Последовательное соединение схема: Последовательное соединение резисторов. Схема соединения и примеры расчета

Содержание

Последовательное соединение резисторов. Схема соединения и примеры расчета

Во многих электрических схемах мы можем обнаружить последовательное и параллельное соединение резисторов. Разработчик схем может, например, объединить несколько резисторов со стандартными значениями (E-серии), чтобы получить необходимое сопротивление.

Последовательное соединении резисторов — это такое соединение, при котором ток, протекающий через каждый резистор одинаков, поскольку имеется только одно направление для протекания тока. В тоже время падение напряжения будет пропорционально сопротивлению каждого резистора в последовательной цепи.

Последовательное соединение резисторов

На рисунке ниже, резисторы R1, R2 и R3 связаны друг с другом последовательно между точками А и В с общим током I, который протекает через них.

Эквивалентное сопротивление нескольких последовательно соединенных резисторов можно определить по следующей формуле:

R = R1 + R2 + R3

То есть, в нашем случае общее сопротивление цепи будет равно:

R = R1 + R2 + R3 = 1 кОм + 2 кОм + 6 кОм = 9 кОм

Таким образом, мы можем заменить эти три резистора всего лишь одним «эквивалентным» резистором, который будет иметь значение 9 кОм.

Силиконовый коврик для пайки

Размер 55 х 38 см, вес 800 гр….

Там, где четыре, пять или более резисторов связаны вместе в последовательную цепь, общее или эквивалентное сопротивление всей цепи так же будет равно сумме сопротивлений отдельных резисторов.

Следует отметить, что общее сопротивление любых двух или более резисторов, соединенных последовательно всегда будет больше, чем самое большое сопротивление резистора входящего в эту цепь. В приведенном выше примере R = 9 кОм, тогда как наибольшее значение резистора только 6 кОм (R3).

Напряжение на каждом из резисторов, соединенных последовательно, подчинено другому правилу, нежели протекающий ток. Как известно, из приведенной выше схемы, что общее напряжение питания на резисторах равно сумме разности потенциала на каждом из них:

Используя закон Ома , напряжение на отдельных резисторов может быть вычислена следующим образом:

В итоге сумма разностей потенциалов на резисторах равна общей разности потенциалов всей цепи, нашем примере это 9В.

В частности, ряд резисторов, соединенных последовательно, можно рассматривать как делитель напряжения:

Пример № 1

Используя закон Ома, необходимо вычислить эквивалентное сопротивление серии последовательно соединенных резисторов (R1. R2, R3), а так же падение напряжения и мощность для каждого резистора:

Все данные могут быть получены с помощью закона Ома и для лучшего понимания представлены в виде следующей таблицы:

Пример № 2

Необходимо рассчитать падение напряжения на выводах «А» и «В»:

а) без подключенного резистора R3

б) с подключенным резистором R3

Как вы можете видеть, выходное напряжение U без нагрузочного резистора R3, составляет 6 вольт, но то же выходное напряжение при подключении R3 становится всего лишь 4 В. Таким образом, нагрузка, подключенная к делителю напряжения, провоцирует дополнительное падение напряжение. Данный эффект снижения напряжения может быть компенсирован с помощью потенциометра установленного вместо постоянного резистора, с помощью которого можно скорректировать напряжение на нагрузке.

Онлайн калькулятор расчета сопротивления последовательно соединенных резисторов

Чтобы быстро вычислить общее сопротивление двух и более резисторов, соединенных последовательно, вы можете воспользоваться следующим онлайн калькулятором:

Подведем итог

Когда два или несколько резисторов соединены вместе (вывод одного соединяется с выводом другого резистора) — то это последовательное соединение резисторов. Ток, протекающий через резисторы имеет одно и тоже значение, но падение напряжения на них не одно и то же. Оно определяется сопротивлением каждого резистора, которое рассчитывается по закону Ома (U = I * R).

Последовательное соединение схема формула. Последовательное и параллельное соединение

Содержание:

Во всех электрических схемах используются резисторы, представляющие собой элементы, с точно установленным значением сопротивления. Благодаря специфическим качествам этих устройств, становится возможной регулировка напряжения и силы тока на любых участках схемы. Данные свойства лежат в основе работы практически всех электронных приборов и оборудования. Так, напряжение при параллельном и последовательном соединении резисторов будет отличаться. Поэтому каждый вид соединения может применяться только в определенных условиях, чтобы та или иная электрическая схема могла в полном объеме выполнять свои функции.

Напряжение при последовательном соединении

При последовательном соединении два резистора и более соединяются в общую цепь таким образом, что каждый из них имеет контакт с другим устройством только в одной точке. Иначе говоря, конец первого резистора соединяется с началом второго, а конец второго — с началом третьего и т.д.

Особенностью данной схемы является прохождение через все подключенные резисторы одного и того же значения электрического тока. С возрастанием количества элементов на рассматриваемом участке цепи, течение электрического тока становится все более затрудненным. Это происходит из-за увеличения общего сопротивления резисторов при их последовательном соединении. Данное свойство отражается формулой: R общ = R 1 + R 2 .

Распределение напряжения, в соответствии с законом Ома, осуществляется на каждый резистор по формуле: V Rn = I Rn x R n . Таким образом, при увеличении сопротивления резистора, возрастает и падающее на него напряжение.

Напряжение при параллельном соединении

При параллельном соединении, включение резисторов в электрическую цепь выполняется таким образом, что все элементы сопротивлений подключаются друг к другу сразу обоими контактами. Одна точка, представляющая собой электрический узел, может соединять одновременно несколько резисторов.

Такое соединение предполагает течение отдельного тока в каждом резисторе. Сила этого тока находится в обратно пропорциональной . В результате, происходит увеличение общей проводимости данного участка цепи, при общем уменьшении сопротивления. В случае параллельного соединения резисторов с различным сопротивлением, значение общего сопротивления на этом участке всегда будет ниже самого маленького сопротивления отдельно взятого резистора.

На представленной схеме, напряжение между точками А и В представляет собой не только общее напряжение для всего участка, но и напряжение, поступающее к каждому отдельно взятому резистору. Таким образом, в случае параллельного соединения, напряжение, подаваемое ко всем резисторам, будет одинаковым.

В результате, напряжение при параллельном и последовательном соединении будет отличаться в каждом случае. Благодаря этому свойству, имеется реальная возможность отрегулировать данную величину на любом участке цепи.

Параллельное соединение электрических элементов (проводников, сопротивлений, емкостей, индуктивностей) — это такое соединение, при котором подключенные элементы цепи имеют два общих узла подключения.

Другое определение: сопротивления подключены параллельно, если они подключены одно и той же паре узлов.

Графическое обозначение схемы параллельного соеднинения

На приведенном рисунке показана схема параллельное подключения сопротивлений R1, R2, R3, R4. Из схемы видно, что все эти четыре сопротивления имеют две общие точки (узла подключения).

В электротехнике принято, но не строго требуется, рисовать провода горизонтально и вертикально. Поэтому эту же схему можно изобразить, как на рисунке ниже. Это тоже параллельное соединение тех же самых сопротивлений.

Формула для расчета параллельного соединения сопротивлений

При параллельном соединении обратная величина от эквивалентного сопротивления равна сумме обратных величин всех параллельно подключенных сопротивлений. Эквивалентная проводимость равна сумме всех параллельно подключенных проводимостей электрической схемы.

Для приведенной выше схемы эквивалентное сопротивление можно рассчитать по формуле:

В частном случае при подключении параллельно двух сопротивлений:

Эквивалентное сопротивление цепи определяется по формуле:

В случае подключения «n» одинаковых сопротивлений, эквивалентное сопротивление можно рассчитать по частной формуле:

Формулы для частного рассчета вытекают из основной формулы.

Формула для расчета параллельного соединения емкостей (конденсаторов)

При параллельном подключении емкостей (конденсаторов) эквивалентная емкость равна сумме параллельно подключенных емкостей:

Формула для расчета параллельного соединения индуктивностей

При параллельном подключении индуктивностей, эквивалентная индуктивность рассчитывается так же, как и эквивалентное сопротивление при параллельном соединении:

Необходимо обратить внимание, что в формуле не учтены взаимные индуктивности.

Пример свертывания параллельного сопротивления

Для участка электрической цепи необходимо найти параллельное соединение сопротивлений выполнить их преобразование до одного.

Из схемы видно, что параллельно подключены только R2 и R4. R3 не параллельно, т.к. одним концом оно подключено к E1. R1 — одним концом подключено к R5, а не к узлу. R5 — одним концом подключено к R1, а не к узлу. Можно так же говорить, что последовательное соединение сопротивлений R1 и R5 подключено параллельно с R2 и R4.

Ток при параллельном соединении

При параллельном соединении сопротивлений ток через каждое сопротивление в общем случае разный. Величина тока обратно пропорциональна величине сопротивления.

Напряжение при параллельном соединении

При параллельном соединении разность потенциалов между узлами, объединяющими элементы цепи, одинакова для всех элементов.

Применение параллельного соединения

1. В промышленности изготавливаются сопротивления определенных величин. Иногда необходимо получить значение сопротивления вне данных рядов. Для этого можно подключить несколько сопротивлений параллельно. Эквивалентное сопротивление всегда будет меньше самого большого номинала сопротивления.

2. Делитель токов.

Содержание:

Течение тока в электрической цепи осуществляется по проводникам, в направлении от источника к потребителям. В большинстве подобных схем используются медные провода и электрические приемники в заданном количестве, обладающие различным сопротивлением. В зависимости выполняемых задач, в электрических цепях используется последовательное и параллельное соединение проводников. В некоторых случаях могут быть применены оба типа соединений, тогда этот вариант будет называться смешанным. Каждая схема имеет свои особенности и отличия, поэтому их нужно обязательно заранее учитывать при проектировании цепей, ремонте и обслуживании электрооборудования.

Последовательное соединение проводников

В электротехнике большое значение имеет последовательное и параллельное соединение проводников в электрической цепи. Среди них часто используется схема последовательного соединения проводников предполагающая такое же соединение потребителей. В этом случае включение в цепь выполняется друг за другом в порядке очередности. То есть, начало одного потребителя соединяется с концом другого при помощи проводов, без каких-либо ответвлений.

Свойства такой электрической цепи можно рассмотреть на примере участков цепи с двумя нагрузками. Силу тока, напряжение и сопротивление на каждом из них следует обозначить соответственно, как I1, U1, R1 и I2, U2, R2. В результате, получились соотношения, выражающие зависимость между величинами следующим образом: I = I1 = I2, U = U1 + U2, R = R1 + R2. Полученные данные подтверждаются практическим путем с помощью проведения измерений амперметром и вольтметром соответствующих участков.

Таким образом, последовательное соединение проводников отличается следующими индивидуальными особенностями:

  • Сила тока на всех участках цепи будет одинаковой.
  • Общее напряжение цепи составляет сумму напряжений на каждом участке.
  • Общее сопротивление включает в себя сопротивления каждого отдельного проводника.

Данные соотношения подходят для любого количества проводников, соединенных последовательно. Значение общего сопротивления всегда выше, чем сопротивление любого отдельно взятого проводника. Это связано с увеличением их общей длины при последовательном соединении, что приводит и к росту сопротивления.

Если соединить последовательно одинаковые элементы в количестве n, то получится R = n х R1, где R — общее сопротивление, R1 — сопротивление одного элемента, а n — количество элементов. Напряжение U, наоборот, делится на равные части, каждая из которых в n раз меньше общего значения. Например, если в сеть с напряжением 220 вольт последовательно включаются 10 ламп одинаковой мощности, то напряжение в любой из них составит: U1 = U/10 = 22 вольта.

Проводники, соединенные последовательно, имеют характерную отличительную особенность. Если во время работы отказал хотя-бы один из них, то течение тока прекращается во всей цепи. Наиболее ярким примером является , когда одна перегоревшая лампочка в последовательной цепи, приводит к выходу из строя всей системы. Для установления перегоревшей лампочки понадобится проверка всей гирлянды.

Параллельное соединение проводников

В электрических сетях проводники могут соединяться различными способами: последовательно, параллельно и комбинированно. Среди них параллельное соединение это такой вариант, когда проводники в начальных и конечных точках соединяются между собой. Таким образом, начала и концы нагрузок соединяются вместе, а сами нагрузки располагаются параллельно относительно друг друга. В электрической цепи могут содержаться два, три и более проводников, соединенных параллельно.

Если рассматривать последовательное и параллельное соединение, сила тока в последнем варианте может быть исследована с помощью следующей схемы. Берутся две лампы накаливания, обладающие одинаковым сопротивлением и соединенные параллельно. Для контроля к каждой лампочке подключается собственный . Кроме того, используется еще один амперметр, контролирующий общую силу тока в цепи. Проверочная схема дополняется источником питания и ключом.

После замыкания ключа нужно контролировать показания измерительных приборов. Амперметр на лампе № 1 покажет силу тока I1, а на лампе № 2 — силу тока I2. Общий амперметр показывает значение силы тока, равное сумме токов отдельно взятых, параллельно соединенных цепей: I = I1 + I2. В отличие от последовательного соединения, при перегорании одной из лампочек, другая будет нормально функционировать. Поэтому в домашних электрических сетях используется параллельное подключение приборов.

С помощью такой же схемы можно установить значение эквивалентного сопротивления. С этой целью в электрическую цепь добавляется вольтметр. Это позволяет измерить напряжение при параллельном соединении, сила тока при этом остается такой же. Здесь также имеются точки пересечения проводников, соединяющих обе лампы.

В результате измерений общее напряжение при параллельном соединении составит: U = U1 = U2. После этого можно рассчитать эквивалентное сопротивление, условно заменяющее все элементы, находящиеся в данной цепи. При параллельном соединении, в соответствии с законом Ома I = U/R, получается следующая формула: U/R = U1/R1 + U2/R2, в которой R является эквивалентным сопротивлением, R1 и R2 — сопротивления обеих лампочек, U = U1 = U2 — значение напряжения, показываемое вольтметром.

Следует учитывать и тот фактор, что токи в каждой цепи, в сумме составляют общую силу тока всей цепи. В окончательном виде формула, отражающая эквивалентное сопротивление будет выглядеть следующим образом: 1/R = 1/R1 + 1/R2. При увеличении количества элементов в таких цепях — увеличивается и число слагаемых в формуле. Различие в основных параметрах отличают друг от друга и источников тока, позволяя использовать их в различных электрических схемах.

Параллельное соединение проводников характеризуется достаточно малым значением эквивалентного сопротивления, поэтому сила тока будет сравнительно высокой. Данный фактор следует учитывать, когда в розетки включается большое количество электроприборов. В этом случае сила тока значительно возрастает, приводя к перегреву кабельных линий и последующим возгораниям.

Законы последовательного и параллельного соединения проводников

Данные законы, касающиеся обоих видов соединений проводников, частично уже были рассмотрены ранее.

Для более четкого их понимания и восприятия в практической плоскости, последовательное и параллельное соединение проводников, формулы следует рассматривать в определенной последовательности:

  • Последовательное соединение предполагает одинаковую силу тока в каждом проводнике: I = I1 = I2.
  • параллельное и последовательное соединение проводников объясняет в каждом случае по-своему. Например, при последовательном соединении, напряжения на всех проводниках будут равны между собой: U1 = IR1, U2 = IR2. Кроме того, при последовательном соединении напряжение составляет сумму напряжений каждого проводника: U = U1 + U2 = I(R1 + R2) = IR.
  • Полное сопротивление цепи при последовательном соединении состоит из суммы сопротивлений всех отдельно взятых проводников, независимо от их количества.
  • При параллельном соединении напряжение всей цепи равно напряжению на каждом из проводников: U1 = U2 = U.
  • Общая сила тока, измеренная во всей цепи, равна сумме токов, протекающих по всем проводникам, соединенных параллельно между собой: I = I1 + I2.

Для того чтобы более эффективно проектировать электрические сети, нужно хорошо знать последовательное и параллельное соединение проводников и его законы, находя им наиболее рациональное практическое применение.

Смешанное соединение проводников

В электрических сетях как правило используется последовательное параллельное и смешанное соединение проводников, предназначенное для конкретных условий эксплуатации. Однако чаще всего предпочтение отдается третьему варианту, представляющему собой совокупность комбинаций, состоящих из различных типов соединений.

В таких смешанных схемах активно применяется последовательное и параллельное соединение проводников, плюсы и минусы которых обязательно учитываются при проектировании электрических сетей. Эти соединения состоят не только из отдельно взятых резисторов, но и довольно сложных участков, включающих в себя множество элементов.

Смешанное соединение рассчитывается в соответствии с известными свойствами последовательного и параллельного соединения. Метод расчета заключается в разбивке схемы на более простые составные части, которые считаются отдельно, а потом суммируются друг с другом.

В предыдущем конспекте был установлено, что сила тока в проводнике зависит от напряжения на его концах. Если в опыте менять проводники, оставляя напряжение на них неизменным, то можно показать, что при постоянном напряжении на концах проводника сила тока обратно пропорциональна его сопротивлению. Объединив зависимость силы тока от напряжения и его зависимость от сопротивления проводника, можно записать: I = U/R . Этот закон, установленный экспериментально, называется закон Ома (для участка цепи).

Закон Ома для участка цепи : сила тока в проводнике прямо пропорциональна приложенному к его концам напряжению и обратно пропорциональна сопротивлению проводника. Прежде всего закон всегда верен для твёрдых и жидких металлических проводников. А также для некоторых других веществ (как правило, твёрдых или жидких).

Потребители электрической энергии (лампочки, резисторы и пр.) могут по-разному соединяться друг с другом в электрической цепи. Д ва основных типа соединения проводников : последовательное и параллельное. А также есть еще два соединения, которые являются редкими: смешанное и мостовое.

Последовательное соединение проводников

При последовательном соединении проводников конец одного проводника соединится с началом другого проводника, а его конец — с началом третьего и т.д. Например, соединение электрических лампочек в ёлочной гирлянде. При последовательном соединении проводников ток проходит через все лампочки. При этом через поперечное сечение каждого проводника в единицу времени проходит одинаковый заряд. То есть заряд не скапливается ни в какой части проводника.

Поэтому при последовательном соединении проводников сила тока в любом участке цепи одинакова: I 1 = I 2 = I .

Общее сопротивление последовательно соединённых проводников равно сумме их сопротивлений : R 1 + R 2 = R . Потому что при последовательном соединении проводников их общая длина увеличивается. Она больше, чем длина каждого отдельного проводника, соответственно увеличивается и сопротивление проводников.

По закону Ома напряжение на каждом проводнике равно: U 1 = I* R 1 , U 2 = I*R 2 . В таком случае общее напряжение равно U = I ( R 1 + R 2) . Поскольку сила тока во всех проводниках одинакова, а общее сопротивление равно сумме сопротивлений проводников, то полное напряжение на последовательно соединённых проводниках равно сумме напряжений на каждом проводнике : U = U 1 + U 2 .

Из приведённых равенств следует, что последовательное соединение проводников используется в том случае, если напряжение, на которое рассчитаны потребители электрической энергии, меньше общего напряжения в цепи.

Для последовательного соединения проводников справедливы законы :

1) сила тока во всех проводниках одинакова; 2) напряжение на всём соединении равно сумме напряжений на отдельных проводниках; 3) сопротивление всего соединения равно сумме сопротивлений отдельных проводников.

Параллельное соединение проводников

Примером параллельного соединения проводников служит соединение потребителей электрической энергии в квартире. Так, электрические лампочки, чайник, утюг и пр. включаются параллельно.

При параллельном соединении проводников все проводники одним своим концом присоединяются к одной точке цепи. А вторым концом к другой точке цепи. Вольтметр, подключенный к этим точкам, покажет напряжение и на проводнике 1, и на проводнике 2. В таком случае напряжение на концах всех параллельно соединённых проводников одно и то же: U 1 = U 2 = U .

При параллельном соединении проводников электрическая цепь разветвляется. Поэтому часть общего заряда проходит через один проводник, а часть — через другой. Следовательно при параллельном соединении проводников сила тока в неразветвлённой части цепи равна сумме силы тока в отдельных проводниках: I = I 1 + I 2 .

В соответствии с законом Ома I = U/R, I 1 = U 1 /R 1 , I 2 = U 2 /R 2 . Отсюда следует: U/R = U 1 /R 1 + U 2 /R 2 , U = U 1 = U 2 , 1/R = 1/R 1 + 1/R 2 Величина, обратная общему сопротивлению параллельно соединенных проводников, равна сумме величин, обратных сопротивлению каждого проводника.

При параллельном соединении проводников их общее сопротивление меньше, чем сопротивление каждого проводника. Действительно, если параллельно соединены два проводника, имеющие одинаковое сопротивление г , то их общее сопротивление равно: R = г/2 . Это объясняется тем, что при параллельном соединении проводников как бы увеличивается площадь их поперечного сечения. В результате уменьшается сопротивление.

Из приведённых формул понятно, почему потребители электрической энергии включаются параллельно. Они все рассчитаны на определённое одинаковое напряжение, которое в квартирах равно 220 В. Зная сопротивление каждого потребителя, можно рассчитать силу тока в каждом из них. А также соответствие суммарной силы тока предельно допустимой силе тока.

Для параллельного соединения проводников справедливы законы:

1) напряжение на всех проводниках одинаково; 2) сила тока в месте соединения проводников равна сумме токов в отдельных проводниках; 3) величина, обратная сопротивлению всего соединения, равна сумме величин, обратных сопротивлениям отдельных проводников.

Параллельное и последовательное соединение проводников – способы коммутации электрической цепи. Электрические схемы любой сложности можно представить посредством указанных абстракций.

Определения

Существует два способа соединения проводников, становится возможным упростить расчет цепи произвольной сложности:

  • Конец предыдущего проводника соединен непосредственно с началом следующего — подключение называют последовательным. Образуется цепочка. Чтобы включить очередное звено, нужно электрическую схему разорвать, вставив туда новый проводник.
  • Начала проводников соединены одной точкой, концы – другой, подключение называется параллельным. Связку принято называть разветвлением. Каждый отдельный проводник образует ветвь. Общие точки именуются узлами электрической сети.

На практике чаще встречается смешанное включение проводников, часть соединена последовательно, часть – параллельно. Нужно разбить цепь простыми сегментами, решать задачу для каждого отдельно. Сколь угодно сложную электрическую схему можно описать параллельным, последовательным соединением проводников. Так делается на практике.

Использование параллельного и последовательного соединения проводников

Термины, применяемые к электрическим цепям

Теория выступает базисом формирования прочных знаний, немногие знают, чем напряжение (разность потенциалов) отличается от падения напряжения. В терминах физики внутренней цепью называют источник тока, находящееся вне – именуется внешней. Разграничение помогает правильно описать распределение поля. Ток совершает работу. В простейшем случае генерация тепла согласно закону Джоуля-Ленца. Заряженные частицы, передвигаясь в сторону меньшего потенциала, сталкиваются с кристаллической решеткой, отдают энергию. Происходит нагрев сопротивлений.

Для обеспечения движения нужно на концах проводника поддерживать разность потенциалов. Это называется напряжением участка цепи. Если просто поместить проводник в поле вдоль силовых линий, ток потечет, будет очень кратковременным. Процесс завершится наступлением равновесия. Внешнее поле будет уравновешено собственным полем зарядов, противоположным направлением. Ток прекратится. Чтобы процесс стал непрерывным, нужна внешняя сила.

Таким приводом движения электрической цепи выступает источник тока. Чтобы поддерживать потенциал, внутри совершается работа. Химическая реакция, как в гальваническом элементе, механические силы – генератор ГЭС. Заряды внутри источника движутся в противоположную полю сторону. Над этим совершается работа сторонних сил. Можно перефразировать приведенные выше формулировки, сказать:

  • Внешняя часть цепи, где заряды движутся, увлекаемые полем.
  • Внутренняя часть цепи, где заряды движутся против напряженности.

Генератор (источник тока) снабжен двумя полюсами. Обладающий меньшим потенциалом называется отрицательным, другой – положительным. В случае переменного тока полюсы непрерывно меняются местами. Непостоянно направление движения зарядов. Ток течет от положительного полюса к отрицательному. Движение положительных зарядов идет в направлении убывания потенциала. Согласно этому факту вводится понятие падения потенциала:

Падением потенциала участка цепи называется убыль потенциала в пределах отрезка. Формально это напряжение. Для ветвей параллельной цепи одинаково.

Под падением напряжения понимается и нечто иное. Величина, характеризующая тепловые потери, численно равна произведению тока на активное сопротивление участка. Законы Ома, Кирхгофа, рассмотренные ниже, формулируются для этого случая. В электрических двигателях, трансформаторах разница потенциалов может значительно отличаться от падения напряжения. Последнее характеризует потери на активном сопротивлении, тогда как первое учитывает полную работу источника тока.

При решение физических задач для упрощения двигатель может включать в свой состав ЭДС, направление действия которой противоположно эффекту источника питания. Учитывается факт потери энергии через реактивную часть импеданса. Школьный и вузовский курс физики отличается оторванностью от реальности. Вот почему студенты, раскрыв рот, слушают о явлениях, имеющих место в электротехнике. В период, предшествующий эпохе промышленной революции, открывались главные законы, ученый должен объединять роль теоретика и талантливого экспериментатора. Об этом открыто говорят предисловия к трудам Кирхгофа (работы Георга Ома на русский язык не переведены). Преподаватели буквально завлекали люд дополнительными лекциями, сдобренными наглядными, удивительными экспериментами.

Законы Ома и Кирхгофа применительно к последовательному и параллельному соединению проводников

Для решения реальных задач используются законы Ома и Кирхгофа. Первый выводил равенство чисто эмпирическим путем – экспериментально – второй начал математическим анализом задачи, потом проверил догадки практикой. Приведем некоторые сведения, помогающие решению задачи:

Посчитать сопротивления элементов при последовательном и параллельном соединении

Алгоритм расчета реальных цепей прост. Приведем некоторые тезисы касательно рассматриваемой тематики:

  1. При последовательном включении суммируются сопротивления, при параллельном — проводимости:
    1. Для резисторов закон переписывается в неизменной форме. При параллельном соединении итоговое сопротивление равняется произведению исходных, деленному на общую сумму. При последовательном – номиналы суммируются.
    2. Индуктивность выступает реактивным сопротивлением (j*ω*L), ведет себя, как обычный резистор. В плане написания формулы ничем не отличается. Нюанс, для всякого чисто мнимого импеданса, что нужно умножить результат на оператор j, круговую частоту ω (2*Пи*f). При последовательном соединении катушек индуктивности номиналы суммируются, при параллельном – складываются обратные величины.
    3. Мнимое сопротивление емкости записывается в виде: -j/ω*С. Легко заметить: складывая величины последовательного соединения, получим формулу, в точности как для резисторов и индуктивностей было при параллельном. Для конденсаторов все наоборот. При параллельном включении номиналы складываются, при последовательном – суммируются обратные величины.

Тезисы легко распространяются на произвольные случаи. Падение напряжения на двух открытых кремниевых диодах равно сумме. На практике составляет 1 вольт, точное значение зависит от типа полупроводникового элемента, характеристик. Аналогичным образом рассматривают источники питания: при последовательном включении номиналы складываются. Параллельное часто встречается на подстанциях, где трансформаторы ставят рядком. Напряжение будет одно (контролируются аппаратурой), делятся между ветвями. Коэффициент трансформации строго равен, блокируя возникновение негативных эффектов.

У некоторых вызывает затруднение случай: две батарейки разного номинала включены параллельно. Случай описывается вторым законом Кирхгофа, никакой сложности представить физику не может. При неравенстве номиналов двух источников берется среднее арифметическое, если пренебречь внутренним сопротивлением обоих. В противном случае решаются уравнения Кирхгофа для всех контуров. Неизвестными будут токи (всего три), общее количество которых равно числу уравнений. Для полного понимания привели рисунок.

Пример решения уравнений Кирхгофа

Посмотрим изображение: по условию задачи, источник Е1 сильнее, нежели Е2. Направление токов в контуре берем из здравых соображений. Но если бы проставили неправильно, после решения задачи один получился бы с отрицательным знаком. Следовало тогда изменить направление. Очевидно, во внешней цепи ток течет, как показано на рисунке. Составляем уравнения Кирхгофа для трех контуров, вот что следует:

  1. Работа первого (сильного) источника тратится на создание тока во внешней цепи, преодоление слабости соседа (ток I2).
  2. Второй источник не совершает полезной работы в нагрузке, борется с первым. Иначе не скажешь.

Включение батареек разного номинала параллельно является безусловно вредным. Что наблюдается на подстанции при использовании трансформаторов с разным передаточным коэффициентом. Уравнительные токи не выполняют никакой полезной работы. Включенные параллельно разные батарейки начнут эффективно функционировать, когда сильная просядет до уровня слабой.

Электрическая схема последовательного соединения. Параллельное и последовательное соединение

В электротехнике и электронике очень широко используются резисторы. Применяются они в основном для регулирования в схемах тока и напряжения. Основные параметры: электрическое сопротивление (R) измеряется в Омах, мощность (Вт) , стабильность и точность их параметров в процессе эксплуатации. Можно вспомнить ещё множество его параметров, — ведь это обычное промышленное изделие.

Последовательное соединение

Последовательное соединение — это такое соединение, при котором каждый последующий резистор подключается к предыдущему, образуя неразрывную цепь без разветвлений. Ток I=I1=I2 в такой цепи будет одинаковым в каждой её точке. Напротив, напряжение U1, U2 в различных её точках будет разным, причём работа по переносу заряда через всю цепь, складывается из работ по переносу заряда в каждом из резисторов, U=U1+U2. Напряжение U по закону Ома равно току, умноженному на сопротивление, и предыдущее выражение можно записать так:

где R — общее сопротивление цепи. То есть по простому идет падение напряжения в точках соединения резисторов и чем больше подключенных элементов, тем больше происходит падение напряжения

Отсюда следует, что
, общее значение такого соединения определяется суммированием сопротивлений последовательно. Наши рассуждения справедливы для любого количества последовательно соединяемых участков цепи.

Параллельное соединение

Объединим начала нескольких резисторов (точка А). В другой точке (В) мы соединим все их концы. В результате получим участок цепи, который называется параллельным соединением и состоит из некоторого количества параллельных друг другу ветвей (в нашем случае – резисторов). При этом электрический ток между точками А и B распределится по каждой из этих ветвей.

Напряжения на всех резисторах будут одинаковы: U=U1=U2=U3, их концы — это точки А и В.

Заряды, прошедшие за единицу времени через каждый резистор, в сумме образуют заряд, прошедший через весь блок. Поэтому суммарный ток через изображенную на рисунке цепь I=I1+I2+I3.

Теперь, использовав закон Ома, последнее равенство преобразуется к такому виду:

U/R=U/R1+U/R2+U/R3.

Отсюда следует, что для эквивалентного сопротивления R справедливо:

1/R=1/R1+1/R2+1/R3

или после преобразования формулы мы можем получить другую запись, такого вида:
.

Чем большее количество резисторов (или других звеньев электрической цепи, обладающих некоторым сопротивлением) соединить по параллельной схеме, тем больше путей для протекания тока образуется, и тем меньше общее сопротивление цепи.

Следует отметить, что обратная сопротивлению величина называется проводимостью. Можно сказать, что при параллельном соединении участков цепи складываются проводимости этих участков, а при последовательном соединении – их сопротивления.

Примеры использования

Понятно, что при последовательном соединении, разрыв цепи в одном месте приводит к тому, что ток перестает идти по всей цепи. Например, ёлочная гирлянда перестаёт светить, если перегорит всего одна лампочка, это плохо.

Но последовательное соединение лампочек в гирлянде даёт возможность использовать большое количество маленьких лампочек, каждая из которых рассчитана на напряжение сети (220 В), делённое на количество лампочек.


Последовательное соединение резисторов на примере 3-х лампочек и ЭДС

Зато при последовательном подключении предохранительного устройства его срабатывание (разрыв плавкой вставки) позволяет обесточить всю электрическую цепь, расположенную после него и обеспечить нужный уровень безопасности, и это хорошо. Выключатель в сеть питания электроприбора включается также последовательно.

Параллельное соединение также широко используется. Например, люстра – все лампочки соединены параллельно и находятся под одним и тем же напряжением. Если одна лампа перегорит, — не страшно, остальные не погаснут, они остаются под тем же самым напряжением.


Параллельное соединение резисторов на примере 3-х лампочек и генератора

При необходимости увеличения способности схемы рассеивать тепловую мощность, выделяющуюся при протекании тока, широко используются и последовательное, и параллельное объединение резисторов. И для последовательного, и параллельного способов соединения некоторого количества резисторов одного номинала общая мощность равна произведению количества резисторов на мощность одного резистора.

Смешанное соединение резисторов

Также часто используется смешанное соединение. Если,например необходимо получить сопротивление определенного номинала, но его нет в наличии можно воспользоваться одним из выше описанных способов или воспользоваться смешанным соединением.

Отсюда, можно вывести формулу которая и даст нам необходимое значение:

Rобщ.=(R1*R2/R1+R2)+R3

В нашу эпоху развития электроники и различных технических устройств в основе всех сложностей лежать простые законы, которые поверхностно рассматриваются на данном сайте и думаю, что вам они помогут успешно применять в своей жизни. Если например взять ёлочную гирлянду, то соединения лампочек идет друг за другом, т.е. грубо говоря это отдельно-взятое сопротивление.

Не так давно гирлянды стали соединятся смешанным способом. Вообще, в совокупности все эти примеры с резисторами взяты условно, т.е. любым элементом сопротивления может быть ток проходящий через элемент с падением напряжения и выделением тепла.

Подробности Категория: Статьи Создано: 06.09.2017 19:48

Как подключить в кукольном домике несколько светильников

Когда вы задумываетесь о том как сделать освещение в кукольном домике или румбоксе, где не один, а несколько светильников, то встает вопрос о том, как их подключить, объединить в сеть. Существует два типа подключения: последовательное и параллельное, о которых мы слышали со школьной скамьи. Их и рассмотрим в этой статье.

Я постараюсь описать всё простым доступным языком, чтобы всё было понятно даже самым-самым гуманитариям, не знакомым с электрическими премудростями.

Примечание : в этой статье рассмотрим только цепь с лампочками накаливания. Освещение диодами более сложное и будет рассмотрено в другой статье.

Для понимания каждая схема будет сопровождена рисунком и рядом с чертежом электрической монтажной схемой.
Сначала рассмотрим условные обозначения на электрических схемах.

Название элемента Символ на схеме Изображение
батарейка/ элемент питания
выключатель
провод
пересечение проводов (без соединения)
соединение проводов (пайкой, скруткой)
лампа накаливания
неисправная лампа
неработающая лампа
горящая лампа

Как уже было сказано, существуют два основных типа подключения: последовательное и параллельное. Есть ещё третье, смешанное: последовательно-параллельное, объединяющее то и другое. Начнем с последовательного, как более простого.

Последовательное подключение

Выглядит оно вот так.

Лампочки располагаются одна за другой, как в хороводе держась за руки. По этому принципу были сделаны старые советские гирлянды.

Достоинства — простота соединения.
Недостатки — если перегорела хоть одна лампочка, то не будет работать вся цепь.

Надо будет перебирать, проверять каждую лампочку, чтобы найти неисправную. Это может быть утомительным при большом количестве лампочек. Так же лампочки должны быть одного типа: напряжение, мощность.

При этом типе подключения напряжения лампочек складываются. Напряжение обозначается буквой U , измеряется в вольтах V . Напряжение источника питания должно быть равно сумме напряжений всех лампочек в цепи.

Пример №1 : вы хотите подключить в последовательную цепь 3 лампочки напряжением 1,5V. Напряжение источника питания, необходимое для работы такой цепи 1,5+1,5+1,5=4,5V.

У обычных пальчиковых батареек напряжение 1,5V. Чтобы из них получить напряжение 4,5V их тоже нужно соединить в последовательную цепь, их напряжения сложатся.
Подробнее о том, как выбрать источник питания написано в этой статье

Пример №2: вы хотите подключить к источнику питания 12V лампочки по 6V. 6+6=12v. Можно подключить 2 таких лампочки.

Пример №3: вы хотите соединить в цепь 2 лампочки по 3V. 3+3=6V. Необходим источник питания на 6 V.

Подведем итог: последовательное подключение просто в изготовлении, нужны лампочки одного типа. Недостатки: при выходе из строя одной лампочки не горят все. Включить и выключить цепь можно только целиком.

Исходя из этого, для освещения кукольного домика целесообразно соединять последовательно не более 2-3 лампочек. Например, в бра. Чтобы соединить большее количество лампочек, необходимо использовать другой тип подключения — параллельное.

Читайте так же статьи по теме:

  • Обзор миниатюрных ламп накаливания
  • Диоды или лампы накаливания

Параллельное подключение лампочек

Вот так выглядит параллельное подключение лампочек.

В этом типе подключения у всех лампочек и источника питания одинаковые напряжения. То есть при источнике питания 12v каждая из лампочек должна иметь тоже напряжение 12V. А количество лампочек может быть различным. А если у вас, допустим, есть лампочки 6V, то и источник питания нужно брать 6V.

При выходе из строя одной лампочки другие продолжают гореть.

Лампочки можно включать независимо друг от друга. Для этого к каждой нужно поставить свой выключатель.

По этому принципу подключены электроприборы в наших городских квартирах. У всех приборов одно напряжение 220V, включать и выключать их можно независимо друг от друга, мощность электроприборов может быть разной.

Вывод : при множестве светильников в кукольном домике оптимально параллельное подключение, хотя оно чуть сложнее, чем последовательное.

Рассмотрим ещё один вид подключения, соединяющий в себе последовательное и параллельное.

Комбинированное подключение

Пример комбинированного подключения.

Три последовательные цепи, соединенные параллельно

А вот другой вариант:

Три параллельные цепи, соединенные последовательно.

Участки такой цепи, соединенные последовательно, ведут себя как последовательное соединение. А параллельные участки — как параллельное соединение.

Пример

При такой схеме перегорание одной лампочки выведет из строя весь участок, соединенный последовательно, а две другие последовательные цеписохранят работоспособность.

Соответственно, и включать-выключать участки можно независимо друг от друга. Для этого каждой последовательной цепи нужно поставить свой выключатель.

Но нельзя включить одну-единственную лампочку.

При параллельно-последовательном подключении при выходе из строя одной лампочки цепь будет вести себя так:

А при нарушении на последовательном участке вот так:

Пример:

Есть 6 лампочек по 3V, соединенные в 3 последовательные цепи по 2 лампочки. Цепи в свою очередь соединены параллельно. Разбиваем на 3 последовательных участка и просчитываем этот участок.

На последовательном участке напряжения лампочек складываются, 3v+3V=6V. У каждой последовательной цепи напряжение 6V. Поскольку цепи соединены параллельно, то их напряжение не складывается, а значит нам нужен источник питания на 6V.

Пример

У нас 6 лампочек по 6V. Лампочки соединены по 3 штуки в параллельную цепь, а цепи в свою очередь — последовательно. Разбиваем систему на три параллельных цепи.

В одной параллельной цепи напряжение у каждой лампочки 6V, поскольку напряжение не складывается, то и у всей цепи напряжение 6V. А сами цепи соединены уже последовательно и их напряжения уже складываются. Получается 6V+6V=12V. Значит, нужен источник питания 12V.

Пример

Для кукольных домиков можно использовать такое смешанное подключение.

Допустим, в каждой комнате по одному светильнику, все светильники подключены параллельно. Но в самих светильниках разное количество лампочек: в двух — по одной лампочке, есть двухрожковое бра из двух лампочек и трехрожковая люстра. В люстре и бра лампочки соединены последовательно.

У каждого светильника свой выключатель. Источник питания 12V напряжения. Одиночные лампочки, соединенные параллельно, должны иметь напряжение 12V. А у тех, что соединены последовательно напряжение складывается на участке цепи
. Соответственно, для участка бра из двух лампочек 12V (общее напряжение)делим на 2 (количество лампочек), получим 6V (напряжение одной лампочки).
Для участка люстры 12V:3=4V (напряжение одной лампочки люстры).
Больше трех лампочек в одном светильнике соединять последовательно не стоит.

Теперь вы изучили все хитрости подключения лампочек накаливания разными способами. И, думаю, что не составит труда сделать освещение в кукольном домике со многими лампочками, любой сложности. Если же что-то для вас ещё представляет сложности, прочитайте статью о простейшем способе сделать свет в кукольном домике, самые базовые принципы. Удачи!

Практически каждому, кто занимался электрикой, приходилось решать вопрос параллельного и последовательного соединения элементов схемы. Некоторые решают проблемы параллельного и последовательного соединения проводников методом «тыка», для многих «несгораемая» гирлянда является необъяснимой, но привычной аксиомой. Тем не менее, все эти и многие другие подобные вопросы легко решаются методом, предложенным еще в самом начале XIX века немецким физиком Георгом Омом. Законы, открытые им, действуют и поныне, а понять их сможет практически каждый.

Основные электрические величины цепи

Для того чтобы выяснить, как то или иное соединение проводников повлияет на характеристики схемы, необходимо определиться с величинами, которые характеризуют любую электрическую цепь. Вот основные из них:

Взаимная зависимость электрических величин

Теперь необходимо определиться , как все вышеперечисленные величины зависят одна от другой. Правила зависимости несложны и сводятся к двум основным формулам:


Здесь I – ток в цепи в амперах, U – напряжение, подводимое к цепи в вольтах, R – сопротивление цепи в омах, P – электрическая мощность цепи в ваттах.

Предположим, перед нами простейшая электрическая цепь, состоящая из источника питания с напряжением U и проводника с сопротивлением R (нагрузки).

Поскольку цепь замкнута, через нее течет ток I. Какой величины он будет? Исходя из вышеприведенной формулы 1, для его вычисления нам нужно знать напряжение, развиваемое источником питания, и сопротивление нагрузки. Если мы возьмем, к примеру, паяльник с сопротивлением спирали 100 Ом и подключим его к осветительной розетке с напряжением 220 В, то ток через паяльник будет составлять:

220 / 100 = 2,2 А.

Какова мощность этого паяльника ? Воспользуемся формулой 2:

2,2 * 220 = 484 Вт.

Хороший получился паяльник, мощный, скорее всего, двуручный. Точно так же, оперируя этими двумя формулами и преобразуя их, можно узнать ток через мощность и напряжение, напряжение через ток и сопротивление и т.д. Сколько, к примеру, потребляет лампочка мощностью 60 Вт в вашей настольной лампе:

60 / 220 = 0,27 А или 270 мА.

Сопротивление спирали лампы в рабочем режиме:

220 / 0,27 = 815 Ом.

Схемы с несколькими проводниками

Все рассмотренные выше случаи являются простыми – один источник, одна нагрузка. Но на практике нагрузок может быть несколько, и соединены они бывают тоже по-разному. Существует три типа соединения нагрузки:

  1. Параллельное.
  2. Последовательное.
  3. Смешанное.

Параллельное соединение проводников

В люстре 3 лампы, каждая по 60 Вт. Сколько потребляет люстра? Верно, 180 Вт. Быстренько подсчитываем сначала ток через люстру:

180 / 220 = 0,818 А.

А затем и ее сопротивление:

220 / 0,818 = 269 Ом.

Перед этим мы вычисляли сопротивление одной лампы (815 Ом) и ток через нее (270 мА). Сопротивление же люстры оказалось втрое ниже, а ток — втрое выше. А теперь пора взглянуть на схему трехрожкового светильника.

Все лампы в нем соединены параллельно и подключены к сети. Получается, при параллельном соединении трех ламп общее сопротивление нагрузки уменьшилось втрое? В нашем случае — да, но он частный – все лампы имеют одинаковые сопротивление и мощность. Если каждая из нагрузок будет иметь свое сопротивление, то для подсчета общего значения простого деления на количество нагрузок мало. Но и тут есть выход из положения – достаточно воспользоваться вот этой формулой:

1/Rобщ. = 1/R1 + 1/R2 + … 1/Rn.

Для удобства использования формулу можно легко преобразовать:

Rобщ. = (R1*R2*… Rn) / (R1+R2+ … Rn).

Здесь Rобщ . – общее сопротивление цепи при параллельном включении нагрузки. R1 … Rn – сопротивления каждой нагрузки.

Почему увеличился ток, когда вы включили параллельно три лампы вместо одной, понять несложно – ведь он зависит от напряжения (оно осталось неизменным), деленного на сопротивление (оно уменьшилось). Очевидно, что и мощность при параллельном соединении увеличится пропорционально увеличению тока.

Последовательное соединение

Теперь настала пора выяснить, как изменятся параметры цепи, если проводники (в нашем случае лампы) соединить последовательно.

Расчет сопротивления при последовательном соединении проводников исключительно прост:

Rобщ. = R1 + R2.

Те же три шестидесятиваттные лампы, соединенные последовательно, составят уже 2445 Ом (см. расчеты выше). Какими будут последствия увеличения сопротивления цепи? Согласно формулам 1 и 2 становится вполне понятно, что мощность и сила тока при последовательном соединении проводников упадет. Но почему теперь все лампы горят тускло? Это одно из самых интересных свойств последовательного подключения проводников, которое очень широко используется. Взглянем на гирлянду из трех знакомых нам, но последовательно соединенных ламп.

Общее напряжение, приложенное ко всей цепи, так и осталось 220 В. Но оно поделилось между каждой из ламп пропорционально их сопротивлению! Поскольку лампы у нас одинаковой мощности и сопротивления, то напряжение поделилось поровну: U1 = U2 = U3 = U/3. То есть на каждую из ламп подается теперь втрое меньшее напряжение, вот почему они светятся так тускло. Возьмете больше ламп – яркость их упадет еще больше. Как рассчитать падение напряжения на каждой из ламп, если все они имеют различные сопротивления? Для этого достаточно четырех формул, приведенных выше. Алгоритм расчета будет следующим:

  1. Измеряете сопротивление каждой из ламп.
  2. Рассчитываете общее сопротивление цепи.
  3. По общим напряжению и сопротивлению рассчитываете ток в цепи.
  4. По общему току и сопротивлению ламп вычисляете падение напряжения на каждой из них.

Хотите закрепить полученные знания ? Решите простую задачу, не заглядывая в ответ в конце:

В вашем распоряжении есть 15 однотипных миниатюрных лампочек, рассчитанных на напряжение 13,5 В. Можно ли из них сделать елочную гирлянду, подключаемую к обычной розетке, и если можно, то как?

Смешанное соединение

С параллельным и последовательным соединением проводников вы, конечно, без труда разобрались. Но как быть, если перед вами оказалась примерно такая схема?

Смешанное соединение проводников

Как определить общее сопротивление цепи? Для этого вам понадобится разбить схему на несколько участков. Вышеприведенная конструкция достаточно проста и участков будет два — R1 и R2,R3. Сначала вы рассчитываете общее сопротивление параллельно соединенных элементов R2,R3 и находите Rобщ.23. Затем вычисляете общее сопротивление всей цепи, состоящей из R1 и Rобщ.23, соединенных последовательно:

  • Rобщ.23 = (R2*R3) / (R2+R3).
  • Rцепи = R1 + Rобщ.23.

Задача решена, все очень просто. А теперь вопрос несколько сложнее.

Сложное смешанное соединение сопротивлений

Как быть тут? Точно так же, просто нужно проявить некоторую фантазию. Резисторы R2, R4, R5 соединены последовательно. Рассчитываем их общее сопротивление:

Rобщ.245 = R2+R4+R5.

Теперь параллельно к Rобщ.245 подключаем R3:

Rобщ.2345 = (R3* Rобщ.245) / (R3+ Rобщ.245).

Rцепи = R1+ Rобщ.2345+R6.

Вот и все!

Ответ на задачу о елочной гирлянде

Лампы имеют рабочее напряжение всего 13.5 В, а в розетке 220 В, поэтому их нужно включать последовательно.

Поскольку лампы однотипные, напряжение сети разделится между ними поровну и на каждой лампочке окажется 220 / 15 = 14,6 В. Лампы рассчитаны на напряжение 13,5 В, поэтому такая гирлянда хоть и заработает, но очень быстро перегорит. Чтобы реализовать задумку, вам понадобится минимум 220 / 13,5 = 17, а лучше 18-19 лампочек.

Параллельное и последовательное соединение проводников – способы коммутации электрической цепи. Электрические схемы любой сложности можно представить посредством указанных абстракций.

Определения

Существует два способа соединения проводников, становится возможным упростить расчет цепи произвольной сложности:

  • Конец предыдущего проводника соединен непосредственно с началом следующего — подключение называют последовательным. Образуется цепочка. Чтобы включить очередное звено, нужно электрическую схему разорвать, вставив туда новый проводник.
  • Начала проводников соединены одной точкой, концы – другой, подключение называется параллельным. Связку принято называть разветвлением. Каждый отдельный проводник образует ветвь. Общие точки именуются узлами электрической сети.

На практике чаще встречается смешанное включение проводников, часть соединена последовательно, часть – параллельно. Нужно разбить цепь простыми сегментами, решать задачу для каждого отдельно. Сколь угодно сложную электрическую схему можно описать параллельным, последовательным соединением проводников. Так делается на практике.

Использование параллельного и последовательного соединения проводников

Термины, применяемые к электрическим цепям

Теория выступает базисом формирования прочных знаний, немногие знают, чем напряжение (разность потенциалов) отличается от падения напряжения. В терминах физики внутренней цепью называют источник тока, находящееся вне – именуется внешней. Разграничение помогает правильно описать распределение поля. Ток совершает работу. В простейшем случае генерация тепла согласно закону Джоуля-Ленца. Заряженные частицы, передвигаясь в сторону меньшего потенциала, сталкиваются с кристаллической решеткой, отдают энергию. Происходит нагрев сопротивлений.

Для обеспечения движения нужно на концах проводника поддерживать разность потенциалов. Это называется напряжением участка цепи. Если просто поместить проводник в поле вдоль силовых линий, ток потечет, будет очень кратковременным. Процесс завершится наступлением равновесия. Внешнее поле будет уравновешено собственным полем зарядов, противоположным направлением. Ток прекратится. Чтобы процесс стал непрерывным, нужна внешняя сила.

Таким приводом движения электрической цепи выступает источник тока. Чтобы поддерживать потенциал, внутри совершается работа. Химическая реакция, как в гальваническом элементе, механические силы – генератор ГЭС. Заряды внутри источника движутся в противоположную полю сторону. Над этим совершается работа сторонних сил. Можно перефразировать приведенные выше формулировки, сказать:

  • Внешняя часть цепи, где заряды движутся, увлекаемые полем.
  • Внутренняя часть цепи, где заряды движутся против напряженности.

Генератор (источник тока) снабжен двумя полюсами. Обладающий меньшим потенциалом называется отрицательным, другой – положительным. В случае переменного тока полюсы непрерывно меняются местами. Непостоянно направление движения зарядов. Ток течет от положительного полюса к отрицательному. Движение положительных зарядов идет в направлении убывания потенциала. Согласно этому факту вводится понятие падения потенциала:

Падением потенциала участка цепи называется убыль потенциала в пределах отрезка. Формально это напряжение. Для ветвей параллельной цепи одинаково.

Под падением напряжения понимается и нечто иное. Величина, характеризующая тепловые потери, численно равна произведению тока на активное сопротивление участка. Законы Ома, Кирхгофа, рассмотренные ниже, формулируются для этого случая. В электрических двигателях, трансформаторах разница потенциалов может значительно отличаться от падения напряжения. Последнее характеризует потери на активном сопротивлении, тогда как первое учитывает полную работу источника тока.

При решение физических задач для упрощения двигатель может включать в свой состав ЭДС, направление действия которой противоположно эффекту источника питания. Учитывается факт потери энергии через реактивную часть импеданса. Школьный и вузовский курс физики отличается оторванностью от реальности. Вот почему студенты, раскрыв рот, слушают о явлениях, имеющих место в электротехнике. В период, предшествующий эпохе промышленной революции, открывались главные законы, ученый должен объединять роль теоретика и талантливого экспериментатора. Об этом открыто говорят предисловия к трудам Кирхгофа (работы Георга Ома на русский язык не переведены). Преподаватели буквально завлекали люд дополнительными лекциями, сдобренными наглядными, удивительными экспериментами.

Законы Ома и Кирхгофа применительно к последовательному и параллельному соединению проводников

Для решения реальных задач используются законы Ома и Кирхгофа. Первый выводил равенство чисто эмпирическим путем – экспериментально – второй начал математическим анализом задачи, потом проверил догадки практикой. Приведем некоторые сведения, помогающие решению задачи:

Посчитать сопротивления элементов при последовательном и параллельном соединении

Алгоритм расчета реальных цепей прост. Приведем некоторые тезисы касательно рассматриваемой тематики:

  1. При последовательном включении суммируются сопротивления, при параллельном — проводимости:
    1. Для резисторов закон переписывается в неизменной форме. При параллельном соединении итоговое сопротивление равняется произведению исходных, деленному на общую сумму. При последовательном – номиналы суммируются.
    2. Индуктивность выступает реактивным сопротивлением (j*ω*L), ведет себя, как обычный резистор. В плане написания формулы ничем не отличается. Нюанс, для всякого чисто мнимого импеданса, что нужно умножить результат на оператор j, круговую частоту ω (2*Пи*f). При последовательном соединении катушек индуктивности номиналы суммируются, при параллельном – складываются обратные величины.
    3. Мнимое сопротивление емкости записывается в виде: -j/ω*С. Легко заметить: складывая величины последовательного соединения, получим формулу, в точности как для резисторов и индуктивностей было при параллельном. Для конденсаторов все наоборот. При параллельном включении номиналы складываются, при последовательном – суммируются обратные величины.

Тезисы легко распространяются на произвольные случаи. Падение напряжения на двух открытых кремниевых диодах равно сумме. На практике составляет 1 вольт, точное значение зависит от типа полупроводникового элемента, характеристик. Аналогичным образом рассматривают источники питания: при последовательном включении номиналы складываются. Параллельное часто встречается на подстанциях, где трансформаторы ставят рядком. Напряжение будет одно (контролируются аппаратурой), делятся между ветвями. Коэффициент трансформации строго равен, блокируя возникновение негативных эффектов.

У некоторых вызывает затруднение случай: две батарейки разного номинала включены параллельно. Случай описывается вторым законом Кирхгофа, никакой сложности представить физику не может. При неравенстве номиналов двух источников берется среднее арифметическое, если пренебречь внутренним сопротивлением обоих. В противном случае решаются уравнения Кирхгофа для всех контуров. Неизвестными будут токи (всего три), общее количество которых равно числу уравнений. Для полного понимания привели рисунок.

Пример решения уравнений Кирхгофа

Посмотрим изображение: по условию задачи, источник Е1 сильнее, нежели Е2. Направление токов в контуре берем из здравых соображений. Но если бы проставили неправильно, после решения задачи один получился бы с отрицательным знаком. Следовало тогда изменить направление. Очевидно, во внешней цепи ток течет, как показано на рисунке. Составляем уравнения Кирхгофа для трех контуров, вот что следует:

  1. Работа первого (сильного) источника тратится на создание тока во внешней цепи, преодоление слабости соседа (ток I2).
  2. Второй источник не совершает полезной работы в нагрузке, борется с первым. Иначе не скажешь.

Включение батареек разного номинала параллельно является безусловно вредным. Что наблюдается на подстанции при использовании трансформаторов с разным передаточным коэффициентом. Уравнительные токи не выполняют никакой полезной работы. Включенные параллельно разные батарейки начнут эффективно функционировать, когда сильная просядет до уровня слабой.

Одним из китов, на котором держатся многие понятия в электронике, является понятие последовательного и параллельного подключения проводников. Знать основные отличия указанных типов подключения просто необходимо. Без этого нельзя понять и прочитать ни одной схемы.

Основные принципы

Электрический ток движется по проводнику от источника к потребителю (нагрузке). Чаще всего в качестве проводника выбирается медный кабель. Связано это с требованием, которое предъявляется к проводнику: он должен легко высвобождать электроны.

Независимо от способа подключения, электрический ток двигается от плюса к минусу. Именно в этом направлении убывает потенциал. При этом стоит помнить, что провод, по котору идет ток, также обладает сопротивлением. Но его значение очень мало. Именно поэтому им пренебрегают. Сопротивление проводника принимают равным нулю. В том случае, если проводник обладает сопротивлением, его принято называть резистором.

Параллельное подключение

В данном случае элементы, входящие в цепь, объединены между собой двумя узлами. С другими узлами у них связей нет. Участки цепи с таким подключением принято называть ветвями. Схема параллельного подключения представлена на рисунке ниже.

Если говорить более понятным языком, то в данном случае все проводники одним концом соединены в одном узле, а вторым — во втором. Это приводит к тому, что электрический ток разделяется на все элементы. Благодаря этому увеличивается проводимость всей цепи.

При подключении проводников в цепь данным способом напряжение каждого из них будет одинаково. А вот сила тока всей цепи будет определяться как сумма токов, протекающих по всем элементам. С учетом закона Ома путем нехитрых математических расчетов получается интересная закономерность: величина, обратная общему сопротивлению всей цепи, определяется как сумма величин, обратных сопротивлениям каждого отдельного элемента. При этом учитываются только элементы, подключенные параллельно.

Последовательное подключение

В данном случае все элементы цепи соединены таким образом, что они не образуют ни одного узла. При данном способе подключения имеется один существенный недостаток. Он заключается в том, что при выходе из строя одного из проводников все последующие элементы работать не смогут. Ярким примером такой ситуации является обычная гирлянда. Если в ней перегорает одна из лампочек, то вся гирлянда перестает работать.

Последовательное подключение элементов отличается тем, что сила тока во всех проводниках равна. Что касается напряжения цепи, то оно равно сумме напряжения отдельных элементов.

В данной схеме проводники включаются в цепь поочередно. А это значит, что сопротивление всей цепи будет складываться из отдельных сопротивлений, характерных для каждого элемента. То есть общее сопротивление цепи равно сумме сопротивлений всех проводников. Эту же зависимость можно вывести и математическим способом, используя закон Ома.

Смешанные схемы

Бывают ситуации, когда на одной схеме можно увидеть одновременно последовательное и параллельное подключение элементов. В таком случае говорят о смешанном соединении. Расчет подобных схем проводится отдельно для каждой из группы проводников.

Так, чтобы определить общее сопротивление, необходимо сложить сопротивление элементов, подключенных параллельно, и сопротивление элементов с последовательным подключением. При этом последовательное подключение является доминантным. То есть его рассчитывают в первую очередь. И только после этого определяют сопротивление элементов с параллельным подключением.

Подключение светодиодов

Зная основы двух типов подключения элементов в цепи, можно понять принцип создания схем различных электроприборов. Рассмотрим пример. во многом зависит от напряжения источника тока.

При небольшом напряжении сети (до 5 В) светодиоды подключают последовательно. Снизить уровень электромагнитных помех в данном случае поможет конденсатор проходного типа и линейные резисторы. Проводимость светодиодов увеличивают за счет использования системных модуляторов.

При напряжении сети 12 В может использоваться и последовательное, и параллельное подключение сети. В случае последовательного подключения используют импульсные блоки питания. Если собирается цепь из трех светодиодов, то можно обойтись без усилителя. Но если цепь будет включать большее количество элементов, то усилитель необходим.

Во втором случае, то есть при параллельном подключении, необходимо использование двух открытых резисторов и усилителя (с пропускной способностью выше 3 А). Причем первый резистор устанавливается перед усилителем, а второй — после.

При высоком напряжении сети (220 В) прибегают к последовательному подключению. При этом дополнительно используют операционные усилители и понижающие блоки питания.

Последовательное соединение проводников. 8-й класс

Цели:

  • Получить новые знания об электрических цепях
  • Выявить закономерности в цепи с последовательным соединением проводников.
  • Применение полученных знаний для практического применения при решении учебных задач

Ход урока

Слайды 1-2. Презентация

1. Организационный этап. Мотивации к учебной деятельности. Постановка учебных задач

А) Проверка готовности обучающихся к уроку. (- Учебники, тетради, таблицы оценивания деятельности на уроке. Маршрутный лист урока. Карточки для экспериментальной работы и тестовых заданий. Оборудование в соответствии описанию.

— Проверка эмоциональной готовности обучающихся. (Улыбнитесь друг другу, возьмитесь за руки так, чтобы ваше пожатие дошло до каждого ученика в классе).

Б) Посмотрите на свои руки. Что получилось, когда мы их соединили (цепь). А какие цепи мы с вами изучаем на уроках физики? Вы уже выполнили три лабораторные работы с электрическими цепями. Скажите, как вы соединяли приборы в этих цепях? (Все приборы последовательно, а вольтметр – параллельно. Как включается в цепь амперметр?). (Слайд 3)

Вспомните, какое соединение рук было у вас в начале урока. (I, U, R, последовательное соединение)

Предположите, какой может быть тема нашего урока. (Слайд 4,5)

В) Сформулируйте закон Ома для участка цепи,

Какие физические характеристики электрических цепей он связывает?

(Слайд 6)

Кейс-стади: После новогоднего утренника в начальных классах ёлочная гирлянда перестала работать. Через два часа начиналось мероприятие “Новогодний колейдоскоп” в 5-8 классах. Гирлянда должна снова работать. Монтёр успокоил, что быстро найдёт сгоревшую лапочку и всё будет в порядке.

— Согласны ли вы с утверждением монтёра? Какой бы выход предложили вы?

Как соединены лампочки ёлочной гирлянды между собой ?

— Почему не проходит электрический ток по всей цепи? Что необходимо знать, чтобы решить проблему с гирляндой?

2. Этап актуализации знаний. Совместное исследование проблемы. Планирование деятельности.

С помощью таблицы самооценивания выявим уровень ваших знаний по теме урока и попытаемся увидеть имеющиеся проблемы. (Слайд 7)

Таблица самооценивания: Знаю “Что…” , “Знаю “Как …” , Знаю “Зачем…”.

За каждый плюс – 1 балл

Максимально: 15 баллов

Знаю “Что…” Знаю “Как …” Знаю “Зачем…” Знаю “Я”
1.Электрический ток это упорядоченное движение заряженных частиц 1.Выполнять правила ТБ при работе с электрическими приборами. 1.Используют вольтметр и амперметр 1. Усвоил физические понятия по теме:

— хорошо

— достаточно

— недостаточно

2.Электрическую цепь составляют источник тока, приёмники, замыкающие устройства, соединённые между собой 2.Собрать электрическую цепь по схеме. 2.Собирают электрические цепи
3.Сила тока, напряжение и сопротивление являются характеристиками электрической цепи 3.Присоединять амперметр 3.Измеряют силу тока, напряжение

и сопротивление электрической цепи

2. Овладел навыками сборки электрических цепей — хорошо

— достаточно

— недостаточно

4.Сила тока на участке цепи прямо пропорциональна напряжению источника тока и обратно пропорциональна сопротивлению проводника 4.Присоединять вольтметр 4.Применяют закон Ома для участка цепи 3. Умею использовать формулы при решении задач — хорошо

— достаточно

— недостаточно

5. Есть электрическая цепь последовательного соединения проводников 5.Рассчитать сопротивление проводников

6. Рассчитать общее сопротивление цепи.

5.Исследуют последовательное соединение проводников 4. изучила закономерности последовательного соединения проводников

— хорошо

— достаточно

— недостаточно

Итоговая оценка: 5б  

(Слайд 8) Предлагаю сформулировать основную проблему, которую мы будем решать на данном уроке.

Выявление закономерностей между физическими величинами I, U, R, характеризующими электрическую цепь при последовательном соединении нескольких проводников?

Слайд 9

Цель урока: Ознакомиться с описанием последовательного соединения проводников,

  • Исследовать закономерности последовательного соединения;
  • Выяснить области применения полученных знаний на практике.
  • Задачи урока:

    Изучить последовательное соединение проводников в электрической цепи;

    Убедиться в справедливости закономерностей последовательного соединения проводников на опыте;

    Научиться рассчитывать основные характеристики цепей с последовательным соединением проводников.

    Слайд 10

    По какому плану мы можем действовать при решении данной проблемы? Слайд

    1. Изучить теоретически информацию о последовательном соединении проводников:

    Изучить материал п. 48 стр 136 учебника до Примера 1.

    А) Прочитать текст с маркировкой справа на полях следующими знакками:

    V – “ знаю”, + “это для меня новое”, ? “ хочу узнать”,

    — “это противоречит моим представлениям” ( я думал иначе).

    Б) Проверить понимание по вопросам 1- 4 стр 138 (Работа в парах. Взаимопроверка)

    1. Изучить лекцию на сайте дистанционного обучения через личный кабинет. Выполнить задание. Ознакомиться с заданием.

    2. Проверить и подтвердить полученные знания в ходе эксперимента. Установить законы.

    3. Рассмотреть достоинства и недостатки и применение законов последовательного соединения проводников на практике

    4. Итоговый тест как контроль понимания и усвоения.

    5. Рефлексия. Анализ решения проблем. Выполнение задач урока.

    6. Итоговое оценивание.

    Этот план и станет этапами нашей деятельности на уроке. Познакомьтесь с маршрутным листом деятельности на уроке. Он предполагает различные виды деятельности и формы оценивания деятельности: самооценку, взаимооценивание, оценку в группе, оценку участия в коллективной совместной деятельности и оценку учителя. Всё это даст итоговую оценку за урок. С критериями оценивания каждого вида деятельности мы уже знакомы. У вас на столах есть памятки.

    3. Коллективная деятельность по исследованию последовательного соединения проводников. Слайды 11-13

    А) Работа с учебником по теоретическому обоснованию закономерностей последовательного соединения. Два ученика работают на сайте дистанционного обучения в личных кабинетах.

    В парах с взаимопроверкой по вопросам.

    1). Прочитать п. 48 стр. 135-137 и подготовить ответы на следующие вопросы.

    • Какое соединение проводников называется последовательным?
    • Какая закономерность существует для силы тока в общей цепи последовательного соединения проводников?
    • Какая закономерность существует для напряжения в общей цепи последовательного соединения проводников?
    • Какая закономерность существует для сопротивления в общей цепи последовательного соединения проводников?

    2). Работа на сайте ДО: Прочитать лекцию по теме “ Последовательное соединение проводников”. Выполнить задание. После взаимопроверки, отправить на контроль учителю.

    Проверить усвоение знаний в парах. (На слайде на экране)

    Выставить оценки за полученный результат в маршрутный лист за данный этап урока.

    Слайд 14

    4. Физминутка:

    Закроем все свои глаза (Глазами следим за движением рук)
    Представим, что мы провода
    Открываем глаза и следим за рукой
    По проводам бежит поток большой
    Несёт поток частиц заряды
    Бросает их то вниз, то вверх
    И снова вниз, и снова вверх
    Нам упорядочить их надо
    Мы ток в цепи создать должны
    От “+” источника приборы соединены
    Теперь смелее ключ замыкай
    Последовательное соединение проводников изучай.

    Повторение правил техники безопасности на уроке. (карточка на столе уч-ся)

    5. Исследование цепи последовательного соединения проводников. Работа в группах Слайды 15,16

    Вам предстоит экспериментальная проверка закономерностей последовательного соединения проводников. На перемене вы прошли инструктаж по технике безопасности и расписались в журнале. Сейчас ещё раз просмотрите основные требования безопасности при работе с электрическими цепями (на слайде). И приступайте к работе.

    Учитель: На работу отводится 15 минут. Выполняете эксперимент и готовите защиту по следующему алгоритму:

    1. Цель выполняемого эксперимента
    2. Гипотеза. Ожидаемый результат.
    3. Ход выполнения эксперимента
    4. Полученный вывод

    А) Собрать электрическую цепь. Выполнить по описанию эксперимент, предварительно повторив правила Техники безопасности работы с электрическими приборами. ( На экране)

    Деятельность Группы 1 Деятельность Группы 2

    1. Собрать электрическую цепь по схеме 1. Собрать электрическую цепь по схеме
    2. Измерить силу тока на разных участках цепи 2. Измерить напряжение на каждом резисторе U1 иU2
    3. Что можно сказать о значении силы тока на разных участках цепи 3. Измерить общее напряжение на участке, где стоят два резистора
    4. Выразить это утверждение математической формулой 4. Сделать вывод и записать его математической формулой

    Используя результаты обеих групп, рассчитать полное сопротивление цепи

    Б) Совместно заполнить таблицу на доске своими результатами: (Слайд презентации)

    Наименование исследуемых величин Закономерности последовательного соединения
    Схема

    Полная сила тока цепи 1 группа:
    Полное напряжение цепи 2 группа:
    Полное сопротивление цепи Совместный расчёт:
    Сопротивление цепи с двумя резисторами  

    Как определить полное сопротивление?

    Оценить работу каждого члена группы и внести её в оценочный лист в соответствии с алгоритмом оценки деятельности в группе.

    6. Фронтальная работа с классом. (Слайд 17)

    Учитель: Мы продолжаем изучать электрические явления. Учимся читать и собирать электрические схемы, работать с электроизмерительными приборами. Выявлять закономерности.

    — На доске начерчена схема последовательного соединения по рис. 78Б §48.

    На слайде вы видите электрическую цепь. Замыкаем цепь. Что вы видите? Что произойдёт если одну из лампочек выкрутить? Будет ли ток в такой цепи и почему? Сможете ли вы ответить на вопросы ситуации с гирляндой?

    Слайды 18,19,20

    Преимущества и недостатки последовательного соединения проводников: (На слайде на экране). Практическое применение последовательного соединения.

    — Выгодно ли использовать такое соединение проводников, чем оно неудобно.

    — Привести пример последовательного соединения проводников из практической жизни.

    (Ёлочнаяя гирлянда, цепь уличного освещения, соединение сопротивлений и т.д.). (Оценивает учитель).

    Слайд 21

    7.З акрепление полученных знаний и навыков.

    Решение задачи с классом: Используя схему последовательного соединения, найти напряжение на каждом резисторе, если вольтметр показывает напряжение 12 В.

     

    Решение:

    1). Rобщ.=R1+R2=2Ом+4Ом=6Ом

    2).по закону Ома Iобщ.= U : Rобщ = 12В : 6Ом = 2А

    3). Iобщ.= I1= I2 = 2А

    4). Из закона Ома U1= I * R1= 2А * 2Ом = 4В

    U2= I * R2=2А * 4Ом = 8В или U2=Uобщ.-U1=12В — 4В= 8В, т.к. Uобщ = U1 +U2

    Ответ: U1 = 4В, U2 = 8В.

    Изучить самостоятельно: 1.Учебник п.48 стр137

    Пример 1. Решение задачи. 2.Оформить в тетрадь краткую запись решения. (Взаимопроверка в парах).

    8. Перейти к выполнению итогового теста. (Задания теста на карточках)

    (Индивидуальная работа с самопроверкой и самооценкой)

    Итоговый тест с разно уровневыми заданиями. 1.Сила тока I в проводнике сопротивлением R1 равна 4А. Какова сила тока в проводнике сопротивлением R2 ?

    А) 4А, Б) 2А В) 8А Г) 16 А

    2. Вычислите сопротивление ёлочной гирлянды, состоящей из 20 лампочек, соединённых последовательно, если каждая из них имеет сопротивление 12 Ом.

    А) 180 Ом; Б) 240 Ом; В) 360 Ом; Г) 120 Ом.

    3. В сеть с напряжением 120 В включили последовательно три лампы. Каково напряжение на каждой лампе?

    А) 360 В; Б) 120 В; В) 40В; Г) 60В.

    4. Определить силу тока в последовательной цепи, изображённой на схеме:

    А) 26А; Б) 2,6 А; В) 10А; Г) 13 А.

    5.Определите по схеме сопротивление участка АВ и силу тока через него.

    А) 9 Ом, 5А ; Б) 9 Ом, 0,3 А; В) 18 Ом, 3А. Г) 18 Ом, 1 А.

    Проверь себя . Слайд 22 Самоконтроль

    9. Итоговое обобщение. Заполнить с классом таблицу на доске. Проверьте правильность своей работы по слайду на экране. Внесите коррективы. Слайд 23.

    Наименование исследуемых величин Закономерности последовательного соединения
    Схема

    Полная сила тока I = I1 = I2
    Полное напряжение U = U1 + U2
    Полное сопротивление R = R1 + R2
    Сопротивление цепи с двумя резисторами R = R1 + R2
    Сопротивление цепи с N одинаковыми резисторами R= nR0

    10. Проектирование домашнего задания: (Слайд 24)

    А) п 48 учебника. Ответы на вопросы. Законы знать.

    Б) Войти на сайт дистанционного обучения в свои личные кабинеты. Прочесть лекцию по теме “Последовательное соединение проводников”. Выполнить интерактивное задание и заполнить лист достижений по теме. Отправить на почту учителя для проверки до следующего урока физики.

    В) Упражнение 32 (1,2). Учебник стр 138

    11. Рефлексия.

    Итоговое оценивания деятельности обучающихся на уроке.

    А) Установлены ли закономерности последовательного соединения проводников. Решена ли учебная задача урока.

    Б) Что нового узнали: Чему научились: Что было самым сложным на уроке

    В) Оцените свою деятельность на уроке с помощью рефлексивной таблицы:

    № п/п Параметры рефлексии Результаты рефлексии
    1 На уроке я работал Активно/пассивно
    2 Своей работой на уроке я Доволен / недоволен
    3 Урок для меня показался Длинным/коротким
    4 За урок я успел Устать/не устать
    5 Моё настроение стало Лучше/хуже
    6 Материал урока мне был Понятен/непонятен

    Полезен/неполезен

    Интересен/не интересен

    7 Домашнее задание мне кажется Лёгким/трудным

    Интересным/неинтересным

    Г) Заполнение Итоговой оценочной таблицы в соответствии с маршрутным листом.

    В завершение урока прошу всех встать и снова взяться за руки, образуя последовательную цепь. Я замыкаю её своими руками и передаю вам всем свою благодарность за совместную успешную работу на уроке. Молодцы! Спасибо за урок!

    Маршрутный лист урока

      Этапы урока Деятельность на уроке
    ученика В парах В группе учителем
    1. Мотивация учебной деятельности. Готовность к уроку. Определение темы урока.       *
    2. Актуализация знаний обучающихся — по таблице самооценивания уровня имеющихся знаний и умений поставить учебную задачу на урок

    .- Планирование деятельности для решения проблемы

    *

     

    *

      *  
    3. Изучение новой информации по поставленной теме урока   *    
    4. Фронтальная работа с классом по знакомству с последовательным соединением проводников       *
      Физкультминутка        
    5. Исследование учащимися закономерностей последовательного соединения проводников. Защита полученного результата.   * *  
    7. Заполнение обобщающей таблицы закономерностей последовательного соединения проводников с проверкой по образцу *   *  
    8. Самостоятельное применение закономерностей последовательного соединения проводников

    — установление соответствия между новыми формулами и понятиями

    — решение задач разного уровня с самопроверкой по образцу или итоговый тест

    *      
    9. Участие в проектировании домашнего задания.   *    
    10. Итоговое обобщение. Рефлексия *     *
    11. Итоговое оценивание *   * *

    ОЦЕНОЧНЫЙ ЛИСТ ДЕЯТЕЛЬНОСТИ НА УРОКЕ

    2. Оценивание деятельности обучающихся на этапах урока

    № п/п Этапы урока   Само оценка Взаимо оценка Оценка группы Оценка учителя
    учитель
    итоговая
    1 Организационный этап: Готовность к уроку          
    2 Актуализация знаний:

    — участие в работе по воспроизведению опорных знаний

    — степень участия в определении темы урока и постановке учебной задачи на урок

     

    *      

     

    *

     
    3 Формирование навыков получения новых знаний

    — умение работать с текстом учебника и на сайте дистанционного обучения в личном кабинете

    — анализ и систематизация новых знаний (таблица)

    — установление соответствия между основными характеристиками и формулами для их вычисления

    — выполнение исследовательских заданий

    12б

     

     

     

     

     

     

    *

     

     

     

    *

     

     

     

     

     

    *

     
    4 Закрепление и использование полученных знаний в практических целях

    — работа с учебником

    -умение выполнять эксперимент

    — умение защищать и представлять результаты деятельности

    — умение применять формулы к решению задач

    19б

     

     

     

     

     

    *

     

    *

     

     

     

     

     

    *

    *

     

     

     

    *

    *

     
    5 Проверка уровня усвоения новых знаний в ходе итогового обобщения.       *  
    6 Проектирования домашнего задания          
    7 Результаты рефлексии. Итоговое оценивание.

    Умение осознавать себя и оценивать свой вклад в решении учебной задачи урока

    *   *    
    8 Итоговое оценивание. Умение принимать внешнюю оценку своей деятельности. * * * *  
    9   55б          

    Лист самооценки работы в группе на уроке физики.

    Фамилия и имя _____________________________________________Класс_8____

    Оцени работу своей группы. Отметь вариант ответа (обведи в кружочек или подчеркни), с которым ты согласен (а).

    1.Все ли члены группы принимали участие в работе над проектом?

    А. Да, все работали одинаково, роли распределили в начале работы.

    Б. Нет, работал только один участник.

    В. Кто-то работал больше, а кто-то меньше.

    2. Дружно ли вы работали? Были ли ссоры?

    А. Работали дружно, ссор не было.

    Б. Работали дружно, иногда спорили, но не ссорились.

    В. Очень трудно было договориться с участниками группы, не всегда получался конструктивный диалог или беседа.

    3.Тебе нравится результат работы группы?

    А. Да, все получилось хорошо.

    Б. Нравится, но можно было бы сделать лучше.

    В. Нет, не нравится.

    4.Оцени свой вклад в работу группы по 10-бальной шкале

    (0-не принимал (а) участие в работе; 8б — активное участие в работе группы)

    Применение последовательного и параллельного соединения проводников. Сопротивление последовательное и параллельное соединение, соединения проводников

    Содержание:

    Во всех электрических схемах используются резисторы, представляющие собой элементы, с точно установленным значением сопротивления. Благодаря специфическим качествам этих устройств, становится возможной регулировка напряжения и силы тока на любых участках схемы. Данные свойства лежат в основе работы практически всех электронных приборов и оборудования. Так, напряжение при параллельном и последовательном соединении резисторов будет отличаться. Поэтому каждый вид соединения может применяться только в определенных условиях, чтобы та или иная электрическая схема могла в полном объеме выполнять свои функции.

    Напряжение при последовательном соединении

    При последовательном соединении два резистора и более соединяются в общую цепь таким образом, что каждый из них имеет контакт с другим устройством только в одной точке. Иначе говоря, конец первого резистора соединяется с началом второго, а конец второго — с началом третьего и т.д.

    Особенностью данной схемы является прохождение через все подключенные резисторы одного и того же значения электрического тока. С возрастанием количества элементов на рассматриваемом участке цепи, течение электрического тока становится все более затрудненным. Это происходит из-за увеличения общего сопротивления резисторов при их последовательном соединении. Данное свойство отражается формулой: R общ = R 1 + R 2 .

    Распределение напряжения, в соответствии с законом Ома, осуществляется на каждый резистор по формуле: V Rn = I Rn x R n . Таким образом, при увеличении сопротивления резистора, возрастает и падающее на него напряжение.

    Напряжение при параллельном соединении

    При параллельном соединении, включение резисторов в электрическую цепь выполняется таким образом, что все элементы сопротивлений подключаются друг к другу сразу обоими контактами. Одна точка, представляющая собой электрический узел, может соединять одновременно несколько резисторов.

    Такое соединение предполагает течение отдельного тока в каждом резисторе. Сила этого тока находится в обратно пропорциональной . В результате, происходит увеличение общей проводимости данного участка цепи, при общем уменьшении сопротивления. В случае параллельного соединения резисторов с различным сопротивлением, значение общего сопротивления на этом участке всегда будет ниже самого маленького сопротивления отдельно взятого резистора.

    На представленной схеме, напряжение между точками А и В представляет собой не только общее напряжение для всего участка, но и напряжение, поступающее к каждому отдельно взятому резистору. Таким образом, в случае параллельного соединения, напряжение, подаваемое ко всем резисторам, будет одинаковым.

    В результате, напряжение при параллельном и последовательном соединении будет отличаться в каждом случае. Благодаря этому свойству, имеется реальная возможность отрегулировать данную величину на любом участке цепи.

    Параллельные соединения резисторов, формула расчёта которых выводится из закона Ома и правил Кирхгофа, являются наиболее распространённым типом включения элементов в электрическую цепь. При параллельном соединении проводников два или несколько элементов объединяются своими контактами с обеих из сторон соответственно. Подключение их к общей схеме осуществляется именно этими узловыми точками.

    Gif?x15027″ alt=»Общий вид»>

    Общий вид

    Особенности включения

    Включённые таким образом проводники нередко входят в состав сложных цепочек, содержащих, помимо этого, последовательное соединение отдельных участков.

    Для такого включения типичны следующие особенности:

    • Общее напряжение в каждой из ветвей будет иметь одно и то же значение;
    • Протекающий в любом из сопротивлений электрический ток всегда обратно пропорционален величине их номинала.

    В частном случае, когда все включённые в параллель резисторы имеют одинаковые номинальные значения, протекающие по ним «индивидуальные» токи также будут равны между собой.

    Расчёт

    Сопротивления ряда соединённых в параллель проводящих элементов определяются по общеизвестной форме расчёта, предполагающей сложение их проводимостей (обратных сопротивлению величин).

    Протекающий в каждом из отдельных проводников ток в соответствие с законом Ома, может быть найден по формуле:

    I= U/R (одного из резисторов).

    После ознакомления с общими принципами обсчёта элементов сложных цепочек можно перейти к конкретным примерам решения задач данного класса.

    Типичные подключения

    Пример №1

    Нередко для решения стоящей перед конструктором задачи требуется путём объединения нескольких элементов получить в итоге конкретное сопротивление. При рассмотрении простейшего варианта такого решения допустим, что общее сопротивление цепочки из нескольких элементов должно составлять 8 Ом. Этот пример нуждается в отдельном рассмотрении по той простой причине, что в стандартном ряду сопротивлений номинал в 8 Ом отсутствует (есть только 7,5 и 8,2 Ом).

    Решение этой простейшей задачи удаётся получить за счёт соединения двух одинаковых элементов с сопротивлениями по 16 Ом каждое (такие номиналы в резистивном ряду существуют). Согласно приводимой выше формуле общее сопротивление цепочки в этом случае вычисляется очень просто.

    Из неё следует:

    16х16/32=8 (Ом), то есть как раз столько, сколько требовалось получить.

    Таким сравнительно простым способом удаётся решить задачу формирования общего сопротивления, равного 8-ми Омам.

    Пример №2

    В качестве ещё одного характерного примера образования требуемого сопротивления можно рассмотреть построение схемы, состоящей из 3-х резисторов.

    Общее значение R такого включения может быть рассчитано по формуле последовательного и параллельного соединения в проводниках.

    Gif?x15027″ alt=»Пример»>

    В соответствии с указанными на картинке значениями номиналов, общее сопротивление цепочки будет равно:

    1/R = 1/200+1/220+1/470 = 0,0117;

    R=1/0,0117 = 85,67Ом.

    В итоге находим суммарное сопротивление всей цепочки, получаемой при параллельном соединении трёх элементов с номинальными значениями 200, 240 и 470 Ом.

    Важно! Указанный метод применим и при расчёте произвольного числа соединенных в параллель проводников или потребителей.

    Также необходимо отметить, что при таком способе включения различных по величине элементов общее сопротивление будет меньше, чем у самого малого номинала.

    Расчёт комбинированных схем

    Рассмотренный метод может применяться и при расчёте сопротивления более сложных или комбинированных схем, состоящих из целого набора компонентов. Их иногда называют смешанными, поскольку при формировании цепочек используются сразу оба способа. Смешанное соединение резисторов представлено на размещенном ниже рисунке.

    Gif?x15027″ alt=»Смешанная схема»>

    Смешанная схема

    Для упрощения расчета сначала разбиваем все резисторы по типу включения на две самостоятельные группы. Одна из них представляет собой последовательное соединение, а вторая – имеет вид подключения параллельного типа.

    Из приведённой схемы видно, что элементы R2 и R3 соединяются последовательно (они объединены в группу 2), которая, в свою очередь, включена в параллель с резистором R1, принадлежащим группе 1.

    В предыдущем конспекте был установлено, что сила тока в проводнике зависит от напряжения на его концах. Если в опыте менять проводники, оставляя напряжение на них неизменным, то можно показать, что при постоянном напряжении на концах проводника сила тока обратно пропорциональна его сопротивлению. Объединив зависимость силы тока от напряжения и его зависимость от сопротивления проводника, можно записать: I = U/R . Этот закон, установленный экспериментально, называется закон Ома (для участка цепи).

    Закон Ома для участка цепи : сила тока в проводнике прямо пропорциональна приложенному к его концам напряжению и обратно пропорциональна сопротивлению проводника. Прежде всего закон всегда верен для твёрдых и жидких металлических проводников. А также для некоторых других веществ (как правило, твёрдых или жидких).

    Потребители электрической энергии (лампочки, резисторы и пр.) могут по-разному соединяться друг с другом в электрической цепи. Д ва основных типа соединения проводников : последовательное и параллельное. А также есть еще два соединения, которые являются редкими: смешанное и мостовое.

    Последовательное соединение проводников

    При последовательном соединении проводников конец одного проводника соединится с началом другого проводника, а его конец — с началом третьего и т.д. Например, соединение электрических лампочек в ёлочной гирлянде. При последовательном соединении проводников ток проходит через все лампочки. При этом через поперечное сечение каждого проводника в единицу времени проходит одинаковый заряд. То есть заряд не скапливается ни в какой части проводника.

    Поэтому при последовательном соединении проводников сила тока в любом участке цепи одинакова: I 1 = I 2 = I .

    Общее сопротивление последовательно соединённых проводников равно сумме их сопротивлений : R 1 + R 2 = R . Потому что при последовательном соединении проводников их общая длина увеличивается. Она больше, чем длина каждого отдельного проводника, соответственно увеличивается и сопротивление проводников.

    По закону Ома напряжение на каждом проводнике равно: U 1 = I* R 1 , U 2 = I*R 2 . В таком случае общее напряжение равно U = I ( R 1 + R 2) . Поскольку сила тока во всех проводниках одинакова, а общее сопротивление равно сумме сопротивлений проводников, то полное напряжение на последовательно соединённых проводниках равно сумме напряжений на каждом проводнике : U = U 1 + U 2 .

    Из приведённых равенств следует, что последовательное соединение проводников используется в том случае, если напряжение, на которое рассчитаны потребители электрической энергии, меньше общего напряжения в цепи.

    Для последовательного соединения проводников справедливы законы :

    1) сила тока во всех проводниках одинакова; 2) напряжение на всём соединении равно сумме напряжений на отдельных проводниках; 3) сопротивление всего соединения равно сумме сопротивлений отдельных проводников.

    Параллельное соединение проводников

    Примером параллельного соединения проводников служит соединение потребителей электрической энергии в квартире. Так, электрические лампочки, чайник, утюг и пр. включаются параллельно.

    При параллельном соединении проводников все проводники одним своим концом присоединяются к одной точке цепи. А вторым концом к другой точке цепи. Вольтметр, подключенный к этим точкам, покажет напряжение и на проводнике 1, и на проводнике 2. В таком случае напряжение на концах всех параллельно соединённых проводников одно и то же: U 1 = U 2 = U .

    При параллельном соединении проводников электрическая цепь разветвляется. Поэтому часть общего заряда проходит через один проводник, а часть — через другой. Следовательно при параллельном соединении проводников сила тока в неразветвлённой части цепи равна сумме силы тока в отдельных проводниках: I = I 1 + I 2 .

    В соответствии с законом Ома I = U/R, I 1 = U 1 /R 1 , I 2 = U 2 /R 2 . Отсюда следует: U/R = U 1 /R 1 + U 2 /R 2 , U = U 1 = U 2 , 1/R = 1/R 1 + 1/R 2 Величина, обратная общему сопротивлению параллельно соединенных проводников, равна сумме величин, обратных сопротивлению каждого проводника.

    При параллельном соединении проводников их общее сопротивление меньше, чем сопротивление каждого проводника. Действительно, если параллельно соединены два проводника, имеющие одинаковое сопротивление г , то их общее сопротивление равно: R = г/2 . Это объясняется тем, что при параллельном соединении проводников как бы увеличивается площадь их поперечного сечения. В результате уменьшается сопротивление.

    Из приведённых формул понятно, почему потребители электрической энергии включаются параллельно. Они все рассчитаны на определённое одинаковое напряжение, которое в квартирах равно 220 В. Зная сопротивление каждого потребителя, можно рассчитать силу тока в каждом из них. А также соответствие суммарной силы тока предельно допустимой силе тока.

    Для параллельного соединения проводников справедливы законы:

    1) напряжение на всех проводниках одинаково; 2) сила тока в месте соединения проводников равна сумме токов в отдельных проводниках; 3) величина, обратная сопротивлению всего соединения, равна сумме величин, обратных сопротивлениям отдельных проводников.

    Сопротивление проводников. Параллельное и последовательное соединение проводников.

    Электри́ческое сопротивле́ние — физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношениюнапряжения на концах проводника к силе тока, протекающего по нему . Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления. Сопротивлением (резистором) также называют радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

    Сопротивление (часто обозначается буквой R или r ) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

    R — сопротивление;

    U — разность электрических потенциалов (напряжение) на концах проводника;

    I — сила тока, протекающего между концами проводника под действием разности потенциалов.

    При последовательном соединении проводников (рис. 1.9.1) сила тока во всех проводниках одинакова:

    По закону Ома, напряжения U 1 и U 2 на проводниках равны

    При последовательном соединении полное сопротивление цепи равно сумме сопротивлений отдельных проводников.

    Этот результат справедлив для любого числа последовательно соединенных проводников.

    При параллельном соединении (рис. 1.9.2) напряжения U 1 и U 2 на обоих проводниках одинаковы:

    Этот результат следует из того, что в точках разветвления токов (узлы A и B ) в цепи постоянного тока не могут накапливаться заряды. Например, к узлу A за время Δt подтекает заряд I Δt , а утекает от узла за то же время заряд I 1 Δt + I 2 Δt . Следовательно,I = I 1 + I 2 .

    Записывая на основании закона Ома

    При параллельном соединении проводников величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.

    Этот результат справедлив для любого числа параллельно включенных проводников.

    Формулы для последовательного и параллельного соединения проводников позволяют во многих случаях рассчитывать сопротивление сложной цепи, состоящей из многих резисторов. На рис. 1.9.3 приведен пример такой сложной цепи и указана последовательность вычислений.

    Следует отметить, что далеко не все сложные цепи, состоящие из проводников с различными сопротивлениями, могут быть рассчитаны с помощью формул для последовательного и параллельного соединения. На рис. 1.9.4 приведен пример электрической цепи, которую нельзя рассчитать указанным выше методом.

    При решении задач принято преобразовывать схему, так, чтобы она была как можно проще. Для этого применяют эквивалентные преобразования. Эквивалентными называют такие преобразования части схемы электрической цепи, при которых токи и напряжения в не преобразованной её части остаются неизменными.

    Существует четыре основных вида соединения проводников: последовательное, параллельное, смешанное и мостовое.

    Последовательное соединение

    Последовательное соединение – это такое соединение, при котором сила тока на всем участке цепи одинакова. Ярким примером последовательного соединения является старая елочная гирлянда. Там лампочки подключены последовательно, друг за другом. Теперь представьте, одна лампочка перегорает, цепь нарушена и остальные лампочки гаснут. Выход из строя одного элемента, ведет за собой отключение всех остальных, это является существенным недостатком последовательного соединения.

    При последовательном соединении сопротивления элементов суммируются.

    Параллельное соединение

    Параллельное соединение – это соединение, при котором напряжение на концах участка цепи одинаково. Параллельное соединение наиболее распространено, в основном потому, что все элементы находятся под одним напряжением, сила тока распределена по-разному и при выходе одного из элементов все остальные продолжают свою работу.

    При параллельном соединении эквивалентное сопротивление находится как:

    В случае двух параллельно соединенных резисторов

    В случае трех параллельно подключенных резисторов:

    Смешанное соединение

    Смешанное соединение – соединение, которое является совокупностью последовательных и параллельных соединений. Для нахождения эквивалентного сопротивления нужно, “свернуть” схему поочередным преобразованием параллельных и последовательных участков цепи.


    Сначала найдем эквивалентное сопротивление для параллельного участка цепи, а затем прибавим к нему оставшееся сопротивление R 3 . Следует понимать, что после преобразования эквивалентное сопротивление R 1 R 2 и резистор R 3 , соединены последовательно.

    Итак, остается самое интересное и самое сложное соединение проводников.

    Мостовая схема

    Мостовая схема соединения представлена на рисунке ниже.



    Для того чтобы свернуть мостовую схему, один из треугольников моста, заменяют эквивалентной звездой.

    И находят сопротивления R 1 , R 2 и R 3 .

    Последовательное и параллельное соединение резисторов.

    Как я и обещал в статье про переменные резисторы (ссылка), сегодня речь пойдет о возможных способах соединения, в частности о последовательном соединении резисторов и о параллельном.

    Последовательное соединение резисторов.

    Давайте начнем с рассмотрения цепей, элементы которой соединены последовательно. И хоть мы и будем рассматривать только резисторы в качестве элементов цепи в данной статье, но правила, касающиеся напряжений и токов при разных соединениях будут справедливы и для других элементов. Итак, первая цепь, которую мы будем разбирать выглядит следующим образом:

    Здесь у нас классический случай последовательного соединения — два последовательно включенных резистора. Но не будем забегать вперед и рассчитывать общее сопротивление цепи, а для начала рассмотрим все напряжения и токи. Итак, первое правило заключается в том, что протекающие по всем проводникам токи при последовательном соединении равны между собой:

    I = I_1 = I_2

    А для определения общего напряжения при последовательном соединении, напряжения на отдельных элементах необходимо просуммировать:

    U = U_1 + U_2

    В то же время, по закону Ома для напряжений, сопротивлений и токов в данной цепи справедливы следующие соотношения:

    U_1 = I_1R_1 = IR_1

    U_2 = I_2R_2 = IR_2

    Тогда для вычисления общего напряжения можно будет использовать следующее выражение:

    U = U_1 + U_2 = IR_2 + IR_2 = I(R_1 + R_2)

    Но для общего напряжение также справедлив закон Ома:

    U = IR_0

    Здесь R_0 — это общее сопротивление цепи, которое исходя из двух формул для общего напряжения равно:

    R_0 = R_1 + R_2

    Таким образом, при последовательном соединении резисторов общее сопротивление цепи будет равно сумме сопротивлений всех проводников.

    Например для следующей цепи:

    Общее сопротивление будет равно:

    R_0 = R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_7 + R_8 + R_9 + R_{10}

    Количество элементов значения не имеет, правило, по которому мы определяем общее сопротивление будем работать в любом случае 🙂 А если при последовательном  соединении все сопротивления равны (R_1 = R_2 = … = R), то общее сопротивление цепи составит:

    R_0 = nR

    В данной формуле n равно количеству элементов цепи. С последовательным соединением резисторов мы разобрались, давайте перейдем к параллельному.

    Параллельное соединение резисторов.

    При параллельном соединении напряжения на проводниках равны:

    U_1 = U_2 = U

    А для токов справедливо следующее выражение:

    I = I_1 + I_2

    То есть общий ток разветвляется на две составляющие, а его значение равно сумме всех составляющих. По закону Ома:

    I_1 = \frac{U_1}{R_1} = \frac{U}{R_1}

    I_2 = \frac{U_2}{R_2} = \frac{U}{R_2}

    Подставим эти выражения в формулу общего тока:

    I = \frac{U}{R_1} + \frac{U}{R_2} = U\medspace (\frac{1}{R1} + \frac{1}{R2})

    А по закону Ома ток:

    I = \frac{U}{R_0}

    Приравниваем эти выражения и получаем формулу для общего сопротивления цепи:

    \frac{1}{R_0} = \frac{1}{R_1} + \frac{1}{R_2}

    Данную формулу можно записать и несколько иначе:

    R_0 = \frac{R_1R_2}{R_1 + R_2}

    Таким образом, при параллельном соединении проводников величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.

    Аналогичная ситуация будет наблюдаться и при большем количестве проводников, соединенных параллельно:

    \frac{1}{R_0} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4} + \frac{1}{R_5} + \frac{1}{R_6}

    Смешанное соединение резисторов.

    Помимо параллельного и последовательного соединений резисторов существует еще смешанное соединение. Из названия уже понятно, что при таком соединении в цепи присутствуют резисторы, соединенные как параллельно, так и последовательно. Вот пример такой цепи:

    Давайте рассчитаем общее сопротивление цепи. Начнем с резисторов R_1 и R_2 — они соединены параллельно. Мы можем рассчитать общее сопротивление для этих резисторов и заменить их в схеме одним единственным резистором R_{1-2}:

    R_{1-2} = \frac{R1\cdot R2}{R1 + R2} = 1

    Теперь у нас образовались две группы последовательно соединенных резисторов:

    Заменим эти две группы двумя резисторами, сопротивление которых равно:

    R_{1-2-3} = R_{1-2} + R_3 = 5

    R_{4-5} = R_4 + R_5 = 24

    Как видите, схема стала уже совсем простой 🙂 Заменим группу параллельно соединенных резисторов R_{1-2-3} и R_{4-5}  одним резистором R_{1-2-3-4-5}:

    R_{1-2-3-4-5}\enspace = \frac{R_{1-2-3}\medspace\cdot R_{4-5}}{R_{1-2-3} + R_{4-5}} = \frac{5\cdot24}{5 + 24} = 4.14

    И в итоге у нас на схеме осталось только два резистора соединенных последовательно:

    Общее сопротивление цепи получилось равным:

    R_0 = R_{1-2-3-4-5}\medspace +\medspace R_6 = 4.14 + 10 = 14.14

    Таким вот образом достаточно большая схема свелась к простейшему последовательному соединению двух резисторов!

    Тут стоит отметить, что некоторые схемы невозможно так просто преобразовать и определить общее сопротивление — для таких схем нужно использовать правила Кирхгофа, о которых мы обязательно поговорим в будущих статьях. А сегодняшняя статья на этом подошла к концу, до скорых встреч на нашем сайте!

    Суммарное сопротивление при последовательном соединении. Последовательное и параллельное соединение сопротивлений

    Содержание:

    Все известные виды проводников обладают определенными свойствами, в том числе и электрическим сопротивлением. Это качество нашло свое применение в резисторах, представляющих собой элементы цепи с точно установленным сопротивлением. Они позволяют выполнять регулировку тока и напряжения с высокой точностью в схемах. Все подобные сопротивления имеют свои индивидуальные качества. Например, мощность при паралл ельном и последовательном соединении резисторов будет различной. Поэтому на практике очень часто используются различные методики расчетов, благодаря которым возможно получение точных результатов.

    Свойства и технические характеристики резисторов

    Как уже отмечалось, резисторы в электрических цепях и схемах выполняют регулировочную функцию. С этой целью используется закон Ома, выраженный формулой: I = U/R. Таким образом, с уменьшением сопротивления происходит заметное возрастание тока. И, наоборот, чем выше сопротивление, тем меньше ток. Благодаря этому свойству, резисторы нашли широкое применение в электротехнике. На этой основе создаются делители тока, использующиеся в конструкциях электротехнических устройств.

    Помимо функции регулировки тока, резисторы применяются в схемах делителей напряжения. В этом случае закон Ома будет выглядеть несколько иначе: U = I x R. Это означает, что с ростом сопротивления происходит увеличение напряжения. На этом принципе строится вся работа устройств, предназначенных для деления напряжения. Для делителей тока используется паралл ельное соединение резисторов, а для — последовательное.

    На схемах резисторы отображаются в виде прямоугольника, размером 10х4 мм. Для обозначения применяется символ R, который может быть дополнен значением мощности данного элемента. При мощности свыше 2 Вт, обозначение выполняется с помощью римских цифр. Соответствующая надпись наносится на схеме возле значка резистора. Мощность также входит в состав , нанесенной на корпус элемента. Единицами измерения сопротивления служат ом (1 Ом), килоом (1000 Ом) и мегаом (1000000 Ом). Ассортимент резисторов находится в пределах от долей ома до нескольких сотен мегаом. Современные технологии позволяют изготавливать данные элементы с довольно точными значениями сопротивления.

    Важным параметром резистора считается отклонение сопротивления. Его измерение осуществляется в процентах от номинала. Стандартный ряд отклонений представляет собой значения в виде: + 20, + 10, + 5, + 2, + 1% и так далее до величины + 0,001%.

    Большое значение имеет мощность резистора. По каждому из них во время работы проходит электрический ток, вызывающий нагрев. Если допустимое значение рассеиваемой мощности превысит норму, это приведет к выходу из строя резистора. Следует учитывать, что в процессе нагревания происходит изменение сопротивления элемента. Поэтому если устройства работают в широких диапазонах температур, применяется специальная величина, именуемая температурным коэффициентом сопротивления.

    Для соединения резисторов в схемах используются три разных способа подключения — паралл ельное, последовательное и смешанное. Каждый способ обладает индивидуальными качествами, что позволяет применять данные элементы в самых разных целях.

    Мощность при последовательном соединение

    При соединение резисторов последовательно электрический ток по очереди проходит через каждое сопротивление. Значение тока в любой точке цепи будет одинаковым. Данный факт определяется с помощью закона Ома. Если сложить все сопротивления, приведенные на схеме, то получится следующий результат: R = 200+100+51+39 = 390 Ом.

    Учитывая напряжение в цепи, равное 100 В, сила тока будет составлять I = U/R = 100/390 = 0,256 A.На основании полученных данных можно рассчитать мощность резисторов при последовательном соединении по следующей формуле: P = I 2 x R = 0,256 2 x 390 = 25,55 Вт.

    • P 1 = I 2 x R 1 = 0,256 2 x 200 = 13,11 Вт;
    • P 2 = I 2 x R 2 = 0,256 2 x 100 = 6,55 Вт;
    • P 3 = I 2 x R 3 = 0,256 2 x 51 = 3,34 Вт;
    • P 4 = I 2 x R 4 = 0,256 2 x 39 = 2,55 Вт.

    Если сложить полученные мощность, то полная Р составит: Р = 13,11+6,55+3,34+2,55 = 25,55 Вт.

    Мощность при паралл ельном соединение

    При паралл ельном подключении все начала резисторов соединяются с одним узлом схемы, а концы — с другим. В этом случае происходит разветвление тока, и он начинает протекать по каждому элементу. В соответствии с законом Ома, сила тока будет обратно пропорциональна всем подключенным сопротивлениям, а значение напряжения на всех резисторах будет одним и тем же.

    Прежде чем вычислять силу тока, необходимо выполнить расчет полной проводимости всех резисторов, применяя следующую формулу:

    • 1/R = 1/R 1 +1/R 2 +1/R 3 +1/R 4 = 1/200+1/100+1/51+1/39 = 0,005+0,01+0,0196+0,0256 = 0,06024 1/Ом.
    • Поскольку сопротивление является величиной, обратно пропорциональной проводимости, его значение составит: R = 1/0,06024 = 16,6 Ом.
    • Используя значение напряжения в 100 В, по закону Ома рассчитывается сила тока: I = U/R = 100 x 0,06024 = 6,024 A.
    • Зная силу тока, мощность резисторов, соединенных паралл ельно, определяется следующим образом: P = I 2 x R = 6,024 2 x 16,6 = 602,3 Вт.
    • Расчет силы тока для каждого резистора выполняется по формулам: I 1 = U/R 1 = 100/200 = 0,5A; I 2 = U/R 2 = 100/100 = 1A; I 3 = U/R 3 = 100/51 = 1,96A; I 4 = U/R 4 = 100/39 = 2,56A. На примере этих сопротивлений прослеживается закономерность, что с уменьшением сопротивления, сила тока увеличивается.

    Существует еще одна формула, позволяющая рассчитать мощность при паралл ельном подключении резисторов: P 1 = U 2 /R 1 = 100 2 /200 = 50 Вт; P 2 = U 2 /R 2 = 100 2 /100 = 100 Вт; P 3 = U 2 /R 3 = 100 2 /51 = 195,9 Вт; P 4 = U 2 /R 4 = 100 2 /39 = 256,4 Вт. Сложив мощности отдельных резисторов, получится их общая мощность: Р = Р 1 +Р 2 +Р 3 +Р 4 = 50+100+195,9+256,4 = 602,3 Вт.

    Таким образом, мощность при последовательном и паралл ельном соединении резисторов определяется разными способами, с помощью которых можно получить максимально точные результаты.

    Содержание:

    Течение тока в электрической цепи осуществляется по проводникам, в направлении от источника к потребителям. В большинстве подобных схем используются медные провода и электрические приемники в заданном количестве, обладающие различным сопротивлением. В зависимости выполняемых задач, в электрических цепях используется последовательное и параллельное соединение проводников. В некоторых случаях могут быть применены оба типа соединений, тогда этот вариант будет называться смешанным. Каждая схема имеет свои особенности и отличия, поэтому их нужно обязательно заранее учитывать при проектировании цепей, ремонте и обслуживании электрооборудования.

    Последовательное соединение проводников

    В электротехнике большое значение имеет последовательное и параллельное соединение проводников в электрической цепи. Среди них часто используется схема последовательного соединения проводников предполагающая такое же соединение потребителей. В этом случае включение в цепь выполняется друг за другом в порядке очередности. То есть, начало одного потребителя соединяется с концом другого при помощи проводов, без каких-либо ответвлений.

    Свойства такой электрической цепи можно рассмотреть на примере участков цепи с двумя нагрузками. Силу тока, напряжение и сопротивление на каждом из них следует обозначить соответственно, как I1, U1, R1 и I2, U2, R2. В результате, получились соотношения, выражающие зависимость между величинами следующим образом: I = I1 = I2, U = U1 + U2, R = R1 + R2. Полученные данные подтверждаются практическим путем с помощью проведения измерений амперметром и вольтметром соответствующих участков.

    Таким образом, последовательное соединение проводников отличается следующими индивидуальными особенностями:

    • Сила тока на всех участках цепи будет одинаковой.
    • Общее напряжение цепи составляет сумму напряжений на каждом участке.
    • Общее сопротивление включает в себя сопротивления каждого отдельного проводника.

    Данные соотношения подходят для любого количества проводников, соединенных последовательно. Значение общего сопротивления всегда выше, чем сопротивление любого отдельно взятого проводника. Это связано с увеличением их общей длины при последовательном соединении, что приводит и к росту сопротивления.

    Если соединить последовательно одинаковые элементы в количестве n, то получится R = n х R1, где R — общее сопротивление, R1 — сопротивление одного элемента, а n — количество элементов. Напряжение U, наоборот, делится на равные части, каждая из которых в n раз меньше общего значения. Например, если в сеть с напряжением 220 вольт последовательно включаются 10 ламп одинаковой мощности, то напряжение в любой из них составит: U1 = U/10 = 22 вольта.

    Проводники, соединенные последовательно, имеют характерную отличительную особенность. Если во время работы отказал хотя-бы один из них, то течение тока прекращается во всей цепи. Наиболее ярким примером является , когда одна перегоревшая лампочка в последовательной цепи, приводит к выходу из строя всей системы. Для установления перегоревшей лампочки понадобится проверка всей гирлянды.

    Параллельное соединение проводников

    В электрических сетях проводники могут соединяться различными способами: последовательно, параллельно и комбинированно. Среди них параллельное соединение это такой вариант, когда проводники в начальных и конечных точках соединяются между собой. Таким образом, начала и концы нагрузок соединяются вместе, а сами нагрузки располагаются параллельно относительно друг друга. В электрической цепи могут содержаться два, три и более проводников, соединенных параллельно.

    Если рассматривать последовательное и параллельное соединение, сила тока в последнем варианте может быть исследована с помощью следующей схемы. Берутся две лампы накаливания, обладающие одинаковым сопротивлением и соединенные параллельно. Для контроля к каждой лампочке подключается собственный . Кроме того, используется еще один амперметр, контролирующий общую силу тока в цепи. Проверочная схема дополняется источником питания и ключом.

    После замыкания ключа нужно контролировать показания измерительных приборов. Амперметр на лампе № 1 покажет силу тока I1, а на лампе № 2 — силу тока I2. Общий амперметр показывает значение силы тока, равное сумме токов отдельно взятых, параллельно соединенных цепей: I = I1 + I2. В отличие от последовательного соединения, при перегорании одной из лампочек, другая будет нормально функционировать. Поэтому в домашних электрических сетях используется параллельное подключение приборов.

    С помощью такой же схемы можно установить значение эквивалентного сопротивления. С этой целью в электрическую цепь добавляется вольтметр. Это позволяет измерить напряжение при параллельном соединении, сила тока при этом остается такой же. Здесь также имеются точки пересечения проводников, соединяющих обе лампы.

    В результате измерений общее напряжение при параллельном соединении составит: U = U1 = U2. После этого можно рассчитать эквивалентное сопротивление, условно заменяющее все элементы, находящиеся в данной цепи. При параллельном соединении, в соответствии с законом Ома I = U/R, получается следующая формула: U/R = U1/R1 + U2/R2, в которой R является эквивалентным сопротивлением, R1 и R2 — сопротивления обеих лампочек, U = U1 = U2 — значение напряжения, показываемое вольтметром.

    Следует учитывать и тот фактор, что токи в каждой цепи, в сумме составляют общую силу тока всей цепи. В окончательном виде формула, отражающая эквивалентное сопротивление будет выглядеть следующим образом: 1/R = 1/R1 + 1/R2. При увеличении количества элементов в таких цепях — увеличивается и число слагаемых в формуле. Различие в основных параметрах отличают друг от друга и источников тока, позволяя использовать их в различных электрических схемах.

    Параллельное соединение проводников характеризуется достаточно малым значением эквивалентного сопротивления, поэтому сила тока будет сравнительно высокой. Данный фактор следует учитывать, когда в розетки включается большое количество электроприборов. В этом случае сила тока значительно возрастает, приводя к перегреву кабельных линий и последующим возгораниям.

    Законы последовательного и параллельного соединения проводников

    Данные законы, касающиеся обоих видов соединений проводников, частично уже были рассмотрены ранее.

    Для более четкого их понимания и восприятия в практической плоскости, последовательное и параллельное соединение проводников, формулы следует рассматривать в определенной последовательности:

    • Последовательное соединение предполагает одинаковую силу тока в каждом проводнике: I = I1 = I2.
    • параллельное и последовательное соединение проводников объясняет в каждом случае по-своему. Например, при последовательном соединении, напряжения на всех проводниках будут равны между собой: U1 = IR1, U2 = IR2. Кроме того, при последовательном соединении напряжение составляет сумму напряжений каждого проводника: U = U1 + U2 = I(R1 + R2) = IR.
    • Полное сопротивление цепи при последовательном соединении состоит из суммы сопротивлений всех отдельно взятых проводников, независимо от их количества.
    • При параллельном соединении напряжение всей цепи равно напряжению на каждом из проводников: U1 = U2 = U.
    • Общая сила тока, измеренная во всей цепи, равна сумме токов, протекающих по всем проводникам, соединенных параллельно между собой: I = I1 + I2.

    Для того чтобы более эффективно проектировать электрические сети, нужно хорошо знать последовательное и параллельное соединение проводников и его законы, находя им наиболее рациональное практическое применение.

    Смешанное соединение проводников

    В электрических сетях как правило используется последовательное параллельное и смешанное соединение проводников, предназначенное для конкретных условий эксплуатации. Однако чаще всего предпочтение отдается третьему варианту, представляющему собой совокупность комбинаций, состоящих из различных типов соединений.

    В таких смешанных схемах активно применяется последовательное и параллельное соединение проводников, плюсы и минусы которых обязательно учитываются при проектировании электрических сетей. Эти соединения состоят не только из отдельно взятых резисторов, но и довольно сложных участков, включающих в себя множество элементов.

    Смешанное соединение рассчитывается в соответствии с известными свойствами последовательного и параллельного соединения. Метод расчета заключается в разбивке схемы на более простые составные части, которые считаются отдельно, а потом суммируются друг с другом.

    Параллельное соединение резисторов. При параллельном соединении резисторов нескольких приемников они включаются между двумя точками электрической цепи, образуя параллельные ветви (рис. 26, а). Заменяя

    лампы резисторами с сопротивлениями R1, R2, R3, получим схему, показанную на рис. 26, б.
    При параллельном соединении ко всем резисторам приложено одинаковое напряжение U. Поэтому согласно закону Ома:

    I 1 =U/R 1 ; I 2 =U/R 2 ; I 3 =U/R 3 .

    Ток в неразветвленной части цепи согласно первому закону Кирхгофа I = I 1 +I 2 +I 3 , или

    I = U / R 1 + U / R 2 + U / R 3 = U (1/R 1 + 1/R 2 + 1/R 3) = U / R эк (23)

    Следовательно, эквивалентное сопротивление рассматриваемой цепи при параллельном соединении трех резисторов определяется формулой

    1/R эк = 1/R 1 + 1/R 2 + 1/R 3 (24)

    Вводя в формулу (24) вместо значений 1/R эк, 1/R 1 , 1/R 2 и 1/R 3 соответствующие проводимости G эк, G 1 , G 2 и G 3 , получим: эквивалентная проводимость параллельной цепи равна сумме проводимостей параллельно соединенных резисторов :

    G эк = G 1 + G 2 +G 3 (25)

    Таким образом, при увеличении числа параллельно включаемых резисторов результирующая проводимость электрической цепи увеличивается, а результирующее сопротивление уменьшается.
    Из приведенных формул следует, что токи распределяются между параллельными ветвями обратно пропорционально их электрическим сопротивлениям или прямо пропорционально их проводимостям. Например, при трех ветвях

    I 1: I 2: I 3 = 1/R 1: 1/R 2: 1/R 3 = G 1 + G 2 + G 3 (26)

    В этом отношении имеет место полная аналогия между распределением токов по отдельным ветвям и распределением потоков воды по трубам.
    Приведенные формулы дают возможность определить эквивалентное сопротивление цепи для различных конкретных случаев. Например, при двух параллельно включенных резисторах результирующее сопротивление цепи

    R эк =R 1 R 2 /(R 1 +R 2)

    при трех параллельно включенных резисторах

    R эк =R 1 R 2 R 3 /(R 1 R 2 +R 2 R 3 +R 1 R 3)

    При параллельном соединении нескольких, например n, резисторов с одинаковым сопротивлением R1 результирующее сопротивление цепи Rэк будет в n раз меньше сопротивления R1, т.е.

    R эк = R1 / n (27)

    Проходящий по каждой ветви ток I1, в этом случае будет в п раз меньше общего тока:

    I1 = I / n (28)

    При параллельном соединении приемников, все они находятся под одним и тем же напряжением, и режим работы каждого из них не зависит от остальных. Это означает, что ток, проходящий по какому-либо из приемников, не будет оказывать существенного влияния на другие приемники. При всяком выключении или выходе из строя любого приемника остальные приемники остаются включенными. Поэтому параллельное соединение имеет существенные преимущества перед последовательным, вследствие чего оно получило наиболее широкое распространение. В частности, электрические лампы и двигатели, предназначенные для работы при определенном (номинальном) напряжении, всегда включают параллельно.
    На электровозах постоянного тока и некоторых тепловозах тяговые двигатели в процессе регулирования скорости движения нужно включать под различные напряжения, поэтому они в процессе разгона переключаются с последовательного соединения на параллельное.

    Каждый в этой жизни сталкивался с резисторами. Люди с гуманитарными профессиями, как и все, изучали в школе на уроках физики проводники электрического тока и закон Ома.

    С резисторами также имеют дело студенты технических университетов и инженеры различных производственных предприятий. Перед всеми этими людьми, так или иначе, вставала задача расчёта электрической цепи при различных видах соединения резисторов. В данной статье речь пойдёт о расчёте физических параметров, характеризующих цепь.

    Виды соединений

    Резистор — пассивный элемент , присутствующий в каждой электрической цепи. Он предназначен для того, чтобы сопротивляться электрическому току. Существует два вида резисторов:

    1. Постоянные.
    2. Переменные.

    Зачем же спаивать проводники друг с другом? Например, если для какой-то электрической цепи нужно определённое сопротивление. А среди номинальных показателей нужного нет. В таком случае необходимо подобрать элементы схемы с определёнными значениями сопротивления и соединить их. В зависимости от вида соединения и сопротивлений пассивных элементов мы получим какое-то определённое сопротивление цепи. Оно называется эквивалентным. Его значение зависит от вида спайки проводников. Существует три вида соединения проводников:

    1. Последовательное.
    2. Параллельное.
    3. Смешанное.

    Значение эквивалентного сопротивления в цепи считается достаточно легко. Однако, если резисторов в схеме очень много, то лучше воспользоваться специальным калькулятором, который считает это значение. При ведении расчёта вручную, чтобы не допускать ошибок, необходимо проверять, ту ли формулу вы взяли.

    Последовательное соединение проводников

    В последовательной спайке резисторы идут как бы друг за другом. Значение эквивалентного сопротивления цепи равно сумме сопротивлений всех резисторов. Особенность схем с такой спайкой заключается в том, что значение тока постоянно . Согласно закону Ома, напряжение в цепи равно произведению тока и сопротивления. Так как ток постоянен, то для вычисления напряжения на каждом резисторе, достаточно перемножить значения. После этого необходимо сложить напряжения всех резисторов, и тогда мы получим значение напряжения во всей цепи.

    Расчёт очень простой. Так как с ним имеют дело в основном инженеры-разработчики, то для них не составит труда сосчитать всё вручную. Но если резисторов очень много, то проще воспользоваться специальным калькулятором.

    Примером последовательного соединения проводников в быту является ёлочная гирлянда.

    Параллельное соединение резисторов

    При параллельном соединении проводников эквивалентное сопротивление в цепи считается по-другому. Немного сложнее, чем при последовательном.

    Его значение в таких цепях равняется произведению сопротивлений всех резисторов, делённому на их сумму. А также есть и другие варианты этой формулы. Параллельное соединение резисторов всегда снижает эквивалентное сопротивление цепи. То есть, его значение всегда будет меньше, чем наибольшее значение какого-то из проводников.

    В таких схемах значение напряжения постоянно . То есть значение напряжения во всей цепи равно значениям напряжений каждого из проводников. Оно задаётся источником напряжения.

    Сила тока в цепи равна сумме всех токов, протекающих через все проводники. Значение силы тока, протекающего через проводник. равно отношению напряжения источника к сопротивлению этого проводника.

    Примеры параллельного соединения проводников:

    1. Освещение.
    2. Розетки в квартире.
    3. Производственное оборудование.

    Для расчёта схем с параллельным соединением проводников лучше пользоваться специальным калькулятором. Если в схеме много резисторов, спаянных параллельно, то гораздо быстрее вы посчитаете эквивалентное сопротивление с помощью этого калькулятора.

    Смешанное соединение проводников

    Этот вид соединения состоит из каскадов резисторов . Например, у нас есть каскад из 10 проводников, соединённых последовательно, и после него идёт каскад из 10 проводников, соединённых параллельно. Эквивалентное сопротивление этой схемы будет равно сумме эквивалентных сопротивлений этих каскадов. То есть, по сути, здесь последовательное соединение двух каскадов проводников.

    Многие инженеры занимаются оптимизацией различных схем. Её целью является уменьшение количества элементов в схеме за счёт подбора других, с подходящими значениями сопротивлений. Сложные схемы разбиваются на несколько небольших каскадов, ведь так гораздо проще вести расчёты.

    Сейчас, в двадцать первом веке, инженерам стало гораздо проще работать. Ведь несколько десятилетий назад все расчёты производились вручную. А сейчас программисты разработали специальный калькулятор для расчёта эквивалентного сопротивления цепи. В нём запрограммированы формулы, по которым ведутся расчёты.

    В этом калькуляторе можно выбрать вид соединения, и потом ввести в специальные поля значения сопротивлений. Через несколько секунд вы уже увидите это значение.

    Элементы электрической цепи можно соединить двумя способами. Последовательное соединение подразумевает подключение элементов друг к другу, а при параллельном соединении элементы являются частью параллельных ветвей. Способ соединения резисторов определяет метод вычисления общего сопротивления цепи.

    Шаги

    Последовательное соединение

      Определите, является ли цепь последовательной. Последовательное соединение представляет собой единую цепь без каких-либо разветвлений. Резисторы или другие элементы расположены друг за другом.

      Сложите сопротивления отдельных элементов. Сопротивление последовательной цепи равно сумме сопротивлений всех элементов, входящих в эту цепь. Сила тока в любых частях последовательной цепи одна и та же, поэтому сопротивления просто складываются.

    • Например, последовательная цепь состоит из трех резисторов с сопротивлениями 2 Ом, 5 Ом и 7 Ом. Общее сопротивление цепи: 2 + 5 + 7 = 14 Ом.
  • Если сопротивление каждого элемента цепи не известно, воспользуйтесь законом Ома: V = IR, где V – напряжение, I – сила тока, R – сопротивление. Сначала найдите силу тока и общее напряжение.

    Подставьте известные значения в формулу, описывающую закон Ома. Перепишите формулу V = IR так, чтобы обособить сопротивление: R = V/I. Подставьте известные значения в эту формулу, чтобы вычислить общее сопротивление.

    • Например, напряжение источника тока равно 12 В, а сила тока равна 8 А. Общее сопротивление последовательной цепи: R O = 12 В / 8 А = 1,5 Ом.
  • Параллельное соединение

    1. Определите, является ли цепь параллельной. Параллельная цепь на некотором участке разветвляется на несколько ветвей, которые затем снова соединяются. Ток течет по каждой ветви цепи.

      Вычислите общее сопротивление на основе сопротивления каждой ветви. Каждый резистор уменьшает силу тока, проходящего через одну ветвь, поэтому она оказывает небольшое влияние на общее сопротивление цепи. Формула для вычисления общего сопротивления: , где R 1 – сопротивление первой ветви, R 2 – сопротивление второй ветви и так далее до последней ветви R n .

      Вычислите сопротивление по известной силе тока и напряжению. Сделайте это, если сопротивление каждого элемента цепи не известно.

      Подставьте известные значения в формулу закона Ома. Если известны значения общей силы тока и напряжения в цепи, общее сопротивление вычисляется по закону Ома: R = V/I.

      • Например, напряжение в параллельной цепи равно 9 В, а общая сила тока равна 3 А. Общее сопротивление: R O = 9 В / 3 А = 3 Ом.
    2. Поищите ветви с нулевым сопротивлением. Если у ветви параллельной цепи вообще нет сопротивления, то весь ток будет течь через такую ветвь. В этом случае общее сопротивление цепи равно 0 Ом.

    Комбинированное соединение

      Разбейте комбинированную цепь на последовательную и параллельную. Комбинированная цепь включает элементы, которые соединены как последовательно, так и параллельно. Посмотрите на схему цепи и подумайте, как разбить ее на участки с последовательным и параллельным соединением элементов. Обведите каждый участок, чтобы упростить задачу по вычислению общего сопротивления.

    • Например, цепь включает резистор, сопротивление которого равно 1 Ом, и резистор, сопротивление которого равно 1,5 Ом. За вторым резистором схема разветвляется на две параллельные ветви – одна ветвь включает резистор с сопротивлением 5 Ом, а вторая – с сопротивлением 3 Ом. Обведите две параллельные ветви, чтобы выделить их на схеме цепи.
  • Найдите сопротивление параллельной цепи. Для этого воспользуйтесь формулой для вычисления общего сопротивления параллельной цепи: 1 R O = 1 R 1 + 1 R 2 + 1 R 3 + . . . 1 R n {\displaystyle {\frac {1}{R_{O}}}={\frac {1}{R_{1}}}+{\frac {1}{R_{2}}}+{\frac {1}{R_{3}}}+…{\frac {1}{R_{n}}}} .

    Упростите цепь. После того как вы нашли общее сопротивление параллельной цепи, ее можно заменить одним элементом, сопротивление которого равно вычисленному значению.

    • В нашем примере избавьтесь от двух параллельных ветвей и замените их одним резистором с сопротивлением 1,875 Ом.
  • Сложите сопротивления резисторов, соединенных последовательно. Заменив параллельную цепь одним элементом, вы получили последовательную цепь. Общее сопротивление последовательной цепи равно сумме сопротивлений всех элементов, которые включены в эту цепь.

  • Расположение выводов разъема последовательного порта RS232

    RS-232 — это стандарт последовательной связи, который обеспечивает возможности асинхронной и синхронной связи, такие как аппаратное управление потоком данных, программное управление потоком и проверка четности. Он широко используется на протяжении десятилетий. Практически все редукторы, приборы с цифровым интерфейсом управления и устройства связи оснащены интерфейсом RS-232. Типичная скорость передачи для соединения RS-232 составляет 9600 бит / с на максимальном расстоянии 15 метров.

    В следующем документе описываются функции контактов 9- и 25-контактных разъемов Sub-D RS232, используемых в последовательной связи. Контакты на изображениях показаны со стороны контактов (не со стороны припоя или печатной платы). Штекерные разъемы используются на стороне DTE (оконечного оборудования данных) или ПК. Гнездовые гнезда находятся на стороне DCE (оборудование передачи данных) или на стороне модема.

    Используя компонент последовательного порта ActiveXperts, вы можете отправлять и получать данные и управлять портом RS232.

    Разъем RS232, 9 контактов (DB-9)

    1 DCD Обнаружение носителя данных
    2 RD Полученные данные
    3 TD Переданные данные
    4 DTR Готовность терминала данных
    5 GND Сигнальная земля
    6 DSR Набор данных готов
    7 RTS Запрос на отправку
    8 CTS Очистить для отправки
    9 RI Кольцевой индикатор

    25-контактный разъем RS232 (DB-25)

    1 PG Защитное заземление
    2 TD Переданные данные
    3 RD Полученные данные
    4 RTS Запрос на отправку
    5 CTS Готово для отправки
    6 DSR Набор данных готов
    7 SG Сигнальная земля
    8 CD Обнаружение несущей
    9 Зарезервировано
    10 Зарезервировано
    11 Не назначено
    12 SCD Обнаружение вторичного носителя
    13 SCTS 9 0013 Вторичный очистить для отправки
    14 STD Вторичные данные передачи
    15 TC Часы передатчика
    16 SRD Вторичные полученные данные
    17 RC Часы приемника
    18 Не назначено
    19 SRTS Вторичный запрос для отправки
    20 DTR Готовность терминала данных
    21 SO Детектор качества сигнала
    22 RI Индикатор звонка
    23 DRS Селектор скорости передачи данных
    24 DRS Селектор скорости передачи данных
    25 9 0013 Без назначения

    Последовательное прямое кабельное соединение, DB9, DB25, COM-порты и выводы

    В этой статье рассматриваются популярные последовательные порты, на рабочих станциях, серверов, и портативных компьютеров, компьютеров.Мы охватываем последовательную передачу данных , распиновку порта , скорость порта , типы последовательного интерфейса (DB9 и DB25) , нуль-модемные кабели и многое другое.

    Последовательное прямое соединение — это тот, который использует COM-порты ваших компьютеров. На каждом компьютере есть как минимум два COM-порта, COM1 и COM2. «COM» означает «Связь». Его распиновка намного проще по сравнению с параллельным портом, но скорость также намного ниже.

    Чтобы дать вам представление о том, насколько быстрым (или медленным) является последовательный порт, в лучшем случае вы получите от 12 до 14 КБ в секунду. Это довольно медленно, когда вы привыкли к сетевому подключению, но позвольте мне показать вам, как передаются последовательные данные, чтобы вы также могли понять, почему это намного медленнее:

    Рисунок 1. Передача данных через последовательный порт

    Изображение выше дает вам представление о том, как передаются последовательные данные. Каждый пронумерованный цветной блок отправляется с ПК 1 на ПК 2.ПК 2 получит данные в том же порядке, в котором они были отправлены, другими словами, он получит сначала блок данных 1, а затем 2, вплоть до блока 7. Это довольно хорошее представление потока данных в последовательном кабеле. Последовательные порты передают данные последовательно по одной паре проводов (остальные провода используются для управления передачей).

    По-другому вы можете думать об этом, как об однополосной дороге, где дорога достаточно широкая, чтобы вмещать только одну машину за раз (один блок данных за раз в нашем примере выше), поэтому вы можете представить, что дорога не может обрабатывать несколько авто в свое время.

    Последовательный порт

    Большинство новых компьютеров имеют два COM-порта с 9 контактами в каждом; это штекерные разъемы DB-9. На более старых компьютерах будет один штекер DB-9 и один штекер DB-25. 25-контактный штекер почти такой же, как 9-контактный, только больше.

    Давайте посмотрим на последовательный порт, чтобы понять, о чем мы говорим:

    Рисунок 2. Физический последовательный интерфейс — DB-9 (обычно COM1) и DB-25 (обычно COM2)

    Для разъемов DB-9 и DB-25 используются разные распиновки, и мы рассмотрим их чуть позже.Давайте еще раз взглянем на COM-порты нового компьютера:

    Рисунок 3. Последовательные порты (COM1 и COM2)

    Обратите внимание на COM-порты, они оба разъема DB-9, DB-25 больше нет! Разъем над двумя синими COM-портами — это LPT или параллельный порт.

    Последовательный порт компьютера может работать с разной скоростью, что позволяет нам подключать различные устройства, которые обмениваются данными с компьютером на разной скорости. В следующей таблице показаны скорости, с которыми могут работать последовательные порты большинства компьютеров, и сколько КБ / с они переводят:

    Рисунок 4.Скорость последовательного порта (бит / сек) и скорость передачи данных

    Теперь посмотрим на распиновку разъемов DB-9 и DB-25:

    Рисунок 5. Распиновка последовательного COM-порта для последовательных интерфейсов DB-9 и DB-25

    Кабель последовательной передачи данных

    Все, что осталось, это распиновка, необходимая, чтобы позволить нам использовать последовательный кабель для прямого подключения. Для этого типа кабеля есть специальный термин, который называется «нуль-модемный» кабель, что в основном означает, что вам нужно пересекать TX и RX.Потому что у вас могут быть разные конфигурации, например DB-9 в DB-9, DB-9 в DB-25 и DB-25 в DB-25, я создал разные таблицы, чтобы показать вам распиновку для каждого из них:

    1) DB-9 до DB-9 . Вы используете эту конфигурацию, когда вам нужен кабель с разъемом DB-9 на каждом конце:

    Рисунок 6. Нуль-модемный кабель DB-9 — DB-9 (последовательный)

    2) DB-9 до DB-25 . Вы используете эту конфигурацию, когда вам нужен кабель с одним разъемом DB-9 и одним разъемом DB-25 на обоих концах:

    Рисунок 7.Кабель нуль-модема DB-9 — DB-25 (последовательный)

    3) DB-25 до DB-25 . Вы используете эту конфигурацию, когда вам нужен кабель с разъемом DB-25 на каждом конце:

    Рисунок 8. Кабель нуль-модема DB-25 — DB-25 (последовательный)

    Ну, это почти все, что касается прямого последовательного подключения через нуль-модемный кабель.

    Если вы используете стороннее программное обеспечение для подключения своих компьютеров, вы, вероятно, не столкнетесь с большими проблемами, но если вы используете программное обеспечение Windows, убедитесь, что у вас есть уникальные имена для каждого из ваших компьютеров, потому что Windows будет обрабатывать прямое соединение. как «сетевое» соединение.Это означает, что вы сможете видеть другой компьютер через сетевое окружение.

    Далее — Порты LPT — Параллельное прямое кабельное соединение и выводы или Назад к разделу сетевых кабелей

    Информация о расположении выводов адаптера последовательного порта с RJ-45 на DB-9 | Руководство по аппаратному обеспечению универсальной платформы маршрутизации MX2020

    Консольный порт представляет собой последовательный интерфейс RS-232, который использует Разъем RJ-45 для подключения к устройству управления, например к ноутбуку или настольный ПК. Если на вашем ноутбуке или настольном ПК нет DB-9 штекерный разъем разъема, и вы хотите подключить свой ноутбук или настольный компьютер ПК к устройству используйте комбинацию переходника разъема RJ-45 — DB-9. вместе с переходником USB на DB-9.

    В таблице 1 представлены информация о распиновке для адаптера последовательного порта RJ-45 — DB-9.

    Таблица 1: Информация о выводах адаптера последовательного порта RJ-45 — DB-9

    Вывод RJ-45

    Сигнал

    Штекер DB-9

    Сигнал

    1

    РТС

    8

    CTS

    2

    ДТР

    6

    DSR

    3

    TxD

    2

    RxD

    4

    ЗЕМЛЯ

    5

    ЗЕМЛЯ

    6

    RxD

    3

    TxD

    7

    DSR

    4

    DTR

    8

    CTS

    7

    РТС

    Техническая поддержка

    AutomationDirect — схемы подключения кабелей


    Аппаратное обеспечение ПЛК

    D0-CBL Экранированный кабель RS-232 RJ12 — RJ12, схема подключения

    Подключение кабелей связи D2-250 к D2-240 через RS-232

    Подключение кабелей связи D2-250 к D2-250 с использованием RS-232 или RS-422

    Подключение D2-250 к последовательному модему через RS-232

    D2-250 к последовательному принтеру / терминалу данных через RS-232

    D3-350 к последовательному принтеру / терминалу данных через RS-232

    Подключение энкодеры к D2-CTRINT

    D2-250 — D2-250 RS-485 с FA-ISONET

    D2-DSCBL-2 распиновка для использования удаленного ввода / вывода на ПЛК D2-250, D2-250-1 или D2-260

    Схема подключения FA-ISOCON к ПК

    DL-250 Кабель порта 2 (D2-DSCBL-2)

    D4-IOCBL-1 Цветовой код кабеля

    Кабели для программирования ПЛК Koyo
    Таблица, показывающая кабели связи для каждого ПЛК

    Терминальные адаптеры последовательного порта:
    • ZL-RTB-RJ12 (для DL05, DL06, D2-240 (порт 2), D2-250 (-1), D2-260, P3K, Click, Do-More)
    • ZL-CMA15, ZL-CMA15L (для DL06, D2-250 (-1), D2-260)
    • ZL-RTB-DB25 (для D4-450)

    Интерфейс оператора

    Кабели связи и электрические схемы ПЛК C-more

    Кабели связи и электрические схемы ПЛК C-more Micro

    DL05 Порт 2 к DV1000 или C-More Micro
    Как построить кабель для использования порта 2 DL05 для связи C-More Micro / DV1000 / D2-HPP

    Системы подключения

    Таблицы данных вкладыша продукта ZipLink

    Датчики

    Электропроводка Схема для 4-проводных датчиков NPN и PNP с D2-16ND3-2

    Электропроводка Схема для двухпроводных датчиков NPN и PNP с D2-16ND3-2

    Электропроводка Схема для 3-проводных датчиков NPN и PNP с D2-16ND3-2

    Электропроводка Схема для датчиков индуктивного и фотоэлектрического типа с датчиком D2-16NA

    Приводы

    GS-1 Связь

    Терминальные адаптеры последовательного порта GS-1: ZL-RTB-RJ12, ZL-CDM-RJ12X4, ZL-CDM-RJ12X10

    Проводка GS-1

    GS-2 Связь

    Терминальные адаптеры последовательного порта GS-2: ZL-RTB-RJ12, ZL-CDM-RJ12X4, ZL-CDM-RJ12X10

    Проводка GS-2

    DuraPulse Communications

    Терминальные адаптеры последовательного порта DuraPulse: ZL-RTB-RJ12, ZL-CDM-RJ12X4, ZL-CDM-RJ12X10

    Жесткий монтаж DuraPulse


    Устаревшие продукты

    Интерфейс оператора

    Проводные соединения DirectTouch RS422 с ПЛК Koyo (DirectLogic)

    Проводные соединения DirectTouch RS422 с AB SLC 503 и 504

    Подключение DirectTouch RS422 к F2-UNICON Преобразователь RS232 в RS422 / 485

    Подключение DirectTouch RS422 к FA-ISONET Преобразователь RS232 в RS422 / 485

    Проводные соединения EZTouch / EZText RS422 / 485 с ПЛК Koyo (DirectLogic)

    Подключение проводов EZTouch / EZText RS422 к порту RS232 AB SLC

    Распиновка кабеля EZ Touch / EZ Text для подключения к ПЛК Omron

    Подключение EZTouch / EZText к FA-UNICON Преобразователь RS232 в RS422 / 485

    Подключение EZTouch / EZText к FA-ISONET Преобразователь RS232 в RS422 / 485

    Панель DirectTouch к порту 05, 105, 205, 450, 350 RJ-12

    Панель Optimate для Modicon Micro PLC RJ-45

    Серия Optimate OP-400 для ПЛК AB Micrologix с 8-контактным разъемом Mini DIN

    Приводы

    Распиновка ICS-1 и ICS-3

    Продукты связи

    Схема подключения кабеля дистанционного радиоуправления CR-SEBX / SEHX

    К началу

    Как работают последовательные порты | HowStuffWorks

    Все компьютерные операционные системы, используемые сегодня, поддерживают последовательные порты, поскольку последовательные порты существуют уже несколько десятилетий.Параллельные порты являются более поздним изобретением и намного быстрее последовательных портов. Портам USB всего несколько лет, и они, вероятно, полностью заменят как последовательные, так и параллельные порты в течение следующих нескольких лет.

    Название «последовательный» происходит от того факта, что последовательный порт «сериализует» данные. То есть он принимает байт данных и передает 8 бит в байте по одному. Преимущество состоит в том, что для последовательного порта требуется только один провод для передачи 8 бит (в то время как для параллельного порта требуется 8). Недостатком является то, что для передачи данных требуется в 8 раз больше времени, чем при использовании 8 проводов.Последовательные порты снижают стоимость кабеля и уменьшают размер кабеля.

    Перед каждым байтом данных последовательный порт отправляет стартовый бит, который представляет собой единственный бит со значением 0. После каждого байта данных он отправляет стоповый бит, чтобы сигнализировать, что байт завершен. Он также может послать бит четности.

    Последовательные порты, также называемые портами связи (COM) , являются двунаправленными . Двунаправленная связь позволяет каждому устройству как принимать данные, так и передавать их. Последовательные устройства используют разные контакты для приема и передачи данных — использование одних и тех же контактов ограничит связь полудуплексом , что означает, что информация может перемещаться только в одном направлении за раз.Использование разных контактов обеспечивает полнодуплексную связь с , при которой информация может перемещаться в обоих направлениях одновременно.

    Последовательные порты полагаются на специальную микросхему контроллера, универсальный асинхронный приемник / передатчик (UART) , для правильной работы. Микросхема UART принимает параллельный вывод системной шины компьютера и преобразует его в последовательную форму для передачи через последовательный порт. Чтобы работать быстрее, большинство микросхем UART имеют встроенный буфер объемом от 16 до 64 килобайт.Этот буфер позволяет микросхеме кэшировать данные, поступающие с системной шины, пока он обрабатывает данные, поступающие на последовательный порт. В то время как большинство стандартных последовательных портов имеют максимальную скорость передачи 115 Кбит / с (килобит в секунду), высокоскоростные последовательные порты, такие как Enhanced Serial Port (ESP) и Super Enhanced Serial Port (Super ESP) , могут достигать передачи данных. скорости 460 Кбит / с.

    Подключение к последовательной консоли устройства DataPower Gateway


    Вопрос

    Как мне подключиться к последовательной консоли моего устройства DataPower Gateway?

    Ответ

    Для подключения к последовательному порту на устройстве WebSphere

    Требуемое оборудование:

    1. Последовательный кабель, поставляемый с устройством
      1. 7199/7198/2426 (9005), 8436 IDG (9006) или 8441 IDGx2 пришел с RJ45 для последовательный кабель и кабель USB — RJ45.
        ПРИМЕЧАНИЯ:
        1) Устройства 7198/7199 имеют последовательный порт в стиле RJ45.
        2) Вы НЕ МОЖЕТЕ подключить последовательный порт RJ45 к порту Ethernet на рабочей станции.
        3) Для подключения может использоваться только последовательный порт на устройстве:
        Последовательный порт — это порт «A» в дальнем левом углу устройства на этих схемах для типов устройств 7198/7198, 2426 и 8436:


        Последовательный порт указан под номером 2 на этой схеме для типа машины 8441

    2. Компьютер рабочей станции с последовательным портом или преобразователем USB в последовательный.
      Примечание: При использовании преобразователя USB в последовательный порт убедитесь, что драйверы установлены на рабочей станции.
    3. Последовательный эмулятор по вашему выбору, например HyperTerminal, Putty и т. Д.
    4. Подключите кабель к рабочей станции и последовательному порту на передней панели устройства.
    5. Подтвердите использование COM-порта в эмуляторе:
      В Windows откройте диспетчер устройств, затем разверните раздел «Порты (COM и LPT)». Это отобразит доступные последовательные порты, и при использовании адаптера USB-последовательный порт должно отображаться имя адаптера, если адаптер подключен и драйверы установлены правильно.
    6. Настройте эмулятор, используя следующие параметры:
      1. COM-порт
      2. Скорость (бод): 9600 (для 7199, 7198 или 2426) или 115200 (для IDG 8436 и 8441)
      3. Биты данных: 8
      4. Стоп-биты: 1
      5. Четность: Нет
      6. Управление потоком: Нет
    7. Щелкните: подключиться к эмулятору, чтобы активировать соединение, затем нажмите «Enter» на экране эмулятора, чтобы увидеть текущую подсказку.

    [{«Продукт»: {«код»: «SS9h3Y», «ярлык»: «IBM DataPower Gateway»}, «Бизнес-подразделение»: {«код»: «BU053», «ярлык»: «Облачная платформа и платформа данных» }, «Компонент»: «Общие», «Платформа»: [{«код»: «PF009», «метка»: «Прошивка»}], «Версия»: «7.7; 7.6; 7.5.2; 7.5.1; 7.5; 7.2; 7.1; 7.0.0 «,» Редакция «:» Независимая редакция «,» Сфера деятельности «: {» код «:» LOB45 «,» этикетка » : «Автоматизация»}}]

    Описание последовательного интерфейса

    RS-485 | Устройства CUI

    В мире доступных последовательных интерфейсов может быть трудно понять их различия и понять, когда использовать каждый из них. Как всегда говорил мой любимый профессор инженерного дела: «В стандартах замечательно то, что их так много, из чего можно выбирать.«Сегодняшние энкодеры умнее и продвинутее, чем когда-либо прежде, что требует от инженеров отказаться от более простых квадратурных инкрементальных датчиков и использовать высокоскоростные абсолютные энкодеры с последовательными интерфейсами. А для приложений в промышленной сфере не все последовательные интерфейсы созданы одинаковыми. Соответствуя требованиям как высокой скорости, так и промышленной надежности, последовательный интерфейс RS-485 стал широко применяемым интерфейсом для датчиков вращения и другого оборудования для управления движением.

    Что такое RS-485?

    RS-485 — это промышленная спецификация, определяющая электрический интерфейс и физический уровень для двухточечной связи электрических устройств.Стандарт RS-485 допускает прокладку кабелей на больших расстояниях в электрически зашумленных средах и может поддерживать несколько устройств на одной шине.

    Когда, зачем и где использовать RS-485

    RS-485 использовался в широком спектре компьютерных систем автоматизации, начиная с момента создания стандарта в 1998 году. Благодаря стандарту, допускающему многоабонентскую (несколько устройств на одной шине) и большие длины кабелей, это легко понять его частое использование в промышленной сфере и в сфере автоматизации.RS-485 также можно найти в кинотеатрах, где множество устройств разбросано по огромному пространству.

    Кроме того, помехозащищенность, обеспечиваемая стандартом RS-485, делает интерфейс очень универсальным. Инженеры не только используют его для прокладки кабелей на большие расстояния, но и внедряют в приложения, такие как автомобильная промышленность, где неясно, какой шум может возникнуть в конечном приложении. Возможность использования RS-485 на высоких скоростях, при большой длине кабеля, в электрически зашумленной среде и с несколькими устройствами на одной шине делает его разумной реализацией для большинства приложений, требующих последовательного интерфейса.

    Стандарт RS-485

    RS-485, также известный как TIA-485 или EIA-485, — это стандарт, определяющий электрические характеристики драйверов и приемников для протокола связи. Модель взаимодействия открытых систем (OSI) пытается охарактеризовать различные уровни системы связи от конечного приложения до электрических уровней и, наконец, до физического уровня, рис. 1.

    Рисунок 1: Модель

    взаимодействия открытых систем (OSI) Физический уровень модели OSI

    Физический уровень модели OSI отвечает за передачу необработанных данных между устройством и физической средой передачи.Он обрабатывает преобразование электрических сигналов в цифровые данные, определяя напряжения, синхронизацию, скорость передачи данных и т. Д.

    RS-485 использует две сигнальные линии, «A» и «B», которые должны быть симметричными и дифференциальными. Симметричные сигналы — это две линии, которые делят пару в кабеле витой пары с одинаковым импедансом на каждой линии. Наряду с согласованным импедансом линий также должен быть согласован импеданс на приемнике и передатчике. На рисунке 2 показана типичная многоточечная сеть RS-485, в которой каждое устройство имеет дифференциальный приемопередатчик RS-485, а связь между устройствами состоит из кабелей с витой парой и согласующих резисторов.

    Обратите внимание: существуют различные топологии, которые можно использовать для организации устройств, потому что не все сети созданы одинаковыми, а требования к оконечной нагрузке, а также расположение устройств будут различаться. Например, на Рисунке 2 ниже заделка используется только в начале и конце кабеля.

    Рис. 2: Типовая топология сети RS-485

    Сбалансированная кабельная разводка позволяет снизить уровень шума при использовании дифференциальных сигналов. Эти сигналы «A» и «B» называются дифференциальной парой; один из сигналов соответствует исходному сигналу, а другой полностью инвертирован, поэтому его иногда называют дополнительным сигналом.

    В несимметричном интерфейсе приемник связывает сигнал с землей и определяет состояние сигнала на основе заранее определенных уровней напряжения (они называются логическими уровнями, поскольку они определяют, является ли сигнал высоким или низким). Однако на больших расстояниях между кабелями, когда напряжение имеет тенденцию падать, а скорость нарастания нарастания уменьшается, часто возникают ошибки сигнала. В дифференциальном приложении хост генерирует исходный несимметричный сигнал, который затем поступает на дифференциальный передатчик.Этот передатчик создает дифференциальную пару, передаваемую по кабелю. При генерировании двух сигналов приемник больше не связывает уровень напряжения с землей, а вместо этого связывает сигналы друг с другом. Это означает, что вместо того, чтобы искать конкретные уровни напряжения, приемник всегда смотрит на разницу между двумя сигналами. Затем дифференциальный приемник преобразует пару сигналов обратно в один несимметричный сигнал, который может быть интерпретирован ведущим устройством с использованием надлежащих логических уровней, требуемых узлом, рисунок 3.Этот тип интерфейса также позволяет устройствам с разными уровнями напряжения работать вместе посредством обмена данными между дифференциальными приемопередатчиками. Все это работает вместе, чтобы преодолеть деградацию сигнала, которая могла бы возникнуть в несимметричном приложении при больших расстояниях прокладки кабеля.

    Рис. 3. Выходной сигнал энкодера, управляемый дифференциальным драйвером и восстановленный приемником

    . Ухудшение сигнала — не единственная проблема, которая возникает при больших расстояниях прокладки кабелей. Чем длиннее кабельная разводка в системе, тем выше вероятность того, что электрические помехи и помехи попадут на кабели и, в конечном итоге, в электрическую систему.Когда шум попадает в кабели, он проявляется в виде напряжения различной величины, но преимущество использования сбалансированного кабеля витой пары состоит в том, что шум передается на кабель одинаково на каждой линии. Например, положительный скачок напряжения 1 В приведет к +1 В на А и +1 В на В. Поскольку дифференциальный приемник вычитает сигналы друг из друга, чтобы получить восстановленный сигнал, он будет игнорировать шум, одинаково показанный на обоих проводах. , Рисунок 4. Способность дифференциального приемника игнорировать напряжения, одинаковые на обеих сигнальных линиях, называется подавлением синфазного сигнала.

    Рис. 4. Дифференциальный приемник, игнорирующий шум, общий для обоих сигналов.

    Одним из других основных преимуществ RS-485 на физическом уровне является спецификация напряжения сигнала. RS-485 не требует использования определенного напряжения на шине, но вместо этого определяет минимально необходимое дифференциальное напряжение, которое представляет собой разность между напряжениями сигналов A и B. Для шины требуется минимальное дифференциальное напряжение +/- 200 мВ на приемнике, и, как правило, все устройства RS-485 будут иметь одинаковый диапазон входного напряжения, несмотря на передачу при различных напряжениях.Это означает, что любое устройство RS-485 может принимать напряжение в диапазоне от -7 до 12 В, поэтому инженер может спроектировать хост-систему с любым напряжением передачи в этом диапазоне. Это позволяет разработчикам создавать системы RS-485, используя существующие напряжения на плате.

    При этом важно проверить спецификации продукта, чтобы убедиться, что устройство поддерживает полный диапазон напряжений стандарта. Например, кодеры RS-485 от CUI Devices используют на плате 3,3 В, поэтому они используют RS-485 3.Передатчик 3 В. Однако они также допускают входное напряжение от 0 до 12 В. Это позволяет им без проблем использовать одну и ту же шину RS-485 при нескольких различных напряжениях передачи от 0 до 12 В, если может быть соблюдено минимальное дифференциальное напряжение +/- 200 мВ. как на приемнике, так и на передатчике. Это особенно важно, потому что с увеличением длины кабеля падает напряжение на сигнальных линиях. Хост-устройство может передавать с дифференциальным напряжением +/- 1 В, но при большой длине кабеля это напряжение может уменьшаться до +/- 200 мВ, что по-прежнему вполне приемлемо для RS-485, рисунок 5.

    Рисунок 5: Минимальные уровни сигнала шины RS-485 Рисунок 6: Модель OSI с определенным физическим уровнем

    Канальный уровень модели OSI

    RS-485 — это дуплексная система связи, в которой несколько устройств на одной шине могут обмениваться данными в обоих направлениях. RS-485 чаще всего используется как полудуплекс, как показано на рисунках выше, только с одной линией связи («A» и «B» как пара). В полудуплексном режиме устройства по очереди используют одну и ту же линию, на которой хост будет утверждать управление шиной и отправлять команду всем остальным устройствам, которые ее слушают.Предполагаемый получатель будет прослушивать его адрес, а затем это устройство подтвердит управление и ответит. И наоборот, в полнодуплексной системе, такой как последовательный периферийный интерфейс (SPI) или универсальный асинхронный приемный передатчик (UART), хост и подчиненные устройства могут обмениваться данными одновременно с использованием выделенных входных и выходных линий.

    На уровне данных RS-485 обычно использует UART для последовательной связи, где UART хоста управляет и принимает последовательную связь в полнодуплексном режиме.Он подключен к дифференциальному приемопередатчику RS-485, который составляет физический уровень и преобразует сигналы в полудуплексный дифференциальный формат для использования на шине RS-485. Затем хост будет связываться с RS-485 через UART и сообщать трансиверу, когда следует переключаться между передачей и приемом. Подчиненные устройства также будут использовать свой UART таким же образом.

    UART, имеющий выделенные линии передачи и приема, позволяет ему работать в полнодуплексном, полудуплексном или даже симплексном режимах, что означает, что данные передаются или поступают только по одной линии.Поскольку RS-485 обычно является полудуплексным, подключенный к нему UART также будет работать в полудуплексном режиме.

    Рисунок 7: Общее использование UART для RS-485

    Интерфейс UART является асинхронным, что означает, что связь не включает часы. Ведущее и ведомое устройства должны использовать свои собственные внутренние часы, и оба устройства должны знать, с какой тактовой частотой будут передаваться данные. Это отличается от синхронной системы, такой как последовательный периферийный интерфейс (SPI), где одна из сигнальных линий содержит часы, по которым прослушивающее устройство на шине может захватывать данные.

    Кроме того, UART обычно имеет обычный формат , который будет использовать большинство устройств, но многие параметры могут быть настроены для изменения нормы. Состояние ожидания UART — высокое напряжение, поэтому для начала передачи UART использует низкий импульс, называемый стартовым битом, за которым следуют 8 бит данных, и завершается высоким стоповым битом, рис. 8.

    Рисунок 8: Кадрирование данных UART

    Хост-процессор будет использовать вывод IO для перевода приемопередатчика RS-485 в режим передачи, и он будет отправлять байт из линии передачи UART в линию данных (D или DI) приемопередатчика RS-485. .Трансивер преобразует несимметричный битовый поток UART в дифференциальный битовый поток на линиях A и B, рисунок 3. Сразу после того, как данные покидают трансивер, хост переключает режим трансивера для приема. Подчиненная система идентична, это означает, что ведомый приемопередатчик RS-485 принимает входящий поток битов, преобразует его в несимметричный сигнал и отправляет его на ведущее устройство через линию приема UART ведомого устройства. Когда ведомое устройство готово к ответу, оно передает, как первоначально делал хост, а теперь принимает, рисунок 9.

    Рисунок 9: Хост отправляет команду через шину RS-485, а подчиненное устройство отвечает Рисунок 10: Модель OSI с определенным уровнем канала данных

    Сетевой уровень модели OSI

    Сетевой уровень имеет дело с фактическим обменом данными между устройствами, которые происходят на шине RS-485. Поскольку RS-485 — это в основном электрическая спецификация, на этом разговор может закончиться, но, поскольку он поддерживает многоточечный режим, необходимо рассмотреть его в модели OSI.

    Нет установленной спецификации для адресации сетевого уровня, но шина RS-485 должна должным образом управляться мастером, чтобы избежать коллизий шины.Коллизии шины возникают, когда несколько устройств пытаются установить связь одновременно, что может быть очень вредным для сети. Когда происходят столкновения, передатчики сталкиваются на обоих концах и, по сути, оба создают короткое замыкание. Это заставляет каждое устройство потреблять большой ток, который может привести к тепловому отключению трансивера.

    Во избежание коллизий мастер управляет шиной и будет звонить на отдельные устройства. Чаще всего это достигается с помощью набора команд, который распознают только определенные устройства, или с помощью определенных адресов для каждого устройства.Поскольку шина является общей для всех устройств, каждое устройство будет видеть команду / адрес, отправляемую мастером, но будет отвечать только тогда, когда это отдельное устройство заявлено.

    Рисунок 11: Модель OSI с определенным сетевым уровнем

    Уровень приложений модели OSI

    Модель OSI — это не набор правил, а скорее модель, которая помогает инженерам характеризовать системы. RS-485 хорошо содержится в первых трех уровнях модели OSI, а фактическая реализация шины описывается на уровне приложений.Этот уровень охватывает адреса или наборы команд, используемые устройствами, а также интерпретацию данных. Он также включает в себя, сколько данных дизайнер может рассчитывать получить обратно, и управление самой шиной.

    Например, приложение для кодировщика CUI Devices RS-485 будет хостом, запрашивающим абсолютное положение от устройства. Когда хост отправляет команду положения (адрес) кодировщика, кодировщик отвечает двумя полными байтами. Затем хост расшифровывает эти байты, чтобы понять их абсолютное положение, одновременно определяя, как часто отправлять команды и на какие устройства он хочет их отправлять.Проще говоря, прикладной уровень — это реализация шины RS-485.

    Поскольку стандарт RS-485 определяет только физический уровень и уровень канала передачи данных с требованиями адресации, прикладной уровень может принимать различные проприетарные или открытые протоколы связи. Инженеры могут использовать существующие протоколы, такие как Modbus, или определить свои собственные для своего приложения. Например, кодировщики CUI Devices используют очень упрощенную структуру адресации для подтверждения устройств, которая обеспечивает быстрый оборот и минимальное время обработки.Адрес каждого кодировщика — это только шесть старших битов байта, а два младших бита представляют собой команду. Это позволяет кодировщику начать свой ответ после всего лишь одного байта от ведущего, что обеспечивает быстрое время обработки, что имеет решающее значение для приложений управления движением.

    Рисунок 12: Полностью определенная модель OSI

    Кодеры RS-485 устройств CUI

    В кодерах RS-485

    CUI Devices используется протокол быстрого определения местоположения, который позволяет кодировщику определять положение в течение байта времени. Как описано выше, этот формат поддерживает 64 уникальных адреса кодировщика.Адрес кодировщика — это 6 старших битов байта, а 2 младших бита — это команда. Эти адреса можно настроить с помощью программного обеспечения AMT Viewpoint ™ CUI Devices и программного модуля. Эти кодировщики имеют различные команды в зависимости от их версии, при этом все устройства поддерживают расширенные команды, такие как сброс или установка нулевого положения.

    00 0x00 Прочитать позицию
    01 0x01 Считывание счетчика оборотов (только многооборотные энкодеры)
    10 0x02 Указывает на расширенную команду
    11 0x03 Зарезервировано
    Рис. 13: Формат адресации кодировщика RS-485 CUI Devices

    Абсолютные кодировщики CUI Devices имеют 12-битное или 14-битное разрешение, однако все они отвечают двумя полными байтами на каждый запрос положения.Два полных байта составляют 16 бит, что позволяет кодировщику использовать два старших бита для вычисления контрольной суммы. Эта часть прикладного уровня позволяет хосту проверять данные, передаваемые кодировщиком. Для 12-битных кодеров передача будет иметь контрольные биты в двух верхних битах, при этом два нижних бита будут нулевыми, а 12 промежуточных битов будут содержать данные положения.

    Эти абсолютные энкодеры также доступны с многооборотной опорой, чтобы они могли подсчитывать количество оборотов.Это 14-битный счетчик со знаком, и данные передаются так же, как и позиция, с двумя верхними битами, содержащими контрольную сумму. Поскольку счетчик со знаком , он может подсчитывать положительные и отрицательные обороты, но за счет одного бита данных. Это означает, что он может считать от -8192 до 8191.

    Абсолютные энкодеры

    CUI Devices также доступны в высокоскоростной версии, которая работает на скорости 2 Мбит / с с временем обработки, близким к 3 микросекундам. Однако для приложений, которые не могут удовлетворить требования к высокой скорости и жесткой синхронизации, доступны версии с регулируемой скоростью передачи данных.Эти версии дают пользователям возможность выбирать из списка частот с помощью AMT Viewpoint и программного модуля, что упрощает внедрение, когда нет необходимости в высокой скорости.

    Заключение

    Поддерживая высокие скорости, большие расстояния кабелей, устойчивость к электрическим помехам и наличие нескольких устройств на одной шине, RS-485 стал популярным последовательным интерфейсом в поворотных энкодерах благодаря своей универсальности в широком диапазоне приложений. Разработчики, желающие использовать кодеры с интерфейсом RS-485, могут извлечь выгоду из понимания деталей, изложенных выше, включая его различные уровни, реализацию и передовой опыт в общесистемной коммуникации.Емкостные абсолютные энкодеры AMT CUI Devices с интерфейсом RS-485, обеспечивающие дополнительную надежность и промышленную надежность, представляют собой интригующий вариант для приложений управления движением благодаря своей высокой точности, низкому потреблению тока и невосприимчивости к загрязнениям окружающей среды.

    Дополнительные ресурсы


    У вас есть комментарии к этому сообщению или темам, которые вы хотели бы, чтобы мы освещали в будущем?
    Отправьте нам письмо по адресу cuiinsights @ cuidevices.ком

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *