным причинам.

    Всего выделяют 3 основных типа распространенных неисправностей:

    1. Пробой перехода приводит к тому, что диод вместо полупроводникового прибора становится по своей сути самым обычным проводником. В таком состоянии он лишается своих основных свойств и начинает пропускать электрический ток в абсолютно любом направлении. Подобная поломка легко выявляется при помощи стандартного мультиметра, который начинает подавать звуковой сигнал и показывать низкий уровень сопротивления в диоде.
    2. При обрыве происходит обратный процесс – прибор вообще перестает пропускать электрический ток в каком-либо направлении, то есть он становится по своей сути изолятором. Для точности определения обрыва, необходимо использовать тестеры с качественными и исправными щупами, в противном случае, они могут иногда ложно диагностировать данную неисправность. У сплавных полупроводниковых разновидностей такая поломка встречается крайне редко.
    3. Утечка, во время которой нарушается герметичность корпуса прибора, вследствие чего он не может исправно функционировать.

    Пробой p-n-перехода

    Подобные пробои происходят в ситуациях, когда показатели обратного электрического тока начинают внезапно и резко расти, происходит это из-за того, что напряжение соответствующего типа достигает недопустимых высоких значений.

    Обычно различается несколько видов:

    1. Тепловые пробои, которые вызваны резким повышением температуры и последующим перегревом.
    2. Электрические пробои, возникающие под воздействием тока на переход.

    График вольт-амперной характеристики позволяет наглядно изучать эти процессы и разницу между ними.

    Электрический пробой

    Последствия, вызываемые электрическими пробоями, не носят необратимого характера, поскольку при них не происходит разрушение самого кристалла. Поэтому при постепенном понижении напряжения можно восстановить всей свойства и рабочие параметры диода.

    При этом, пробои такого типа делятся на две разновидности:

    1. Туннельные пробои происходят при прохождении высокого напряжения через узкие переходы, что дает возможность отдельно взятым электронам проскочить через него. Обычно они возникают, если в полупроводниковых молекулах имеется большое количество разных примесей. Во время такого пробоя, обратный ток начинает резко и стремительно расти, а соответствующее напряжение находится на низком уровне.
    2. Лавинные разновидности пробоев возможны благодаря воздействию сильных полей, способных разогнать носителей заряда до предельного уровня из-за чего они вышибают из атомов ряд валентных электронов, которые после этого вылетают в проводимую область. Это явление носит лавинообразный характер, благодаря чему данный вид пробоев и получил такое название.

    Тепловой пробой

    Возникновение такого пробоя может произойти по двум основным причинам: недостаточный теплоотвод и перегрев p-n-перехода, который происходит из-за протекания через него электрического тока со слишком высокими показателями.

    Повышение температурного режима в переходе и соседних областях вызывает следующие последствия:

    1. Рост колебания атомов, входящих в состав кристалла.
    2. Попадание электронов в проводимую зону.
    3. Резкое повышение температуры.
    4. Разрушение и деформация структуры кристалла.
    5. Полный выход из строя и поломка всего радиокомпонента.

    slarkenergy.ru

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *