Схема подключения дросселя к лампе: с дросселем, стартером, без них

Содержание

Схема подключения люминесцентных ламп

Как известно, люминесцентные лампы уже давно получили широкое распространение в самых различных областях применения.

Прогресс зашел настолько далеко, что даже в быту стало возможным использование этого осветительного элемента, хотя люминесцентные лампы, начавшие свою историю в нашей стране в 30-е гг ХХ века, ранее использовались исключительно в целях освещения зданий какого-либо специализированного назначения, в которых требовалось круглосуточное снабжение светом.

Естественно, что и на рынке осветительных элементов люминесцентные лампы представлены в великом множестве, разнообразие моделей способно удовлетворить практически любые эксплуатационные назначения.

Вместе с этим появились и самые разнообразные схемы подключения этого устройства, каждый из которых отличается своей спецификой и подходит для определенного типа ламп.

 

Стоит сразу отметить тот факт, что работы по подключению люминесцентных ламп требуют куда большего внимания и знаний,

чем аналогичные манипуляции с теми же привычными нам лампами накаливания.

 

Этот процесс отличается куда большим числом нюансов и тонкостей, соответственно, и уровень сложности возрастает в разы.

И, что немало важно, от правильности подключения зависит то, насколько эффективной и долговечной будет ее работа. И конечно, необходимо предварительно ознакомиться с устройством этого светильника.

Особенности и тонкости при подключении люминесцентных ламп

Как известно, люминесцентные лампы относятся к числу газозарядных устройств. А любая лампа такого типа отличается, пожалуй, самым важным для внимания качеством: напрямую подключить такое изделие в сеть никак нельзя.

На вопрос, почему нельзя этого сделать, ответ имеется в двух вариантах:

  • в состоянии, так сказать, «покоя» лампы имеют довольно высокий показатель сопротивления, для запуска ее механизма в работу нужен импульс, который будет отличаться высоким показателем напряжения;
  • люминесцентная лампа, получив импульс и образовав в себе разряд, получает довольно высокий показатель дифференциального сопротивления, соответственно, при таких условиях нельзя обойтись без сопротивления, иначе лампа просто сгорит.

Для решения этой проблемы был введен в систему элемент – балласт.

 

Балласт – это специализированный пускорегулирующий механизм, обеспечивающий происхождения правильного алгоритма процессов в люминесцентной лампе и обеспечивающий необходимые условия для ее работы.

 

На сегодняшний момент существуют две разновидности балластов. ЭмПРА и ЭПРА. Подключение с использованием каждого из вышеназванных элементов отличается своими тонкостями в работе.

К содержанию

Подключение люминесцентной лампы с использованием ЭмПРА: при помощи электронного дросселя

Аббревиатура ЭмПРА не слишком понятна пользователю, не отличающемуся широким диапазоном знаний в области электроники и электротехники. Тем не менее, расшифровывается она довольно просто.

ЭмПРА – это электромагнитный пускорегулирующий аппарат.

Он представляет собой катушку индуктивности, также известную как дроссель, обладающий индуктивным сопротивление. Сопротивление это должно быть в определенном размере.

Дроссель подключается с люминесцентной лампой последовательно, однако лампы тоже должны обладать определенной мощностью.

Далее требуется подключить стартер, делать это нужно тоже строго определенным способом: последовательно нитям накаливания.

Кстати, говоря о стартере, необходимо разъяснить, что именно представляет собой это устройство. Стартером называется неоновая лампа, оснащенная биметаллическими электродами, в сочетании с конденсатором.

 

Важно учесть тот факт, что подключены эти два устройства параллельно

.

 

После того, как все вышеуказанные элементы подключены, происходит определенный процесс: дроссель подвергается самоиндукции. В результате этого он формирует импульс, который отвечает за запуск, причем, величина его, как правило, не превышает 1 кВ.

Помимо этой функции дроссель еще и ограничивает ток, опираясь при этом на индуктивное сопротивление.

Если говорить о качественных характеристиках ЭмПРА, то здесь, пожалуй, можно выделить значительно число негативных сторон в то время, как положительных моментов наберется довольно мало.

ЭмПРА отличается довольно низким ценовым показателем, да и сама конструкция его довольно проста.

В перевес этому представлен ряд негативных сторон приобретения и использования этого балласта:

  • запуск осуществляется довольно долго;
  • дроссель, обязательно входящий в структуру ЭмПРА, потребляет сравнительно много электроэнергии;
  • коэффициент мощности очень низок, и для увеличения его требуется применение компенсирующих конденсаторов;
  • пластины воспроизводят гудение, отличающиеся низкой частотой, и что самое неприятное, оно в последствие возрастает;
  • конструкция обеспечивает мерцание люминесцентной лампы, а это очень негативно влияет на восприятие света глазом и практически гарантирует возможные проблемы со зрением у потребителей;
  • габариты устройства слишком велики и неудобны;
  • отрицательные температурные показатели оказывают настолько сильное влияние на ЭмПРА, что при них он просто не осуществляет запуск, а значит, люминесцентные лампы на такой системе просто напросто не включатся.

Схема подключение люминесцентной лампы с использование ЭПРА

Помимо электромагнитного пускорегулирующего аппарата, который, как можно сделать вывод из вышесказанного, осуществляет свою работу не слишком качественно, существует и другой способ запустить все необходимые процессы в люминесцентной лампе.

Это ЭПРА, то есть, электронный пускорегулирующий аппарат.По сравнению с ЭмПРА такой балласт намного безопаснее и оптимальнее для использования его потребителем.

К ряду достоинств такого устройства можно отнести, например, то, что люминесцентная лампа исключает мигание, которое отрицательно влияет на состояние сетчатки глаз пользователей.

Обеспечивается это следующей особенностью ЭПРА: лампы от него питаются не сетевым током, а обладающим высокой частотой.

Разница в показателях весьма значительна, соответственно, неприятное мигание удается нивелировать.

 

 

К числу достоинств ЭПРА можно отнести и следующие:

  • снижается потребление электроэнергии, что позволяет сэкономить на ее оплате;
  • электронные балласты представляют в своем ряду и устройства, позволяющие регулировать яркость освещения;
  • затраты на производство и ликвидацию отходов от такого устройства значительно ниже;
  • отлично подходят для централизованного освещения, оснащенных автоматической регулировкой, экономя электроэнергию;
  • при монтаже и установке ЭПРА не требуется специальный стартер, подключенный отдельно, система сама способна создать необходимые условия для совершения работы.

В настоящее время электронный балласт может быть представлен в двух моделях.

Основное их различие заключается в том, что каждая из их осуществляет запуск отличным от другого способом. Одним из них является холодный запуск, а другим – горячий.

Холодный запуск обуславливает свою работу следующей особенностью: лампа зажигается сразу, как только ее включают.

Правда, в этом случае есть и некоторый нюанс: этот способ хорошо подойдет только тем лампам, которые редко проходя процесс включения/выключения. При соблюдении такого условия сохраняется рабочее состояние электродов лампы, а значит, она не выйдет из строя раньше времени.

Горячий запуск
не зря получил такое название. Он сначала прогревает электроды, а потом уже дает пуск включению лампы. Интервал между этими действиями не слишком значителен – не более 1 секунды.

Состояние лампы при этом сохраняется идеальное даже при частом включении/выключении, а значит, она честно прослужит весь отведенный ей срок.

К содержанию

Подключение люминесцентной лампы: описание работы и схема

Работа с ЭмПРА подразумевает свой процесс подключения люминесцентной лампы, соответственно, ЭПРА тоже отличается своими особенностями установки.

Дроссель можно назвать пережитком советского периода, сейчас он используется довольно редко, поскольку со временем перестает отвечать всем возложенным на него требованиям.

Однако, так как они все же имеют место быть в нашей жизни, рассмотрим в данной статье и их. Выше мы упоминали некоторые этапы работы этого устройства, теперь рассмотрим их подробно.

ЭмПРА осуществляет свою работу по стартерной схеме.

 

После того как мы

подключаем электрическое питание, в стартере происходит процесс замыкания. Распространяется он на биметаллические электроды и отличается коротким исполнением. Ток поступает внутрь цепи, образованной электродом и стартером.

 

Там его ничто не ограничивает, кроме дросселя, создающего внутреннее сопротивление, и он возрастает в несколько раз, преобразуясь в рабочую форму.

Благодаря этому процессу электроды в люминесцентной лампе разогреваются очень быстро, а биметаллические контакты наоборот, остывают, при этом, происходит процесс размыкания всей цепи.

Дроссель, тем временем, запускает импульс, который и обеспечивает свет, излучаемый лампой

. Пока лампа дает свет, стартер не участвует в работе, а значит, контакты его останутся разомкнутыми до тех пор, пока лампа не будет выключена.

Учтите некоторую особенность: если вы подключаете последовательно две лампы, не планируемые к работе в одноламповой схеме, то стартеры следует брать более высокой мощности, например, на 220 Вольт. Без соблюдения этого условия ваша установка не будет работать.

ЭПРА имеет в своем составе трансформатор и  выходной каскад, работающий на транзисторном снабжении.

Схем подключения его довольно много, но приятно отметить тот факт, что они наносятся производителем непосредственно на саму поверхность корпуса.

Схемы довольно понятны и работа с ними не принесет особых сложностей. Все нюансы указываются, как правило, там же. Кроме того, в интернете можно найти видеоуроки по подключению практически всех схем ЭПРА, а значит, успех предприятия обеспечен.

Важно только не упускать из внимания некоторый нюанс: схему подключения необходимо соблюсти на каждую лампу с обеих сторон.

Механизм действия может происходить по-разному, опять же, это зависит от специфики схемы.

К примеру, балласт осуществляет подогрев катодов лампы, прикладывая далее напряжение, которого достаточно, чтобы зажечь лампу. Напряжение выше, чем в сети. Могут встретиться и комбинированные варианты запуска.

Опытные пользователи люминесцентных ламп советуют обратить свое внимание в пользу именно ЭПРА. Ознакомившись с перечнем положительных сторон, не трудно догадаться, почему выбор большинства обращен именно в его пользу.

Вывод

В данной статье мы постарались собрать всю необходимую информацию о принципах подключения люминесцентных ламп.

 

Внимательно отнеситесь к рекомендациям производителей ламп, которые вы решите купить. Ведь именно это обеспечит наиболее эффективную работу всей установки.

 

И, все же, если вы сомневаетесь в своих силах и знаниях принципов физики и электроники, лучше доверьте подключение люминесцентной лампы профессионалам. Так вы сможете гарантировать, что установка не сгорит и прослужит вам долго, а цена на данную услугу окупается в несколько раз.

А ведь именно ради долговременной службы и выбираются люминесцентные лампы.

К содержанию

Расскажите друзьям!

Понравилась статья? Подписывайтесь на обновления сайта по RSS, или следите за обновлениями В Контакте, Одноклассниках, Facebook, Twitter или Google Plus.

Подписывайтесь на обновления по E-Mail:

Если вы нашли неточность или у вас есть вопрос, напишите в форме комментария ниже:

через дроссель или без него

Содержание статьиПоказать

Дуговая ртутная лампа (ДРЛ) представляет собой одну из разновидностей электрических осветительных приборов. Чаще всего используется для освещения крупных объектов и территорий: заводов, фабрик, складов. Нередко устройства встречаются в уличных фонарях. Приборы характеризуются высокой степенью отдачи света, однако имеют невысокое качество цветопередачи. Чтобы правильно подключить лампу ДРЛ, необходимо использовать специальные схемы и придерживаться основных рекомендаций.

Для чего нужен дроссель

Дроссель отвечает за правильную работу источника света. Нередко мощные устройства требуют внушительных показателей напряжения сети. Это в свою очередь приводит к перегреву и перегоранию прибора. Компонент позволяет избежать подобных последствий. При этом его нужно включать в электрическую цепь последовательно.

Таким образом дроссель ограничивает напряжение и силу тока во время работы.

Рисунок 1. Дроссель ДРЛ

Чтобы ограничить перепады тока, реализуется подключение через элемент сопротивления. Он представляет собой балласт из нескольких катушек индуктивности с высоким сопротивлением, которое не дает лампе сгореть. В газовой среде ДРЛ происходит электрический пробой, приводящий к появлению дугового разряда. Ионизированный газ при этом теряет сопротивление, что становится причиной возрастания тока и выделения значительного количества тепла. Если ток не ограничивать специальными дросселями, прогретая газовая среда выведет лампу из строя.

Если ДРЛ напрямую подключить в сеть, то поломка в большинстве случаев вопрос времени. Чаще перегрев проявляется мгновенно. На скорость поломки влияют конкретные показатели электрической цепи, величина напряжения, внешние факторы (температура воздуха, влажность и т.д.). Это касается только обычных ртутных светильников, которые составляют большую часть рынка.

При подключении дросселя можно не соблюдать полярность. Он обеспечит стабильность работы светильника и предотвратит возможные поломки.

Главный параметр для дросселя номинальный ток. Именно по нему подбирают оборудование с учетом мощности осветительного прибора. Можно воспользоваться следующей таблицей.

Мощность используемой ДРЛНоминальный ток дросселя
125 Вт1,15 А
250 Вт2,15 А
400 Вт3,25 А
700 Вт5,45 А

Несмотря на полезность дросселя он все больше уходит в прошлое. На смену приходят современные блоки электронной стабилизации дуги. С их помощью можно точно настраивать параметры работы, контролировать рабочие нагрузки. Выставленные показатели будут сохраняться даже при значительных перепадах напряжения в сети.

Рисунок 2. Дроссели разных параметров

Реактивное сопротивление дросселя связано с параметрами катушки индуктивности. 1 генри индуктивности пропускает 1 А тока при напряжении 1 В. При рассмотрении катушек стоит учесть:

  • площадь поперечного сечения медного проводника;
  • количество витков;
  • материал сердечника;
  • поперечное сечение магнитопровода.

Катушка также обладает активным сопротивлением, что надо учитывать при подборе деталей для конкретных осветительных приборов. К каждому типу ДРЛ подойдут дроссели определенных размеров.

Схемы подключения

Большая часть устройств ДРЛ имеет дроссель в цепи. Однако существуют методы, позволяющие использовать ДРЛ без дросселя.

Рисунок 3. Подключение к патрону лампочки

Через дроссель

Схема подключения любой лампы ДРЛ достаточно проста и включает в себя соединение нагрузок в электрическую цепь последовательно. Используется сеть 220 вольт, работающая на стандартной частоте. За счет этого даже высокомощный уличный источник освещения можно подключить к обычной домашней сети.

Сопротивление стабилизирует и корректирует показатели питания. За счет него достигается равномерное свечение без миганий и иных нежелательных факторов. Световой поток при этом остается неизменным, что важно для любого источника освещения.

Рисунок 5. Схема подключения ДРЛ через дроссель

Во время пуска система потребляет значительное напряжение, которое нередко достигает показателя в два-три входных номинала. Сопротивление стабилизирует это напряжение и не дает устройству сгореть.

Лампа ДРЛ зажигается не мгновенно. В некоторых случаях на полный разогрев и достижение максимального светового потока может уйти до пятнадцати минут.

Мощность осветительных приборов может составлять от 50 до 2000 Вт. Конкретные показатели мощности не влияют на схему подключения и всегда требуют однофазную сеть 220 В с частотой 50 Гц.

Без дросселя

Если необходимо подключить светильник ДРЛ 250 без дросселя, простым решением будет приобретение ДРЛ, функционирующей без дополнительных компонентов. В приборах внутри установлена спираль, отвечающая за стабилизацию напряжения.

Также можно использовать традиционную лампу накаливания. Она должна быть эквивалентна по мощности используемой ДРЛ и иметь нужный номинал сопротивления. Лампа накаливания выполняет функцию резистора, эффективно понижающего напряжение на выходе.

Рисунок 5. Схема подключения ДРЛ без дросселя

Элемент сопротивления можно заменить конденсатором или набором конденсаторов. При этом важно максимально точно рассчитать выдаваемый цепью ток, чтобы он соответствовал рабочему напряжению.

Как проверить работоспособность лампы

После подключения ДРЛ рекомендуется проверить ее исправность. Если устройство не включается или работает нестабильно, делается тестирование электрической цепи тестером, мультиметром или омметром.

Рисунок 6. Проверка схемы тестером

Витки обмотки проверяют на разрывы или короткие замыкания. Разрыв можно определить по бесконечно большим показателям сопротивления на экране прибора. Выходом из положения станет полная замена обмотки. По завершении ремонта снова запустите лампу.

Если сопротивление повышается на несколько пунктов, вероятно повреждение обмотки и короткое замыкание между витками. Чем меньше витков соприкасаются между собой, тем меньше окажется прирост сопротивления.

Тематическое видео: Пуск лампы ДРЛ 250 через дроссели от люминесцентных ламп

Иногда короткое замыкание происходит в обмотке. В этом случае никакого повышения сопротивления не возникнет, и на работу светильника никакого влияния оказываться не будет. Так что после проверки обмотки при помощи омметра следует проверить саму лампу и систему подачи электричества.  Нередко лампы выходят из строя при первом включении. Это может быть связано с низким качеством прибора, неправильно настроенными режимами питания и другими факторами.

Схема подключения люминесцентной лампы

Принцип работы газоразрядных люминесцентных ламп

Чтобы понять схему подключения люминесцентной лампы рассмотрим устройство и принцип ее работы. Такой светильник состоит из стеклянной колбы, внутри которой стекло покрыто люминофором. Также в герметичной колбе присутствует немного ртути и инертный газ. Процесс начала свечения осуществляется парами ртути, при определенной температуре.

Чтобы разогреть пары ртути до их свечения нужно высокое напряжение. Напряжение сети для этих целей не хватает, поэтому все условия работы дневных ламп создает пускорегулирующая аппаратура или ПРА. ПРА создает необходимый бросок напряжения для зажигания паров ртути, а затем стабилизирует рабочий ток лампы на необходимом уровне. Существуют ПРА электромагнитного типа и более качественные, электронные.

Схема подключения люминесцентных ламп с дросселем

Электромагнитные пусковые устройства имеют стартер и дроссель. Также устанавливаются конденсаторы. На дросселе, параллельно клеммам подключения сети ставится конденсатор, необходимый для компенсации индуктивной мощности дросселя и для уменьшения электромагнитных помех.

Наглядный пример принципа работы люминесцентной лампы

Конденсатор, устанавливаемый на стартере, необходим для увеличения времени стартового импульса. Иногда это устройство еще называют электронным балластом. На схеме видно, что при включении сети ток проходит через дроссель и попадает на накал катода. На второй накал ток поступает через стартер и далее на ноль.

В момент подачи напряжения на стартер, между разомкнутыми биметаллическими контактами возникает тлеющий разряд, который нагревает контакты. Разогревшись, контакты стартера замыкаются, и ток поступает на оба накала лампы. После окончания действия тактового импульса напряжения с конденсатора, биметаллические контакты стартера остывают и размыкаются.

Дроссель для подключения люминесцентной лампы

В момент размыкания контактов стартера возникает бросок напряжения, из-за действия самоиндукции дросселя. Этого броска напряжения хватает для того чтобы зажечь пары ртути через разогретый накал лампы. Свечение паров ртути находится в ультрафиолетовом, невидимом диапазоне световых волн.

Схема подключения люминесцентной лампы

Однако свечение паров ртути зажигает люминофор с видимым спектром светового излучения. После того как лампа загорелась, напряжение питания лампы уменьшается наполовину от напряжения сети (делитель дроссель – лампа) чего не хватает для повторного разогрева контактов стартера и замыкания контактов.

К недостаткам схемы подключения люминесцентных ламп с дросселем можно отнести.

  1. Негативный для глаз пульсирующий свет 50 Гц.
  2. Шумность при работе и пуске дневных ламп.
  3. Тяжелый пуск при низкой температуре.
  4. Большое время включение этих ламп.

Иногда в светильниках подключается две лампы дневного освещения на один дроссель. В этом случае нужно соблюдать правила.

Схема подключения двух люминесцентных ламп
  1. Мощность дросселя должна соответствовать мощности двух ламп.
  2. Стартеры для этой схемы подключения люминесцентных ламп должны быть на 127 В. Стартер на 220 вольт в этой схеме не работает.

Схема подключения люминесцентной лампы без дросселя на ЭПРА

Лампа с подключением на электронном балласте имеет некоторые особенности.

Частота питающего напряжения на ЭПРА составляет 20-130 кГц, что не создает болезненное моргание света лампы для глаз. ЭПРА представляет собой электронную плату в корпусе с клеммами для подключения светильника. Устанавливается она в одном корпусе со светильником.

Электронный балласт для подключения люминесцентной лампы

Схема подключения ламп не сложная, она печатается на корпусе устройства. На корпусе также нанесена информация о технических характеристиках ЭПРА. Схема подключения ламп с ЭПРА имеет ряд преимуществ.

Пример схемы электронного ЭПРА
  1. Высокая частота напряжения лампы, что делает ее безвредной для глаз.
  2. Увеличение срока службы, относительно использования схемы с электромагнитным ПРА.
  3. Экономия 20% электроэнергии, также относительно ПРА.
  4. Схема не содержит ненадежного стартера.
  5. Возможность диммирования, для некоторых видов схемы ЭПРА.

Схемы подключения газоразрядных световых приборов более экономичны, бесшумны и более надежны.  Всё это, делает их более популярными, чем схемы подключения газоразрядных приборов освещения с электромагнитными ПРА.

Стартерная схема включения люминесцентных ламп

Одноламповые схемы включения

Простейшая стартерная схема включения приведена на рис. 1. Основные элементы этой схемы: стартер, включенный параллельно лампе, и дроссель, соединенный последовательно с ней.

Схема детекторного приемника с одноламповым усилителем низкой частоты.

Стартер представляет собой небольшую газоразряд­ную лампу тлеющего разряда (рис. 2).

Стеклянная кол­ба наполняется инертным газом (неон или смесь гелий-водород) и помещается в металлический или пластмас­совый корпус, на верхней крышке которого имеется смо­тровое окно.

В некоторых конструкциях стартеров смотровое окно отсутствует. Стартер имеет 2 электро­да. Различают несимметричную и симметричную кон­струкции стартеров. В несимметричных стартерах 1 электрод неподвижный, а 2-ой – подвижный, изготовлен из биметалла.

Рисунок 1. Простейшая стартерная схема включения.

В настоящее время наибольшее распро­странение получила симметричная конструкция старте­ров, у которых оба электрода изготовляются из биме­талла. Эта конструкция имеет ряд преимуществ по сравнению с несимметричной.

Напряжение зажигания в стартере тлеющего разряда выбирается таким образом, чтобы оно было меньше номинального напряжения сети, но больше рабочего напряжения, устанавливающегося на люми­несцентной лампе при ее горении.

При включении схемы (рис. 1) на на­пряжение сети оно полностью окажется приложенным к стартеру. Электроды стартера разомкнуты, и в нем возникает тлеющий разряд. В цепи будет проходить небольшой ток (20—50 мА). Этот ток на­гревает биметаллические электроды, и они, изгибаясь, замкнут цепь, и тлеющий разряд в стартере прекратится. Через дроссель ипоследовательно соединенные катоды  начнет проходить ток, который будет подогревать катоды ламп. Величина этого тока определяется индуктивным сопротивлением дросселя, выбираемым таким образом, чтобы ток предварительного подогрева катодов в 1,5—2,1 раза превышал номинальный ток лампы. Длительность предварительного подогрева катодов определяется временем, в течение которого электроды стар­тера остаются замкнутыми. Когда электроды стартера замкнуты, они остывают, и по прошествии определенного промежутка времени, называемого временем контактирования, электроды раз­мыкаются. Так как дроссель обладает большой индуктивностыо, то в момент размыкания электродов стар­тера в дросселе возникает большой импульс напряже­ния, зажигающий лампу.

Рисунок 2. Стартеры тлеющего разряда.

После зажигания лампы в цепи установится ток, рав­ный номинальному рабочему току лампы. Этот ток обу­словит такое падение напряжения на дросселе, что на­пряжение на лампе станет примерно равным половине номинального напряжения сети. Так как стартер вклю­чен параллельно лампе, то напряжение на нем будет равно напряжению на лампе и в связи с тем, что оно недостаточно для зажигания тлеющего разряда в стар­тере, его электроды останутся разомкнутыми при горе­нии лампы.

Возможность зажигания лампы зависит от длитель­ности предварительного подогрева катодов и величины тока, проходящего через лампу в момент размыкания электродов стартера. Если разрыв цепи произойдет при малом значении тока, то величина индуктированной в дросселе э. д. с. и, следовательно, приложенного к лампе напряжения может оказаться недостаточной для ее зажигания, и лампа не зажжется. Поэтому, если при первой попытке стартер не зажжет лампу, он сразу же автоматически будет повторять описанный процесс до тех пор, пока не произойдет зажигание лампы. Параллельно электродам стартера включен конден­сатор емкостью 0,003—0,1 мкф. Этот конденсатор обыч­но размещается в корпусе стартера.

Конденсатор выпол­няет 2 функции: снижает уровень радиопомех, возни­кающих при контактировании электродов стартера и создаваемых лампой; с другой стороны, этот конденса­тор оказывает влияние на процессы зажигания лампы. Конденсатор уменьшает величину импульса напряже­ния, образуемого в момент размыкания электродов стар­тера, и увеличивает его длительность. При отсутствии конденсатора напряжение на лампе очень быстро воз­растает, достигая нескольких тысяч вольт, но продолжительность его действия очень небольшая. В этих усло­виях резко снижается надежность зажигания ламп. Кро­ме того, включение конденсатора параллельно электро­дам стартера уменьшает вероятность сваривания или, как говорят, залипания электродов, получающегося в ре­зультате образования электрической дуги в момент размыкания электродов. Конденсатор способствует быстрому гашению дуги.

Рисунок 3. Схема компенсирующей катушки.

Применение конденсаторов в стартёре не обеспечивает полного подавления радиопомех, создаваемых люминесцентной лампой. Поэтому необходимо дополнительно на входе схемы (рис. 1) установить 2 конденсатора емкостью не менее 0,008 мкф каждый, соединенных последовательно, и среднюю точку заземлить.

Одним из рекомендуемых способов снижения уровня радиопомех является применение дросселей с симметрированной обмоткой (рис. 1). Обмотка дросселя разделена на 2 совершенно одинаковые части, имеющие равное число витков, намотанных на один общий сердечник. Каждая часть дросселя соединена последовательно с одним из катодов лампы. При включении такого дросселя с лампой оба ее катода работают в одинаковых условиях, что снижает уровень радиопомех. В настоящее время, как правило, выпускаемые промышленностью дроссели изготовляются с симметрированными обмотками. В схеме на рис. 1 из-за наличия дросселя ток через лампу и напряжение сети не будут совпадать по фазе, т. е. они не будут одновременно достигать своих нулевых и максимальных значений. Как известно из теории переменного тока, в этом случае ток будет отставать по фазе от напряжения сети на некоторый угол, величин которого определяется соотношением индуктивного сопротивления дросселя и активного сопротивления всей сети. Такие схемы называются отстающими.

В ряде случаев использования люминесцентных лам, требуется создавать такие условия, когда ток через лампу опережал бы по фазе напряжение сети. Такие схемы называются опережающими. Для выполнения этого условия последовательно с дросселем включается конденсатор, емкость которого рассчитывается таким образом, чтобы его емкостное сопротивление было больше индуктивного сопротивления дросселя.

В опережающем балласте в период зажигания лампы ток предварительного подогрева катодов имеет недостаточную величину. Для устранения этого явления необходимо на время зажигания лампы увеличить ток предварительного подогрева, что можно сделать, если частично компенсировать емкость индуктивностью. В цепь стартера включается дополнительная индуктивность в виде компенсирующей катушки (рис. 3). При замыкании электродов стартера эта компенсирующая катушка включается последовательно с дросселем и конденсатором, общая индуктивность схемы возраста­ет, а вместе с ней увеличивается ток предварительного подогрева. После размыкания электродов стартера ком­пенсирующая катушка отключается, и в рабочем режиме лампы она не участвует. Индуктивность дополнительной катушки компенсирует емкость конденсатора, установ­ленного в стартере. Поэтому в схему вводится дополни­тельный конденсатор емкостью не менее 0,008 мкф, включаемый параллельно лампе и выполняющий в этом случае роль помехоподавляющего конденсатора.

Схемы подключения двух люминесцентных ламп.

Один из недостатков рассмотренных схем — низкий коэффициент мощности. Он составляет величину 0,5—0,6. Пускорегулирующие аппараты (ПРА), выполненные на основе этих схем, относятся к группе так называемых некомпенсированных аппаратов. При использовании та­ких аппаратов, согласно правилам устройства электро­установок (ПУЭ), для повышения низкого коэффициента мощности необходимо предусматривать групповую ком­пенсацию коэффициента мощности, обеспечивающую до­ведение его для всей осветительной установки до вели­чины 0,9-0,95.

При невозможности или экономической неэффектив­ности применения групповой компенсации коэффициента мощности используют схемы, в которых дополнительно параллельно лампе включается конденсатор достаточной емкости, выбранный таким образом, чтобы коэффициент мощности схемы повысился до величины 0,85–0,90 (рис. 1). ПРА, изготовленный по этой схеме, называют компенсированным. Расчеты показывают, что при напряжении 127 в для ламп мощностью 15 и 20 вт конденсатор должен иметь емкость 3,5-4 мкф, для ламп мощностью 30 и 40 Вт при напряжении 220 В емкость кон­денсатора составляет 3-5 мкф.               

Основной недостаток стартерных схем зажигания — их низкая надежность, которая обусловлена, ненадежностью работы стартера. Надежная работа стартера также зависит от уровня напряжения в питающей сети. Со снижением напряжения в питающей сети увеличивается время, необходимое для разогрева биметаллических электродов, а при уменьшении напряжения более чем на 20% номинального стартер вообще не обеспечивает контактирования электродов, и лампа не будет зажигаться. Значит, с уменьшением напряжения в питающей сети время зажигания лампы увеличивается.

У люминесцентной лампы по мере старения наблюдается увеличение ее рабочего напряжения, а у стартера, наоборот, с ростом срока службы напряжение зажигания тлеющего разряда уменьшается. В результат этого возможно, что при горящей лампе стартер начнет срабатывать и лампа гаснет. При размыкании электродов стартера лампа вновь загорается и наблюдается мига­ние лампы. Такое мигание лампы, помимо вызываемой им неприятного зрительного ощущения, может привести к перегреву дросселя, выходу его из строя и порче лампы. Подобные же явления могут иметь место при использовании старых стартеров в сети с пониженным» уровнем напряжения. При появлении миганий лампе необходимо заменить стартер на новый.

Стартеры имеют значительные разбросы времени контактирования электродов, и оно очень часто недостаточно для надежного предварительного подогрева катодов ламп. В результате стартер зажигает лампу после нескольких промежуточных попыток, что увеличивает длительность переходных процессов, снижающих срок служ­бы ламп.

Общий недостаток всех одноламповых схем  – невоз­можность уменьшить создаваемую одной люминесцент­ной лампой пульсацию светового потока. Поэтому такие схемы можно применять в помещениях, где устанавливается несколько ламп, а в случае их использования для группы ламп рекомендуется с целью уменьшения пульса­ции светового потока лампы включать в различные фазы трехфазной цепи. Необходимо стремиться к тому, чтобы освещенность в каждой точке создавалась не менее чем от 2-3 ламп, включенных в разные фазы сети.

Двухламповые схемы включения

Применение двух­ламповых схем включения дает возможность уменьшить пульсацию суммарного светового потока, так как пуль­сации  каждой лампы происходят не одновременно, а с некоторым сдвигом по времени. По­этому суммарный световой поток 2-х ламп никогда не будет равен 0, а колеблется около некоторого сред­него значения с частотой, меньшей, чем при одной лам­пе. Кроме того, эти схемы обеспечивают высокий коэф­фициент мощности комплекта лампа-ПРА

Рисунок 4. Схема с расщепленной фазой

Наибольшее распространение получила двухлампо­вая схема, называемая часто схемой с расщепленной фазой (рис. 4). Схема состоит из 2-х элементов-ветвей, отстающей и опережающей. В 1-ой ветви ток отстает по фазе от напряжения на угол 60°, а во 2-ой – опе­режает на угол 60°. Благодаря этому ток во внешней це­пи будет почти совпадать по фазе с напряжением, и коэффициент мощности всей схемы составит величину 0,9-0,95. Эту схему можно отнести к группе компенси­рованных, и по сравнению с одноламповой некомпенсированной схемой она обладает тем преимуществом, что не требуется принимать дополнительных мер для повы­шения коэффициента мощности.

При изготовлении ПРА по этой схеме общий расход конструкционных материалов меньше, чем для одноламповых аппаратов. В настоящее время выпускается большое количество различных типов аппаратов, выполненных по этой схеме.

Схема последовательного включения люминесцентных ламп.

Последовательное включение люминесцентных ламп, в некоторых практических случаях может возникнуть необходимость в последовательном включении люминесцентных ламп: например, потребуется включить в сеть с напряжением 220 В две лампы мощностью 15 или 20 Вт, имеющие рабочее напряжение порядка 60 В.

Для последовательного включения должны быть взяты 2 одинаковые по мощности лампы. Не рекомендуется включать последовательно лампы разной мощности, так как рабочий ток у таких ламп неодинаков по величине. В качеств балластного сопротивления может быть использован стандартный дроссель, рассчитанный на суммарную мощность последовательно включаемых ламп.

В схеме на рис. 5а стартеры должны быть взяты на половину напряжения сети, т. е. для сети 220 В стартер выбирается на напряжение 127 В. Недостаток этой схемы — при несимметричной конструкции стартера возможны случаи их неодновременной работы, что может привести к холодным зажиганиям ламп.

В схеме на рис. 56 предварительный подогрев 2-х катодов ламп осуществляется специальным накальным трансформатором, отключаемым стартером после размыкания его электродов. В этой схеме используете 1 стартер, рассчитанный на номинальное напряжение сети.

Схема подключения люминесцентных ламп

Одним из самых эффективных осветительных приборов на сегодняшний день является светильник с лампами дневного света. В таких осветительных приборах применяются люминесцентные лампы, которые могут иметь различные конструкцию, форму и размеры. Практически все из них можно подключить самостоятельно без особых затруднений, достаточно знать лишь некоторые особенности.

Как и с помощью чего подключаются люминесцентные лампы

В случае если энергосберегающие люминесцентные лампы оснащены стандартными цоколями Е27, как у обычной лампы накаливания, или Е14 («миньон»), то с их установкой справится без проблем любой человек. Для этого просто нужно вкрутить лампу в патрон.
Куда более сложен монтаж люминесцентных ламп трубчатого типа. В таком случае необходимо выполнять подключение по определенным схемам с использованием дополнительных компонентов. Ниже приведена информация и о том, как подключить люминесцентную лампу без патрона в домашних условиях.

Подключение люминесцентных ламп, как с помощью электромагнитного, так и электронного пускорегулирующего аппарата (ПРА) требует не только наличия обычного электромонтажного инструмента и проводов, но и ламподержателей, стартера, патронов для стартера, дросселя, выступающего электромагнитным балластом. Патроны для люминесцентных трубчатых ламп делятся на два вида – с жесткой фиксацией и навесные. При этом для монтажа с помощью навесных патронов понадобятся специальные клипсы-ламподержатели.

Основные схемы подключения люминесцентных ламп

  1. Стартерная схема подключения люминесцентных ламп с электромагнитным ПРА всегда изображена на корпусе дросселя. Данная схема обычно предусматривает последовательное подключение электромагнитного ПРА с лампой, где он выполняет роль своеобразного «предохранителя», так как от перегорания светильника ПРА защищает за счет ограничения роста тока. При этом не стоит забывать о том, что мощность дросселя должна соответствовать мощности подключаемой люминесцентной лампы-трубки.
  2. Следующим образом выглядит обычная схема включения люминесцентных ламп: один из контактов дросселя подключается к фазному электропроводу, при этом второй контакт дросселя необходимо подключить к любому из контактов одной спирали люминесцентной лампы. Затем к любому из контактов стартера следует подсоединить второй контакт данной спирали, а второй контакт стартера подключается к одному из контактов второй спирали трубчатой лампы. Затем контакт, оставшийся свободным, подключается к «нулевому» сетевому электропроводу.
  3. Практически аналогичные действия выполняются и при подключении двух ламп по стандартной «тандемной» схеме. В данном случае они должны быть подключены последовательно, при этом дроссель по мощности должен соответствовать общей мощности всех используемых светильников.
Схема цепи двухтрубного светильника

Схема цепи двухтрубного светильника

Как мы знаем, ламповый светильник представляет собой ртутно-газоразрядную лампу низкого давления, или иначе называемую люминесцентным светом, и в основном излучает белый свет. В наши дни КЛЛ и светодиодные осветительные приборы производятся в больших масштабах, хотя светодиодные лампы не могут полностью заменить ламповые лампы , потому что ламповый свет дает ровный яркий свет, но пока светодиод не может.


В этой статье дается подробная информация о соединении двухтрубных осветительных приборов с использованием одинарного балласта или дросселя (некоторые электронные дроссели не поддерживают такое соединение), проверьте характеристики балласта и уровень мощности, прежде чем устанавливать этот тип соединения.

Схема подключения

Здесь используются две ламповые лампы, в нашем случае каждая по 20 Вт, каждая ламповая лампа будет иметь две нити накала с четырьмя выводами, подключите стартовый элемент к любой стороне лампы, после этого подключите фазовую линию к балласту (дросселю) через переключатель.Подключите другую клемму балласта к клемме первой ламповой лампы, затем последовательно подключите ламповую лампу 2 к первой, как показано на рисунке. Наконец вывести нейтраль из лампы 2.

Для подключения однотрубного светильника см. Здесь.

Соблюдайте особую осторожность и меры безопасности при работе с напряжением переменного тока

Стартер

Пускатель

, расположенный параллельно нити накала трубки, содержит небольшую неоновую лампу с фиксированным контактом, биметаллическую полосу и небольшой конденсатор.Стартер обеспечивает путь прохождения тока к нити накала трубки в начальный момент времени. Он становится неактивным после ионизации газа и протекания тока в трубке.

Балласт или штуцер

Это электрическое устройство, вырабатывающее высокое напряжение за счет использования низкочастотного переменного напряжения. Он помогает ионизовать газообразный ртутный легкий ртутный газ, и после ионизации этот балласт или дроссель снижает уровень выходного напряжения.

Решено: ELEC-252 Имя студента: — Дата сдачи: — Лабораторная работа 3: R-…

  1. инженерия
  2. электротехника
  3. вопросы и ответы по электротехнике
  4. ELEC-252 Имя студента: — Дата сдачи: — Лабораторная работа 3: Цепь серии RL DC: Выключите дроссель Имеет …

Пожалуйста решить подраздел 4 и 5.

Спасибо

Показать текст изображения

Ответ эксперта

Предыдущий вопрос Следующий вопрос

ELEC-252 Имя студента: — Дата сдачи: — Лабораторная работа 3: Цепь серии R-L постоянного тока: выключение Дроссель имеет индуктивность 15 H и не имеет внутреннего сопротивления.Дроссель соединен последовательно с лампой накаливания на 60 В, 180 Вт. И дроссель, и лампа подключаются к источнику постоянного тока 60 В без внутреннего сопротивления через переключатель, который замыкается в момент времени t = 0 и остается в этом положении в течение 3 секунд. Через 3 секунды переключатель перемещается и дроссель подключается к току разряда только через сигнальную лампу с сопротивлением 10 Ом. Определите следующее: 1. Принципиальная схема 2. Вычислите постоянную времени и максимальный ток Постоянная времени, максимальный ток T1, Imax! Постоянная времени, Tz 3.Запишите уравнения для следующих переменных как функцию времени для положения 1 (включение, когда дроссель подключен к лампе накаливания), ток It) Напряжение на дросселе V. (t) 4. Запишите уравнения для следующих переменных в зависимости от времени для положения 2 (Выключить, когда дроссель подключен к сигнальной лампе) Максимальный ток, Imax2 Ток I (t) 2 Напряжение на сигнальной лампе VR2 (t) Напряжение на Choke Vl (t) 2 Мощность, потребляемая в сигнальной лампе Pr2 (t) 5. Постройте график всех вышеуказанных величин как функции времени, где время изменяется от 0 до 11.5 сек с шагом 0,25 сек. 6. Предоставьте следующие графики i) Текущее против времени для обеих позиций в одном графике ii) Vl (t) vs. время для обеих позиций в одном графике iii) Vr (t) и Vu (t) vs. время Pr2 в зависимости от времени. iv) 7. Для отчета — покажите всю работу по расчету в таблице, показанной выше. Графики, лист трудовой книжки Excel и расчеты работы должны быть представлены как часть отчета.

трубка% 20 свет% 20 дроссель% 20 ​​соединение% 20 диаграмма техническое описание и примечания по применению

2006 — 104К630Б53П3

Аннотация: при 605 с 12
Текст: нет текста в файле


Оригинал
PDF MDS15 563K630B53P3 683K630B53P3 823K630B53P3 104K630B53P3 В постоянного тока / 200 MDS10 при 605 с 12
2004 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF MDS15 563K630B53P3 683K630B53P3 823K630B53P3 104K630B53P3 В постоянного тока / 200 MDS10
DIP18

Аннотация: ДИП20 ТО-220Ф-4
Текст: нет текста в файле


Оригинал
PDF 50 шт. / Туба DIP14 / 16 DIP14 25 шт. / Туба DIP16 25ype) О-220Ф О-220Ф-4 DIP18 DIP20 ТО-220Ф-4
2003 — А53 SMD

Резюме: 333k630 104K400 A53 Код маркировки SMD 475K100 104k630 224k250 PY tube 474K-250 104K40
Текст: нет текста в файле


Оригинал
PDF температура52P3 683K630A54Px 823K630A58Py 104K630A58Py 124K630A58Py 154K630A58Py 184K630A58Py MDC15 A53 SMD 333k630 104K400 Маркировочный код A53 SMD 475K100 104k630 224k250 Трубка PY 474К-250 104K40
2006 — 106К10

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF 0B53P3 MDC15 184K250B53P3 224K250B53P3 274K250B53P3 334K250B53P3 106K10
2008 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF
2008 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF 224K250B53P3 MDK15 274K250B53P3 334K250B53P3 394K250B53P3 474K250B53P3
2002 — LT3973-3.3

Абстракция: 475K100 104k630 LT3971-3.3
Текст: нет текста в файле


Оригинал
PDF MDS15 333K630B53P3 393K630B53P3 473K630B53P3 LT3973-3.3 475K100 104k630 LT3971-3.3
2008 — 334К250А52П3

Аннотация: A57 SMD A52 Код маркировки SMD 333K50A52P3 334k100 220VAC Код маркировки SMD 60-5 evox mdc ПЭТ пленка Конденсатор A57 Код маркировки SMD
Текст: нет текста в файле


Оригинал
PDF 823K630A58Py MDC10 104K630A58Py 124K630A58Py 154K630A58Py 184K630A58Py MDC15 334K250A52P3 A57 SMD Маркировочный код A52 SMD 333K50A52P3 334к100 220 В переменного тока Маркировочный код SMD 60-5 evox mdc Конденсатор пленки ПЭТ Маркировочный код A57 SMD
2002-474 К-250

Абстракция: M5000 333k630 473K50
Текст: нет текста в файле


Оригинал
PDF температура52P3 683K630A54Px 823K630A58Py 104K630A58Py 124K630A58Py 154K630A58Py 184K630A58Py MDC15 474К-250 M5000 333k630 473K50
2003 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF 3K630A52P3 563K630A52P3 683K630A54Px 823K630A58Py 104K630A58Py 124K630A58Py 154K630A58Py 184K630A58Py MDK15
2008 — 474K100A52P3

Аннотация: EVOX RIFA CAPACITORS 334K250A52P3 225K100A52P3 A52 Маркировка SMD
Текст: нет текста в файле


Оригинал
PDF
2004 — 106К1

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF 033B53P3 MDC15 184K250B53P3 224K250B53P3 274K250B53P3 334K250B53P3 106K1
2007 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF MDS15 563K630B53P3 683K630B53P3 823K630B53P3 104K630B53P3 В постоянного тока / 200 MDS10
2008 — 823K100A52P3

Аннотация: 474K100A52P3
Текст: нет текста в файле


Оригинал
PDF 40400A52P3 MDS10 184K400A52P3 823K100A52P3 474K100A52P3
2008 — МДС10 154К400А52П3

Абстракция: 334K250A52P3 224k100 333K
Текст: нет текста в файле


Оригинал
PDF В постоянного тока / 200 MDS10 333K400A52P3 393K400A52P3 473K400A52P3 563K400A52P3 МДС10 154К400А52П3 334K250A52P3 224k100 333 тыс.
2001 — ISO 1043-1

Резюме: DIN 6120 sae j1344 j1344 w28c iso 1043-1 полипропилен bga транспортировочные лотки MEC34 TSOP упаковочный лоток BGA КОНТРОЛЬНЫЙ ЧЕРТЕЖ
Текст: нет текста в файле


Оригинал
PDF MS011809-4 MS011809-1 MS011809-5 MS011809-2 MS011809-6 MS011809-3 MS011809-7 MS011809 iso 1043-1 DIN 6120 sae j1344 j1344 w28c iso 1043-1 полипропилен bga транспортировочные лотки MEC34 Поднос для пакетов TSOP ЧЕРТЕЖ BGA
2014 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF
2000 — ISO 1043-1

Резюме: DIN 6120 j1344 iso 1043-1 полипропилен sae j1344 W28B D1972 DIN6120 f24d d24j
Текст: нет текста в файле


Оригинал
PDF MS011809-4 MS011809-1 MS011809-5 MS011809-2 MS011809-6 MS011809-3 MS011809-7 MS011809 iso 1043-1 DIN 6120 j1344 iso 1043-1 полипропилен sae j1344 W28B D1972 DIN6120 f24d d24j
2008 — Маркировка A52 SMD

Аннотация: Код маркировки SMD A58
Текст: нет текста в файле


Оригинал
PDF 4053P3 MDS15 823K630B53P3 104K630B53P3 В постоянного тока / 200 MDS10 333K400A52P3 393K400A52P3 Маркировочный код A52 SMD Маркировочный код A58 SMD
QFP80

Резюме: катушка для лотков sop28 ​​SSOP10 SOP8
Текст: нет текста в файле


Оригинал
PDF 25 шт. / Туба 20 шт. / Туба 14 шт. / Туба 10 шт. / Туба 000ПК / QFP80 sop28 SSOP10 Лоток SOP8 катушка
2000 — SSOP10

Аннотация: DIP18 DIP20 DIP40 SDIP22 SDIP24 SDIP28 SDIP30
Текст: нет текста в файле


Оригинал
PDF 25 шт. / Туба 20 шт. / Туба 14 шт. / Туба 10 шт. / Туба SSOP10 SSOP10 DIP18 DIP20 DIP40 SDIP22 SDIP24 SDIP28 SDIP30
LQFP144

Резюме: лоток QFN24 qfp32 DIP32 DIP20 DIP18 SSOP20 QFP52-S1 QFP52-A2 TO-252 njrc
Текст: нет текста в файле


Оригинал
PDF DIP14 DIP16 DIP18 DIP20 DIP22 DIP24 DIP32 DIP40 SDIP22 SDIP24 LQFP144 QFN24 лоток qfp32 DIP32 DIP20 DIP18 SSOP20 QFP52-S1 QFP52-A2 ТО-252 НЮРК
2007 — Код маркировки SMD A57

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF 0B53P3 MDC15 184K250B53P3 224K250B53P3 274K250B53P3 334K250B53P3 Маркировочный код A57 SMD
2004 — 105K250A57Py

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF 200B53P3 MDK15 184K250B53P3 224K250B53P3 274K250B53P3 334K250B53P3 105K250A57Py

[Разъяснение] Подключение лампового света со схемой


Подключение лампы накаливания

Подключение Tube Light очень простое.Здесь вы найдете Tube Light Connection с подробным объяснением. Собственное название лампового света — флуоресцентный ламповый свет. Здесь вы узнаете, как подключить Tube Light к Choke, Starter at Home. Здесь приведена правильная принципиальная схема Tube Light . Также показаны внутренние части лампового светильника.

Подключение лампы накаливания с электрическим дросселем:

Как вы видите на приведенной выше схеме подключения Tube Light , вся схема состоит из трех частей: 1. Люминесцентная лампа 2. Электрический дроссель 3. Трубка стартера Вы можете видеть, что одна клемма каждой нити накала подключена через стартер. Стартер состоит из биметаллических контактов, помещенных в неоновый газ. Внутри стартера к биметаллическим контактам подключен конденсатор для устранения радиопомех. Другой вывод каждой нити накала подключен к источнику питания. Электрический дроссель соединен последовательно с ламповой лампой.Внутри дросселя находится катушка индуктивности, которая создает высокое напряжение во время включения лампового света. Электрический дроссель имеет следующие недостатки: 4. Не может работать при низком напряжении. 5. Нужен ламповый стартер.

Подключение лампы накаливания с электронным дросселем:

Схема подключения лампы Tube Light с электронным дросселем очень проста. Здесь нет необходимости в ламповом стартере. Электронный дроссель имеет один вход и два выхода. Как вы видите на диаграмме выше, вход электронного дросселя подключен к плате переключателя для источника питания.Выход 1 соединен с правой нитью накала, а выход 2 — с левой нитью накала. Вы также можете подключить выход 1 к левой нити накала, а выход 2 — к правой нити. Электронный дроссель дает следующие преимущества: 3. Нет необходимости в ламповом стартере 5. Может работать при низком напряжении. Это была схема подключения Tube Light с электрическим дросселем и электронным дросселем.

Читайте также:

Спасибо, что посетили сайт.продолжайте посещать для получения дополнительных обновлений. Меры предосторожности при использовании реле

| Средства автоматизации | Industrial Devices

Реле может подвергаться воздействию различных условий окружающей среды во время фактического использования, что может привести к неожиданному отказу. Следовательно, необходимы испытания в практическом диапазоне в реальных условиях эксплуатации. Соображения по применению должны быть рассмотрены и определены для правильного использования реле.

Для того, чтобы использовать реле должным образом, характеристики выбранного реле должны быть хорошо известны, а условия использования реле должны быть исследованы, чтобы определить, подходят ли они к условиям окружающей среды, и в то же время катушка Условия, условия контактов и условия окружающей среды для фактически используемого реле должны быть заранее известны в достаточной степени.
В таблице ниже приведены основные моменты выбора реле. Его можно использовать в качестве справочного материала для исследования предметов и предупреждений.

Элемент спецификации Рекомендации по выбору
Катушка a) Номинальное значение
b) Напряжение срабатывания (ток)
c) Напряжение отпускания (ток)
d) Максимальное длительное подаваемое напряжение (ток)
e) Сопротивление катушки
f) Полное сопротивление
g) Повышение температуры
1) Выберите реле с учетом пульсации источника питания.
2) Уделите достаточное внимание температуре окружающей среды, повышению температуры змеевика и горячему запуску.
3) При использовании в сочетании с полупроводниками необходимо уделять особое внимание применению. Остерегайтесь падений напряжения при запуске.
Контакты a) Расположение контактов
b) Номинальная мощность
c) Материал контактов
d) Срок службы
e) Сопротивление контакта
1) Желательно использовать стандартный продукт с количеством контактов больше необходимого.
2) Полезно, чтобы срок службы реле соответствовал сроку службы устройства, в котором оно используется.
3) Соответствует ли материал контактов типу нагрузки?
Особую осторожность необходимо соблюдать при низком уровне нагрузки.
4) Номинальный срок службы может сократиться при использовании при высоких температурах.
Срок службы следует проверять в реальной атмосфере.
5) В зависимости от схемы релейный привод может синхронизироваться с нагрузкой переменного тока.
Поскольку это приведет к резкому сокращению срока службы, необходимо проверить фактическую машину.
Время срабатывания a) Время срабатывания
b) Время отпускания
c) Время дребезга
d) Частота переключения
1) Для звуковых цепей и подобных приложений полезно уменьшить время дребезга.
Механические характеристики а) Вибростойкость
б) Ударопрочность
в) Температура окружающей среды
г) Срок службы
1) Учитывайте характеристики при вибрации и ударах в месте использования.
2) Реле, в котором используется изолированный медный провод с высокой термостойкостью, если оно будет использоваться в среде с особенно высокими температурами.
Прочие предметы a) Напряжение пробоя
b) Способ монтажа
c) Размер
d) Защитная конструкция
1) Можно выбрать способ подключения: тип разъема, тип печатной платы, пайка, клеммы-вкладыши и тип винтового крепления.
2) Для использования в неблагоприятной атмосфере следует выбирать герметичную конструкцию.
3) При использовании в неблагоприятных условиях используйте герметичный тип. 4) Есть ли особые условия?

Основы работы с реле

  • Для сохранения исходных характеристик следует соблюдать осторожность, чтобы не уронить реле и не повредить его.
  • При нормальном использовании реле сконструировано таким образом, что корпус не отсоединяется. Для сохранения первоначальной производительности корпус снимать не следует. Характеристики реле не могут быть гарантированы при снятии корпуса.
  • Использование реле в атмосфере при стандартной температуре и влажности с минимальным количеством пыли, SO 2 , H 2 S или органические газы. Для установки в неблагоприятных условиях следует рассмотреть один из герметичных типов.
    Избегайте использования силиконовых смол рядом с реле, потому что это может привести к выходу из строя контакта. (Это также относится к реле с пластиковым уплотнением.)
  • При подключении катушек поляризованных реле проверьте полярность катушек (+, -) на внутренней схеме подключения (Схема).Если выполнено какое-либо неправильное подключение, это может вызвать неожиданную неисправность, например, чрезмерный нагрев огонь и тд, и схемы не работают.
    Избегайте подачи напряжения на установленную катушку и катушку сброса одновременно.
  • Для правильного использования необходимо, чтобы на катушке подавалось номинальное напряжение. Используйте прямоугольные волны для катушек постоянного тока и синусоидальные волны для катушек переменного тока.
  • Убедитесь, что подаваемое напряжение катушки не превышает максимально допустимого напряжения.
  • Номинальная коммутируемая мощность и срок службы приведены только для справки.Физические явления в контактах и ​​срок службы контактов сильно различаются в зависимости от от типа нагрузки и условий эксплуатации. Поэтому обязательно внимательно проверяйте тип нагрузки и условия эксплуатации перед использованием.
  • Не превышайте допустимые значения температуры окружающей среды, указанные в каталоге.
  • Используйте флюсовый или герметичный тип, если будет использоваться автоматическая пайка.
  • Хотя реле экологически закрытого типа (пластиковое закрытое и т. Д.)) можно чистить, Избегайте погружения реле в холодную жидкость (например, в чистящий растворитель) сразу после пайки. Это может ухудшить герметичность.
    Реле клеммного типа для поверхностного монтажа является герметичным и может очищаться погружением. Используйте чистую воду или чистящий растворитель на спиртовой основе.
    Рекомендуется очистка методом кипячения (Температура очищающей жидкости должна быть 40 ° C или ниже). Избегайте ультразвуковой очистки реле. Использование ультразвуковой очистки может вызвать обрыв катушки или небольшое залипание контактов из-за ультразвуковой энергии.
  • Избегайте сгибания клемм, так как это может привести к неисправности.
  • В качестве ориентира используйте монтажное давление Faston от 40 до 70 Н {от 4 до 7 кгс} для реле с лепестковыми выводами.
  • Для правильного использования прочтите основной текст.

Применение номинального напряжения является основным требованием для точной работы реле. Хотя реле будет работать, если приложенное напряжение превышает напряжение срабатывания, требуется, чтобы на катушку подавалось только номинальное напряжение без учета изменений сопротивления катушки и т. Д., из-за различий в типе источника питания, колебаний напряжения и повышения температуры.
Также необходимо соблюдать осторожность, потому что могут возникнуть такие проблемы, как короткое замыкание слоев и выгорание в катушке, если приложенное напряжение превышает максимальное значение, которое может применяться непрерывно. В следующем разделе содержатся меры предосторожности относительно входа катушки. Пожалуйста, обратитесь к нему, чтобы избежать проблем.

1. Основные меры предосторожности при обращении с катушкой

Тип работы переменного тока

Для работы реле переменного тока источником питания почти всегда является коммерческая частота (50 или 60 Гц) со стандартными напряжениями 6, 12, 24, 48, 100 и 200 В переменного тока.Из-за этого, когда напряжение отличается от стандартного, продукт является предметом особого заказа, и факторы цены, доставки и стабильности характеристик могут создавать неудобства. По возможности следует выбирать стандартные напряжения.
Кроме того, для типа переменного тока, потери сопротивления затеняющей катушки, потери на вихревые токи магнитной цепи и выход с гистерезисными потерями, и из-за более низкого КПД катушки обычно превышение температуры выше, чем для типа постоянного тока.
Кроме того, поскольку гудение возникает при напряжении ниже срабатывания и выше номинального напряжения, необходимо соблюдать осторожность в отношении колебаний напряжения источника питания.
Например, в случае запуска двигателя, если напряжение источника питания падает, и во время гудения реле, если оно возвращается в восстановленное состояние, контакты подвергаются ожогу и сварке с возникновением ложного срабатывания. самоподдерживающееся состояние.
Для типа переменного тока во время работы присутствует пусковой ток (для изолированного состояния якоря полное сопротивление низкое, а ток превышает номинальный ток; для закрепленного состояния якоря полное сопротивление высокое и номинальное значение протекающего тока), поэтому в случае параллельного подключения нескольких реле необходимо учитывать потребляемую мощность.

Тип работы постоянного тока

Для работы реле постоянного тока существуют стандарты для напряжения и тока источника питания, при этом стандарты постоянного напряжения установлены на 5, 6, 12, 24, 48 и 100 В, но в отношении тока значения, выраженные в каталогах в миллиамперах пусковой ток.
Однако, поскольку это значение тока срабатывания является не чем иным, как гарантией того, что якорь практически не перемещается, необходимо учитывать изменение напряжения питания и значений сопротивления, а также увеличение сопротивления катушки из-за повышения температуры. наихудшее состояние работы реле, заставляя считать текущее значение равным 1.В 5–2 раза больше тока срабатывания. Кроме того, из-за широкого использования реле в качестве ограничивающих устройств вместо счетчиков как напряжения, так и тока, а также из-за постепенного увеличения или уменьшения тока, подаваемого на катушку, вызывая возможную задержку движения контактов, существует вероятность того, что назначенная управляющая способность может не быть удовлетворена. При этом необходимо проявлять осторожность. Сопротивление обмотки реле постоянного тока изменяется в зависимости от температуры окружающей среды, а также от собственного тепловыделения в пределах примерно 0.4% / ° C, и, соответственно, при повышении температуры из-за увеличения срабатывания и отпускания напряжения требуется осторожность. (Однако для некоторых поляризованных реле эта скорость изменения значительно меньше.)

2.Источник питания для входа катушки

Напряжение питания катушки переменного тока

Для стабильной работы реле напряжение включения должно находиться в диапазоне +10% / — 15% от номинального напряжения. Однако необходимо, чтобы форма волны напряжения, приложенного к катушке, была синусоидальной.Нет проблем, если источником питания является коммерческий источник питания, но когда используется стабилизированный источник питания переменного тока, возникает искажение формы волны из-за этого оборудования, и существует возможность ненормального перегрева. С помощью затеняющей катушки для катушки переменного тока гудение прекращается, но с искаженной формой волны эта функция не отображается. На Рис. 1 ниже показан пример искажения формы сигнала.
Если источник питания для рабочей цепи реле подключен к той же линии, что и двигатели, соленоиды, трансформаторы и другие нагрузки, при работе этих нагрузок напряжение в сети падает, и из-за этого контакты реле подвергаются воздействию вибрации и последующие ожоги.В частности, если используется трансформатор небольшого типа и его мощность не имеет запаса прочности, при наличии длинной проводки или в случае использования в быту или небольшом магазине, где проводка тонкая, необходимо принять меры предосторожности, потому что нормальных колебаний напряжения в сочетании с другими факторами. При возникновении неисправности следует провести обследование ситуации с напряжением с помощью синхроскопа или аналогичных средств и принять необходимые контрмеры, и вместе с этим определить, следует ли использовать специальное реле с подходящими характеристиками возбуждения или выполнить аварийное отключение. изменение в цепи постоянного тока, как показано на рис.2, в который вставлен конденсатор для поглощения колебаний напряжения. В частности, когда используется магнитный переключатель, поскольку нагрузка становится такой же, как у двигателя, в зависимости от применения, следует попробовать и исследовать разделение рабочей цепи и силовой цепи.

Источник питания для входа постоянного тока

Мы рекомендуем, чтобы напряжение, подаваемое на оба конца катушки в реле постоянного тока, находилось в пределах ± 5% от номинального напряжения катушки.
В качестве источника питания для реле постоянного тока используется батарея или схема полуволнового или двухполупериодного выпрямителя со сглаживающим конденсатором. Характеристики напряжения возбуждения реле будут меняться в зависимости от типа источника питания, и поэтому для отображения стабильных характеристик наиболее желательным методом является идеальный постоянный ток.
В случае пульсации, включенной в источник питания постоянного тока, особенно в случае схемы полуволнового выпрямителя со сглаживающим конденсатором, если емкость конденсатора слишком мала из-за влияния пульсации, возникает гудение и неудовлетворительное состояние производится.
Для конкретной схемы, которая будет использоваться, абсолютно необходимо подтвердить характеристики.
Необходимо рассмотреть возможность использования источника постоянного тока с пульсацией менее 5%. Также обычно следует подумать о следующем.

  • 1. Для реле шарнирного типа нельзя использовать однополупериодный выпрямитель, если вы не используете сглаживающий конденсатор. Пульсации и характеристики должны быть оценены для правильного использования.
  • 2.Для реле шарнирного типа существуют определенные приложения, которые могут или не могут использовать сам по себе двухполупериодный выпрямитель. Пожалуйста, уточняйте технические характеристики у оригинального производителя.
  • 3. Напряжение на катушке и падение напряжения
    Ниже показана схема, управляемая одним и тем же источником питания (аккумуляторной батареей и т. Д.) Как для катушки, так и для контакта.
    На электрическую долговечность влияет падение напряжения в катушке при включении нагрузки.
    Убедитесь, что на катушку подается фактическое напряжение при фактической нагрузке.

3. Максимально допустимое напряжение и превышение температуры

При правильном использовании необходимо, чтобы на катушке подавалось номинальное напряжение катушки. Однако обратите внимание, что если напряжение больше или равно максимальному продолжительному напряжению Давление на катушку может привести к возгоранию катушки или короткому замыканию слоев из-за повышения температуры.Кроме того, не превышайте допустимый диапазон температуры окружающей среды, указанный в каталоге.

Максимальное длительное напряжение

Помимо обеспечения стабильности работы реле, максимальное непрерывное напряжение сжатой катушки является важным ограничением для предотвращения о таких проблемах, как термическое повреждение или деформация изоляционного материала, или возникновение опасности пожара.
При фактическом использовании с изоляцией E-типа при температуре окружающей среды 40 ° C, предел повышения температуры 80 ° C считается разумным в соответствии с методом сопротивления.Однако при соблюдении Закона о безопасности электроприборов и материалов эта температура становится 75 ° C.

Повышение температуры из-за импульсного напряжения

Когда используется импульсное напряжение со временем включения менее 2 минут, повышение температуры катушки никак не связано со временем включения. Это зависит от отношения времени включения к времени выключения, и по сравнению с протеканием постоянного тока она довольно мала.
В этом отношении различные реле практически одинаковы.

Текущее время прохождения%
Для непрерывного прохода Значение превышения температуры составляет 100%
ВКЛ: ВЫКЛ = 3: 1 Около 80%
ВКЛ: ВЫКЛ = 1: 1 Около 50%
ВКЛ: ВЫКЛ = 1: 3 Около 35%
Изменение рабочего напряжения из-за повышения температуры катушки (горячий запуск)

В реле постоянного тока после непрерывного прохождения тока в катушке, если ток выключен, то сразу же снова включается, из-за повышения температуры в катушке рабочее напряжение станет несколько выше.Кроме того, это будет то же самое, что использовать его в атмосфере с более высокой температурой.
Отношение сопротивления / температуры для медного провода составляет около 0,4% для 1 ° C, и с этим соотношением сопротивление катушки увеличивается. То есть, чтобы реле сработало, необходимо, чтобы напряжение было выше рабочего напряжения и рабочее напряжение повышается в соответствии с увеличением значения сопротивления. Однако для некоторых поляризованных реле эта скорость изменения значительно меньше.

4.Приложенное напряжение катушки и время срабатывания

В случае работы на переменном токе время срабатывания сильно варьируется в зависимости от точки фазы, в которой переключатель включается для возбуждения катушки, и выражается как определенный диапазон, но для миниатюрных типов это в большинстве случаев. часть 1/2 цикла. Однако для реле довольно большого типа, где дребезг велик, время срабатывания составляет от 7 до 16 мсек, с временем срабатывания порядка от 9 до 18 мсек. время быстрое, но если оно слишком быстрое, время дребезга контакта «Форма А» увеличивается.Имейте в виду, что условия нагрузки (в частности, когда пусковой ток большой или нагрузка близка к номинальной) могут привести к сокращению срока службы и незначительному свариванию.

5. лотковые цепи (байпасные цепи)

В случае построения схемы последовательности из-за байпасного потока или альтернативной маршрутизации необходимо следить за тем, чтобы не возникло ошибочной или ненормальной работы. Чтобы понять это условие при подготовке цепей последовательности, как показано на рис.4, где 2 строки записаны как линии источника питания, верхняя линия всегда (+), а нижняя линия (-) (когда цепь переменного тока, применяется то же самое). Соответственно, сторона (+) обязательно является стороной для контактных соединений (контакты для реле, таймеров, концевых выключателей и т. Д.), А сторона (-) — это сторона цепи нагрузки (катушка реле, катушка таймера, катушка магнита, соленоид. катушка, мотор, лампа и т. д.).
На рис. 5 показан пример паразитных цепей. На рис. 5 (a) при замкнутых контактах A, B и C после срабатывания реле R 1 , R 2 и R 3 , если контакты B и C разомкнуты, имеется последовательная цепь через A, R 1 , R 2 и R 3 , и реле будут гудеть и иногда не переходят в состояние отключения.
Подключения, показанные на Рис. 5 (b), выполнены правильно. Кроме того, что касается цепи постоянного тока, поскольку она проста с помощью диода для предотвращения паразитных цепей, следует применять правильное применение.

6. Постепенное увеличение напряжения на катушке и цепь самоубийства

Когда напряжение, подаваемое на катушку, увеличивается медленно, операция переключения реле нестабильна, контактное давление падает, дребезг контактов увеличивается, и возникает нестабильное состояние контакта.Этот метод подачи напряжения на катушку использовать не следует, и следует рассмотреть способ подачи напряжения на катушку (использование схемы переключения). Кроме того, в случае реле с защелкой, использующего контакты «формы B», используется метод цепи самокатушки для полного прерывания, но из-за возможности развития неисправности следует проявлять осторожность.
Схема, показанная на рис. 6, вызывает синхронизацию и последовательную работу с использованием реле язычкового типа, но это не лучший пример со смесью постепенного увеличения подаваемого напряжения для катушки и схемы самоубийства.В части синхронизации для реле R 1 , когда время ожидания истекло, возникает дребезжание, вызывающее проблемы. В первоначальном тесте (пробное производство) он показывает удовлетворительную работу, но по мере увеличения количества операций почернение контактов (карбонизация) плюс дребезжание реле создают нестабильность в работе.

7. синхронизация фаз при переключении нагрузки переменного тока

Если переключение контактов реле синхронизировано с фазой питания переменного тока, может произойти сокращение электрического срока службы, сварные контакты или явление блокировки (неполное размыкание) из-за переноса материала контакта.Поэтому проверяйте реле, пока оно работает в реальной системе. При управлении реле с таймерами, микрокомпьютерами и тиристорами и т. Д. Возможна синхронизация с фазой питания.

8. Ошибочная работа из-за индуктивных помех

Для длинных проводов, когда линия для цепи управления и линия для подачи электроэнергии используют один кабелепровод, индукционное напряжение, вызванное индукцией от линии питания, будет подаваться на рабочую катушку независимо от того, подается ли управляющий сигнал. выключенный.В этом случае реле и таймер не могут вернуться в исходное состояние. Поэтому, когда проводка проходит на большом расстоянии, помните, что наряду с индуктивными помехами отказ соединения может быть вызван проблемой с распределительной способностью, или устройство может выйти из строя из-за воздействия внешних скачков напряжения, например, вызванных молнией.

9. долгосрочный токонесущий

Цепь, которая будет непрерывно проводить ток в течение длительных периодов времени. без переключения реле.(цепи для аварийных ламп, сигнальных устройств и проверка ошибок, которая, например, восстанавливается только при неисправности и выводе предупреждений с контактами формы B)
Непрерывный, длительный ток, подаваемый на катушку, способствует ухудшению изоляции катушки. и характеристики за счет нагрева самого змеевика. Для таких схем, используйте реле с магнитной фиксацией. Если вам нужно использовать одно стабильное реле, используйте реле герметичного типа, на которое непросто влияют условия окружающей среды, и обеспечивайте отказоустойчивость схемотехника, учитывающая возможность выхода из строя или размыкания контактов.

10.Использование при нечастом переключении

Пожалуйста, проводите периодические проверки контактной проводимости, если частота переключения составляет один или меньше раз в месяц.
Если переключение контактов не происходит в течение длительного времени, на контактных поверхностях может образоваться органическая мембрана, что приведет к нестабильности контакта.

11.О электролитической коррозии катушек

В случае схем катушек сравнительно высокого напряжения, когда такие реле используются в атмосфере с высокой температурой и высокой влажностью или при непрерывном прохождении тока, можно сказать, что коррозия является результатом возникновения электролитической коррозии.Из-за возможности возникновения обрыва цепи следует обратить внимание на следующие моменты.

  • 1. Сторона (+) источника питания должна быть подключена к шасси. (См. Рис. 8) (Общий для всех реле)
  • 2. В случае неизбежного заземления стороны (-) или в случае, когда заземление невозможно.
    (1) Вставьте контакты (или переключатель) в сторону (+) источника питания. (См. Рис. 9) (Общий для всех реле)
    (2) Если заземление не требуется, подключите клемму заземления к (+) стороне катушки.(См. Рис.10) (NF и NR с клеммой заземления)
  • 3. Когда (-) сторона источника питания заземлена, всегда избегайте перекрещивания контактов (и переключателей) на (-) стороне. (См. Рис.11) (Общий для всех реле)
  • 4. В случае реле с клеммой заземления, когда клемма заземления не считается эффективной, отсутствие подключения к земле играет важную роль в качестве метода предотвращения электролитической коррозии.

Примечание. Обозначение на чертеже указывает на вставку изоляции между железным сердечником и корпусом.В реле, где имеется клемма заземления, железный сердечник можно заземлить непосредственно на шасси, но с учетом электролитической коррозии более целесообразно не выполнять подключение.

КОНТАКТ

Контакты — важнейшие элементы конструкции реле. На характеристики контактов заметно влияет материал контактов, а также значения напряжения и тока, подаваемые на контакты (в частности, формы сигналов напряжения и тока во время включения и отключения), тип нагрузки, частота переключения, окружающая атмосфера, форма контакта. , скорость переключения контактов и дребезга.
Из-за переноса контактов, сварки, аномального износа, увеличения контактного сопротивления и различных других повреждений, которые приводят к неправильной работе, следующие пункты требуют тщательного изучения.

* Мы рекомендуем вам проверить в одном из наших офисов продаж.

1. Основные меры предосторожности при контакте

Напряжение

Когда в цепь включена индуктивность, в качестве напряжения контактной цепи генерируется довольно высокая противоэдс, и поскольку в пределах значения этого напряжения, энергия, приложенная к контактам, вызывает повреждение с последующим износом контактов и переносом контактов, поэтому необходимо проявлять осторожность в отношении управляющей способности.В случае постоянного тока нет точки нулевого тока, как в случае с переменным током, и, соответственно, после того, как возникла катодная дуга, поскольку ее трудно погасить, увеличенное время дуги является основной причиной. Кроме того, из-за фиксированного направления тока явление смещения контактов, как отдельно отмечено ниже, возникает в связи с износом контактов. Обычно приблизительная контрольная мощность указывается в каталогах или аналогичных технических паспортах, но одного этого недостаточно.Со специальными контактными цепями для каждого отдельного случая производитель либо оценивает на основе прошлого опыта, либо проводит испытания в каждом случае. Кроме того, в каталогах и аналогичных технических паспортах упомянутая управляющая способность ограничена резистивной нагрузкой, но для этого класса реле указано широкое значение, и обычно допустимую нагрузку по току следует рассматривать как таковую для цепей 125 В переменного тока. .
Минимальные допустимые нагрузки указаны в каталоге; однако они приведены только в качестве ориентира для нижнего предела, который может переключать реле, и не являются гарантированными значениями.
Уровень надежности этих значений зависит от частоты коммутации, условий окружающей среды, изменения желаемого контактного сопротивления и абсолютного значения.
Используйте реле с контактами AgPd, когда требуется точный аналоговый контроль нагрузки или контактное сопротивление не более 100 мОм (для измерений, беспроводных приложений и т. Д.).

Текущий

Существенное влияние оказывает ток как во время замыкания, так и во время размыкания контактной цепи.Например, когда нагрузкой является двигатель или лампа, в зависимости от пускового тока во время замыкания цепи, износ контактов и степень передачи контактов увеличиваются, а контактная сварка и перенос контактов делают разделение контактов невозможным.

2. Характеристики обычных контактных материалов

Характеристики материалов контактов приведены ниже. Обращайтесь к ним при выборе реле.

Материал контактов Ag
(серебристый)
Электропроводность и теплопроводность — самые высокие из всех металлов.Обладает низким контактным сопротивлением, недорогой и широко используется. Недостатком является то, что он легко образует сульфидную пленку в сульфидной атмосфере. Требуется осторожность при низком напряжении и низком уровне тока.
AgSnO 2
(серебро-олово)
Обладает превосходной сварочной стойкостью; однако, как и в случае с Ag, он легко образует сульфидную пленку в сульфидной атмосфере.
AgW
(серебро-вольфрам)
Высокая твердость и температура плавления, отличная устойчивость к дуге и высокая устойчивость к переносу материала.Однако требуется высокое контактное давление. Кроме того, контактное сопротивление относительно высокое, а устойчивость к коррозии оставляет желать лучшего. Также есть ограничения на обработку и установку на контактные пружины.
AgNi
(серебро-никель)
Соответствует электропроводности серебра. Отличное сопротивление дуге.
AgPd
(серебро-палладий)
Обладает высокой устойчивостью к коррозии и сульфидированию при комнатной температуре; однако в контурах низкого уровня он легко поглощает органические газы и образует полимеры.Следует использовать золотое покрытие или другие меры для предотвращения накопления такого полимера.
Поверхность Правовое покрытие
(родий)
Сочетает в себе отличную коррозионную стойкость и твердость. В качестве гальванических контактов используются при относительно небольших нагрузках. В атмосфере органического газа необходимо соблюдать осторожность, поскольку могут образовываться полимеры. Поэтому он используется в реле с герметичным уплотнением (герконовые реле и т. Д.).
Au плакированный
(плакированный золотом)
Au с отличной коррозионной стойкостью приваривается к основному металлу под давлением.Особые характеристики — равномерная толщина и отсутствие проколов. Очень эффективен, особенно при низких нагрузках в относительно неблагоприятных атмосферных условиях. Часто бывает трудно реализовать плакированные контакты в существующих реле из-за конструкции и установки.
Покрытие золотом
(позолота)
Эффект аналогичен алюминиевому покрытию. В зависимости от используемого процесса нанесения покрытия очень важен надзор, так как существует вероятность появления точечных отверстий и трещин. Относительно легко применить золочение в существующих реле.
Вспышка золотом
(тонкопленочное золотое покрытие)
от 0,1 до 0,5 мкм
Предназначен для защиты основного металла контактов при хранении переключателя или устройства со встроенным переключателем. Однако определенная степень устойчивости контактов может быть получена даже при переключении нагрузок.

3. Защита от прикосновения

Счетчик EMF

При переключении индуктивных нагрузок с помощью реле постоянного тока, таких как цепи реле, двигатели постоянного тока, муфты постоянного тока и соленоиды постоянного тока, всегда важно поглощать скачки напряжения (например.грамм. с диодом) для защиты контактов.
Когда эти индуктивные нагрузки отключены, возникает противоэдс от нескольких сотен до нескольких тысяч вольт, что может серьезно повредить контакты и значительно сократить срок службы. Если ток в этих нагрузках относительно мал и составляет около 1 А или меньше, противо-ЭДС вызовет зажигание тлеющего или дугового разряда. Разряд разлагает органические вещества, содержащиеся в воздухе, и вызывает образование черных отложений (оксидов, карбидов) на контактах. Это может привести к выходу из строя контакта.

Пример счетчика ЭДС и фактического измерения

На рис. 12 (a) противоэдс (e = -L di / dt) с крутой формой волны генерируется через катушку с полярностью, показанной на рис. 12 (b), в момент отключения индуктивной нагрузки. Счетчик ЭДС проходит по линии питания и достигает обоих контактов.
Обычно критическое напряжение пробоя диэлектрика при стандартной температуре и давлении воздуха составляет от 200 до 300 вольт.Следовательно, если противоэдс превышает это значение, на контактах возникает разряд для рассеивания энергии (1 / 2Li 2 )
, хранящейся в катушке. По этой причине желательно поглощать противоэдс до 200 В или меньше.

Явление переноса материала

Передача материала контактов происходит, когда один контакт плавится или закипает, и материал контакта переходит на другой контакт. По мере увеличения количества переключений появляются неровные контактные поверхности, такие как те, что показаны на рис.13. Через некоторое время неровные контакты замыкаются, как будто они были сварены вместе. Это часто происходит в цепях, где в момент замыкания контактов возникают искры, например, когда постоянный ток велик для индуктивных или емкостных нагрузок постоянного тока или когда большой пусковой ток (несколько ампер или несколько десятков ампер).
Цепи защиты контактов и контактные материалы, устойчивые к переносу материала, такие как AgSnO 2 , AgW или AgCu, используются в качестве контрмер. Обычно на катоде появляется вогнутое образование, а на аноде — выпуклое образование.Для емкостных нагрузок постоянного тока (от нескольких ампер до нескольких десятков ампер) всегда необходимо проводить фактические подтверждающие испытания.

Схема защиты контактов

Использование контактных защитных устройств или схем защиты может снизить противоэдс до низкого уровня. Однако учтите, что неправильное использование приведет к неблагоприятным последствиям. Типовые схемы защиты контактов приведены в таблице ниже.
(G: хорошо, NG: плохо, C: осторожно)

Избегайте использования схем защиты, показанных на рисунках справа. Хотя индуктивные нагрузки постоянного тока обычно труднее переключать, чем резистивные нагрузки, использование соответствующей схемы защиты повысит характеристики до уровня резистивных нагрузок.

Хотя чрезвычайно эффективен для гашения дуги при размыкании контактов, контакты подвержены свариванию, так как энергия накапливается в C, когда контакты размыкаются, и ток разряда течет из C, когда контакты замыкаются.

Хотя чрезвычайно эффективен для гашения дуги при размыкании контактов, контакты подвержены свариванию, поскольку при замыкании контактов зарядный ток течет к C.

Установка защитного устройства

В реальной схеме необходимо найти защитное устройство (диод, резистор, конденсатор, варистор и т. Д.).) в непосредственной близости от нагрузки или контакта. Если оно расположено слишком далеко, эффективность защитного устройства может снизиться. Ориентировочно расстояние должно быть в пределах 50 см.

Аномальная коррозия при высокочастотном переключении нагрузок постоянного тока (образование искры)

Если, например, клапан постоянного тока или сцепление включается с высокой частотой, может образоваться сине-зеленая ржавчина. Это происходит из-за реакции азота и кислорода в воздухе, когда во время переключения возникают искры (дуговые разряды).Следовательно, необходимо соблюдать осторожность в цепях, в которых искры возникают с высокой частотой.

4. Меры предосторожности при использовании контактов

Подключение нагрузки и контактов

Подключите нагрузку к одной стороне источника питания, как показано на рис. 14 (a). Подключите контакты к другой стороне. Это предотвращает образование высокого напряжения между контактами. Если контакты подключены к обеим сторонам источника питания, как показано на Рис. 14 (b), существует риск короткого замыкания источника питания при коротком замыкании относительно близких контактов.

Эквивалентный резистор

Поскольку уровни напряжения на контактах, используемых в слаботочных цепях (сухих цепях), низкие, результатом часто является плохая проводимость. Одним из способов повышения надежности является добавление фиктивного резистора параллельно нагрузке, чтобы намеренно увеличить ток нагрузки, достигающий контактов.

Избегайте замыканий между контактами формы A и B
  • 1.Зазор между контактами формы A и B в компактных элементах управления небольшой. Следует учитывать возникновение короткого замыкания из-за дуги.
  • 2. Даже если три контакта Н.З., Н.О. и COM соединены таким образом, что они закорачивают, цепь никогда не должна быть спроектирована так, чтобы допускать возможность возгорания или возникновения сверхтока.
  • 3. Запрещается проектировать цепь прямого и обратного вращения двигателя с переключением контактов формы A и B.
Плохой пример использования форм A и B
Короткое замыкание между разными электродами

Хотя существует тенденция к выбору миниатюрных компонентов управления из-за тенденции к миниатюризации электрических блоков управления, следует соблюдать осторожность при выборе типа реле в цепях, где между электродами в многополюсном реле прикладываются разные напряжения, особенно при переключении. две разные схемы питания.Это не проблема, которую можно определить по схемам последовательности. Необходимо проверить конструкцию самого элемента управления и обеспечить достаточный запас прочности, особенно в отношении утечки тока между электродами, расстояния между электродами, наличия барьера и т. Д.

Тип нагрузки и пусковой ток

Тип нагрузки и характеристики ее пускового тока, а также частота коммутации являются важными факторами, вызывающими контактную сварку.В частности, для нагрузок с пусковыми токами измерьте установившееся состояние и пусковой ток.
Затем выберите реле с достаточным запасом прочности. В таблице справа показано соотношение между типичными нагрузками и их пусковыми токами.
Кроме того, проверьте фактическую полярность, поскольку, в зависимости от реле, на срок службы электрической части влияет полярность COM и NO.

Тип нагрузки Пусковой ток
Резистивная нагрузка Устойчивый ток
Соленоид нагрузки От 10 до 20 раз больше установившегося тока
Нагрузка двигателя В 5-10 раз больше установившегося тока
Нагрузка лампы накаливания От 10 до 15 раз больше установившегося тока
Нагрузка ртутной лампы Прибл.В 3 раза больше установившегося тока
Нагрузка натриевой лампы От 1 до 3 раз больше установившегося тока
Емкостная нагрузка От 20 до 40 раз больше установившегося тока
Нагрузка трансформатора От 5 до 15 раз больше установившегося тока
Волна и время пускового тока нагрузки
(1) Нагрузка лампы накаливания

Пусковой ток / номинальный ток: i / i o ≒ 10-15 раз

(2) Нагрузка ртутной лампы i / i o ≒ 3 раза

Газоразрядная трубка, трансформатор, дроссельная катушка, конденсатор и т. Д., объединены в общие цепи газоразрядных ламп. Обратите внимание, что пусковой ток может быть от 20 до 40 раз, особенно если полное сопротивление источника питания низкое в типе с высоким коэффициентом мощности.

(3) Нагрузка люминесцентной лампы i / i o ≒ 5-10 раз
(4) Нагрузка двигателя i / i o ≒ 5-10 раз
  • Условия становятся более суровыми, если выполняется заглушка или толчкование, поскольку переходы между состояниями повторяются.
  • При использовании реле для управления двигателем постоянного тока и тормозом импульсный ток во включенном состоянии, нормальный ток и ток отключения во время торможения различаются в зависимости от того, является ли нагрузка на двигатель свободной или заблокированной. В частности, с неполяризованными реле, при использовании контакта «от b» или «от контакта» для тормоза двигателя постоянного тока, на механический срок службы может влиять ток тормоза. Поэтому, пожалуйста, проверьте ток при фактической нагрузке.
(5) Нагрузка на соленоид i / i o ≒ 10-20 раз

Обратите внимание, что, поскольку индуктивность велика, дуга длится дольше при отключении питания.Контакт может легко изнашиваться.

(6) Нагрузка на электромагнитный контакт i / i o ≒ от 3 до 10 раз
(7) Емкостная нагрузка i / i o от 20 до 40 раз
при использовании длинных проводов

Если в цепи контактов реле должны использоваться длинные провода (от 100 до 300 м), пусковой ток может стать проблемой из-за паразитной емкости, существующей между проводами.Добавьте резистор (примерно от 10 до 50 Ом) последовательно с контактами.

Электрическая долговечность при высоких температурах

Проверьте фактические условия использования, так как использование при высоких температурах может повлиять на электрическую долговечность.

  • Блокировочные реле поставляются с завода в состоянии сброса. Удар по реле во время транспортировки или установки может привести к его переходу в установленное состояние.Поэтому рекомендуется использовать реле в цепи, которая инициализирует реле в требуемое состояние (установка или сброс) при каждом включении питания.
  • Избегайте подачи напряжения на установленную катушку и катушку сброса одновременно.
  • Подключите диод, как показано, поскольку фиксация может быть нарушена при использовании реле в следующих цепях.
    Если установочные катушки или катушки сброса должны быть соединены вместе параллельно, подключите диод последовательно к каждой катушке. Рис.16 (а), (б)

Кроме того, если заданная катушка реле и катушка сброса другого реле подключены параллельно, подключите диод к катушкам последовательно.Рис.16 (c)

Если установленная катушка или катушка сброса должны быть подключены параллельно с индуктивной нагрузкой (например, другой катушкой электромагнитного реле, двигателем, трансформатором и т. Д.), Подключите диод к установленной катушке или катушке сброса последовательно. Рис.16 (d)

Используйте диод, имеющий достаточный запас прочности для повторяющихся приложений обратного постоянного напряжения и пикового обратного напряжения и имеющий средний выпрямленный ток, превышающий или равный току катушки.

  • Избегайте приложений, в которых часто возникают скачки напряжения в электросети.
  • Избегайте использования следующей схемы, поскольку самовозбуждение на контактах будет препятствовать нормальному состоянию удержания.

Четырехконтактное фиксирующее реле

В схеме с двумя катушками с фиксацией, как показано ниже, одна клемма на одном конце установочной катушки и одна клемма на одном конце катушки сброса соединены совместно, и напряжения одинаковой полярности прикладываются к другой стороне для операций установки и сброса.В схеме этого типа закоротите 2 контакта реле, как указано в следующей таблице. Это помогает поддерживать высокую изоляцию между двумя обмотками.

Тип реле Терминалы №
DS 1c
2c 15 и 16
СТ *
СП 2 и 4
Реле Реле
* * ST сконструированы таким образом, что катушка настройки и катушка сброса разделены для обеспечения высокого сопротивления изоляции.
* DSP, TQ, S неприменимы из-за полярности.

Минимальная ширина импульса

В качестве ориентира задайте минимальную длительность импульса для установки или сброса фиксирующего реле. по крайней мере, в 5 раз превышающее установленное время или время сброса каждого продукта, и подайте номинальное напряжение прямоугольной формы. Также проверьте работу. Поинтересуйтесь, если вы не можете получить ширину импульса не менее 5 раз. установленное (сброс) время.Также обращайтесь по поводу конденсаторного привода.

Индукционное напряжение с двумя катушками-защелками

Каждая катушка в двухкатушечном реле-защелке намотана с установленной катушкой и катушкой сброса. на тех же железных сердечниках.
Соответственно, при подаче напряжения на обратной стороне катушки создается индукционное напряжение. и отключите каждую катушку.
Хотя величина индукционного напряжения примерно такая же, как номинальное напряжение реле, вы должны быть осторожны с обратным напряжением смещения при управлении транзисторами.

1. Температура и атмосфера окружающей среды

Убедитесь, что температура окружающей среды при установке не превышает значения, указанного в каталоге. Кроме того, для использования в атмосфере с пылью, сернистыми газами (SO 2 , H 2 S) или органическими газами следует рассмотреть вариант с защитой от окружающей среды (тип с пластиковым уплотнением).

2. Силикон

Когда источник силиконовых веществ (силиконовый каучук, силиконовое масло, силиконовые покрытия и силиконовые наполнители и т. д.) используется вокруг реле, может образовываться силиконовый газ (низкомолекулярный силоксан и т. д.). Этот силиконовый газ может проникнуть внутрь реле.
Когда реле остается и используется в этом состоянии, силиконовый компаунд может прилипнуть к контактам реле, что может привести к выходу из строя контакта.
Не используйте вокруг реле какие-либо источники силиконового газа (включая пластиковые уплотнения).

3. NOx поколения

Когда реле используется в атмосфере с высокой влажностью для переключения нагрузки который легко создает дугу, NOx, создаваемый дугой, и поглощенная вода извне реле объединяются для производства азотной кислоты.Это разъедает внутреннюю металлические детали и отрицательно сказываются на работе.
Избегайте использования при относительной влажности 85% или выше (при 20 ° C).
Если использование при высокой влажности неизбежно, обратитесь к нашему торговому представителю.

4. Вибрация и удары

Если реле и магнитный переключатель установлены рядом друг с другом на одной пластине, контакты реле могут на мгновение отделиться от удара, производимого при срабатывании магнитного переключателя, и привести к неправильной работе.Меры противодействия включают установку их на отдельные пластины, использование резинового листа для поглощения удара и изменение направления удара на перпендикулярный угол. Кроме того, если реле будет постоянно подвергаться вибрации (поезда и т. Д.), Не используйте его с розеткой. Рекомендуем припаивать непосредственно к клеммам реле.

5.Влияние внешних магнитных полей

Если рядом расположен магнит или постоянный магнит в любом другом крупном реле, трансформаторе или динамике, характеристики реле могут измениться, что может привести к неправильной работе.Влияние зависит от силы магнитного поля, и его следует проверять при установке.

6. Условия использования, хранения и транспортировки

Во время использования, хранения или транспортировки избегайте мест, подверженных воздействию прямых солнечных лучей. и поддерживать нормальные условия температуры, влажности и давления.
Допустимые спецификации для сред, подходящих для использования, хранения и транспортировки приведены ниже.

Конденсация

Конденсация возникает при резком падении температуры окружающей среды. от высокой температуры и влажности, или реле и микроволновое устройство внезапно переключаются из-под низкой температуры окружающей среды к высокой температуре и влажности.Конденсация вызывает такие сбои, как ухудшение изоляции, отсоединение проводов, ржавчина и т. д.
Panasonic Corporation не гарантирует неисправности, вызванные конденсацией.
Теплопроводность оборудования может ускорить охлаждение самого устройства, и может произойти конденсация. Пожалуйста, проведите оценку продукта в наихудших условиях фактического использования. (Особое внимание следует обращать на близкие к устройству детали, нагревающиеся при высокой температуре. Также учтите, что внутри устройства может образоваться конденсат.)

Обледенение

Конденсат или другая влага может замерзнуть на реле. когда температура становится ниже 0 ° C.
Обледенение вызывает заедание подвижной части, задержка срабатывания и нарушение проводимости контакта и т. д.
Panasonic Corporation не гарантирует отказы, вызванные обледенением.
Теплопроводность оборудования может ускорить охлаждение самого реле. и может произойти обледенение.
Пожалуйста, проведите оценку продукта в наихудших условиях фактического использования.

Низкая температура и низкая влажность

Пластик становится хрупким, если переключатель подвергается воздействию низких температур, среда с низкой влажностью в течение длительного времени.

Высокая температура и высокая влажность

Хранение в течение длительного времени (включая периоды транспортировки) при высокой температуре или высокой влажности или в атмосфере с органическими газами или сульфидные газы могут вызвать образование сульфидной или оксидной пленки на поверхностях контактов и / или это может мешать работе.
Проверьте атмосферу, в которой должны храниться и транспортироваться устройства.

Пакет

Что касается используемого формата упаковки, приложите все усилия, чтобы избежать воздействия влаги, органических газов и сульфидных газов до абсолютного минимума.

Требования к хранению

Так как клеммы для поверхностного монтажа чувствительны к влажности Он упакован в герметично закрывающуюся влагостойкую упаковку. Однако при хранении обратите внимание на следующее.

7. Вибрация, удары и давление при транспортировке

При транспортировке, если к устройству, в котором установлено реле, приложена сильная вибрация, удар или большой вес, может произойти функциональное повреждение. Поэтому, пожалуйста, упакуйте таким образом, чтобы использовать амортизирующий материал и т. Д., Чтобы не превышался допустимый диапазон вибрации и ударов.

Цепи диммера

Авторские права Томи Энгдал 1997-2000 гг.

Индекс

Заявление об ограничении ответственности

Я от всего отказываюсь.Содержание статей ниже может быть полностью неточным, неуместным или ошибочным. Нет никаких гарантий относительно пригодности указанных схем и информации для каких-либо целей, кроме как в качестве средства самообучения.

Диммирование света основано на регулировке напряжения, которое попадает на лампу. Регулировка яркости возможна на протяжении многих десятилетий с помощью регулируемых силовые резисторы и регулируемые трансформаторы. Эти методы были используется в кинотеатрах, на сценах и других общественных местах.Проблема эти методы управления светом заключались в том, что они большие, дорогие, имеют низкую эффективность, и ими трудно управлять из удаленного места.

Силовая электроника быстро развивалась с 1960 года. В период с 1960 по 1970 год. поступили на рынок тиристоры и симисторы. Используя эти компоненты, было довольно легко сделать небольшие и недорогие диммеры, имеющие хорошие эффективность. Электронное управление также позволило сделать их легко управляемый из удаленного местоположения. Электронные диммеры этого типа стали доступны после 1970 года и в настоящее время используются во многих местах как дома, рестораны, конференц-залы и в сценическом освещении.

Твердотельные диммеры работают, изменяя «рабочий цикл» (время включения / выключения). полного переменного напряжения, подаваемого на регулируемые огни. Например, если напряжение подается только половину каждого цикла переменного тока, лампочка будет казаться намного менее яркой, чем когда она получить полное переменное напряжение, потому что для нагрева нити требуется меньше энергии. Твердотельные диммеры используют настройку регулятора яркости, чтобы определить, в какой момент каждого цикла напряжения включать и выключать свет.

Типичные регуляторы света построены с использованием тиристоров и точного времени. при срабатывании тиристора относительно нулевых переходов Электропитание переменного тока используется для определения уровня мощности. Когда тиристор срабатывает, он продолжает проводить до тех пор, пока ток не пройдет через него переходит в ноль (точно при следующем пересечении нуля, если нагрузка чисто резистивная, как лампочка). Изменяя фазу, на которой вы запускаете симистор, вы изменяете рабочий цикл и, следовательно, яркость света.

Вот пример нормальной мощности переменного тока, которую вы получаете от розетки. (картинка должна выглядеть как синусоида):

 ... ...
                 . . . .
                . . . .
              ------------------------------------ 0 В
                        . . . .
                         . . . .
                          ... ...
 
А вот что попадает в лампочку при срабатывании диммера симистор включен в середине фазы переменного тока:
... ...
                  | . | .
                  | . | .
              ------------------------------------ 0 В
                          | . | .
                          | . | .
                          ... ...
 
Как видите, варьируя точку включения, количество мощность, поступающая в лампочку, регулируется, и, следовательно, свет выход можно контролировать.

Преимущество тиристоров перед простыми переменными резисторами состоит в том, что они (в идеале) рассеивают очень мало энергии, поскольку они либо полностью включены, либо полностью выключены. Обычно тиристор вызывает падение напряжения на 1-1,5 В при прохождении через ток нагрузки.

Что такое тиристоры и симисторы

Выпрямитель с кремниевым управлением — это один из типов тиристеров, используемых в мощность, которую нужно контролировать, является однонаправленной. Симистор — тиристер используется там, где необходимо регулировать мощность переменного тока.

Оба типа обычно выключены, но могут срабатывать при слабом токе. Импульс на вход, называемый вентилем.После срабатывания они остаются включенными. пока ток, протекающий через основные клеммы устройства уходит в ноль.

И тиристоры, и симисторы представляют собой 4-х слойные структуры PNPN. Обычно SCR описывается по аналогии с парой перекрестно соединенные транзисторы — один NPN, а другой PNP.

 + ------ +
    +> ------------ + ЗАГРУЗИТЬ + ---------------- +
                   + ------ + |
                                           |
                                          E \ |
                                      PNP | --- + -------  ----- + --- | NPN
                                               | \ E
                                                 |
                                                 |
    -> ------------------------------------------ +
 
Если мы подключим положительную клемму источника питания, скажем, лампочку, и затем к эмиттеру транзистора PNP и его возврату к эмиттеру транзистора NPN, ток не будет течь до тех пор, пока пробой номинальное напряжение транзистора не превышается из-за отсутствия базы ток ни к чему.

Однако, если мы подадим ток на базу транзистора NPN (IG (+)), он включится и подаст ток на базу транзистора PNP, который включится, обеспечивая больший ток для транзистор NPN. Вся конструкция теперь находится во включенном состоянии и останется таким, даже если вход в базу NPN будет удален пока напряжение питания не упадет до 0, а ток нагрузки не упадет до 0.

Тот же сценарий верен, если мы изменим блок питания и воспользуемся IG (-) вход для триггера.

Симистор работает в основном аналогичным образом, но полярность Затвор может быть либо +, либо — в течение любого полупериода источника переменного тока. Обычно триггерные сигналы, используемые для запуска симисторов: короткие импульсы.

Физика лампы накаливания

Типичная лампа накаливания потребляет энергию и использует ее для нагрева нити накала. пока он не начнет излучать свет. В процессе около 10% энергия преобразуется в видимый свет. При первом включении лампы сопротивление холодной нити накала может быть в 29 раз ниже его теплостойкости.Эта характеристика хорош с точки зрения быстрого разогрева, но это означает, что даже в 20 раз больше установившийся ток будет потребляться в течение первых нескольких миллисекунд операции. Производители ламп приводят типичное значение сопротивления лампы в холодном состоянии 1/17 от рабочее сопротивление, хотя пусковые токи обычно только в десять раз больше рабочего тока, когда такой во внимание принимаются такие вещи, как сопротивление кабеля и питания. Полупроводники, проводка и предохранители диммера. должны проектироваться с учетом этого пускового тока.Характеристика пускового тока лампы накаливания (вольфрамовая нить) лампы чем-то похожи на всплеск характеристика типовых тиристоров, предназначенных для регулирования мощности, создания им неплохой матч. Типичный в десять раз устойчивый государственные рейтинги, которые применяются к обоим при холодном пуске, позволяют многим симисторам переключать лампы с номинальным током, близким к их собственным номинальным значениям в установившемся режиме.

Поскольку нить накала лампы имеет конечную массу, потребуется некоторое время. (в зависимости от размера лампы) для достижения рабочей температуры и дают полный световой поток.Эта задержка воспринимается как «отставание», и только как быстро можно уменьшить яркость освещения. В театральной применение эти проблемы уменьшаются с помощью предварительного нагрева (небольшой ток протекает через лампу, чтобы она оставалась теплой, когда она погашена).

Идеальная лампа будет производить 50% светового потока при 50% потребляемой мощности. К сожалению, лампы накаливания даже близко не к этому. Большинство требует в минимум 15% мощности, чтобы вообще включиться, а затем увеличить интенсивность с экспоненциальной скоростью.

Чтобы усложнить задачу, человеческий глаз воспринимает интенсивность света. как своего рода обратная логарифмическая кривая.Отношение значения контроля фазы (задержка включения симистора после пересечения нуля) и мощность, подаваемая на лампочка очень нелинейная. Чтобы обойти эти проблемы, большинство производители диммеров для театрального освещения используют запатентованные кривые интенсивности в их схемах управления, чтобы попытаться сделать выбранные интенсивность более точно соответствует воспринимаемой интенсивности.

Самая простая схема

Следующая схема основана на информации из раздела Часто задаваемые вопросы по ремонту: http: //www.repairfaq.org /

Это тип обычных диммеров, широко доступных на оборудовании. магазины и домашние центры. Схема является базовой моделью для света диммер на 120 В переменного тока. Эта базовая конструкция может работать с лампочками. в диапазоне мощности от 30 Вт до нескольких сотен Вт (в зависимости от конструкции).

 Черный o ----------------- + ------------ + ----------- +
                           | | |
                           | R1 \ |
                           | 220 К / <- + |
                           | \ | |
                           | | | |
                           | + - + |
                           | | |
                           | R2 / |
                       C1 _ | _ 47 К \ |
                  .047 мкФ --- / __ | __ Th2
                           | | _ \ / \ _ SC141B
                           | + --- |> | / | 200 В
                           | | | <| --- |
                           | C2 _ | _ D1 |
                           | .062 мкФ --- Diac |
                           | | |
     Красный o ----------------- + --- 1940 --- + ----------- +
                                 L1
                         40 T # 18, 2 слоя
                       Ферритовый сердечник 1/4 "x 1"
 
Назначение потенциометра P1 и конденсатора C2 в комбинации диак и симистора: просто чтобы задержать точку стрельбы диака от перехода через ноль.Чем больше сопротивление (P1 + R2), питающее конденсатор C2, тем больше времени требуется. чтобы напряжение на конденсаторе поднялось до точки, в которой диак D1 загорается включив симистор Th2. Конденсатор С1 и индуктор L1 сделать простой фильтр радиопомех. Без этого цепь будет генерировать довольно много помех, потому что срабатывание симистор в середине фазы переменного тока вызывает быстрорастущие скачки тока. Симистор Th2 может выдерживать 6 А постоянного тока при правильном охлаждении, поэтому схема сможет обрабатывать около 300-500 Вт мощности при небольшом радиатор установлен на Th2.Если Th2 не охлаждается, максимальная мощность рейтинг, вероятно, составляет около 150 Вт.

Список компонентов:

 C1 47 нФ 250 В
C2 62 нФ 100 В
R1 линейный потенциометр 220 кОм (с хорошей изоляцией)
R2 47 кОм 1 / 2Вт
D1 Diac (например BR100-03
Th2 SC141B или аналогичный (200 В, 6 А, Igt / lj <50 / <200 мА, корпус TO220)
L1 Самодельная катушка на 40 витков провода №18 зашита
    на двух слоях на ферритовом сердечнике 1/4 "x1"
 

Хотя диммер предназначен только для ламп накаливания или нагрева, эти как правило, будет работать до некоторой степени с универсальными двигателями, а также с люминесцентными лампы до 30–50% яркости.Долгосрочная надежность неизвестна для эти неподдерживаемые приложения.

Минимальный контур

Я также видел очень похожую схему диммера, размещенную на sci.electronics.design группа новостей однажды (отправленный Сэмом Голдвассером). Это тип обычных диммеров (например, замена стандартных настенные переключатели), широко доступные в хозяйственных магазинах и домашних центрах. В этой схеме используются немного другие значения компонентов, чем в предыдущей. и не имеет фильтрации радиопомех.Этот содержит минимальное количество компонентов для работы!

 Черный o -------------------------------- + -------- +
                                           | |
                                        | | |
                                     R1 \ | |
                                  185 К / <- + |
                                        \ v CW |
                                        | __ | __ Th2
                                        | _ \ / \ _ Q2008LT
                                        + --- |> | / |
                                        | | <| - '|
                                    C1 _ | _ Diac |
                                 .1 мкФ --- (часть |
                 S1 | Th2) |
    Черный o ------ / --------------------- + ----------- +
 
S1 является частью блока управления, в который входит R1. Reostat, R1, изменяет величину сопротивления в цепи триггера RC. Это позволяет регулировать угол открытия симистора почти во всем полная длина каждого полупериода формы волны переменного тока в линии электропередачи. Когда срабатывает в начале цикла, свет яркий; при срабатывании в конце цикла, свет приглушен.

Список компонентов:

 C1 100 нФ 100 В
R1 линейный потенциометр 185 кОм
Th2 Q2008LT (симистор 200V 8A со встроенным диаком в корпусе TO220)
 
Схема должна выдерживать нагрузку до 150 Вт без радиатор. Если для Th2 предусмотрен большой радиатор, схема должна теоретически сможет выдерживать нагрузки почти до 1 кВт, но я бы не пробуйте больше 800Вт.

Из-за каких-то неизбежных (по крайней мере, для этих дешевых диммеры) взаимодействие между нагрузкой и линией, есть некоторый гистерезис относительно настройки самого тусклого света: необходимо будет увеличить контролировать немного дальше точки, где он полностью выключается, чтобы получить свет чтобы вернуться снова.

Краткое описание схемы работы схемы:
Задержка от перехода через нуль сети до срабатывания триака генерируется с помощью цепь образована R1, C1 и диак. Регулируемое сопротивление резистора R1 регулирует скорость, с которой C1 заряжается от входящего питания. Выше сопротивление, дольше требуется C1 для зарядки до определенного напряжения. Когда напряжение на C1 достигает напряжения триггера (обычно около 30 В) диака диак начинает проводить, что разряжает заряд от C1 через диак до симистора, вызывающий это вызвать.В результате напряжение на C1 падает. до нуля вольт (очень близко к нему), и симистор начинает проводить. Электропроводность симистора заставляет мощность течь через цепь к нагрузка (лампочка). Напряжение на симисторе практически равно нулю (на практике около 1 В или меньше), поэтому конденсатор не получает заряжается, пока симистор проводит. Симистор работает до тех пор, пока через него проходит достаточный ток, в этом случае до следующего перехода сетевого напряжения через ноль. В этот момент работа снова начинается с зарядки C1.

Следующая схема представляет собой схему регулятора освещенности HELVAR 1 кВт. издается в журнале Bebek Electronics. Схема представляет собой довольно типичную схему диммера на основе TRIAC без каких-либо необычных особенностей. Схема запуска немного улучшена по сравнению с указанной выше схемой 120 В переменного тока. Эта схема предназначена только для работы с неиндуктивными нагрузками, такими как стандартные. лампочки. Схема предназначена для затемнения лампочек в диапазоне 50-1000Вт.

 o ----- ЛАМПА -------- + ------------ + - + ------ + --- + ----- --- +
                           | | | | | |
                           | P1 \ | P2 \ | |
                           | 500 К / <- + 1M / <- + |
                           | LIN \ \ |
                           | | | |
230V | + --------- + |
AC IN | | |
                           | R1 / |
                     C1 _ | _ 2k2 \ | A2
                   150 нФ --- / R2 __ | __ Th2
                    400V | | 6k8 _ \ / \ _ TIC226D
                           | + - / \ / \ / --- + --- |> | G / | A1
                           | | | | <| ---- |
                           | C2 _ | _ C3 _ | _ D1 |
                           | 150 нФ --- 33 нФ --- ER900 / |
                           | 400V | | BR100-03 |
                           | | | |
         o ---- ПРЕДОХРАНИТЕЛЬ --------- + --- 1940 --- + --------- + ------------ +
                                 L1
                               40.0,100 мкГн
 
Потенциометр P1 в этой цепи используется для управления настройкой диммера. Триммер P2 используется для установки диапазона затемнения (сколько света может быть затемненным максимально). Когда схема настроена, P2 должен быть отрегулирован так, чтобы тогда P1 находился в максимальном значении сопротивления (свет наиболее тусклый) просто полностью погасла лампочка. Эта регулировка обеспечивает плавное затемнение цепи диммера. от нуля до максимального значения. Если P2 настроен на предустановку слишком сильно затемненного положение, схема не тускнеет красиво от настройки выключения света или операция, когда P1 находится в максимальном значении, непредсказуема.Если вы настроили P2 на слишком низкое значение, вы просто не сможете затемнить лампочка полностью выключена (в некоторых случаях это может быть намеренное настройки, например, в театральном освещении, где используется предварительный нагрев).

Список компонентов:

 C1 150 нФ 400 В конденсатор (предпочтительно конденсатор номиналом X)
C2 150 нФ 400 В
C3 33 нФ 400 В
D1 ER900 или BR100-03 diac
P1 линейный потенциометр 500 кОм
P2 1 Триммер МОм
R1 2,2 кОм 1 / 2Вт
R2 6,8 кОм 1 / 2Вт
Симистор Th2 TIC226D (400 В, 8 А, Igt / lh <10 / <60 мА)
L1 Фильтрующая катушка 40-100 мкГн, 4.5 А или более допустимая нагрузка по току
ПРЕДОХРАНИТЕЛЬ 5А быстро
 

При создании схемы не забудьте поставить небольшой радиатор на симистор Th2, потому что без должного охлаждения он не выдерживает полный диммер мощностью 1 кВт (ток около 4,4А). Если вы этого не сделаете поставить радиатор, максимально доступная мощность из схемы около 300 Вт. Катушка L1 должна выдерживать постоянный ток. не менее 4,5 А и может иметь любое значение от 40 до 100 микрогенри. Для C1 я бы рекомендовал 150 нанофарад хорошего качества. конденсатор, предназначенный для работы от сети (возможно, конденсатор класса X), потому что конденсатор низкого качества не выдерживает такого рода места слишком долго.

Поскольку диммеры подключаются напрямую к электросети, необходимо убедиться, что что никакая часть цепи не может быть затронута во время ее работы. Этот Лучше всего установить схему диммера в небольшую пластиковую коробку. Не забудьте использовать потенциометр с пластиковым стержнем и установить его так, чтобы металлические части потенциометра не открываются для пользователя.

Не забудьте сделать печатную плату так, чтобы следов было достаточно допустимая нагрузка по току для максимальной нагрузки. Убедитесь, что вы иметь достаточное расстояние между дорожками печатной платы, чтобы выдерживать сетевое напряжение.Не забудьте установить предохранитель правильного размера для цепи. Щит предохранителя быть в действии (F), если вы хотите защитить TRIAC (не используйте типы FF или T). Убедитесь, что все компоненты могут выдерживать напряжения, с которыми они сталкиваются в цепи. Для работы 230 В используйте симистор не менее 400 В (лучше 600 В). Конденсатор, который подключается между сетевыми проводами цепи диммера должен быть конденсатор, который предназначен для такого рода приложений (они отмечены буквой X на дело).

Не забывайте использовать катушку такого типа, которая может выдерживать ток полной нагрузки без перегрев или насыщение.Используйте конденсаторы с достаточно высоким напряжением рейтинг. Убедитесь, что в TRIAC достаточно вентиляции, чтобы не перегреваться при полной нагрузке. По соображениям безопасности это очень хорошая идея. поставить защиту от перегрева в цепь регулятора освещенности, чтобы защитить цепь диммера от опасных перегрев из-за плохой вентиляции или небольшой перегрузки, потому что в таких случаях предохранитель не обеспечивает хорошей защиты.

Хотя свет можно полностью выключить с помощью симистора или тиристоры, эти компоненты обычно не считаются достаточно надежны, чтобы их можно было использовать в качестве выключателей света, удаляющих опасное напряжение в световой цепи при необходимости.В малых диммер обычно есть переключатель, который встроен в Потенциометр управления диммером. В больших системах затемнения переключение обычно выполняется с помощью отдельного контактора или реле.

Симисторы и тиристоры чувствительны к сверхтокам. При затемнении обычных лампочек короткое замыкание вызвано тем, что вполне вероятны ожоги нити. По этой причине диммеры должен иметь собственный предохранитель, который защищает его от сбоев в такая ситуация.

Тиристоры имеют определенную способность выдерживать перегрузки по току и предохранитель нужно подбирать так, чтобы он сгорел раньше тиристора. в ситуации перегрузки по току.Обычно это означает, что тиристор / симистор должен иметь текущий рейтинг в 2..5 раз больше, чем рейтинг предохранителя, чтобы быть уверенным, что предохранитель перегорит до тиристора / симистора. в случае короткого замыкания. Тип предохранителя также должен быть достаточно быстрым, чтобы сгореть в данном случае перед тиристором / симистором. В некоторых случаях может потребоваться использовать специальные предохранители для эффективной защиты компонентов.

Тиристор должен иметь достаточно высокий номинальный импульсный ток также для Нормальная операция.Например, при нормальном затемнении лампочки лампочка с холодной нитью включается на 90 градусов после переход через ноль (означает при максимальном пике линейного напряжения), пиковый ток может быть в 20 раз больше номинального тока лампы.

Современный тиристорный (симисторный или SCR) диммер имеет одну довольно жесткую недостаток его производительности в том, что он тускнеет на включение тока к нагрузке на полпути через каждую сеть цикл. Отрезание ведущей гладкой части от сети цикл вырабатывает ток с очень коротким временем включения, который генерирует как сетевые искажения, так и электромагнитные помехи.Дроссели включены в диммеры, чтобы замедлить быстрое включение (время нарастания) прерванный ток. Чем дольше время нарастания меньше электромагнитных помех и искажений в сети.

Включение симистора в середине фазы вызывает быстрые изменения напряжения и тока. Типичный тиристор / симистор начинает полностью проводить примерно через 1 микросекунду после срабатывания, поэтому текущее изменение работает очень быстро, если не ограничивается каким-либо образом. Эти быстрые напряжение и ток изменения вызывают высокочастотные помехи, идущие в сетевую проводку, если только есть подходящий фильтр радиопомех (RFI), встроенный в схема.Углы на осциллограмме эффективно состоят из 50/60 Гц плюс различное количество других частот, которые кратны 50/60 Гц. В некоторых случаях помехи доходят до Частоты 1..10МГц и даже выше. В проводка в вашем доме действует как антенна и, по сути, транслирует его в эфир. Дешевые диммеры плохого качества не имеют адекватной фильтрации и они легко вызывают множество радиопомех.

В схемах диммера обычно используются катушки, ограничивающие ограничить скорость нарастания тока до того значения, которое приведет к приемлемому EMI.Типичная фильтрация в диммеры вызывают время нарастания тока (ток возрастает с 10% до 90%) в диапазоне 30..50 микросекунд. Это дает приемлемые результаты в типичных применениях диммеров в домашних условиях. (обычно это ограничение выполняется с использованием катушки 40..100 мкГн).

Если диммеры используются в местах, где диммер представляет собой серьезную проблему для чувствительного звукового оборудования (театры, телестудии, рок-концерты и т. д.) было бы предпочтительнее более медленное время нарастания тока. Обычно текущий время нарастания световых диммеров, предназначенных для сценических применений, текущая скорость нарастания около 100..350 микросекунд. Если шум это большая проблема (телестудии и т. д.), даже более медленное время нарастания тока иногда спрашивают. Время нарастания тока до 1 миллисекунды может быть достигается с помощью специальных диммеров или подходящей дополнительной катушки, установленной последовательно с диммером.

Сама катушка обычно не решить всю проблему из-за собственной емкости индуктора: они обычно резонируют ниже 200 кГц и выглядят как конденсаторы для возмущения выше резонансной частоты. Вот почему должен быть также конденсаторами для подавления помех на более высоких частотах.

Если ваша схема диммера вызывает помехи, вы можете попытаться отфильтровать помех за счет параллельного добавления небольшого конденсатора (обычно от 22 до 47 нФ) цепи диммера как можно ближе к электронике внутри схема по возможности. Не забывайте использовать конденсатор, который рассчитан на это. вид применения (используйте конденсаторы, помеченные знаком X). Имейте в виду, что конденсатор фильтра и его проводка образуют резонансный контур с определенными резонансная частота (обычно около 3.6 МГц с конденсатором 0,1 мкФ). Конденсатор плохо работает как фильтр с частотами выше резонансная частота контура.

Все диммеры с фазовым регулированием являются нелинейными нагрузками. Нелинейная нагрузка - это нагрузка, в которой ток не пропорционален напряжению. Нелинейная нагрузка на системы диммирования вызвана тем, что ток включается только на часть сетевого цикла с помощью системы регулировки яркости с фазовым регулированием. Эта нелинейная нагрузка создает гармонические искажения в фидере обслуживания.

Гармоники - это токи, которые возникают на частоте, кратной частоте напряжения в линии электропередачи. В Европе, где частота сети составляет 50 Гц, Частота 2-й гармоники 100 Гц; третья гармоника - 150 Гц и так далее. В Северной Америке, где частота сети составляет 60 Гц, частота второй гармоники составляет 120 Гц; третья гармоника - 180 Гц и так далее.

Избыточные гармонические токи вызывают нагрев проводников и стальных сердечников трансформаторов и двигателей. Гармонические токи нечетного порядка (в частности, 3-я гармоника) складываются в нейтральный проводник трехфазных систем распределения электроэнергии.Гармонический ток 3-го порядка, присутствующий в нейтрали, представляет собой арифметическую сумму гармонического тока, присутствующего в трех фазных проводниках. (это также относится к 9-й, 15-й и т. д. гармоникам). Теоретически гармоники могут увеличить нейтральный ток в 3,0 раза по сравнению с током в фазном проводе. С типовой системой регулировки яркости с фазовым регулированием подключен к трехфазному питанию, гармоники обычно повышают нейтраль ток примерно в 1,37 раза больше фазного тока. Если провода не подходят для этого, может возникнуть перегрев нейтрального провода. или необъяснимые падения напряжения могут произойти в больших системах затемнения.

Иногда нагрев распределительного трансформатора может быть проблемой, потому что трансформаторы рассчитаны на неискаженные токи нагрузки 50 или 60 Гц. Когда токи нагрузки нелинейны и имеют значительную гармоническую составляющую, они вызывают значительно больший нагрев, чем тот же неискаженный ток. В сильно затемненной системе вы не сможете ультилировать больше, чем около 70% номинальной мощности трансформатора из-за гармоник индуцированный нагрев. Кроме того, трансформаторы используются для питания систем диммирования. подвергаются нагрузкам из-за пусковых токов холода лампы (может быть до 25 раз больше нормального тока).Пусковые токи и гармоники может резко сократить срок службы служебного трансформатора.

Устранение влияния гармонических токов в большом диммере системы обычно требуют увеличения сечения нейтральных проводов и снижения номинальных характеристик служебный трансформатор.

В обычном случае с диммером малой мощности вам не нужно много о гармониках и нагрузках трансформатора, потому что легкая нагрузка в несколько сотен ватт явно малая доля от полной нагрузки трансформатора.

У каждого хорошего диммера внутри есть дроссель фильтра. Эти дроссели помогают отфильтровывать электрические шумы, которые часто вызывают гудение. подбираться в звукосниматели и звукосниматели музыкальных инструментов. Чем медленнее нарастание тока, тем меньше шума улавливает звуковая система.

Дроссели также помогают устранить "пение лампы", которое может вызвать слышимый шум от осветительных приборов. Лампы с номинальной мощностью мощностью 300 Вт или более при затемнении имеют тенденцию к более или менее акустическому шуму. Если этот акустический шум является проблемой, его можно устранить, добавив серию катушка, которая ограничивает время нарастания тока примерно до 1 миллисекунды.

Обеспечивая эти функции фильтрации, сами дроссели может вызвать небольшой шум. Быстрые изменения тока в катушке могут сделать проводку катушки Материал сердечника легко вибрирует, что вызывает жужжание. Небольшое жужжание - это нормально для диммеров с фильтром. Если жужжание от диммера может быть проблемой, рекомендуется диммер размещен в том месте, где это гудение не будет проблемой.

Что касается «пения лампочки», лампочка состоит из ряда опор и, по сути, тонких мотков проволоки.Когда количество тока, протекающего резко изменения магнетизма изменение может быть намного сильнее, чем на простая синусоида. Следовательно, нити лампы будут стремиться чтобы больше вибрировать с диммером, разрушающим форму волны, и когда нити вибрируют относительно их опорных столбов, вы получит кайф. Если у вас гудение, это всегда стоит попробовать заменить лампочку другой марки. Некоторый лампы дешевых брендов имеют неадекватную опору для нити накала и просто переход на другой бренд может помочь.

Жужжание лампочек - обычно признак «дешевого» диммера. Диммеры в них должны быть фильтры. Задача фильтра - "закруглить" острые углы нарезанной волны, тем самым снижение электромагнитных помех и резкие скачки тока, которые могут вызвать жужжание. В дешевых диммерах экономят на производственные затраты за счет снижения затрат на фильтрацию, делая ее менее эффективным.

В системах затемнения очень высокой мощности проводка, идущая к освещению, также может вызвать жужжание. Быстрый ток заставляет электрическую проводку немного вибрировать бит, и если провод установлен так, чтобы вибрация могла передаваться на какой-то другой материал тогда было слышно гудение.Жужжание вызвало из-за вибрации проводки проблема только в очень большой мощности системы, такие как театральное освещение с несколькими киловаттными лампами, подключенными к тот же кабель. Диммеры с лучшими фильтрами могут уменьшить проблему, потому что фильтр замедляет изменение тока, поэтому провода производят меньше шума.

Почему при затемненном освещении иногда гудит и как это исправить?

Поскольку все диммеры обеспечивают мощность при настройках, отличных от полной яркости, нити внутри лампочки могут вибрировать при затемненном освещении.Эта вибрация нити вызывает гул. Чтобы заглушить прибор, небольшое изменение настройки яркости обычно устранить шум лампы. Самый эффективный способ приглушить светильник - заменить лампочку.

Как избежать жужжания, которое диммеры вызывают в моей звуковой системе?

Есть множество способов, которыми диммерный шум может попасть в аудиосистемы и это в основном метод проб и ошибок в определении того, что именно вызывает ваша проблема и, следовательно, как ее исправить. Принципиальные способы - либо резервное питание от сети. или наведены в ваше аудиооборудование или кабели.

То, что вы обычно слышите в аудиосистеме, синфазный шум на горячую и нейтраль, всплеск включения скр. Чем больше время нарастания тока в диммере, тем больше шума отправляется на сетевую разводку. Так хорошо фильтрованный диммер будет генерировать меньше проблем с шумом.

Уменьшите вероятность попадания в сеть, полностью отключив отдельно от источника питания от освещения, по возможности получить полное отдельная розетка (или розетки) для звука, откуда бы электричество плата забор есть.Если это невозможно, то изолирующий трансформатор останавливает довольно много шум на вторичной стороне (лучше с экраном между катушками). Так что поместите звуковую систему на изолирующий трансформатор и привяжите к земле (земля) проблем почти нет. Предполагается, что звуковая проводка правильно, особенно если экранирование выполнено хорошо и отсутствуют петли заземления.

Чтобы уменьшить вероятность наводок на аудиокабели, проложите все аудиокабели без уровня динамиков как симметричные линии (или, конечно, любой длины).Возможно, вам придется купить балансировочные трансформаторы, если ваш комплект уже не сбалансирован. Также держите их физически подальше от любых кабель освещения проходит как можно. Убедитесь, что ваша система у горячего есть какие-либо вредные контуры заземления. Убедитесь, что ни один из ваших аудиоустройств не находится рядом с диммерными стойками.

Теперь можно плавно приглушить свет?

Со многими дешевыми диммерами свет "включается", а не плавно гаснет. Эта проблема обычно связана с конструкцией диммера. электроника.Один метод, используемый в некоторых дешевых диммерах, позволяющий плавное затемнение - это установка другого потенциометра (триммера) через управляющий потенциометр. Этот подстроечный потенциометр настроен так, чтобы диммер работал плавно:

  • a) Установите «Контроль» на минимальный уровень освещенности.
  • б) Отрегулируйте «Триммер» на нити ТОЛЬКО «свечение»
  • в) Выключить диммер
  • г) Включите диммер, чтобы увидеть, «светятся» ли нити. ЕСЛИ нет ... установите триммер ... переходите к c)
Продолжайте до тех пор, пока на лампы не поступит минимальное напряжение / ток. (нити вообще не светятся).Когда все настроено правильно, цепь диммера сработает. красиво тускнеет от самых низких настроек до максимальной яркости.

Можно ли использовать эти бытовые диммеры в качестве диммеров сценического освещения?

Если вы хотите сделать стол с многоканальным освещением, вы можете иногда заводку, если такую ​​гниду можно построить из дешевых бытовых диммеров. К сожалению, большинство дешевых бытовых диммеров не подходят для сценического освещения. Ограничения в этом виде использования связаны с производительностью, номинальная мощность, надежность и помехи.

Обычно самый дешевый диммер не гаснет плавно с нуля, но внезапно включается примерно на 20%. Вы можете исчезнуть плавно, но как только они исчезнут, вам придется вернуться к 20%, чтобы они Ну же. Некоторые диммеры работают лучше других.

Самые дешевые бытовые диммеры обычно плохо фильтруются, поэтому помехи, вызванные встроенной многоканальной диммерной платой таким образом может легко вызвать жужжание звуковой системы.

Тогда во многих случаях номинальная мощность бытовых диммеров может быть проблема.Обычно бытовые диммеры имеют мощность мощность около 300 Вт, что недостаточно для любого мощного сценический свет мощностью 500 Вт.

Дешевые бытовые диммеры плохо сочетаются друг с другом. Это означает, что при этом настройки, лампы в одной цепи будут казаться в два раза ярче, чем по другой цепи.

Обычные диммеры предназначены только для уменьшения непрозрачных нагрузок, таких как лампочки и электрические обогреватели. Обычные диммеры не подходят для ослабления индуктивных нагрузок, таких как трансформаторы, люминесцентные лампы, неоновые лампы, галогенные лампы с трансформаторами и электродвигателями.Есть для этих приложений доступны специальные диммеры.

Если вы подключите индуктивную нагрузку к диммеру, диммер может не работать. работает должным образом (например, не затемняет эту загрузку должным образом) и даже могут быть повреждены скачками напряжения, вызванными индуктивная нагрузка при радикальном изменении тока. Еще одна проблема - фазовый сдвиг между напряжением и текущая причина индуктивностью. Если вы используете нормальный простой диммер, соединенный последовательно с проводом переходя к нагрузке, это приведет к тому, что цепь диммера не будет правильно работайте с высокоиндуктивными нагрузками.Специальные диммеры которые имеют отдельную управляющую электронику, подключенную к обоим живой и нейтральный провод, а затем симистор, который контролирует ток к нагрузке обычно намного лучше работают с индуктивными нагрузками.

Часто, когда индуктивные нагрузки вызывают проблемы с обычными диммерами, вы можете устранить указанные проблемы, исправив "балластную" нагрузку накаливания параллельно с индуктивной нагрузкой. Обычно 100 Вт достаточно для множество индуктивных нагрузок. Помните, что индикаторные нагрузки могут довольно сильно гудеть. особенно при затемнении, и трансформаторы могут нагреваться больше, потому что повышенного содержания гармоник в приходящей к ним мощности.

Диммер со встроенными трансформаторами

Полностью нагруженные галогенные трансформаторы обычно довольно хорошо тускнеют. Если вы планируете затемнить галогенные трансформаторы света, попробуйте только тусклые традиционные трансформаторы, потому что трансформатор с тороидальным сердечником не обычно тусклый хорошо. Большинство дешевых галогенных трансформаторов света относятся к этой категории так же, как трансформатор, например, в Пинспот-фары PAR36. Для такого трансформатора необходимо что ток после диммера остается симметричным, так что в трансформаторе отсутствует постоянная составляющая, которая может вызвать отключение трансформатора (и привести к перегрузке и окончательное разрушение трансформатора).Одни из самых дешевых диммеры могут быть не очень хороши по симметрии, но диммеры хорошего качества, предназначенные также для индуктивных грузы не должны иметь проблем симметрии.

При диммировании трансформаторов каким-либо образом сомнительно типа сделать диммер для индуктивных нагрузок, это хорошая идея установить плавкий предохранитель последовательно с первичной обмоткой трансформатора, чтобы он удар, когда трансфермер пытается получить слишком много энергии от линии. Это защитит трансформатор от перегрева, который может быть вызван из-за насыщения сердечника трансформатора (что может быть вызвано небольшим Смещение постоянного тока вызвано не очень хорошо работающим диммером).Правильный предохранитель убережет трансформаторы от перегорания.

В любом случае нормальные трансформаторы, питающие легкие нагрузки, не работают. диммируется с помощью диммера хорошего качества, который может работать как минимум некоторое количество индуктивной нагрузки обычно без особых проблем. В любом случае следует отметить, что когда трансформатор затемненный таким образом, он может нагреваться несколько больше, чем в обычном работа (полная мощность без затемнения). Другая вещь стоит упомянуть, что когда трансформатор затемнен, обычно он производит заметно более слышимый шум, чем при нормальной работе (шум зависит от используемого трансформатора).

Если в вашей галогенной системе освещения используется электронный трансформатор тогда вы должны очень внимательно проверить, можно ли затемнить. Некоторые электронные трансформаторы сделаны регулируемыми и работают хорошо сочетается с традиционными диммерами. Те, кого не хотят диммер может быть поврежден диммером и даже повредить ваш диммер.

Затемнение люминесцентных ламп

Если вы попытаетесь тусклый флуоресцентный свет на обычном диммере, вам нужно включить диммер полный, чтобы свет включился, и вы можете только приглушить его только до 30-50% яркости.Для чего-либо меньшего, чем это, вы будете нужны специальные диммеры и специальные люминесцентные светильники.

Электродвигатели затемняющие

Типичные диммерные блоки будут подавать питание на двигатели и заставлять их работать, но диммеры не предназначены для этого. Некоторые диммеры могут быть повреждены при подключении индуктивные нагрузки к ним. И когда симистор выходит из строя, полуволновой его вынимает мотор тоже. Хорошая идея для защиты мотора от сбоев состоит в том, чтобы использовать плавкий предохранитель, рассчитанный на нагрузку двигателя последовательно с двигателем. Этот предохранитель, вероятно, сгорит до того, как двигатель будет поврежден, если он имеет размер правильно.

Диммеры, рассчитанные на индуктивные нагрузки, работают достаточно хорошо с универсальными двигателями или двигателями переменного / постоянного тока. щетки и используются в электродрелях, пылесосах, электрические газонокосилки и т. д. двигатели правильный диммер работает хорошо.

Моторы, используемые в вентиляторах электроники, вполне вероятно асинхронный двигатель, который не очень хорошо управляем. Эти моторы в большинстве вентиляторов квадратичные. устройств, большая часть регулятора скорости будет на конце шкалы, но это будет правдой с любым контролем.Диммеры для потолка. управление скоростью вентилятора работает довольно хорошо, а также немного нормального света диммеры, рассчитанные на индуктивные нагрузки.

Если диммер не удовлетворителен, помните, что электродвигатели обычно лучше всего управляются маленьким вариаком, трансформатор, реостат, серийные лампочки и т. д., которые не портят синусоидальная форма волны. Даже этот метод не помогает контролировать синхронный двигатель, который всегда пытается вращаться одновременно скорость солнечной энергии от сети.

Электронные нагрузки, такие как импульсные источники питания, обычно не предназначен для затемнения. Если взять для примера типичный переключая блок питания на нормальный диммер, пытаясь это может привести к повреждению диммера и / или сам блок питания. Блок питания может быть поврежден из-за он никогда не предназначался для работы с сигналами других форм чем довольно много синусоиды (другие формы волны могут вызвать ток шипы). Диммер может быть поврежден сильным скачком тока. импульсный источник питания принимает при запуске симистора на диммере проводить в середине фазы.

«Электронные трансформаторы», используемые для питания галогенных ламп 12 В, которые очень модно для внутреннего освещения. Эти "трансформеры" маленькие переключение источников питания, которые просто прерывают сеть на частоте около 40 кГц, поэтому небольшой ферритовый сердечник может использоваться для изоляции и понижения напряжения (до 12 В RMS).

Как правило, не рекомендуется пытаться подключать такой тип. от «трансформатора» до обычного диммера, если только это не «трансформатор» - это тип, который предназначен для работы правильно с обычным диммером (в этом случае Дело в том, что сказано в инструкции «трансформера» или в чехле).Например, доступны небольшие трансформаторы. которые говорят "диммируется обычным диммером", так что те можно без проблем использовать с обычными диммерами.

Другими «электронными трансформаторами» я бы не стал тускнеть. диммер с нормальным управлением фазой, чтобы избежать возможных повреждение оборудования. Довольно много трансформаторов для электроники (но не все) которые не могут быть затемнены обычным светорегулятором, могут быть затемнены с диммерами обращенно-фазового типа на транзисторной основе. у меня есть читал истории успеха по этому поводу, но сам никогда не пробовал этот метод.Если вы планируете использовать этот метод, то лучше всего убедитесь, что электронные трансформаторы у вас хорошо тусклые и у вас есть для них подходящий диммер.

Некоторые из более дорогих «трансформеров» имеют очень аккуратный также функции диммера, управляемые внешними элементами управления, поэтому с нет необходимости в каком-либо внешнем диммере (только элементы управления).

Основной принцип работы диммера такой же, как и у диммеров, описанных выше. Единственная разница в том, как контролируется димер.Руш контролирует осуществляется с помощью специальной управляющей ИС и сенсорной металлической пластины. Диммер обычно имеет металлическую пластину, которая подключена к цепи. через резистор высокого номинала (> 1 МОм). Ваше тело немного похоже на антенна и передает сигнал сети 50 Гц (или 60 Гц в зависимости от страны) в схему. Сигнал переменного тока подается на формирователь цепь (преобразованная в прямоугольную форму), а затем обычно в диммер IC.

Типичный сенсорный диммер состоит из следующих схемных частей:

  • Специальная схема синхронизации, которая определяет, был ли контакт на сенсорной панели длинным или коротким.Во время работы кратковременное прикосновение пальцами к сенсорной пластине (50–400 мс) включает или выключает свет в зависимости от его предыдущего состояния.
  • Схема памяти, которая хранит уровень силы света.
  • Схема, генерирующая импульсы, необходимые для изменения интенсивности света
Сенсорные диммеры, которые обычно управляют TRIAC в диапазоне проводимости от 45 ° C до 152 ° C. полупериода сети, в то время как ИС потребляет энергию от оставшейся мощности до 180 ° C полупериода.

Siemens - одна из компаний, поставляющих эти микросхемы (например, SLB-0586). Сама ИС будет работать по-разному в зависимости от того, как долго вы прикасаетесь тарелка для.

Использование диммеров освещения фазовый контроль - вы включаете в точке на кривой напряжения питания после перехода через нуль, так что общая энергия, подводимая к лампе, равна уменьшенный. Время между переходом через ноль и переключением регулируется внешний интерфейс управления, который чаще всего представляет собой управляющее напряжение 0-10 В постоянного тока или цифровой интерфейс DMX512.

Диммер простой, управляемый напряжением

 230V AC o --- ПРЕДОХРАНИТЕЛЬ ---- ЛАМПА -------------- + ----------- + ---------- ----- +
  ВХОД 2А | | |
                                        \ R2 | |
                                        / 2.2K | |
                    R1 \ | R4 |
                   2,2 кОм / | 220 Ом /
              + o - / \ / \ ------ + | | 1Вт \
         КОНТРОЛЬ __ | _ ----> / R3 | /
         ИНДИКАТОР НАПРЯЖЕНИЯ _ \ / _ ----> \ LDR | |
                             | / __ | __ Th2 |
              - о ------------ + | _ \ / \ _ BTA04 / 600T |
                                        + --- |> | / | |
                                        | | <| - '| |
                                    C1 _ | _ Diac | C2 _ | _
                                100 нФ --- | 100 нФ ---
                                        | | 250VAC |
 НЕЙТРАЛЬНЫЙ o ----------------------------- + ----------- + ------ --------- +
 
Эта схема может управлять нагрузкой до 2 А (460 ВА).Схема представляет собой обычную схему регулятора яркости света, но потенциометр заменен резистором LDR, который изменяет его сопротивление в зависимости от уровня освещенности. В этой цепи светодиод горит от управления. Источник напряжения используется для освещения LDR светом переменной интенсивности, поэтому вы должны убедиться, что LDR не получает свет от других источников.

Эта схема в основном очень проста и не очень чувствительна к тому, что такое LDR. используется как R2. Недостатком этой схемы является то, что управление не очень линейный, и различные диммеры, построенные на этой схеме, могут иметь довольно разные характеристики (в основном в зависимости от светодиода и LDR характеристики).Управляющее напряжение оптически изолировано от цепь диммера подключена к сети. Если вам нужно средство безопасности затем не забудьте, что между светодиодом и LDR должно быть достаточно расстояния, или используйте прозрачный изолятор между ними, чтобы гарантировать хорошую электрическую изоляцию. Если чувствительность диммера не подходит для схемы, описанной выше, затем вы можете отрегулировать значение R1, чтобы получить диапазон управляющего напряжения, который вы хочу.

Эта схема является частью опубликованной схемы автоматического регулятора освещенности. в журнале Elektor Electronics Magazine, июль / август 1998 года, страницы 75-76.

Профессиональные диммеры, управляемые напряжением

Диммеры с дистанционным управлением в театральных и архитектурных приложения обычно используют управляющий сигнал 0-10 В для управления яркостью лампы. В этом случае 0 В означает, что лампа горит, а сигнал 10 В означает, что лампа в полностью на. Напряжение между этими значениями регулирует фазу, когда TRIAC будет Пожар. Вот типичная схема цепи управления:

 Компаратор
                          
                            | \ Резистор
  Вход 0-10 В> ------------- | + \
                            | > ----- / \ / \ / \ ------ +
                        + --- | - / |
                        | | / оптопара к цепи TRIAC
                        | |
                  Сигнал рампы Земля
                переходит с 10 В на 0 В
              за один полупериод от сети
          (10 мс при частоте сети 50 Гц)

 
Схема работает так, что выход компаратора низкий, когда входное напряжение выше. чем линейное напряжение.Когда напряжение линейного сигнала становится ниже входного напряжения выход компаратора становится высоким, что вызывает протекание тока через резистор на оптопару, которая вызывает подключение симистора. Потому что сигнал рампы начинается при каждом переходе через ноль с 10 В и линейно переходит к 0 В за время одного полупериода входное напряжение контролирует время срабатывания симистора после каждого переход через ноль (так что напряжение управляет фазой зажигания. Необходимая линейная рампа сигнал может генерироваться схемой, которая разряжает конденсатор при постоянном токе и быстро заряжайте его при каждом переходе сетевого напряжения через ноль.

Вы можете использовать свою собственную схему для запуска TRIAC или вы можете использовать готовое полупроводниковое реле для этого (поставляется в компактном корпусе и обеспечивает оптоизоляцию в одном корпусе с TRIAC). Если вы планируете использовать готовое твердотельное реле вам понадобится SSR БЕЗ переключения через ноль. Вам нужен индуктор последовательно с переключающим элементом (SSR или симистор). для предотвращения проблем с ди / дт и помогает сократить выброс высокочастотного излучения. шум. Значения обычно варьируются от 40 мкГн до 6 мГн: они обычно указаны в время нарастания фронта включения.Типичные диммеры домашнего света используйте катушку 40..100 мкГн, что дает время нарастания 30..50 микросекунд. Чем больше значение катушки, тем больше время нарастания. Обратите внимание, что приближение времени нарастания только грубое, потому что используемые индукторы нелинейны: индуктивность зависит от тока нагрузки.

Схема запуска TRIAC с оптопарой может быть, например, построена с использованием Оптиколог MOC3020 и некоторые другие компоненты. Вот один пример схемы (часть схемы диммера из книги схем Elektor Electronics 302):

 R1 R2
     180 1K
+ --- / \ / \ / \ ---------- + + ---- / \ / \ / ------------- + ----- ------- + -----------> 230 В
                   1 | | 6 | | Горячий
                   + ===== + IC1 | MT1 |
                   | MOC | TRIAC + - + |
                   | 3020 | Драйвер G | | ТРИАК |
                   + ===== + / | | TIC226D |
                   2 | | 4 / + - + |
+ ------------------- + | | | MT2 |
                        + ------------------- + | |
                                            | | |
                                            \ | |
                                      R4 / | | C1
                                      1К \ | --- 100 нФ
                                            / | --- 400 В
                                            | | |
                                            | ) |
                                            | (L1 |
                                            | ) 50..100 |
                                            | (uH |
                                            | | | Нейтральный
                                            + - + ------------ + ---- o o -> 230 В
                                                                  нагрузка
 

В большинстве профессиональных диммеров с подсветкой используются твердотельные реле. У них больше в их, чем вы ожидаете, обычно включая оптоизоляцию вход управления.Точное содержание является коммерческой тайной, но работа версии с управлением напряжением очень похожа на идея описана выше.

Многие профессиональные диммеры имеют также дополнительные настройки. доступны, чтобы они лучше работали в своей операционной среде. Одна из типичных настроек - это предварительный нагрев. Когда используется предварительный нагрев, (регулируемый) ток всегда пропускается, думала накануне лампочки световой канал отключается на световом пульте. Этот ток предварительного нагрева сохраняет нити лампы в тепле (но недостаточно, чтобы давать значительный световой поток) так что скачок тока при повторном включении света перерезанный.Этот уменьшенный пик тока увеличивает срок службы лампочек.

Еще одна регулировка, доступная в некоторых диммерах, - это установка скорости отклика. Скорость срабатывания диммера - это время, необходимое для срабатывания диммера. outptu, чтобы выйти на новый уровень после получения новой настройки уровня инструкция с пульта управления. Это время обычно измеряется в миллисекундах. Типичные скорости отклика, доступные для диммеров, находятся в диапазоне 30..500 миллисекунд. Высокая скорость отклика полезна при создании световых эффектов и концертное освещение.В студии свет обычно не нужно менять очень быстро, так что это может быть неплохо, если диммер медленно выходит из старого установка на новое значение. Более низкая скорость отклика благотворно влияет на срок службы лампы, так как удар от холодных нитей будет уменьшен, поскольку период времени требуется для линейного увеличения, затем увеличивается до полной яркости.

Некоторые диммеры также имеют настройку для регулировки управляющего напряжения. диапазон. Контроль 0-10 В является наиболее распространенным способом контроля небольших диммерных систем, но были и другие уровни напряжения в использовании.Если диммер имеет регулировку диапазона напряжений, его можно настроить для правильной работы с множеством различных элементов управления освещением столы.

Самая простая форма управления состоит в том, что напряжение напрямую регулирует фаза, когда симистор противоречит. Это работает, но не лучший отклик управляющего потенциометра на модуль димера. По этой причине разные производители разработали множество различных кривые отклика от управляющего напряжения до выхода диммера. Вот некоторые из наиболее распространенных:

  • Линейный: выходная фаза линейно зависит от входа (наибольшее изменение уровня освещенности между 30% и 70% настройками)
  • Квадрат: выходная мощность изменяется линейно с входной (линейная зависимость квадратичного закона стандартизирована Обществом инженеров освещения США).При установке 50% вы увидите уровень освещения около 50% от максимального.
  • S-образная кривая: измененная форма квадрата с большим контролем в центре диапазона
  • Истинная мощность: выходная мощность изменяется линейно с входным напряжением, так что лампа получает 50% своей номинальной мощности при настройке 50% (используется больше при промышленном управлении, чем при затемнении света)
  • Экспоненциальное нарастание: световой поток наиболее сильно изменяется в диапазоне регулирования от 70% до 100%.
  • Реле: выход переключается на полную мощность, когда входное напряжение превышает 25% от полного управляющего напряжения (с некоторым оборудованием предел составляет 50%)
В настоящее время некоторые продвинутые коммерческие диммеры поддерживают многие из них. кривые отклика управляющего напряжения, чтобы пользователь мог настроить димер для использования режим, наиболее удобный для пользователя в конкретном заявление.

Контроль фазы с помощью микропроцессора

Если вам нужно цифровое управление диммером вы можете использовать простой микроконтроллер для управления фазой. Микроконтроллер должен сначала прочитать значение настройки диммера через некоторый интерфейс (коммерческие цифровые диммеры используют интерфейс DMX512). обычно контрольное значение - это 8-битное число, где 0 означает свет выключен и 255 этот индикатор горит полностью.

Микроконтроллер может легко сгенерировать необходимый триггер. сигнал, используя следующий алгоритм:

  • Преобразование значения освещенности в число программных петель
  • Сначала дождитесь пересечения нуля
  • Запустить программный цикл, который ждет необходимое время, пока не наступит время срабатывания TRIAC.
  • Отправить импульс в схему TRIAC, чтобы запустить TRIAC для проведения
Программный цикл - довольно простой метод и полезен, если вы знаете, сколько времени он занимает. для выполнения каждой команды микропроцессора.Другая возможность - использовать таймеры микроконтроллера:
  • Вы можете генерировать прерывание при каждом переходе через ноль и при каждом отсчете таймера.
  • При каждом пересечении нуля микроконтроллер загружает значение задержки в таймер и начинает считать.
  • По истечении времени счетчика генерируется прерывание. Процедура прерывания таймера посылает триггерный импульс в схему TRIAC.

Управление обратной фазой - это новый способ уменьшения яркости света. Идея управления обращенной фазой состоит в том, чтобы включить, а затем переключить компонент проводить в каждой точке пересечения нуля и выключать на регулируемой положение в середине фазы переменного тока.Время точки выключения затем контролирует мощность нагрузки. Форма волны точно обратная из них используется в традиционных диммерах.

 ... ...
                 . | . |
                . | . |
              ------------------------------------ 0 В
                        . | . |
                         . | . |
                          ......
 
Потому что переключающий компонент должен быть выключен посередине фазы переменного тока традиционные тиристоры и симисторы не являются подходящие компоненты. Возможные компоненты для такого рода управляющими будут транзисторы, полевые транзисторы, IGBT и тиристоры GTO. Силовые полевые МОП-транзисторы - вполне подходящие компоненты для этого и они использовались в некоторых схемах диммера.

Обратный фазовый контроль имеет ряд преимуществ перед традиционным. диммеры во многих диммерных приложениях. Производители диммеров с инверсной фазой рекламируют свою продукцию быть более эффективным и менее шумным.Правильное управление электроники можно построить диммер с обратной фазой без любые магнитные поля или вибрации, вызванные ими.

Поскольку точка включения всегда точна в нулевой фазе, нет сильных скачков тока и электромагнитных помех, вызванных включением. Используя силовые полевые МОП-транзисторы, это можно сделать скорость выключения относительно слотом для достижения тихие операции с точки зрения электромагнитных помех и акустических или шум накаливания лампы накаливания.

Один из старых подходов к затемнению света - сделать это с помощью переменный трансформатор (Variac или аналогичная марка) в качестве диммера.Некоторые из них сделаны специально для этого применение - поместятся в стеновой короб вдвое большего размера (может, даже в одинарный настенный ящик, если вы приобретете маленький) и выдержит несколько сто ватт. Они тяжелые и механически «жесткие» (по сравнению с симисторный диммер) и недешево - но они выдают хорошие, чистые 60 Гц синусоида (или очень близко к ней) при всех напряжениях, и не добавляйте переключение шум.

Нулевое перекрестное переключение минимизирует шум при переключении и затемнение. К сожалению, этот подход не очень практичен. для затемнения ламп.При частоте сети 60 Гц, вы были бы ограничены включением лампы и выключается с дискретными интервалами 120 Гц. Вы легко получите довольно неприятное мерцание 15-20 Гц, если диммер-драйвер не может своего рода дизеринг для расширения спектра мерцания. Я ни разу видел, как используется такой диммер.

В некоторых случаях один диод может затемнить лампочку при подключении. последовательно с лампой. Тогда диод пропускает только положительный или отрицательная половина сетевого напряжения на лампочку.Если поставить переключатель параллельно с диодом вы получаете диммер с двумя настройки: полный и затемненный. Диод действительно будет работать на малых нагрузки, но при больших нагрузках составляющая постоянного тока этот диод вызывает не подходит для распределительных трансформаторов в электрическая система распределения (заставит их нагреваться больше чем при нормальном использовании).

ПРИМЕЧАНИЕ. Следующая информация взята из обсуждения. из обсуждения в группе новостей sci.engr.electrical.compliance в феврале-марте 2000 г.Факты не проверены никакими стандартными документами, но я подозреваю, что информация верна, потому что большинство авторов статей, в которых эксперты на поле (например, Джон Вудгейт) и информации имеет смысл для меня.

Гармоники

Гармоники сети обычно проверяются от частоты сети до частоты 2 кГц. (2,4 кГц в странах с частотой 60 Гц). Диммеры с фазовым управлением мощностью до 1 кВт не нуждаются в проверке на гармоники. Нет смысла, потому что гармоники очень предсказуемы и дизайнер ничего не может сделать, чтобы уменьшить их.

Профессиональные (согласно определению в IEC / EN61000-3-2) диммеры от 1 кВт до 3680 Вт тоже не подлежат ограничениям.

Диммеры мощностью более 3680 Вт, все профессиональные, подпадают под будущее. IEC / EN61000-3-12, и все еще обсуждается, нужно ли иметь ограничение Rsce (как определено в IEC61000-3-4) или нет.

Кондуктивные выбросы

Диммеры должны соответствовать стандартам кондуктивного излучения. Кондуктивные выбросы начинаются в 9 кГц для некоторых продуктов и для диммеров применимый стандарт для это CISPR15 / EN55015.Этот стандарт применим к освещению. оборудование и аксессуары для светильника (например, диммер).

В стандарте CISPR15 / EN55015 (который сейчас применяется, а не CISPR14 / EN55014). Диммеры для домашнего использования должны соответствовать ограничениям класса B, но класс A должен подходить для профессиональных диммеров. Кондуктивные излучения в основном представляют собой гармоники и могут существовать до в мегагерцевую частотную область.

Соблюдать ограничения на кондуктивные излучения не так просто, особенно для профессиональные диммеры.Дроссель вряд ли помогает, потому что типичный фильтрация резонирует с частотой около 100 кГц (выше для маломощных бытовых диммеров). Выше этих частот катушка не подавляет высокочастотные гармоники. Это означает, что часто необходимо опрыскивать довольно большие (до 1 мкФ) конденсаторы вокруг схемы для уменьшения выбросы. В профессиональных диммерах для этого требуется, чтобы индуктивность проводку свести к минимуму, иначе заглушки и проводка индуктивности резонируют, и выбросы повышаются, а не снижаются.

Многие производители профессиональных диммеров заземляют тиристоры. раковина, эффективно вводящая радиочастотный шум в заземляющий провод. Это уменьшит излучаемые излучения и могут быть соображения безопасности сделать это. Обратной стороной ВЧ (гармоник), связанных с заземляющий провод - это то, что в некоторых случаях индуктивность заземляющего провода настолько высока, что корпус прибора несет заметное напряжение.


Томи Энгдал <[email protected]>
Напряжение

- В аэропортах последовательно соединены лампы?

Лампы накаливания

серии

непосредственно - большая беда.

Это вообще не сработает. Вам понадобится достаточно высокое напряжение, чтобы обслуживать множество источников света на большом расстоянии. Это высокое напряжение может вызвать разрушительную дугу при перегорании лампы! Когда ~ 5000 вольт опускаются вниз по опорным проводам нити, через основание и в розетку. Нетрудно найти перегоревшую лампочку; это тот, который горит!

Аэропорты используют трансформаторную петлю

То, что последовательно, представляет собой цепочку трансформаторов - по одному на каждую точку освещения.Это решает указанные выше проблемы. Обеспечивает изоляцию от высокого напряжения контура; трансформатор находится внутри высоковольтного ящика, от которого у бригады замены лампы даже нет ключа. Напряжения в патронах лампы разумные и могут быть даже изолированы от земли. Если лампа перегорит, это мало повлияет на контур трансформатора.

Изменяя ток в контуре трансформатора, они могут в равной мере увеличивать яркость и затемнять все огни взлетно-посадочной полосы - важная особенность огней взлетно-посадочной полосы.

Кстати, городское уличное освещение использовало такой же прием. Если вы слышали о ненадежном уличном освещении устаревшей серии в Детройте, , то есть об этом - «ненадежной» частью было то, что трансформаторы стояли внизу уличного фонаря, и мошенники продолжали воровать их ради меди.

Светодиоды для освещения взлетно-посадочной полосы

Да, снижение напряжения каждой лампы до 3 вольт может соблазнить человека просто запустить несколько светодиодных огней взлетно-посадочной полосы последовательно.Я думаю, это плохая идея. Во-первых, транспортировка такого низкого напряжения на большие расстояния составляет чрезвычайно с потерями и потребует толстых алюминиевых проводов, а не № 8 или № 6, которые они используют для аэропортов. Во-вторых, применяемый в настоящее время трансформаторный метод проверен и легко адаптируется для светодиодов.

Помните, они серийные трансформаторы. Если бы у вас был светодиод, потребляющий 1/10 мощности, было бы легко заменить трансформатор. Этот конкретный трансформатор будет потреблять 1/10 мощности, а поскольку ток в последовательном контуре постоянный, он упадет на 1/10 напряжения.Вы можете буквально заменить лампы накаливания на светодиоды по одному. - напряжение системного контура будет немного падать для каждого из них. В конце концов, вы, вероятно, выйдете за рамки диапазона поставки оборудования; он не сможет работать при таком низком напряжении. Вы можете добавить фиктивный груз до завершения проекта, а затем перейти на соответствующее вспомогательное оборудование. Значит, нет необходимости отключать освещение взлетно-посадочной полосы; гаснет только одна лампа .

Последовательное включение ламп накаливания вызывает серьезные проблемы

Не в последнюю очередь, при последовательном подключении лампы патрон должен быть изолирован для максимального напряжения в системе.Это делает замену ламп опасной, и, честно говоря, даже найти неисправную лампу - это охота за ошибками.

Неправда, когда речь идет о лампах накаливания, требующих параллельного включения (режим постоянного напряжения). Фактически, лампы накаливания ведут себя несколько грубо, когда их приводят в действие постоянным напряжением; они имеют пусковой ток , что также серьезно сказывается на сроке службы лампы. Лампы накаливания лучше ведут себя при постоянном токе. Нет броска; они просто нагреваются чуть медленнее.

Возможно, вы слышали о титанических усилиях Эдисона «попробовать все», чтобы найти жизнеспособную нить.Большая часть проблемы заключалась в том, чтобы найти нить накала , которая сама по себе регулировала , т.е. была достаточно линейной сама по себе. Эдисон не мог использовать трансформатор постоянного тока , потому что ему приходилось работать на постоянном токе - использование балласта привело бы к войне с Теслой!

Между тем, Тесла только что предположил, что любую лампу нужно будет приводить в действие в режиме постоянного тока, и на основе этого Тесла разработал герметичное дуговое освещение, такое как неоновое и флуоресцентное.Этот материал не омичен и действует как короткое замыкание, поэтому вам нужно его балластировать. Легко справиться с питанием от сети переменного тока!

Таким образом, последовательное подключение лампы накаливания было бы вполне разумным, если бы вы управляли цепью постоянным током. Конечно, лампочка должна иметь возможность погасить дугу , которая загорается, когда лампа перегорает, а максимальное напряжение трансформатора пытается перепрыгнуть через мертвую лампочку.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *