Схема управления тиристором: Схема управления симистором. Включение тиристора схема включения тиристора

Содержание

Системы управления преобразователями на тиристорах

Страница 11 из 14

Основные требования к системам управления тиристорами.

Управляемый кремниевый вентиль — тиристор включается, если анод имеет более высокий потенциал, чем катод, на управляющий электрод подан импульс напряжения положительной полярности и замкнута цепь нагрузки*. Надежное включение тиристоров в схемах преобразователей переменного тока происходит в том случае, если ток и напряжение управления соответствуют входным характеристикам применяемых вентилей.

*Здесь имеется в виду триодный тиристор.
Открывание тиристоров в многофазных управляемых схемах выпрямления, например в трехфазной нулевой схеме по рис. 24при непрерывном токе нагрузки происходит 1 раз в каждый положительный полупериод анодного напряжения. Изменением фазы переднего фронта управляющего импульса относительно переменного анодного напряжения можно осуществить регулирование выходного напряжения преобразователя.
Система управления (СУ) тиристорным преобразователем (ТП) должна выполнять следующие задачи:

создавать синхронизированную с напряжением питающей сети т -фазную систему импульсов управления, каждый из которых способен включить любой тиристор, применяемый в ТП;
позволять сдвигать по фазе импульсы управления относительно анодного напряжения тиристоров. 300 А, то напряжение на выходе устройства управления должно быть не более 8—12 В. Это свойство тиристоров позволяет применять дпя систем управления маломощные полупроводниковые элементы (транзисторы, диоды и др.), малогабаритные резисторы и конденсаторы, а также интегральные полупроводниковые микросхемы, содержащие большое число активных элементов (транзисторов, диодов, стабилитронов) и пассивных элементов (резисторов, конденсаторов, катушек индуктивности).
Недопустимо подавать на управляющий электрод тиристоров отрицательное напряжение более 0,5—1 В. Наличие отрицательного напряжения на УЭ в обратную полуволну анодного напряжения может привести к увеличению /обр тиристора и выходу его из строя.
Для четкого отпирания тиристоров и надежной работы преобразователя во всех режимах необходимы импульсы отпирающего тока с крутым передним фронтом длительностью около 1 мкс и продолжительностью (шириной) около 10-15° для обеспечения нарастания тока через тиристор до значения тока удержания.

Для управления тиристорами предпочтительным является применение «узких» отпирающих импульсов для ограничения потерь мощности на управляющем переходе вентиля, а также для уменьшения объема и массы импульсных трансформаторов системы управления.
Кроме требований, определяемых общими свойствами тиристоров, от систем управления требуется:
обеспечение относительной симметрии управляющих импульсов, подаваемых на тиристоры различных фаз ТП, с точностью 1—2° во всем диапазоне фазового управления для предотвращения неравномерной загрузки фаз преобразователя током;
обеспечение необходимого диапазона изменения угла управления а для регулирования напряжения на нагрузке от нуля до максимального значения. Это требование определяет диапазон изменения фазы отпирающих импульсов при непрерывном токе в нагрузке в пределах 0-90° для нереверсивных преобразователей и 0—160-165° для реверсивных.

Основные узлы систем управления.

В настоящее время разработано большое количество систем управления тиристорами, число которых непрерывно возрастает. Это обусловлено широким развитием силовой полупроводниковой техники и постоянным расширением областей ее применения.
Современные системы управления тиристорными преобразователями выполняются на основе полупроводниковых и магнитных элементов. С развитием микроэлектроники широкое применение в СУ находят различные типы гибридных и интегральных полупроводниковых схем. В качестве магнитных элементов преимущественно используются импульсные трансформаторы, применяемые для развязки цепей системы управления и силовой части выпрямителя.

Замена отдельных полупроводниковых элементов (транзисторов, диодов, стабилитронов и др.) интегральными схемами (ИС) позволяет получить существенный технико-экономический эффект: улучшить технические характеристики и повысить надежность тиристорных преобразователей, унифицировать отдельные функциональные узлы, уменьшить массу и габариты СУ.
По способу обработки сигналов ИС делятся на аналоговые, в которых входной и выходной сигналы связаны непрерывной функцией, и цифровые, в которых входной и выходной сигналы являются дискретными величинами.

По используемым методам управления ТП можно выделить группу СУ с импульсно-фазовым управлением. В этих системах осуществляется сдвиг управляющих импульсов по фазе относительно напряжения питания тиристоров. Как правило, такие системы состоят из следующих основных узлов: входного устройства (ВУ), фазосдвигающего устройства (ФУ), формирователя отпирающих импульсов (ФИ) и оконечного (выходного) узла каналов управления.
Входные устройства предназначаются для формирования различной формы напряжений, синхронизированных с переменным напряжением 1/2ф. подаваемым на тиристоры. Относительно системы напряжений ВУ производится формирование отпирающих импульсов и распределение их по каналам управления тиристорами соответственно подключению их к фазам силового трансформатора.
Наиболее распространенным входным устройством является многообмоточный трансформатор. На рис. 38,з изображена схема ВУ, которая часто используется в системах управления трехфазными выпрямителями. При трехканальной системе управления такими выпрямителями на тиристоры, подключенные к одной фазе силового трансформатора, должны поступать отпирающие импульсы, сдвинутые относительно друг друга на угол 120°.
Входное устройство представляет собой небольшой мощности трансформатор, на первичные обмотки которого подается трехфазное напряжение сети, питающей выпрямитель. Каждая из вторичных обмоток ВУ выполнена из двух полуобмоток, которые можно соединять в звезду или зигзаг, что позволяет снимать с них трехфазную систему напряжений, сдвинутых в сторону опережений или отставания относительно соответствующих первичных напряжений (рис. 38,г) на углы 30, 90 и 120° (рис. 38,в), и облегчает начальную фазировку СУ.


Рис. 38. Схемы входных устройств на трансформаторах: а — для трехфазных и 6 — шестифазных выпрямителей, в—д — векторные диаграммы напряжений на обмотках

Дпя управления тиристорами шестифазного выпрямителя с нулевой точкой СУ должна формировать отпирающие импульсы, сдвинутые один относительно другого на угол 60°. В этом случае вторичные полуобмотки трансформатора ВУ следует соединить по схеме, представленной на рис. 38,6. При этом получается шестифазная система вторичных напряжений, векторная диаграмма которых изображена на рис. 38,д. Напряжение с каждой полуобмотки поступает на вход соответствующего канала управления, в котором происходит формирование отпирающих импульсов. Изменением схемы включения первичных обмоток трансформатора ВУ можно получить желаемое расположение выходного напряжения по отношению к анодному напряжению тиристора.
Во многих ВУ используется выходное напряжение пилообразной формы, которое можно получить различными способами.

Рис. 39. Схемы полупроводниковых входных устройств: а — диодный и в — транзисторный генераторы пилообразных напряжений; б иг— временное диаграммы напряжений на элементах
В настоящее время наибольшее применение нашел способ формирования пилообразного напряжения путем заряда конденсатора через резистор от источника постоянного напряжения и последующего быстрого его разряда. На рис. 39,а показана принципиальная схема такого ВУ, выполненного на диодах. В положительный полупериод синусоидального напряжения ивх, снимаемого со вторичной обмотки трансформатора Т, когда точка а имеет положительный потенциал по отношению к точке Ь, диод V2 закрыт и под действием постоянного напряжения Un конденсатор С будет заряжаться по цепи +Un, С, R1.
— Un. Напряжение Un выбирается больше амплитудного значения ивх, а параметры R1 и С — такими, чтобы за время одного полупериода напряжения ивх напряжение ис достигало значения, значительно меньшего Un. Поэтому заряд конденсатора С будет происходить практически по линейному закону (рис. 39,6).
В момент времени 11 напряжение на конденсаторе будет равно напряжению ивх (в точке А), при этом образуется дополнительная цепь для протекания тока от источника’ постоянного напряжения: +U„, вторичная обмотка Т, VI, R2, R1, — Un. Конденсатор С начнет разряжаться, при этом напряжение ис будет практически изменяться так же, как и ивх на участке АБ. В момент t2 напряжение ивх изменит знак и диод V2 откроется. По цепи VI, R2, V2, вторичная обмотка убудет протекать ток под действием напряжения ивх. Напряжение на конденсаторе С в этом полупериоде равно прямому падению напряжения на диоде V2. т.е. можно считать, что ис « о. В момент Г3 напряжение ивх снова изменит свой знак, диод V2 закроется, конденсатор С начнет заряжаться.
Рассмотренные процессы периодически повторяются.
В результате на выходе ВУ формируется периодически изменяющееся напряжение пилообразной формы Uвых = ис с длительностью рабочего участка OA практически не более 160°, синхронизированное с входным напряжением ивх. Это напряжение может быть использовано для формирования отпирающих импульсов, синхронизированных с анодным напряжением тиристоров.

В следующий положительный полупериод ивх транзистор снова закрывается и т.д. Форма пилообразного напряжения в этой схеме показана на рис. З8.г, при этом длительность рабочего участка OA = 180°.
Фазосдвигающие устройства (ФСУ) используются в СУ выпрямителями для регулирования фазы отпирающих импульсов. Последовательность процессов получения импульсов и сдвига их по фазе в реальных ФСУ бывает различной. В электромагнитных системах управления переменное напряжение сначала может сдвигаться по фазе или изменяться по форме, а затем происходит формирование из этого напряжения управляющего импульса.
В полупроводниковых СУ, которые в настоящее время считаются наиболее перспективными, формирование управляющего импульса происходит в момент равенства переменного напряжения (синусоидального, треугольного или пилообразного) и наложенного на него постоянного напряжения 1/у, поступающего от устройств управления.
Изменяя значение Uy (сравнивая его по «в е р т и к а л и» с переменным напряжением), можно осуществлять сдвиг импульсов управления по фазе в широком диапазоне и обеспечивать регулирование выпрямленного напряжения в пределах от 0 до ±Udmax.

Рис. 40. Формирование отпирающих импульсов на принципе вертикально-фазового управления: а — функциональная схема; б — диаграммы напряжений и выходных импульсов
На рис. 40,а приведена функциональная схема одного канала такой, системы, в которую входят ФСУ и ФИ. Фазосдвигающее устройство, в свою очередь, содержит генератор опорного напряжения ГОН, синхронизируемый синусоидальным напряжением ивх, и нуль-орган НО. На вход нуль-органа кроме опорного напряжения иоп, в Данном случае имеющего полиообразную форму, подается также внешнее напряжение управления иу. В момент равенства опорного напряжения уОП и напряжения управления Uy нуль- орган переключается, и в этот  же момент времени ФИ выдает управляющий импульс Uвых (рис. 40,6). При изменении значения Uy изменяется фаза выходного импульса относительно начала напряжения иоп. Перечисленные элементы ФСУ могут быть выполнены по различным схемам и на разной элементной базе.
Данный принцип может быть реализован и непосредственным сравнением опорного синусоидального напряжения, снимаемого со вторичных обмоток входного трансформатора, с напряжением 1/у. Изменяя схему включения первичных обмоток трансформатора, можно получить желаемое расположение кривой опорного напряжения иоп по отношению к анодному напряжению тиристора. Недостатком таких ФСУ является сужение диапазона фазового сдвига Uвых (угол регулирования 0 < а < < 150°), так как при малых и больших углах а затрудняются условия фиксации момента равенства напряжений иоп и Uy.
В качестве н у л ь-о р г а н а чаще всего используют: схемы на одном или двух транзисторах, работающих в ключевом режиме; блокинг-генератор, работающий в ждущем режиме; схемы на операционных усилителях и др. На рис. 41,а приведена схема нуль-органа на одном транзисторе. Пока напряжение управления С/у остается больше опорного напряжения иоп, транзистор 1/7″ закрыт, так как база имеет положительный потенциал по отношению к эммитеру. В этом случае напряжение на резисторе R2 будет равно нулю, так же как и напряжение Uвых. Когда же напряжение иоп станет чуть больше (Уу (практически при иоп = С/у), транзистор откроется и все напряжение UH будет приложено к /72. Конденсатор С начнет заряжаться по цепи +UK. VT, С, R3, R4, -UK. и через короткий промежуток времени напряжение на нем станет равным напряжению на резисторе R2. В этот момент ток через резистор R4 прекратится.
Таким образом, при открывании транзистора 1/7″ на резисторе R4 формируется кратковременный импульс напряжения, который является выходным напряжением 1/ВЫх нуль-органа.

Рис. 41. Схемы нуль-органов ФСУ:
а — на одном транзисторе; б — на операционном усилителе
При закрывании транзистора конденсатор С разряжается по цепи R2, VD и напряжение на резисторе R4 остается практически равным нулю.
В качестве сравнивающего узла нуль-органа можно использовать схему на операционном усилителе (рис. 41,6). Операционный усилитель (ОУ) представляет собой усилитель постоянного тока, выполненный на интегральной микросхеме, имеющей два входа и один выход, не считая выводов для подключения источников питания. Важным достоинством ОУ по сравнению с обычными транзисторными схемами усилителей является то, что входные токи ОУ очень малы (10~s—10~9 А), а коэффициент усиления наиболее распространенных в настоящее время ОУ составляет 104—10s. Применение ОУ в различных схемах основано на введении обратных связей (между выходом и входом), которые обеспечивают различные функциональные свойства и необходимый коэффициент усиления схемы [2].
В схеме нуль-органа на рис. 41,6 собственно ОУ усиливает разность напряжений Uy — t/on 0,001 В с большим коэффициентом усиления до максимального значения выходного напряжения £/Вых» которое снимается с резистора R4 и далее преобразуется в кратковременный импульс напряжения Uвых но, как и в предыдущей схеме.
Формирователь импульсов. Нуль-орган ФСУ имеет выходной сигнал малой мощности и произвольной формы. Поэтому получение отпирающих импульсов требуемой формы и длительности, гальванической развязки СУ с силовой цепью преобразователя, усиление импульсов и размножение их при групповом соединении тиристоров обычно осуществляются одним узлом, который именуется формирователем импульсов (ФИ). В зависимости от применяемого активного элемента формирователи импульсов подразделяются на транзисторные, тиристорные и оп- тронные.
На рис. 42,а приведена схема транзисторного ФИ. При подаче с выхода нуль-органа импульса напряжения иВЬ(Х но  на базу транзистора VT он открывается и через первичную обмотку трансформатора ТИ протекает кратковременный импульс тока. Со вторичной обмотки трансформатора усиленный короткий импульс тока /у и поступает на управляющий электрод тиристора VC. При параллельном или последовательном соединении тиристоров ТИ может иметь несколько выходных обмоток. Резистор RK ограничивает коллекторный ток во время насыщения трансформатора. Диод VD1 защищает транзистор от перенапряжений при его выключении. Диод VD2 не пропускает на управляющий электрод тиристора VC отрицательные импульсы. Вследствие высокого быстродействия транзисторов ФИ на их  основе целесообразно применять для управления высокочастотными тиристорами серии ТЧ.
Для управления мощными тиристорами широкое применение нашли ФИ на маломощных тиристорах с малыми токами управления (рис. 42,6). В исходном состоянии конденсатор С заряжается по цепи: задающее напряжение U3, С, VD2. При подаче с выхода нуль-органа импульса напряжения U выхно открывается вспомогательный тиристор VC1 и конденсатор С разряжается по цепи: С, первичная обмотка трансформатора ТИ, VC1, R2, С. Параметры этой цепи выбирают так, чтобы по первичной обмотке протекал кратковременный импульс тока, а на вторичной обмотке индуктировался узкий импульс тока /уи с крутым передним фронтом.
В процессе коммутации тиристорами импульсов тока большой амплитуды в разрядных цепях возникает высокий уровень помех. Эти помехи распространяются как по соединительным проводам, так и через эфир. При наличии в схеме преобразователя большого количества тиристоров, коммутация которых разнесена во времени, включение одного прибора может привести к включению и других.
Использование трансформаторов для гальванической развязки СУ и силовой части преобразователя имеет некоторые недостатки. Основным из них является наличие паразитных (электромагнитных и емкостных) связей между первичной и вторичной обмотками, затрудняющих обеспечение помехозащищенности узлов СУ.

Рис. 42. Схемы формирователей импульсов: а — транзисторный; б — тиристорный
Более перспективными элементами для обеспечения гальванической развязки в цепях преобразователя и повышения помехозащищенности является применение схем ФИ с оптоэлектронными приборами. В качестве управлямого элемента — приемника света в таких ФИ используются диодные, транзисторные и тиристорные оптопары.
На рис. 43 представлена одна из типовых оптоэлектронных тиристорных схем, используемых в качестве оконечного узла ФИ. Для коммутации силового тиристора VC1 в схеме используется тиристорная оптопара Опт. При подаче импульса управляющего напряжения ивх светодиод VD излучает световой поток, который включает оптронный тиристор VC2. По цепи ~UC. R4, VC2, R3, УЭ- К. ~UC проходит импульс тока/у >т, который открывает силовой тиристор VC1. Такая схема ФИ обеспечивает полную развязку цепей управления и нагрузки выпрямителя, а также помехозащищенность схемы в закрытом состоянии. Это обусловлено тем, что светодиод имеет собственный порог срабатывания.
Система импульсно-фазового управления. В качестве примера рассмотрим схему формирования управляющих импульсов (СИФУ) реверсивных тиристорных преобразователей серии ЭТ6Р, представленную на рис. 44,э для одного канала. Система работает по вертикальному принципу с синусоидальным опорным напряжением и состоит из шести идентичных каналов, каждый из которых формирует импульсы управления катодной и анодной групп тиристоров.

Рис. 43. Схема оптронного формирователя импульсов
Канал управления состоит из следующих узлов: генератора опорного напряжения ГОН на трансформаторе 774, нуль-органа НО на операционном усилителе А101 и формирователя импульсов на транзисторах VT102 и I/ТЮЗ. На вход каждого канала подаются из блока питания СУ шесть синусоидальных напряжений, сдвинутых по фазе на 60 относительно друг друга. Отфильтрованное опорное напряжение ооп, амплитуда которого регулируется переменным резистором R101, снимается с конденсатора С101 и в точке 4 суммируется с напряжением управления 1Уу, поступающим через резистор R104 с выхода СУ. Суммарный сигнал иОП ± ± С/у подается на вход А ЮТ. В зависимости от значения и знака напряжения С/у усилитель АЮ1 будет отпираться отрицательной или положительной попуволновой напряжения иоп.

Фазировка системы управления тиристорами.

Для правильной и надежной работы тиристоров в управляемом преобразователе необходимо тщательно сфазировать СУ вентилями, т.е. нужно обеспечить строгую последовательность подачи отпирающих импульсов на тиристоры по отношению к питающему напряжению. Рассмотрим процесс фазировки СУ на примере трехфазной мостовой схемы выпрямления (рис. 45,а), в которой применяется полупроводниковая СУ, обеспечивающая подачу на каждый тиристор двух узких импульсов, сдвинутых по фазе на 60°.
Ранее было отмечено, что в трехфазной мостовой схеме одновременно работают два тиристора, поэтому напряжение Uвых каждой пары блоков входного устройства СИФУ преобразователем синхронизируется с одной из фаз вторичной обмотки трансформатора, к которой подключены два последовательно соединенных вентиля, составляющих одно плечо вентильного моста.

 

Рис. 44. Система импульсно-фазового управления тиристорным преобразователем серии ЭТ6Р:
а — схема СИФУ; в — диаграмма напряжений на элементах 
Проверка фазировки системы управления производится с помощью электронного осциллографа, например типов С1-18Б, С1-19 и других, горизонтальную развертку которого и усиление по вертикали следует отрегулировать так, чтобы на экране укладывалась синусоида напряжения и2 ф (рис. 45,6) в удобном для наблюдения и отсчета начальных углов управления а0 масштабе.
Отрегулировав развертку осциллографа и отключив питание СУ, следует поочередно просмотреть на экране и зарисовать на миллиметровой бумаге кривые фазных напряжений, подаваемых на аноды (катоды) тиристоров у/ — V3 — V5 (V4 — V6 — V2), и отметить на оси времени (рис. 45,в) начала и концы положительных полупериодов напряженийи2а,и2ь и и2с. последовательность фаз которых должна соответствовать принятой в энергосистемах, т.е. А — В — С.


Рис. 45. Фазировка системы управления трехфазной мостовой схемы выпрямления:
а — схема включения тиристоров; 6 — градуировка осциллографа; в — кривые напряжений на тиристорах и расположение отпирающих импульсов при a = 90 °
Затем следует отключить силовой трансформатор и включить питание СУ. Поочередно присоединяя к выходным зажимам ВУ осциллограф, необходимо убедиться в том, что каждая пара отпирающих импульсов на тиристорах катодной VI — V3 — V5 и анодной V4- V6- V2 групп сдвинута на 120° и имеет такой же порядок чередования, как и напряжения и2а, и2ь и и2с на тиристорах V1(V4),V3(V6) и V5(V2).
Далее производят начальную установку отпирающих импульсов со сдвигом на 90° относительно точек а, б, в и к, л, м естественного открывания соответствующих тиристоров. Это достигается подбором соединения первичных я вторичных обмоток входного трансформатора блока ФСУ, вследствие чего происходит сдвиг по фазе пилообразных напряжений ип каналов управления тиристорами.
Сдвиг на 90 начальных импульсов управления каждой пары относительно точек естественного открывания тиристоров соответствует на диаграмме трехфазного напряжения началам положительных полуволн напряжений последующих фаз (моменты tt2, t3, ts . . . на рис. 45,в) для тиристоров V1 — V3—V5 и концам тех же полуволн напряжений (моменты f4, r6, f8 …) для тиристоров V4 — V6 — V2. Точная установка начального значения угла регулирования а„ = 90° для каждого тиристора схемы выпрямления в режиме непрерывного тока производится изменением напряжения смещения исм, подаваемого на вход нуль-органа каждого канала ФСУ (см. рис. 41 ,а).
После проведения фазировки системы управления следует произвести пробное включение преобразователя и регулировку выпрямленного напряжения. Для этого к выходным зажимам выпрямителя необходимо подключить нагрузочный резистор соответствующего сопротивления, вольтметр постоянного тока и электронный осциллограф. Затем подается питание на СУ, силовой трансформатор Т и задающий потенциометр, с которого снимается напряжение Uy для подачи в систему управления.
Плавно изменяя напряжение на входе СУ, следует убедиться в соответствующем изменении напряжения на выходе выпрямителя по вольтметру и с помощью осциллографа просмотреть форму выходного напряжения Ud при различных значения[  углов регулирования а. При правильной работе преобразователя все тиристоры должны быть равномерно загружены током, а напряжение Ud должно иметь форму, соответствующую схеме выпрямления (в качестве примера см. рис. 19,в).

Тиристоры Электрическая Схема — tokzamer.ru

У мощных приборов оно достигает сотен ампер. Если в обоих направлениях или обрыв, или небольшое сопротивление — элемент поврежден.


Для борьбы с перегревом тиристора используется активная или пассивная система охлаждения. Причем оба состояния устойчивые, то есть переход происходит только при определенных условиях.

В некоторый момент в результате перезарядки конденсатора С2 высокий уровень на выводе 8 элемента DD1.
Зарядное устройство на тиристорах

Существует масса способов достижения полноволнового управления тиристорами.

Тиристор — краткий обзор полупроводника Включение полупроводника в открытое состояние возможно путём подачи импульса пускового тока небольшой величины на управляющий электрод У.

Поэтому я и решил представить эту схему.

Для сетей переменного тока выполнение этих условий не вызывает особых трудностей. Когда тиристор пропускает ток нагрузки в прямом направлении, электрод анода A является положительным по отношению к электроду катода K, с точки зрения регенеративной фиксации.

Практические примеры для повторения Наибольшей популярностью среди радиолюбителей пользуются схемы, предназначенные для управления яркостью светильника и изменения мощности паяльника. Тиристорный регулятор напряжения своими руками Нельзя сказать о том, что данная схема не обеспечит гальваническую развязку от источника питания, поэтому есть определённая опасность поражения электрическими разрядами тока.

Бюджетные сварочные полуавтоматы#4 подключение тиристора и конденсаторов

Применение тиристора

Виды и устройство. Контроллер нагрева паяльника Управление мощностью паяльника не только положительно сказывается на сроке его службы, предотвращая жало и внутренние его элементы от перегревания, но и позволяет выпаивать радиоэлементы, критичные к температуре устройства.

Таким образом, напряжение будет полноценно регулироваться на коллекторном двигателе, который оборудован специальным щелочным узлом. В принципе, можно было бы просто заменить полупроводник мощным механическим выключателем.

А это может произойти только в отрицательном полупериоде сетевого напряжения, поступающего на вывод 13 элемента DD1.

Фото — тиристор кун Цена тиристора зависит от его марки и характеристик.

Эта кнопка соединяет управляющий электрод У с источником питания через резистор R1. В этом месте находится ферритовый фильтр высокочастотных помех.

Они могли легко увидеть, что число оборотов в таких изделиях зависит, главным образом, от общей глубины нажатия на кнопку-курок в устройстве. Управляемый электрод.

Фиксация состояния удержания остаётся стабильной при положительном полупериоде и автоматически сбрасывается, когда положительный полупериод заканчивается.
Тиристорный модуль SKKT92-12E

Читайте дополнительно: Прокладка кабельных линий в земле снип

Виды современных устройств

Эта кнопка соединяет управляющий электрод У с источником питания через резистор R1.

Рассеиваемая мощность. Регулировать яркость свечения светильников, в которых установлены энергосберегающие или светодиодные лампочками, не получится, так как в таких лампочках вмонтированы электронные схемы, и регулятор просто будет нарушать их нормальную работу. На чертеже ниже представлена цоколевка и основные детали тиристора.

Распространенные отечественные тиристоры выглядят следующим образом.

Если регулируемое устройство будет расположено на стационарном уровне, то имеет определённой смысл осуществить его подключение через выключатель с особым регулятором уровня яркости света. Вот так можно описать, как работает тиристор для чайников. Прибор, содержащий один управляющий электрод, называют триодным тиристором или тринистором [1] иногда просто тиристором, хотя это не совсем правильно. Тиристорная схема регулятора не излучающая помехи Главное отличие схемы представляемого регулятора мощности паяльника от выше представленных, это полное отсутствие радиопомех в электрическую сеть, так как все переходные процессы происходят во время, когда напряжение в питающей сети равно нулю.

У VT1 он должен быть Управляемый электрод.


R 2 — это резистор, который обладает особым показателем переменного тока около 30 кОм. Реостат — довольно универсальное приспособление. В общем много привычных устройств построены на тиристорах. Вот только напряжение должно быть достаточным для того, чтобы засветить лампочку.

Для большей мощности необходим более мощный симистор, например, ТС Это хорошо демонстрирует схема управления тиристорами, а также любой справочник электриков например, в библиотеке можно бесплатно почитать книгу автора Замятин. Тиристор — краткий обзор полупроводника Включение полупроводника в открытое состояние возможно путём подачи импульса пускового тока небольшой величины на управляющий электрод У. Предлагаемая ниже схема позволит снизить мощность любого нагревательного электроприбора.

Симметричный тринистор называется также симистором или триаком от англ. Если при помощи такого прибора, как тиристор со временем подключать нагрузку в строго определённое время, то показатель действующего напряжения будет довольно низким, так как половина от напряжения действующее значение, которое и воспроизводит нагрузку будет намного меньше, чем световое. Само переключение происходит очень быстро, хоть и не мгновенно. Важное отличие симисторных схем от тиристорных состоит в том, что нет необходимости в выпрямительном устройстве. Вторую часть полупериода тиристор начнёт проводить ток и на выходе регулятора будет возникать особое входное напряжение.
Простой регулятор напряжения на тиристоре

Принцип действия тиристора

Так что в схемах постоянного тока есть два варианта использования тиристора — с удержанием открытого состояния и без.

Покопавшись нашел импортные симисторы BTA К основным параметрам, характеризующим регуляторы электрической энергии, относят: плавность регулировки; рабочую и пиковую подводимую мощность; диапазон входного рабочего сигнала; КПД. Можно подумать, что применение тиристоров неоправданно, не проще ли использовать обычный ключ?

Значение тока, который может протекать через анод-катод. У мощных приборов оно достигает сотен ампер. Он позволяет коммутировать ток 25 А.

После переключения и полной проводки , падение напряжения на участке анод- катод держится постоянным на уровне около 1 вольта, при всех значениях анодного тока от нуля до номинального значения. Он располагается как последовательно, так и параллельно подключённой нагрузке. При большой регулируемой мощности симистор VS1 необходимо установить на радиатор. Тиристоры выполняются в различных корпусах.

См. также: Подключение участка к электричеству vfnthbfk

Область использования тиристорных устройств

На правом рисунке сопротивление небольшое, так как подано прямое напряжение смещения между анодом и управляющим электродом Обратите внимание, что величина сопротивления у разных серий разная — на это не стоит обращать особого внимания. Это максимально допустимое напряжение на тиристоре в закрытом состоянии, при котором тиристор может работать без нарушения его работоспособности. Стабилитрон VD1 ограничивает напряжение питания на уровне 15 В. Схема собиралась не раз, работает без наладки и других проблем.

Главным отличием является более широкий спектр напряжений. В результате получается генератор прямоугольных импульсов. Вот только напряжение должно быть достаточным для того, чтобы засветить лампочку. Схемы на тиристорах Регулировать общую мощность паяльника можно довольно просто, если использовать для этого аналоговые или же цифровые паяльные станции. В результате на выходе 11 DD1.

Данная особенности заключена в том, что в нормальных производственных условиях на нагрузку могут воздействовать примерные показатели напряжения бытовой сети, которая будет меняться в соответствии с синусоидальным законом. Обычно правильной работы симистора удается добиться установкой транзистора VT2 с большим значением коэффициента передачи тока. Другое их название — диммеры. Полный технический расклад тиристора.

С вывода 1 микросхемы DD2. Один управляющий и два, через которые протекает ток.
Симистор (тиристор) вместо реле.

Схема узла управления симистором » Вот схема!


Узел предназначен для управления нагрузкой мощностью до 1,5 кВт, питающейся от сети переменного тока 220В. Это может быть электронагревательный прибор, осветительные лампы, или другое электрооборудование. Питается узел постоянным напряжением 5… 15В и имеет входы, совместимые с КМОП и МОП -логикой. Управление производится подачей управляющих импульсов положительной полярности.

После прекращения действия управляющего импульса на одном из управляющих входов узел сохраняет свое состояние до поступления импульса на другой управляющий вход. Кроме того имеется возможность принудительного включения или выключения нагрузки при помощи квазисенсорных кнопок S2 и S1 соответственно. Узел обеспечивает полную гальваническую развязку управляющего устройства от электросети.

Принцип работы симистора.

Симистор включается подачей высокочастотного (примерно 80 кГц) управляющего напряжение на его управляющий электрод. Высокочастотный трансформатор Т1 служит для гальванической развязки устройства от электросети. Сигнал включения симистора получается таким образом: в то время, когда на вывод 8 элемента D1.3 поступает логический ноль мультивибратор на элементах D1.3 и D1.4 вырабатывает импульсы, частота которых зависит от номиналов элементов R6 и С3 (при указанных на схеме номиналах частота генерации получается около 70-80 кГц).

Выключается мультивибратор подачей логической единицы на вывод 8 D1.3. Когда мультивибратор включен (ноль на выв.8 D1.3) импульсы с выхода элемента D1.4 поступают на вход импульсного усилителя мощности на транзисторах VT1 и VT2. В коллекторной цепи этого усилителя включена первичная обмотка высокочастотного трансформатора (диод VD1 служит для предотвращения выхода из строя VT2 от отрицательных выбросов коллекторного напряжения).

В результате действия в ней импульсного тока во вторичной обмотке возникает высокочастотная ЭДС, которая через диод VD2 и токоограничивающий резистор R7 поступает на управляющий электрод симистора. Частота этой ЭДС значительно выше частоты сетевого напряжения, поэтому, симистор, практически будет постоянно открыт.

При выключении мультивибратора (подача единицы на вывод 8 D1.3) генерация высокочастотных импульсов прекращается, ЭДС во вторичной обмотке Т1 отсутствует и симистор VS1 остается закрытым.

Управления работой мультивибратора производится RS-триггером на элементах D1.1 и D1.2. Трансформатор Т1 намотан на ферритовом кольце внешним диаметром 23 мм, он имеет две одинаковые обмотки по 200 витков провода ПЭВ 0,16. Между обмотками должна быть надежная изоляция.

Заметки для мастера — Управление нагрузкой


          

          

          Сенсорный выключатель

 

        Простая схема сенсорного выключателя показана на рис.1.

 

Рис.1

        Основой устройства служит двойной эмиттерный повторитель на транзисторах VT1, VT2. В эмиттер VT2 включено реле К1. При прикосновении к сенсору переменное напряжение, наводимое в теле человека комнатной проводкой, передается через конденсатор С1 на базу составного транзистора, который открывается, и реле срабатывает. Диод VD1 защищает транзистор от выбросов напряжения при размыкании, а конденсатор С2 сглаживает возникающие пульсации.

        Транзисторы – маломощные кремниевые, например КТ315 с любым буквенным индексом. Диод – кремниевый, например Д226. Реле – маломощное, на рабочее напряжение 9В.

          Простые схемы термореле

 

        Термореле, схема которого показана на рис.2, выполнено на основе триггера Шмитта.

 

Рис.2

        В качестве датчика температуры используется терморезистор. Потенциометр R1 устанавливает начальное смещение на терморезисторе R2 и потенциометре R3. Его регулировкой добиваются срабатывания исполнительного устройства при изменении сопротивления терморезистора.

        В качестве нагрузки может быть использовано не только реле, но и слаботочная лампа накаливания.

       Термореле, схема показана на рисунке 3, имеет выходной каскад с самоблокировкой на тиристоре. Это приводит к тому, что после срабатывания схемы выключить сигнализацию можно только после кратковременного отключения питания устройства.

 

Рис.3

 

Шустов.М.А.

Практическая схемотехника

               Бесконтактный выключатель освещения

 

          Особенность этого выключателя в том, что его сенсор бесконтактный, он не имеет токопроводящих частей, и поэтому, обеспечивает 100% защиту от поражения электротоком, рис.4.

 

Рис.4

        Дело в том, что сенсор акустический, он реагирует на акустические колебания пластмассового корпуса выключателя, которые имеют место при легком постукивании по нему. Таким образом, управляется выключатель легкими постукиваниями по корпусу, и после каждого удара он меняет свое состояние на противоположное (стук — свет включен, еще стук — свет выключен).

        В качестве акустического сенсора используется пьезокерамическая головка типа ГЗК от старого электрофона (проигрывателя виниловых дисков). Такая аппаратура уже давно снята с производства, но пьезокерамические головки с иглами еще встречаются в продаже. В крайнем случае, вместо головки сойдет и пъезозвукоизлучатель, но стукать нужно будет сильнее.

        При ударе, на коллекторе VT1 возникает хаотическое переменное напряжение, которое преобразуется в положительный импульс детектором VD1-C3. Этот импульс переключает D-триггер D1 в противоположное исходному, положение.

        С прямого выхода D1 логический уровень поступает на базу VT1, который управляет открывание тиристора VS1. В момент включения электроснабжения триггер автоматически (при помощи цепи R3-C2) устанавливается в нулевое положение, при котором VS1 закрыт и свет, следовательно, выключен.

        При сборке нужно сделать так, чтобы игла В1 была надежно прижата к корпусу устройства. Тиристор КУ201 можно заменить на КУ202, мост можно заменить диодами типа КД209.

        Налаживание устройства состоит в подборе номинала R1 таким образом, чтобы напряжение на коллекторе VT1 было около 1.5-2V, так, чтобы при отсутствии входного сигнала, триггер воспринимал напряжение на С3 как логический ноль. Более точным подбором R1 можно получить желаемую чувствительность.

        Если выключатель будет на длительное время зависать после переключения, нужно зашунтировать С3 резистором на 1-2 мегаома.

          Сенсорный переключатель на микросхеме

        На рисунке 5 показана схема сенсорного переключателя, построенного на интегральной микросхеме таймера типа 555.

 

Рис.5

        Путем прикосновения к контактной пластине можно включить, например, лампу или другое устройство. Микросхема обладает очень большой чувствительностью: для ее переключения достаточно, чтобы на клемму 2 был подан ток всего в 1мкА. Вывод 2 соединен с положительно питающим напряжением через резистор R2 (2.2 – 10 МОм). При Rт = 8,2 Мом и Ст = 300 нФ реле срабатывает примерно через 3сек. Применяя конденсатор большей емкости, можно увеличить время включения. Однако максимальная выдержка времени не может превышать 60 мин. В качестве реле использовано с номинальным напряжением 6 В. Диод D1, соединен параллельно с обмоткой реле, служит для подавления всплесков индуктивности напряжения. В зависимости от напряжения срабатывания реле значения питающего напряжения могут находиться в диапазоне от 4,5 до 16 В.

        Схема применима и для управления, например, квартирным звонком. Выдержку в этом случае не имеет смысла устанавливать больше чем на 3 сек. Для автоматического выключения аппаратуры она может составлять, например, 60 мин.

 

Ференци О.

«Электроника в нашем

доме»

          Простое сенсорное устройство

 

        Для включения различных механизмов может быть использован сенсорный датчик, схема которого показана на рис.6.

 

Рис.6

        При подключении питания в дежурном режиме датчик потребляет ток не более 0,2 мА. При касании пальцем сенсорного контакта Е1 переменное напряжение, наведенное в теле человека, поступает на базу транзистора VT1, выпрямляется и усиливается этим транзистором. Возникшее на резисторе R2 постоянное напряжение открывает транзисторы VT2 и VT3, в результате чего срабатывает электромагнитное реле К1, контакты которого включают исполнительный механизм.

        Для питания датчика следует использовать стабилизированный источник питания напряжением 12 В. Статический коэффициент передачи тока транзистора должен быть 80…100. Электромагнитное реле – РЭС10 (паспорт РСТ.524.303) или РЭС9 (паспорт РСТ.524.202). Сенсорная пластинка Е1 имеет размер 10х13 мм. Если сенсор размещают от устройства более чем на 15 см, то его подключение осуществляют экранированным проводом, соединяя оплетку с минусом источника питания.

 

Пестриков В.М.

«Радиоэлектронные устройства,

полезные в быту»  

          Простое реле времени

 

        Если нужно отсрочить включение какого – либо устройства (например, автоматически включить свет), можно воспользоваться любым кварцевым будильником с электромагнитным или динамическим капсюлем и простой схемой на тиристоре и реле, рис. 7.

 

Рис.7

        Напряжение питания должно соответствовать напряжению срабатывания реле.

        Если схема не будет работать, нужно переменить полярность подключения к капсюлю будильника. Тиристор и реле можно заменить другими, средней мощности.

          Светодиодное фотореле

 

      

Рис.8

        Известно, что практически любой полупроводниковый кристалл обладает свойствами фотоэлемента. В прошлые времена радиолюбители в качестве таковых использовали транзисторы в металлических корпусах, вскрывая верхнюю часть корпуса.

        Сейчас со светодиодами полегче, и все же работа полупроводниковых приборов в качестве фотоэлемента представляет некоторый интерес. Особенно интересны в данном амплуа обычные индикаторные светодиоды. Например, напряжение на АЛ307 в темноте практически равно нулю, но стоит его поднести к настольной лампе, как светодиод начинает вырабатывать постоянное напряжение около 1В.

        Конечно, все светодиоды, в режиме фотоэлементов работают по – разному, и их светочувствительность существенно различается даже для светодиодов одной марки и типа.

        На рисунке 8 показана схема простого фотореле, реагирующего на изменение освещенности, в которой в качестве датчика света используется индикаторный светодиод, работающий как фотоэлемент. Эту схему можно использовать как прототип для построения других фотореле и датчиков, со светодиодом в качестве фотоприемника.

        Светодиод HL1 используется как фотоэлемент. Он вырабатывает напряжение, пропорционально зависящее от силы света, попадающего на его кристалл. Поскольку светочувствительность у разных светодиодов различается, и чтобы можно было регулировать чувствительность фотореле, в схеме есть источник регулируемого постоянного напряжения смещения, — R1-R2.

        Резистором R2 можно регулировать начальное напряжение на базе VT1, суммируемое с напряжением, которое вырабатывает HL1, и таким образом, регулировать порог включения реле.

 

Андреев С.А.

          Ограничитель нагревания

 

        Простое устройство, отключающее нагреватель при нагреве воды до кипения можно сделать на основе датчика вентилятора охлаждения автомобиля «Жигули» ВАЗ – 2106, рис. 9.

 

Рис.9

        Датчик замыкает контакты при температуре около 99 0С и размыкает их при температуре 95 0С.

        Схема предельно проста. При нагреве жидкости до кипения контакты датчика замыкаются и шунтируют цепь управляющего электрода тиристора, закрывая его. При этом нагрузка отключается. После остывания жидкости до температуры около 95 0С контакты датчика размыкаются и на управляющий электрод тиристора поступает открывающий ток через резистор R1.

        Мощность нагрузки зависит от мощности тиристора и диодов. В данной схеме можно использовать различные тиристоры и диоды, важно чтобы они соответствовали мощности нагрузки и напряжению сети. В каждом конкретном случае нужно подобрать сопротивление R1 чтобы тиристор надежно открывался.

          Управление реле одной кнопкой

 

        Это устройство позволяет включать и выключать нагрузку одной кнопкой. В исходном состоянии реле К1 (см. рис.10) обесточено. При нажатии на кнопку SB1 через резистор R1 на управляющий электрод тиристора VS1 поступает положительный импульс. Тиристор открывается, и реле срабатывает, контактами К1.2 (они на схеме не показаны) включая нагрузку. Срабатывание реле подготавливает цепь отключения тиристора контактами К1.1.

Рис.10

        Следующее нажатие на кнопку SB1 приводит к тому, что напряжение с заряженного конденсатора С1 прикладывается к тиристору в обратной полярности. В результате тиристор VS1 закрывается, реле К1 выключается, обесточивая нагрузку. Устройство готово к очередному нажатию на кнопку SB1.

        В устройстве можно использовать реле РЭС22, РЭС6 на соответствующее напряжение срабатывания. Вместо тиристора КУ202М подойдет любой из серии КУ202 и КУ201. Необходимый ток срабатывания реле устанавливают подбором резистора R1.

 

Омельяненко А.

г.Мегиом

Тюменской обл.

          Безопасное управление тиристорами

 

        На рис.11 показана схема тиристорного выключателя переменного тока.

Рис.11

        Когда замкнуты контакты тумблера SA1, то в какой – либо полупериод сети ток утечки обратновключенного тиристора становиться током, открывающим прямовключенный. В результате оба полупериода напряжения сети поступают в нагрузку Rн.

        При размыкании контактов тумблера тиристоры перестают открываться, нагрузка отключается.

        Преимущество такого выключателя заключается в том, что ток, протекающий через контакты тумблера, значительно меньше, чем ток через нагрузку, а значит, что можно, практически, не опасаться  использовать маломощный тумблер на более мощную нагрузку.

 

Ладыка А.

г. Санкт-Петербург

Расчёт схемы управления тиристорным ключом

Вариант 28

Задача 1

1. Рассчитать полупроводниковую схему управления тиристорным силовым однофазным ключом регулятора мощности.

2. Выполнить схему регулятора мощности и описать его работу.

3. Построить временные диаграммы работы регулятора мощности для заданного режима.

Схема силового однофазного ключа -Тиристор – тиристор.

Угол управления α, эл. град -150.

Напряжение питания схемы управления, В -9.

Рис. 1.1. Схемы силовых однофазных ключей на тиристорах

Коэффициент трансформации импульсного трансформатора выбираем из неравенства

где — максимально допустимое напряжение управления тиристора; — напряжение спрямления; — напряжение питания схемы управления.

Берём

Рассчитываем ток в коллекторной цепи транзистора

где — максимально допустимый ток управления; – ток спрямления.

Принимаем

Исходя из этого значения и максимального напряжения коллектор-эмиттер, равного напряжению питания, выбираем транзистор КТ361А.

В качестве материала сердечника импульсного трансформатора выбираем феррит 2000НМ.

Определяем величину индуктивноститрансформатора

где — максимально допустимый импульсный коллекторный ток транзистора, мА; — ток управления тиристора; — длительность импульса соответственно управления, переднего и заднегофронтов, мкс.

Длительность открывающего импульса исключая длительность фронтов берём 20 мкс.

Выбираем марку магнитопровода для импульсного трансформатора и рассчитываем егогеометрические размеры

где для данного материала; — сопротивление входной цепи тиристора; — начальная магнитная проницаемость;

Число витков первичной обмотки трансформатора.

где μ — импульсная проницаемость материала.

Число витков вторичной обмотки трансформатора

Проверяем напряженность магнитного поля в сердечнике

Задаваясь числом импульсов, вырабатываемых схемой управления в течение полупериода напряжения питания m = 20…50, определяем действующее значение тока в первичной и вторичной обмотках трансформатора:

где Т — период работы схемы управления.

Входные параметры транзисторного ключа VТ3являются исходными данными длярасчета схемы сравнения на транзисторе VТ2. Определяем величину сопротивления резисторасвязи

где β — степень насыщения транзистора VТ3.

Емкость разделительного конденсатора, мкФ, определяем из условия минимальныхфазовых сдвигов

Отношение числа витков импульсного трансформатора Т1обычно принимается

Величину резистора R6определяем из условия допустимой нестабильности периодаследования импульсов Т

Емкость конденсатора определяем из условия обеспечения заданного периода следования импульсов

Индуктивность намагничивания импульсного трансформатора Т1получаем из уравнения

Величину резистора цепи термокомпенсации R7выбирают из условия R7>>rб и обычнопринимают 1-2 кОм.

Емкость конденсатора С3определяем из условия максимального шунтирования Rэприформировании импульса. При этом С3должен успеть разрядиться за время паузы

Сопротивление резистора R8

Сопротивление резистора R10

Диоды VD1 и VD2 для повышения температурной стабильности схемы необходимовыбирать кремниевые. Выбираем диоды КД203.

Генератор пилообразного напряжения рассчитываем на основании следующих данных:

а) длительности пилообразного импульса ТП;

б) максимальной амплитуды пилообразного импульса Un макс;

в) заданного коэффициента нелинейности пилообразного напряжения ( δзад.= 10 %).

При выключенном тиристоре VS1 конденсатор С1 заряжается до максимальногонапряжения

Ток заряда конденсатора

Максимальная амплитуда пилообразного напряжения при t = ТП

Оптимальное условие работы схемы сравнения

Учитывая это, из уравнения (27) определяем необходимую величину постоянной времени

Далее, из определяем коэффициент нелинейности пилообразного напряжения δ и сравниваем с заданным δзад. При этом должно соблюдаться неравенство

Сопротивление резистора R3выбираем из условия минимального времени разряда конденсатора С1и запирания тиристора после снятия синхронизирующего импульса

Тиристор VS1 выбираем по максимально допустимому импульсному анодному току. Величина тока разряда, протекающего через тиристор,

По указанным характеристикам выбираем тиристор КУ102Б.

Параметры каскада синхронизации рассчитываем из условия формированиянеобходимого по длительности и амплитуде тока управления для тиристора VS1.

1.2. Схема управления тиристорными силовыми ключами переменного тока

Для функционирования силовых транзисторов, тиристоров и других приборов на них необходимо подавать соответствующие сигналы управления. Эти сигналы формируются СУ, которая обрабатывает и выдает информацию, а также формирует импульсы управления электронными ключами силовой части схемы. Поэтому СУ состоит из элементов ифункциональных узлов, связанных с обработкой информационных потоков и формированием импульсов управления. СУ, обеспечивающая подачу отпирающих импульсов на тиристоры преобразователя любого типа, совместно с преобразователем решает комплекс задач, связанных с формированием и регулированием его выходного напряжения. Узлы системы управления выполняются из дискретных и интегральных электронных компонентов, электромагнитных реле и т.п. Для функционирования этих элементов требуются источники электропитания с различными параметрами. Поэтому в составе структуры имеется блок вторичных источников питания для собственных нужд, называемых также источниками оперативного питания (ИОП), или вторичными источниками питания (ВИП). В этих источниках применяются преобразователи и регуляторы различных видов, согласующие параметры входного (иногда и выходного) напряжения силовых цепей с параметрами, требуемыми для питания элементов системы управления. При питании от сети переменного тока основой ИОП обычно служат трансформаторы малой мощности с несколькими вторичными обмотками на разные напряжения. Эти обмотки подключаются к выпрямителям с выходными, обычно емкостными фильтрами. Для стабилизации уровней выходных напряжений выпрямителей малой мощности используют стабилитроны или транзисторные регуляторы непрерывного действия в дискретном или интегральном исполнении. Для улучшения массогабаритных показателей используют структуру ИОП с бестрансформаторным входом. В этой структуре переменное напряжение силовой цепи поступает на выпрямитель, выходное напряжение которого преобразуется инвертором в переменное напряжение повышенной частоты (обычно не менее 20 кГц). Затем это напряжение трансформируется, снова выпрямляется и фильтруется. Трансформация и фильтрация при повышенных частотах позволяют существенно уменьшить массу и габаритные размеры ИОП.

Существует общность в реализации систем управления. Она обусловливается

идентичностью управляющего воздействия СУ на силовую схему, которое проявляется в изменении момента подачи отпирающих импульсов на тиристоры по отношению к синусоидально изменяющейся кривой напряжения сети (т. е. угла управления α ). СУ преобразователей, осуществляющих регулирование фазы управляющих импульсов, называют

системами импульсно-фазового управления (СИФУ). При фазовом методе управления создается искусственный сдвиг фаз между питающим и управляющим напряжениями. Диапазон регулирования фазового угла при этом методе значительно возрастает, хотя в области предельных значений (около 0 и Uмакс ) регулировочная характеристика теряет свою линейность. При фазовом методе управления сказывается разброс параметров тиристоров на момент их включения. Фазоимпульсный метод управления, применяется для повышения надежности включения тиристоров. Сущность его заключается в том, что для изменения угла включения тиристора сдвигается не фаза переменного напряжения, а импульс с крутым фронтом. При этом диапазон регулирования фазового угла 180°.

Синхронный принцип импульсно-фазового управления преобразователями является наиболее распространенным. Его характеризует такая функциональная связь узлов СУ, предназначенных для получения управляющих импульсов, при которой синхронизация управляющих импульсов осуществляется напряжением сети переменного тока.

Синхронные СУ состоят из следующих основных элементов:

1) синхронизирующего устройства (УС), обеспечивающего синхронизацию последовательности импульсов с сетевым питающим напряжением;

2) фазосдвигающего устройства (ФСУ), преобразующего управляющий сигнал в соответствующее фазовое положение последовательности импульсов относительно сетевого питающего напряжения;

3) устройства предварительного формирования, обработки и усиления управляющих импульсов. Это устройство выполняет различные логические операции, связанные с режимом работы силовой схемы преобразователя или самой СУ: прекращение подачи управляющих импульсов в аварийных режимах, удвоение импульсов в случае использования узких управляющих импульсов, распределение импульсов по каналам управления и т. д. Кроме того, оно предназначено для формирования импульсов заданной длительности и их усиления;

4) выходного устройства (ВУ), осуществляющего окончательное формирование и усиление импульсов управления.

Наличие всех указанных устройств или четкое разделение СУ на такие устройства не является обязательным, поскольку некоторые функции СУ могут быть объединены в одном элементе. Способы технической реализации указанных устройств могут быть различны как по типу применяемых элементов, так и по принципу действия схемы.

Поскольку работа ФСУ основана на сравнении двух напряжений (опорного и управляющего), его принцип действия называется вертикальным. Вертикальный метод управления — наиболее распространенный метод построения полупроводниковых устройств управления тиристорами. Сущность его заключается в сравнении переменной (синусоидальной, треугольной или пилообразной) формы напряжения и регулируемого постоянного напряжения Uвх. В момент равенства этих напряжений сравнивающее устройство запускает выходной каскад, которым может быть триггер или мультивибратор с эмиттерной связью, блокинг-генератор или полупроводниковый триод,работающий в ключевом режиме. Полупроводниковые устройства управления тиристорами,построенные по вертикальному методу, имеют ряд достоинств: они безынерционны,выполняются из готовых элементов и деталей, имеют высокий коэффициент передачи,формируют управляющий импульс с большой крутизной переднего фронта (до 0,5 мкс).

Частным случаем вертикального метода является число-импульсный. Особенность его втом, что на управляющий электрод подается пачка коротких импульсов, что позволяетупростить расчет и конструкцию выходного трансформатора и в то же время обеспечитьнадежную работу тиристорного ключа при любом характере нагрузки.

На рис. 2 показана универсальная однофазная схема непрерывного управления

тиристорными силовыми ключами переменного тока, построенная по числоимпульсномуметоду [9]. Она состоит из следующих каскадов:

— узла синхронизации напряжения на транзисторе VТ1, который формирует узкий

импульс (длительностью 10 мкс), синхронный с анодным напряжением силового тиристора;

— генератора пилообразного напряжения на тиристоре VS1, вырабатывающего

напряжение пилы, начало и конец которой ограничивается двумя соседними

синхронизирующими импульсами;

— схемы сравнения на транзисторе VТ2, которая формирует импульс в момент равенстванапряжения пилы и напряжения, подаваемого от цепи обратной связи или задания;

— импульсного усилителя на транзисторе VТ3, формирующего импульс достаточноймощности для отпирания силового тиристора.

Рис. 1.2. Универсальная полупроводниковая схема управления

Схема работает следующим образом. На вход аб узла синхронизации поступает двухполупериодное выпрямленное напряжение Uаб от той же фазы, от которой питается силовой тиристор. Ограничиваясь по амплитуде на стабилитроне VD, синхронизующее напряжение трапецеидальной формы U бVT1 подается на базу VТ1. Пока на базе VТ1 есть положительное напряжение, он заперт. В момент, когда UбVT1 падает почти до нуля, транзистор отпирается и в его коллекторной цепи появляются импульсы, строго синхронные с моментом изменения знака сетевого напряжения. Эти импульсы поступают на управляющий электрод тиристора VS1, включая его. Происходит быстрый разряд конденсатора С1 через резистор R3 и тиристор VS1. Тиристор VS1 выключается (напряжение на его аноде равно нулю), и начинается медленный заряд конденсатора через резисторы R4 и R5. Формируемое таким образом пилообразное напряжение поступает на один из входов схемы сравнения (катод VD2). На второйвход подается сигнал из цепи обратной связи U вх. Пока напряжение на катоде VD2 меньше (по абсолютной величине) напряжения на катоде VD1, диод VD2 заперт, а диод VD1 открыт и коммутирует отрицательную обратную связь блокинг-генератора на VТ2. Последний надежно заперт. С ростом напряжения пилы наступает момент, когда напряжение на катоде VD1 становится меньше (по абсолютной величине) напряжения на катоде VD2. Диод VD1 запирается, VD2 отпирается, включая положительную обратную связь.

Блокинг-генератор генерирует непрерывную последовательность импульсов, начало которой определяется моментом равенства напряжений катодов VD1 и VD2, а конец моментом срыва напряжения пилы.

Рис.1.3 Временные диаграммы работы регулятора мощности

Задание 2

В задаче требуется:

1. Рассчитать рабочие перегрузки полупроводникового прибора с охладителем при заданной температуре охлаждающей среды, скорости охлаждающего воздуха, предназначенного для роботы в схеме силового однофазного ключа регулятора мощности, и построить семейство перегрузочных характеристик для предварительной нагрузки, равной значениям 0; 0,2; 0,4; 0,6; 0,8 максимально допустимого среднего тока полупроводникового прибора и длительности перегрузки, равной значениям 0,1; 1,0; 10; 100; 1000 с.

2. Результаты расчёта представить в виде таблиц и графиков.

Тип полупроводникового прибора -ТБ153-630*.

Температура охлаждающей среды — 10 ºС.

Скорость охлаждающего воздуха — 6 м/с.

Параметры тиристора ТБ153-630:

Пороговое напряжение — UTO = 1,45 В;

Максимально допустимая температура перехода — Tjmax = 125 ºC;

Дифференциальное сопротивление — rT = 2,2∙10–4 Ом.

Тепловое сопротивление переход–корпус — Rthjc = 0,02 ºС/Вт

Параметры системы охлаждения с охладителем О353-150:

Тепловое сопротивление корпус–охладитель — Rthch = 0,03 ºС/Вт

Тепловое сопротивление охладитель–среда — Rthha = 0,08 ºС/Вт

Тепловое сопротивление переход– среда

По характеристике переходного теплового сопротивления находим:

С учётом переходных тепловых сопротивлений «переход-корпус» и «корпус-охладитель»

Максимально допустимый средний ток:

Мощность потерь и температура нагрева при предварительной нагрузке:

Определим допустимые амплитуды тока перегрузки:

:

:

Результаты расчётов помещаем в таблицу:

Таблица 1

Допустимая амплитуда тока перегрузки

Графики зависимости допустимой амплитуды тока перегрузки от длительности перегрузки показаны на рис. 1.

Рис. 2.1. Графики зависимости допустимой амплитуды тока перегрузки от длительности перегрузки

СПИСОК ЛИТЕРАТУРЫ

1. Розанов Ю.К., Рябчицкий М.В., Кваснюк А.А. Силовая электроника: Учебник для вузов. – М.: Издательский дом МЭИ, 2007. – 632 с.

2. Прянишников В.А. Электроника: Полный курс лекций. – 5-е изд. – СПб.: КОРОНА принт; M.: Бином-Пресс, 2006. – 416 с.

3. Серебряков А.С. Электротехническое материаловедение. Проводниковые,

полупроводниковые и магнитные материалы: Учебное пособие для вузов ж.-д. транспорта. – М.: ГОУ «Учебно-методический центр по образованию на железнодорожном транспорте», 2008. – 372 с.

4. Бурков А.Т. Электроника: физические основы, полупроводниковые приборы и устройства: Учебное пособие. – СПб.: Петербургский гос. ун-т путей сообщения, 1999. – 290 с.

5. Забродин Ю.С. Промышленная электроника: Учебник для вузов. – М: Высшая школа, 1982. – 496 с.

Включение — тиристор — Большая Энциклопедия Нефти и Газа, статья, страница 4

Включение — тиристор

Cтраница 4

Время включения тиристора Т1 определяет длительность импульса, а Т2 — длительность паузы между импульсами. Применение дросселя L позволяет получить более высокие частоты, так как малая индуктивность дросселя после его насыщения ускоряет заряд конденсатора С, Схема может работать на частотах до 3 — 4 кгц.  [46]

Время включения тиристоров зависит от времени, необходимого для восстановления его запирающих свойств в прямом направлении. По существу время выключения тиристора определяет предельную частоту его возможных включений. Время выключения тиристоров типа ВКДУ-150 находится в пределах 80 — 200 мксек.  [48]

Схема включения тиристора ( рис. 2 — 8 а) требует гальванической связи между цепями управления и силовой цепью. В то же время гальваническая связь между силовой цепью и цепями питания полупроводниковой логики недопустима для обеспечения надежности последней.  [50]

Время включения тиристора определяется как геометрией монокристаллической структуры, так и электрофизическими свойствами ее отдельных слоев, и поэтому существенно зависит от технологического процесса изготовления вентильного элемента. Между тем для характеристики этого динамического режима тиристора в преобразователе важны не величины времени включения вентилей, а величины их коммутационных потерь мощности при включении.  [52]

Условия включения тиристоров VS2 и VS3 выполнены, и через них начинает проходить аналогичный импульс тока.  [53]

Время включения тиристоров составляет 20 мкс; для тиристоров Т-250 и Т-320 оно составляет 30 мкс.  [55]

Продолжительность включения тиристора зависит от формы управляющего импульса. При увеличении крутизны переднего фронта импульса и амплитуды импульса время включения тиристора уменьшается.  [56]

Процесс включения тиристора обычно делят на три этапа ( рис. 3.8): этап задержки, регенеративный этап и этап установления стационарного тока.  [58]

Момент включения тиристора определяют по вольтметру Vlt напряжение которого при этом резко падает, а ток амперметра At скачком возрастает. Токи и напряжения управления измеряют при заданных значениях анодного напряжения и температуры.  [60]

Страницы:      1    2    3    4    5    6

Тиристор назначение и принцип работы. Управление тиристором, принцип действия

Тиристор представляет собой электронный силовой частично управляемый ключ. Этот прибор, с помощью сигнала управления может находиться только в проводящем состоянии, то есть быть включенным. Для того, чтобы его выключить, нужно проводить специальные мероприятия, которые обеспечивают падение прямого тока до нулевого значения. Принцип работы тиристора заключается в односторонней проводимости, в закрытом состоянии может выдержать не только прямое, но и обратное напряжение.

Свойства тиристоров

По своим качествам, тиристоры относятся к полупроводниковым приборам. В их полупроводниковой пластине присутствуют смежные слои, обладающие различными типами проводимости. Таким образом, каждый тиристор представляет собой прибор, имеющий четырехслойную структуру р-п-р-п.

К крайней области р-структуры производится подключение положительного полюса источника напряжения. Поэтому, данная область получила название анода. Противоположная область п-типа, куда подключается отрицательный полюс, называется катодом. Вывод из внутренней области осуществляется с помощью р-управляющего электрода.

Классическая модель тиристора состоит из двух , имеющих разную степень проводимости. В соответствии с данной схемой, производится соединение базы и коллектора обоих транзисторов. В результате такого соединения, питание базы каждого транзистора осуществляется с помощью коллекторного тока другого транзистора. Таким образом, получается цепь с положительной обратной связью.

Если ток отсутствует в управляющем электроде, то транзисторы находятся в закрытом положении. Течение тока через нагрузку не происходит, и тиристор остается закрытым. При подаче тока выше определенного уровня, в действие вступает положительная обратная связь. Процесс становится лавинообразным, после чего происходит открытие обоих транзисторов. В конечном итоге, после открытия тиристора, наступает его стабильное состояние, даже в случае прекращения подачи тока.

Работа тиристора при постоянном токе

Рассматривая электронный тиристор принцип работы которого основан на одностороннем движении тока, следует отметить его работу при постоянном токе.

Обычный тиристор включается путем подачи импульса тока в цепь управления. Эта подача осуществляется со стороны положительной полярности, противоположной, относительно катода.

Во время включения, продолжительность переходного процесса обусловлена характером нагрузки, амплитудой и скоростью, с которой нарастает импульс тока управления. Кроме того, этот процесс зависит от температуры внутренней структуры тиристора, тока нагрузки и приложенного напряжения. В цепи, где установлен тиристор, не должно быть недопустимой скорости роста напряжения, которое может привести к его самопроизвольному включению.

♦ Как мы уже выяснили – тиристор, это полупроводниковый прибор, обладающий свойствами электрического вентиля. Тиристор с двумя выводами (А — анод, К — катод) , это динистор. Тиристор с тремя выводами (А – анод, К – катод, Уэ – управляющий электрод) , это тринистор, или в обиходе его называют просто тиристор.

♦ С помощью управляющего электрода (при определенных условиях) можно изменять электрическое состояние тиристора, то есть переводить его из состояния «выключено» в состояние «включено».
Тиристор открывается в случае, если приложенное напряжение между анодом и катодом превысит величину U = Uпр , то есть величину напряжения пробоя тиристора;
Тиристор можно открыть и при напряжении меньше, чем Uпр между анодом и катодом (U , если подать импульс напряжения положительной полярности между управляющим электродом и катодом.

♦ В открытом состоянии тиристор может находиться сколько угодно долго, пока на него подано питающее напряжение.
Тиристор можно закрыть:

  • — если уменьшить напряжение между анодом и катодом до U = 0 ;
  • — если снизить анодный ток тиристора до величины, меньше тока удержания Iуд .
  • — подачей запирающего напряжения на управляющий электрод, (только для запираемых тиристоров).

Тиристор может также находиться в закрытом состоянии сколько угодно долго, до прихода запускающего импульса.
Тиристоры и динисторы работают как в цепях постоянного, так и в цепях переменного тока.

Работа динистора и тиристора в цепях постоянного тока.

Рассмотрим несколько практических примеров.
Первый пример применения динистора, это релаксационный генератор звуковых сигналов .

В качестве динистора используем КН102А-Б.

♦ Работает генератор следующим образом.
При нажатии кнопки Кн , через резисторы R1 и R2 постепенно заряжается конденсатор С (+ батареи – замкнутые контакты кнопки Кн – резисторы – конденсатор С – минус батареи).
Параллельно конденсатору подключена цепочка из телефонного капсюля и динистора. Через телефонный капсюль и динистор ток не протекает, так как динистор еще «заперт».
♦ При достижении на конденсаторе напряжения, при котором пробивается динистор, через катушку телефонного капсюля проходит импульс тока разряда конденсатора (С – катушка телефона – динистор — С). Слышен щелчок из телефона, конденсатор разрядился. Далее снова идет заряд конденсатора С и процесс повторяется.
Частота повторения щелчков зависит от емкости конденсатора и величины сопротивления резисторов R1 и R2 .
♦ При указанных на схеме номиналах напряжения, резисторов и конденсатора, частоту звукового сигнала с помощью резистора R2 можно менять в пределах 500 – 5000 герц. Телефонный капсюль необходимо использовать с низкоомной катушкой 50 – 100 Ом , не более, например телефонный капсюль ТК-67-Н .
Телефонный капсюль необходимо включать с соблюдением полярности, иначе не будет работать. На капсюле есть обозначение +(плюс) и – (минус).

♦ У этой схемы (рис 1) есть один недостаток. Из-за большого разброса параметров динистора КН102 (разное напряжение пробоя), в некоторых случаях, нужно будет увеличить напряжение источника питания до 35 – 45 вольт , что не всегда возможно и удобно.

Устройство управления, собранное на тиристоре, для включения – выключения нагрузки с помощью одной кнопки показано на рис 2.


Устройство работает следующим образом.
♦ В исходном состоянии тиристор закрыт и лампочка не горит.
Нажмем на кнопку Кн в течении 1 – 2 секунды . Контакты кнопки размыкаются, цепь катода тиристора разрывается.

В этот момент конденсатор С заряжается от источника питания через резистор R1 . Напряжение на конденсаторе достигает величины U источника питания.
Отпускаем кнопку Кн .
В этот момент конденсатор разряжается по цепи: резистор R2 – управляющий электрод тиристора – катод — замкнутые контакты кнопки Кн – конденсатор.
В цепи управляющего электрода потечет ток, тиристор «откроется» .
Загорается лампочк а по цепи: плюс батареи – нагрузка в виде лампочки – тиристор — замкнутые контакты кнопки – минус батареи.
В таком состоянии схема будет находиться сколько угодно долго .
В этом состоянии конденсатор разряжен: резистор R2, переход управляющий электрод – катод тиристора, контакты кнопки Кн.
♦ Для выключения лампочки необходимо кратковременно нажать на кнопку Кн . При этом основная цепь питания лампочки обрывается. Тиристор «закрывается» . Когда контакты кнопки замкнутся, тиристор останется в закрытом состоянии, так как на управляющем электроде тиристора Uynp = 0 (конденсатор разряжен).

Мною опробованы и надежно работали в этой схеме различные тиристоры: КУ101, Т122, КУ201, КУ202, КУ208 .

♦ Как уже упоминалось, динистор и тиристор имеют свой транзисторный аналог .

Схема аналога тиристора состоит из двух транзисторов и изображена на рис 3 .
Транзистор Тр 1 имеет p-n-p проводимость, транзистор Тр 2 имеет n-p-n проводимость. Транзисторы могут быть как германиевые, так и кремниевые.

Аналог тиристора имеет два управляющих входа.
Первый вход: А – Уэ1 (эмиттер — база транзистора Тр1).
Второй вход: К – Уэ2 (эмиттер – база транзистора Тр2).

Аналог имеет: А – анод, К — катод, Уэ1 – первый управляющий электрод, Уэ2 – второй управляющий электрод.

Если управляющие электроды не использовать, то это будет динистор, с электродами А — анод и К — катод .

♦ Пару транзисторов, для аналога тиристора, надо подбирать одинаковой мощности с током и напряжением выше, чем необходимо для работы устройства. Параметры аналога тиристора (напряжение пробоя Unp, ток удержания Iyд) , будут зависеть от свойств применяемых транзисторов.

♦ Для более устойчивой работы аналога в схему добавляют резисторы R1 и R2 . А с помощью резистора R3 можно регулировать напряжение пробоя Uпр и ток удержания Iyд аналога динистора – тиристора. Схема такого аналога изображена на рис 4 .

Если в схеме генератора звуковых частот (рис 1) , вместо динистора КН102 включить аналог динистора, получится устройство с другими свойствами (рис 5) .

Напряжение питания такой схемы составит от 5 до 15 вольт . Изменяя величины резисторов R3 и R5 можно изменять тональность звука и рабочее напряжение генератора.

Переменным резистором R3 подбирается напряжение пробоя аналога под используемое напряжение питания.

Потом можно заменить его на постоянный резистор.

Транзисторы Тр1 и Тр2: КТ502 и КТ503; КТ814 и КТ815 или любые другие.

♦ Интересна схема стабилизатора напряжения с защитой от короткого замыкания в нагрузке (рис 6) .

Если ток в нагрузке превысит 1 ампер , сработает защита.

Стабилизатор состоит из:

  • — управляющего элемента– стабилитрона КС510 , который определяет напряжение выхода;
  • — исполнительного элемента–транзисторов КТ817А, КТ808А , исполняющих роль регулятора напряжения;
  • — в качестве датчика перегрузки используется резистор R4 ;
  • — исполнительным механизмом защиты используется аналог динистора, на транзисторах КТ502 и КТ503 .

♦ На входе стабилизатора в качестве фильтра стоит конденсатор С1 . Резистором R1 задается ток стабилизации стабилитрона КС510 , величиной 5 – 10 мА. Напряжение на стабилитроне должно быть 10 вольт .
Резистор R5 задает начальный режим стабилизации выходного напряжения.

Резистор R4 = 1,0 Ом , включен последовательно в цепь нагрузки.Чем больше ток нагрузки, тем больше на нем выделяется напряжение, пропорциональное току.

В исходном состоянии, когда нагрузка на выходе стабилизатора мала или отключена, аналог тиристора закрыт. Приложенного к нему напряжения 10 вольт (от стабилитрона) не хватает для пробоя. В этот момент падение напряжения на резисторе R4 почти равно нулю.
Если постепенно увеличивать ток нагрузки, будет увеличиваться падение напряжения на резисторе R4 . При определенном напряжении на R4, аналог тиристора пробивается и установится напряжение, между точкой Тчк1 и общим проводом, равное 1,5 — 2,0 вольта .
Это есть напряжение перехода анод — катод открытого аналога тиристора.

Одновременно загорается светодиод Д1 , сигнализируя об аварийной ситуации. Напряжение на выходе стабилизатора, в этот момент, будет равно 1,5 — 2,0 вольта .
Чтобы восстановить нормальную работу стабилизатора, необходимо выключить нагрузку и нажать на кнопку Кн , сбросив блокировку защиты.
На выходе стабилизатора вновь будет напряжение 9 вольт , а светодиод погаснет.
Настройкой резистора R3 , можно подобрать ток срабатывания защиты от 1 ампера и более . Транзисторы Т1 и Т2 можно ставить на один радиатор без изоляции. Сам же радиатор изолировать от корпуса.

Тиристор — электронный компонент, изготовленный на основе полупроводниковых материалов, может состоять из трёх или более p-n-переходов и имеет два устойчивых состояния: закрытое (низкая проводимость), открытое (высокая проводимость).

Это сухая формулировка, которая для тех, кто только начинает осваивать электротехник у, абсолютно ни о чём не говорит. Давайте разберём принцип работы этого электронного компонента для обычных людей, так сказать, для чайников, и где его можно применить. По сути, это электронный аналог выключателей, которыми вы каждый день пользуетес

Есть много типов этих элементов, обладающие различными характеристиками и имеющие различные области применения. Рассмотрим обычный однооперационный тиристор.

Способ обозначения на схемах показан на рисунке 1.

Электронный элемент имеет следующие выводы:

  • анод положительный вывод;
  • катод отрицательный вывод;
  • управляющий электрод G.

Принцип действия тиристора

Основное применение этого типа элементов это создание на их основе силовых тиристорных ключей для коммутации больших токов и их регулирования. Включение выполняется сигналом, переданным на управляющий электрод. При этом элемент является не полностью управляемым, и для его закрытия необходимо применение дополнительных мер, которые обеспечат падение величины напряжения до нуля.

Если говорить, как работает тиристор простым языком, то он, по аналогии с диодом, может проводить ток только в одном направлении, поэтому при его подключении нужно соблюдать правильную полярность . При подаче напряжения к аноду и катоду этот элемент будет оставаться закрытым до момента, когда на управляющий электрод будет подан соответствующий электрический сигнал. Теперь, независимо от наличия или отсутствия управляющего сигнала, он не изменит своего состояния и останется открытым.

Условия закрытия тиристора:

  1. Снять сигнал с управляющего электрода;
  2. Снизить до нуля напряжение на катоде и аноде.

Для сетей переменного тока выполнение этих условий не вызывает особых трудностей. Синусоидальное напряжение, изменяясь от одного амплитудного значения до другого, снижается до нулевой величины, и если в этот момент управляющего сигнала нет, то тиристор закроется.

В случае использования тиристоров в схемах постоянного тока для принудительной коммутации (закрытия тиристора) используют ряд способов, наиболее распространённым является использование конденсатора, который был предварительно заряжен. Цепь с конденсатором подключается к схеме управления тиристором. При подключении конденсатора в цепь произойдёт разряд на тиристор, ток разряда конденсатора будет направлен встречно прямому току тиристора, что приведёт к уменьшению тока в цепи до нулевого значения и тиристор закроется.

Можно подумать, что применение тиристоров неоправданно, не проще ли использовать обычный ключ? Огромным плюсом тиристора является то, что он позволяет коммутировать огромные токи в цепи анода-катода при помощи ничтожно малого управляющего сигнала, поданного в цепь управления. При этом не возникает искрения, что немаловажно для надёжности и безопасности всей схемы.

Схема включения

Схема управления может выглядеть по-разному, но в простейшем случае схема включения тиристорного ключа имеет вид, показанный на рисунке 2.

К аноду присоединена лампочка L, а к ней выключателем К2 подключается плюсовая клемма источника питания G. B. Катод соединяется с минусом питания.

После подачи питания выключателем К2 к аноду и катоду будет приложено напряжение батареи, но тиристор остаётся закрытым, лампочка не светится. Для того чтобы включить лампу, необходимо нажать на кнопку К1, сигнал через сопротивление R будет подан на управляющий электрод, тиристорный ключ изменит своё состояние на открытое, и лампочка загорится. Сопротивление ограничивает ток, подаваемый на управляющий электрод. Повторное нажатие на кнопку К1 никакого влияния на состояние схемы не оказывает.

Для закрытия электронного ключа нужно отключить схему от источника питания выключателем К2. Этот тип электронных компонентов закроется, и в случае снижения напряжения питания на аноде до определённой величины, которая зависит от его характеристик. Вот так можно описать, как работает тиристор для чайников.

Характеристики

К основным характеристикам можно отнести следующие:

Рассматриваемые элементы, кроме электронных ключей, часто применяются в регуляторах мощности, которые позволяют изменять подводимую к нагрузке мощность за счёт изменения среднего и действующего значений переменного тока. Величина тока регулируется изменением момента подачи на тиристор открывающего сигнала (за счёт варьирования угла открывания). Углом открытия (регулирования) называется время от начала полупериода до момента открытия тиристора.

Типы данных электронных компонентов

Существует немало различных типов тиристоров, но наиболее распространены, помимо тех что мы рассмотрели выше, следующие:

  • динистор элемент, коммутация которого происходит при достижении определённого значения величины напряжения, приложенного между анодом и катодом;
  • симистор;
  • оптотиристор, коммутация которого осуществляется световым сигналом.

Симисторы

Хотелось бы более подробно остановиться на симисторах. Как говорилось ранее, тиристоры могут проводить ток только в одном направлении, поэтому при установке их в цепи переменного тока, такая схема регулирует один полупериод сетевого напряжения. Для регулирования обоих полупериодов необходимо установить встречно-параллельно ещё один тиристор либо применить специальные схемы с использованием мощных диодов или диодных мостов. Все это усложняет схему, делает её громоздкой и ненадёжной.

Вот для таких случаев и был изобретён симистор. Поговорим о нем и о принципе работы для чайников. Главное отличие симисторов от рассмотренных выше элементов заключается в способности пропускать ток в обоих направлениях. По сути, это два тиристора с общим управлением, подключённые встречно-параллельно (рисунок. 3 А).

Условное графическое обозначение этого электронного компонента показано на Рис. 3 В. Следует заметить, что называть силовые выводы анодом и катодом будет не корректно, так как ток может проводиться в любом направлении, поэтому их обозначают Т1 и Т2. Управляющий электрод обозначается G. Для того чтобы открыть симистор, необходимо подать управляющий сигнал на соответствующий вывод. Условия для перехода симистора из одного состояния в другое и обратно в сетях переменного тока не отличаются от способов управления, рассмотренных выше.

Применяется этот тип электронных компонентов в производственной сфере, бытовых устройствах и электроинструментах для плавного регулирования тока. Это управление электродвигателями, нагревательными элементами, зарядными устройствами.

В завершение хотелось бы сказать, что и тиристоры и симисторы, коммутируя значительные токи, обладают весьма скромными размерами, при этом на их корпусе выделяется значительная тепловая мощность. Проще говоря, они сильно греются, поэтому для защиты элементов от перегрева и теплового пробоя используют теплоотвод, который в простейшем случае представляет собой алюминиевый радиатор.

8 января 2013 в 19:23
  • Электроника для начинающих

Добрый вечер хабр. Поговорим о таком приборе, как тиристор. Тиристор — это полупроводниковый прибор с двумя устойчивыми состояниями, имеющий три или больше взаимодействующих выпрямляющих перехода. По функциональности их можно соотнести к электронным ключам. Но есть в тиристоре одна особенность, он не может перейти в закрытое состояние в отличие от обычного ключа. Поэтому обычно его можно найти под названием — не полностью управляемый ключ.

На рисунке представлен обычный вид тиристора. Состоит он из четырех чередующихся типов электро-проводимости областей полупроводника и имеет три вывода: анод, катод и управляющего электрод.
Анод — это контакт с внешним p-слоем, катод — с внешним n-слоем.
Освежить память о p-n переходе можно .

Классификация

В зависимости от количества выводов можно вывести классификацию тиристоров. По сути все очень просто: тиристор с двумя выводами называется динисторами (соответственно имеет только анод и катод). Тиристор с тремя и четырьмя выводами, называются триодными или тетродными. Также бывают тиристоры и с большим количеством чередующихся полупроводниковых областей. Одним из самых интересных является симметричный тиристор (симистор), который включается при любой полярности напряжения.

Принцип работы



Обычно тиристор представляют в виде двух транзисторов, связанных между собой, каждый из которых работает в активном режиме.

В связи с таким рисунком можно назвать крайние области — эмиттерными, а центральный переход — коллекторным.
Чтобы разобраться как работает тиристор стоит взглянуть на вольт-амперную характеристику.


К аноду тиристора подали небольшое положительное напряжение. Эмиттерные переходы включены в прямом направлении, а коллекторный в обратном. (по сути все напряжение будем на нем). Участок от нуля до единицы на вольт-амперной характеристике будет примерно аналогичен обратной ветви характеристики диода. Этот режим можно назвать — режимом закрытого состояния тиристора.
При увеличении анодного напряжения происходит происходит инжекция основных носителей в области баз, тем самым происходит накопление электронов и дырок, что равносильно разности потенциалов на коллекторном переходе. С увеличением тока через тиристор напряжение на коллекторном переходе начнет уменьшаться. И когда оно уменьшится до определенного значения, наш тиристор перейдет в состояние отрицательного дифференциального сопротивления (на рисунке участок 1-2).
После этого все три перехода сместятся в прямом направлении тем самым переведя тиристор в открытое состояние (на рисунке участок 2-3).
В открытом состоянии тиристор будет находится до тех пор, пока коллекторный переход будет смещен в прямом направлении. Если же ток тиристора уменьшить, то в результате рекомбинации уменьшится количество неравновесных носителей в базовых областях и коллекторный переход окажется смещен в обратном направлении и тиристор перейдет в закрытое состояние.
При обратном включении тиристора вольт-амперная характеристика будет аналогичной как и у двух последовательно включенных диодов. Обратное напряжение будет ограничиваться в этом случае напряжением пробоя.

Общие параметры тиристоров

1. Напряжение включения — это минимальное анодное напряжение, при котором тиристор переходит во включенное состояние.
2. Прямое напряжение — это прямое падение напряжения при максимальном токе анода.
3. Обратное напряжение — это максимально допустимое напряжение на тиристоре в закрытом состоянии.
4. Максимально допустимый прямой ток — это максимальный ток в открытом состоянии.
5. Обратный ток — ток при максимальной обратном напряжении.
6. Максимальный ток управления электрода
7. Время задержки включения/выключения
8. Максимально допустимая рассеиваемая мощность

Заключение

Таким образом, в тиристоре существует положительная обратная связь по току — увеличение тока через один эмиттерный переход приводит к увеличению тока через другой эмиттерный переход.
Тиристор — не полностью управляющий ключ. То есть перейдя в открытое состояние, он остается в нем даже если прекращать подавать сигнал на управляющий переход, если подается ток выше некоторой величины, то есть ток удержания.

Тиристор. Устройство, назначение.

Тиристором называется управляемый трехэлектродный полупроводниковый прибор с тремя p–n -переходами, обладающий двумя устойчивыми состояниями электрического равновесия: закрытым и открытым.

Тиристор совмещает в себе функции выпрямителя, выключателя и усилителя. Часто он используется как регулятор, главным образом, когда схема питается переменным напряжением. Нижеследующие пункты раскрывают три основных свойства тиристора:

1 тиристор, как и диод, проводит ток в одном направлении, проявляя себя как выпрямитель;

2 тиристор переводится из выключенного состояния во включенное при подаче сигнала на управляющий электрод и, следовательно, как выключатель имеет два устойчивых состояния.

3 управляющий ток, необходимый для перевода тиристора из «закрытого» состояния в «открытое», значительно меньше (несколько миллиампер) при рабочем токе в несколько ампер и даже в несколько десятков ампер. Следовательно, тиристор обладает свойствами усилителя тока;

Устройство и основные виды тиристоров

Рис. 1. Схемы тиристора: a) Основная четырёхслойная p-n-p-n -структура b) Диодный тиристор с) Триодный тиристор.

Основная схема тиристорной структуры показана на рис. 1. Она представляет собой четырёхслойный полупроводник структуры p-n-p-n , содержащий три последовательно соединённых p-n -перехода J1, J2, J3. Контакт к внешнему p -слою называется анодом, к внешнему n -слою — катодом. В общем случае p-n-p-n -прибор может иметь до двух управляющих электродов (баз), присоединённых к внутренним слоям. Подачей сигнала на управляющий электрод производится управление тиристором (изменение его состояния). Прибор без управляющих электродов называется диодным тиристором или динистором . Такие приборы управляются напряжением, приложенным между основными электродами. Прибор с одним управляющим электродом называют триодным тиристором или тринистором (иногда просто тиристором, хотя это не совсем правильно). В зависимости от того, к какому слою полупроводника подключён управляющий электрод, тринисторы бывают управляемыми по аноду и по катоду. Наиболее распространены последние.

Описанные выше приборы бывают двух разновидностей: пропускающие ток в одном направлении (от анода к катоду) и пропускающие ток в обоих направлениях. В последнем случае соответствующие приборы называются симметричными (так как ихВАХ симметрична) и обычно имеют пятислойную структуру полупроводника. Симметричный тринистор называется такжесимистором или триаком (от англ. triac). Следует заметить, что вместо симметричных динисторов , часто применяются их интегральные аналоги, обладающие лучшими параметрами.

Тиристоры, имеющие управляющий электрод, делятся на запираемые и незапираемые. Незапираемые тиристоры, как следует из названия, не могут быть переведены в закрытое состояние с помощью сигнала, подаваемого на управляющий электрод. Такие тиристоры закрываются, когда протекающий через них ток становится меньше тока удержания. На практике это обычно происходит в конце полуволны сетевого напряжения.

Вольтамперная характеристика тиристора

Рис. 2. Вольтамперная характеристика тиристора

Типичная ВАХ тиристора, проводящего в одном направлении (с управляющими электродами или без них), приведена на рис 2. Она имеет несколько участков:

· Между точками 0 и (Vвo,IL) находится участок, соответствующий высокому сопротивлению прибора — прямое запирание (нижняя ветвь).

· В точке Vво происходит включение тиристора (точка переключения динистора во включённое состояние).

· Между точками (Vво, IL) и (Vн,Iн) находится участок с отрицательным дифференциальным сопротивлением-неустойчивая область переключения во включённое состояние. При подаче разности потенциалов между анодом и катодом тиристора прямой полярности больше Vно происходит отпирание тиристора (динисторный эффект).

· Участок от точки с координатами (Vн,Iн) и выше соответствует открытому состоянию (прямой проводимости)

· На графике показаны ВАХ с разными токами управления (токами на управляющем электроде тиристора) IG (IG=0; IG>0; IG>>0), причём чем больше ток IG, тем при меньшем напряжении Vbo происходит переключение тиристора в проводящее состояние

· Пунктиром обозначен т. н. «ток включения спрямления» (IG>>0), при котором тиристор переходит в проводящее состояние при минимальном напряжении анод-катод. Для того, чтобы перевести тиристор обратно в непроводящее состояние необходимо снизить ток в цепи анод-катод ниже тока включения спрямления.

· Участок между 0 и Vbr описывает режим обратного запирания прибора.

Вольтамперная характеристика симметричных тиристоров отличается от приведённой на рис. 2 тем, что кривая в третьей четверти графика повторяет участки 0-3 симметрично относительно начала координат.

По типу нелинейности ВАХ тиристор относят к S-приборам.

Как работает тиристорная схема »Электроника

Существует множество схем тиристоров / тиристоров, которые могут управлять как постоянным, так и переменным током — часто в цепях управления переменным током используется разность фаз на затворе для управления уровнем протекающего тока.


Конструкция схемы тиристора Включает:
Праймер для разработки схемы тиристора Схема работы Конструкция цепи запуска / запуска Лом перенапряжения Цепи симистора


Тиристорные цепи SCR широко используются для управления мощностью как в системах постоянного, так и переменного тока.В схемах используется множество различных методов для управления потоком тока нагрузки, но все они требуют, чтобы затвор сработал и напряжение на аноде с катода было снято, чтобы остановить ток. Понимание того, как работает схема тиристора / тиристора, упрощает их проектирование.

Во многих схемах тиристоров переменного тока и тиристора используется переменная разность фаз сигнала, создаваемого на затворе, для управления частью формы волны, по которой проводит тиристор. Этот тип схемы относительно легко спроектировать и построить.

Тиристор постоянного тока / цепь SCR

Есть много приложений, где требуется цепь SCR для управления работой нагрузки постоянного тока. Его можно использовать для двигателей постоянного тока, ламп или любой другой нагрузки, требующей переключения.

Базовая схема SCR, приведенная ниже, может управлять мощностью нагрузки с помощью небольшого переключателя, чтобы инициировать подачу питания на нагрузку.

Базовая схема тиристора постоянного тока / тиристора

Изначально при замкнутом S1 и разомкнутом S2 ток не протекает.Только когда S2 замкнут и запускает затвор, вызывая протекание тока затвора, схема SCR включается и ток течет в нагрузке.

Ток будет продолжать течь до тех пор, пока не будет прервана анодная цепь. Это можно сделать с помощью S1. Альтернативный метод состоит в том, чтобы поместить переключатель S1 на тиристор, и, мгновенно замкнув его, напряжение на тиристоре исчезнет, ​​и тиристор перестанет проводить.

В результате их функций в этой схеме SCR S1 может называться выключателем, а S2 — выключателем.В этой конфигурации S1 должен иметь возможность проводить ток полной нагрузки, в то время как S2 должен иметь возможность переносить ток затвора. Как только тиристор включен, переключатель можно отпустить и оставить в разомкнутом состоянии, поскольку действие тиристора поддерживает ток через устройство и, следовательно, нагрузку.

Резистор R1 подключает затвор к питанию через переключатель. Когда переключатель S2 замкнут, ток проходит через резистор, попадает в затвор и включает тиристор. Резистор R1 должен быть рассчитан на обеспечение достаточного тока затвора для включения цепи SCR.

R2 включен для снижения чувствительности SCR, чтобы он не срабатывал при возникновении любого шума, который может быть уловлен.

Базовая схема тиристора переменного тока / тиристора

Когда переменный ток используется с тиристорной схемой, необходимо внести несколько изменений, как показано ниже.

Причина этого заключается в том, что питание переменного тока меняет полярность в течение цикла. Это означает, что SCR станет смещенным в обратном направлении, эффективно уменьшая анодное напряжение до нуля, вызывая его отключение в течение одной половины каждого цикла.В результате отпадает необходимость в выключателе, поскольку это достигается при использовании источника переменного тока.

Базовая схема тиристора переменного тока / тиристора

Работа схемы немного отличается от схемы тиристора постоянного тока. Когда переключатель включен, схема должна будет дождаться, пока не появится достаточное анодное напряжение, пока форма волны переменного тока продвигается вдоль своего пути. Кроме того, схеме SCR необходимо будет подождать, пока напряжение в секции затвора схемы не сможет обеспечить достаточный ток для запуска SCR.Для этого переключатель должен находиться в закрытом положении.

После срабатывания SCR остается в проводящем состоянии в течение положительной половины цикла. По мере падения напряжения наступит момент, когда напряжение на аноде и катоде будет недостаточным для поддержания проводимости. На этом этапе SCR перестанет проводить.

Тогда в течение отрицательной половины цикла SCR не будет работать. Только когда вернется следующая положительная половина цикла, процесс повторится.

В результате эта цепь будет работать только тогда, когда переключатель затвора находится в закрытом положении.

Одна из проблем с использованием схемы SCR такого рода заключается в том, что она не может подавать более 50% мощности на нагрузку, потому что она не проводит ток в течение отрицательной половины цикла переменного тока, потому что SCR смещен в обратном направлении.

AC SCR цепь с управлением фазой затвора

Можно контролировать количество энергии, достигающей нагрузки, изменяя долю полупериода, в течение которого проводит SCR. Это может быть достигнуто с помощью схемы SCR, которая включает управление фазой входного стробирующего сигнала.

Формы сигналов тиристорной цепи переменного тока

Используя схему SCR с управлением фазой, можно увидеть, что сигнал затвора SCR получается из RC-цепи, состоящей из R1, VR1 и C1 перед диодом D1.

Как и в случае с базовой схемой тиристора переменного тока, интерес представляет только положительный полупериод сигнала, поскольку тиристор смещен в прямом направлении. В течение этого полупериода конденсатор C1 заряжается через цепь резисторов, состоящую из R1 и VR1, от напряжения питания переменного тока. Видно, что форма волны на положительном конце C1 отстает от формы входной волны, и затвор срабатывает только тогда, когда напряжение на верхнем конце конденсатора поднимается достаточно, чтобы запустить SCR через D1.В результате точка включения для SCR задерживается по сравнению с той, которая обычно имела бы место, если бы RC-сеть отсутствовала. Установка значения VR1 изменяет задержку и, следовательно, пропорцию цикла, в которой работает SCR. Таким образом можно регулировать мощность нагрузки.

Схема тиристора переменного тока с управлением фазой затвора

Включен последовательный резистор R1, чтобы ограничить минимальное значение для цепи резисторов значением, которое обеспечит приемлемый уровень тока затвора для SCR.

Обычно, чтобы обеспечить полный контроль над 50% цикла, доступного для проведения с помощью SCR, фазовый угол сигнала затвора должен изменяться от 0 ° до 180 °.

Эти схемы дают некоторые из основных концепций, лежащих в основе проектирования схем тиристоров / тиристоров. Они демонстрируют основные операции того, как они работают и как их можно использовать.

Одна из основных проблем, о которых следует помнить при проектировании тиристорных схем, — это рассеиваемая мощность. Поскольку эти схемы часто работают с высоким напряжением и высокими уровнями мощности, рассеяние мощности может быть основным фактором в конструкции и работе схемы.

Другие схемы и схемотехника:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
Возврат в меню проектирования схем. . .

тиристоров в цепях переменного тока

  • Изучив этот раздел, вы сможете:
  • Описать методы управления мощностью переменного тока с помощью тиристоров
  • • Полуволновое и полноволновое управление
  • • Базовое резистивное управление.
  • • Фазовое управление.
  • • Контроль уровня.
  • • Импульсный запуск.
  • • Синхронное переключение или переключение при переходе через ноль.
  • Разберитесь в работе схемы для различных методов срабатывания тринистора.
  • Описать методы безопасной изоляции устройств среднего и высокого напряжения.

Базовый резистивный контроль

Тиристоры обычно используются в цепях управления питанием переменного тока, таких как диммеры освещения, регуляторы скорости двигателя переменного тока, нагреватели и т. Д.где сетевое (линейное) напряжение используется для нагрузок в много ватт или часто киловатт. Целью управления переменным током является запуск SCR на части в течение каждого цикла переменного тока, чтобы ток нагрузки через SCR отключался на часть цикла переменного тока, таким образом ограничивая средний ток, протекающий через SCR, и, следовательно, среднюю передаваемую мощность к нагрузке.

Рис. 6.2.1 Базовая схема резистивного управления

Самый простой способ достижения этого показан на рис. 6.2.1, где тиристор включается подачей синусоидальной волны низкого напряжения (полученной от входа переменного тока простой резисторной цепью, содержащей переменный потенциометр) на вывод затвора. SCR.Обратите внимание, что поскольку входная волна затвора получается из переменного тока, протекающего через SCR, она будет состоять только из выпрямленных полуволновых импульсов. Эффект этой входной волны заключается в том, что SCR будет включаться только тогда, когда форма волны затвора достигает потенциала срабатывания SCR, что происходит на полпути в течение каждого положительного полупериода волны переменного тока. После включения тиристора он продолжает проводить до тех пор, пока волна переменного тока не упадет до уровня чуть выше нуля вольт, когда ток, протекающий между анодом и катодом, упадет до значения, меньшего, чем порог « тока удержания » (показан в тиристорном модуле 6.0 рис. 6.0.3). Затем тиристор остается в непроводящем состоянии в течение отрицательного полупериода волны переменного тока, поскольку теперь он смещен в обратном направлении (в режиме обратной блокировки) в течение оставшейся части цикла переменного тока. Когда начинается следующий положительный полупериод, тиристор остается в непроводящем состоянии до тех пор, пока сигнал запуска на выводе затвора снова не достигнет своего пускового потенциала.

Рис. 6.2.2 Активное срабатывание SCR

Время или фазовый угол, при котором срабатывает SCR, можно изменять, изменяя амплитуду сигнала затвора.Как видно из анимации на рис. 6.2.2. чем меньше амплитуда стробирующего сигнала, тем позже включается тиристор. Таким образом, изменение амплитуды сигнала триггера контролирует время включения SCR. Однако обратите внимание, что, поскольку тиристор в основном представляет собой выпрямительный диод, он проводит только половину цикла переменного тока, поэтому один тиристор может выдавать только 50% доступной мощности переменного тока. Кроме того, при использовании этой очень простой формы управления током, протекающим через тиристор, можно управлять только в течение половины положительного полупериода, то есть четверти полного цикла переменного тока.Можно видеть, что как только время включения достигает пика амплитуды волны переменного тока, его нельзя регулировать дальше, так как пиковая амплитуда сигнала запуска больше не будет достигать потенциала срабатывания затвора SCR и, следовательно, не будет запускать SCR после эта точка.

Рис. 6.2.3 Управление переменным током с помощью резисторов

Рис. 6.2.3 Видео недоступно в формате для печати

Из анимации и видео на рис. 6.2.3 также видно, что при использовании простого резистивного метода управление не очень линейное; Первоначально ток через SCR изменяется только на относительно небольшую величину, но есть более быстрое изменение непосредственно перед прекращением проводимости.Внимательно посмотрите на вставку с изображением лампы на видео; он начинает заметно тускнеть только тогда, когда время переключения приближается к пиковому значению волны переменного тока.

Рис. 6.2.4 Методы управления полноволновым тиристором

Полноволновое управление SCR

Базовая операция SCR, описанная выше, может быть значительно улучшена с помощью некоторых простых модификаций. Возможно, самым большим недостатком простого резистивного управления является то, что диапазон регулировки может покрывать только 25% всей волны переменного тока.Это связано с тем, что диодный тиристор проводит только положительную половину волны переменного тока. Чтобы обеспечить проводимость во время прохождения отрицательной половины волны переменного тока, переменный ток можно выпрямить с помощью двухполупериодного выпрямителя, как показано на рис. 6.2.4 (a). Поскольку обе половины волны переменного тока теперь будут положительными, диапазон регулировки теперь увеличен почти до 50%. Альтернативой является использование второго SCR, соединенного встречно-параллельно, как показано на рис. 6.2.4 (b), чтобы один SCR работал во время положительных полупериодов, а другой SCR — во время отрицательных полупериодов.Однако такое параллельное расположение тиристоров можно также получить, просто используя один симистор вместо двух тиристоров.

Рис. 6.2.5 Демонстрационная схема управления фазой SCR

Контроль фазы SCR

Для достижения практически 100% -ного контроля волны переменного тока при регулировке фазы просто заменяется один из резисторов в резистивной цепи управления на конденсатор. Теперь это преобразует цепь резисторов в переменный фильтр нижних частот, который будет сдвигать фазу волны переменного тока, подаваемой на затвор.Подробности о том, как работает фильтр нижних частот, можно найти здесь, но в основном значения C и R выбраны таким образом, чтобы регулировка R1 обеспечивала сдвиг фазы от 0 ° до почти 90 °. Чтобы быть эффективным, изменение R1 должно привести к значительному изменению поведения устройства нагрузки (в данном случае лампы на 12 В, 100 мА). Однако, помимо сдвига фазы сигнала затвора, RC-фильтр также будет изменять амплитуду формы сигнала затвора, поэтому амплитуда сигнала затвора также должна поддерживаться выше пускового потенциала выбранного типа SCR для переключения иметь место.Из этих условий видно, что расчет подходящих значений для R и C для обеспечения надлежащего управления зависит как от фазы, так и от амплитуды, поэтому может быть довольно сложным. Поэтому, скорее всего, также потребуются некоторые практические эксперименты со значениями R и C.

Рис. 6.2.6 Управление фазой SCR

Рис. 6.2.6 Видео недоступно в формате для печати

Видео на рис. 6.2.6 показывает рабочую схему с использованием значений компонентов, показанных на рис.6.2.5. Наблюдая за яркостью лампы вместе с изменяющейся формой сигнала, показанной на вставленном изображении, можно увидеть, что использование фазового управления действительно дает значительно лучший контроль почти над всеми 180 ° каждого полупериода по сравнению с простым резистивным управлением.

Контроль уровня SCR

Рис. 6.2.7 Контроль уровня SCR

Другой способ включения тиристора в соответствующую часть цикла переменного тока — подать напряжение постоянного тока на затвор в течение времени, которое требуется для проведения тиристора.Следовательно, постоянный ток, приложенный к затвору, будет импульсом переменной ширины с уровнем напряжения, достаточным для того, чтобы заставить тиристор проводить. Эти импульсы должны быть синхронизированы с выпрямленной волной переменного тока, чтобы они всегда начинались и заканчивались в правильное время относительно формы волны переменного тока.

Анимация на рис. 6.2.7 иллюстрирует основной метод запуска SCR с использованием управления уровнем. SCR запускается (включается) в течение каждого полупериода выпрямленного переменного тока напряжением V g , приложенным к затвору SCR.SCR отключается в конце каждого полупериода, когда напряжение на SCR падает почти до нуля, что также совпадает с концом запускающего импульса V g . Импульсы постоянного тока могут генерироваться в цифровом виде, с использованием выхода компьютера или дискретной компонентной схемы, такой как показанная ниже на рис. 6.2.8, в которой используется моностабильный таймер 555. Эта схема предлагает простой и недорогой метод демонстрации работы тринистора с использованием только низких напряжений. Используются два блока питания, заштрихованная область на рис.6.2.8 — это демонстрационный источник питания переменного тока, описанный в модуле SCR 6.0, который изолирует демонстрационную схему от сети (линии). На контрольную секцию цепи должно подаваться постоянное напряжение от 5 В до 12 В. Это может быть либо отдельный источник питания постоянного тока (например, «настенная бородавка»), либо специальный регулируемый источник питания IC, либо батарея. Секция управления схемы (черная) также изолирована от секции переменного тока (красная) двумя оптопарами, IC1 и IC3. Поскольку эта схема уже изолирована от сетевого напряжения с помощью T1, казалось бы, нет необходимости использовать второй метод изоляции в IC1, однако основная функция IC1 в данном случае не изоляция, а действие как детектор перехода через ноль.

Рис. 6.2.8 Цепь запуска уровня SCR

Рис. 6.2.9 Формы сигналов запуска уровня SCR

Демонстрационная схема запуска уровня

Схема на рис. 6.2.8 включает тиристор в момент времени, выбранный настройкой VR1, в течение каждого положительного полупериода переменного тока от низковольтного источника питания (форма сигнала A). SCR снова отключается, когда выпрямленное напряжение переменного тока падает почти до нуля в конце каждого полупериода. Схема управления основана на микросхеме таймера 555, работающей в моностабильном режиме, и двух оптопарах 4N25.

Помимо изоляции цепи 555 от входящего переменного тока, IC1 (4N25) выдает синхронизирующий импульс (форма сигнала B на рис. 6.2.9). Это достигается за счет смещения IC1 в режиме общего коллектора, так что его выходной транзистор проводит большую часть входного двухполупериодного переменного тока, создавая высокое (5 В) напряжение на выводе 4, но выключается, когда волна переменного тока приближается к 0 В, создавая выходной сигнал 0 В. на выводе 4 микросхемы IC1. Эти импульсы используются для запуска моностабильного модуля 555 (IC2) в начале каждого полупериода.

Каждый раз, когда срабатывает IC2, его выход на выводе 3 становится высоким в течение времени, установленного постоянной времени, создаваемой переменным резистором VR1 и конденсатором синхронизации C1.Обратите внимание, что VR1 также подключен параллельно резистору R4 на 27 кОм. Целью этого является достижение более точной постоянной времени, чем это возможно при использовании только предпочтительных значений VR1 и C1. Также можно было бы установить предварительно установленный резистор вместо R4 для получения точной длительности запускающего импульса высокого уровня, генерируемого IC2.

Рис. 6.2.10 Срабатывание по уровню SCR

Рис. 6.2.10 Видео недоступно в формате для печати

Обратите внимание, что запускающий импульс, создаваемый IC2 (форма сигнала C на рис.6.2.9) переходит в высокий уровень сразу после получения синхронизирующего импульса, который включает SCR в начале полупериода. Также, когда импульс запуска возвращается на низкий уровень, это не отключит SCR, он будет продолжать работать до конца полупериода; это не то, что нужно. Однако форма сигнала C инвертируется под действием оптрона IC3, поскольку его выходной транзистор подключен в режиме общего эмиттера. Следовательно, SCR запускается во время последнего периода полупериода выпрямленного переменного тока (форма сигнала D на рис.6.2.9). Обратите внимание на то, что форма сигнала D не похожа на обратную форму волны C, потому что, как только SCR запускается, вход затвора (вместе с анодом и катодом) следует форме выпрямленной волны переменного тока с момента запуска до момента его запуска. достигает 0 В.

Обратите внимание, что схема запуска уровня, описанная здесь и показанная в работе на видео на рис. 6.2.10, не предназначена конкретно для представления практической схемы для управления высоким напряжением, а как демонстрационный образец, позволяющий изучить управление SCR. .Таким образом, этот модуль дает возможность более глубоко изучить режимы запуска SCR, используя низковольтный источник питания переменного тока, описанный в модуле SCR 6.0, и создавая схемы запуска на макетной плате. Однако на практике есть некоторые недостатки срабатывания по уровню, которые можно преодолеть с помощью импульсного запуска.

Запуск импульса SCR

Использование запуска по уровню, как описано выше, имеет недостаток, заключающийся в создании тока затвора в течение всего периода включения SCR.Это создает ненужный ток затвора и в приложениях с высокой мощностью может увеличить тепло, выделяемое на переходе 2 SCR, что, в свою очередь, может снизить долговременную надежность.

Модификация схемы, показанной на рис. 6.2.8, проиллюстрирована на рис. 6.2.11. Эта схема генерирует одиночный узкий импульс (длительностью около 4 мкс) для запуска SCR при выбранном угле включения, затем SCR продолжает проводить до тех пор, пока прямой ток не упадет до значения, меньшего, чем значение удерживающего тока около 0 В, что значительно снижает среднее значение затвора. Текущий.

Рис. 6.2.11 Цепь запуска импульса SCR

Как работает схема запуска импульса

Часть рис. 6.2.11, показанная бледно-серым цветом, работает так же, как уже было описано для рис. 6.2.8; Выход IC2 (моностабильный) состоит из положительных импульсов переменной ширины (форма сигнала A, показанная на рис. 6.2.12), где задний фронт каждого импульса определяет угол включения SCR. (Обратите внимание, что в схеме запуска уровня этот сигнал инвертируется перед подачей на затвор, так что задний фронт становится нарастающим фронтом для запуска SCR).На рис. 6.2.11 перед тем, как выходной сигнал IC2 будет инвертирован, он дифференцируется C3 и R5 для создания серии узких 4 мкс положительных и отрицательных импульсов, соответствующих нарастающим и спадающим фронтам сигнала A. Эти узкие импульсы подаются на общий коллектор (эмиттерный повторитель) задающего транзистора Tr1 через R6. Диод D2 на эмиттере Tr1 удаляет положительные импульсы (за исключением небольшого остатка из-за потенциала прямого перехода диода).

Рис. 6.2.12 Формы сигналов запуска импульса SCR

Отрицательные импульсы (форма волны B) на эмиттере Tr1 инвертируются импульсным трансформатором 1: 1 T2 путем соединения вторичной обмотки T2 в противофазе с первичной обмоткой T2 (обратите внимание на точки индикатора фазы рядом с первичной и вторичной обмотками), таким образом создавая положительные триггерные импульсы для SCR.Т2 также действует как изолятор между цепью управления постоянного тока низкого напряжения и тиристором переменного тока более высокого напряжения. На рис. 6.2.12 форма волны C показывает форму волны катода SCR, причем быстрый нарастающий фронт соответствует времени запуска импульса, подаваемого на затвор через токоограничивающий резистор R8; это снижает ток, подаваемый каждым импульсом запуска, примерно до 100 мкА.

Цепи запуска по уровню и импульсного запуска обеспечивают надежный запуск и настройку почти на всех 360 ° волны переменного тока 50 Гц.Для работы на частоте 60 Гц может потребоваться некоторая регулировка постоянной времени моностабильности. Уровень напряжения питания постоянного тока не критичен, от 5 до 12 В.

Рис. 6.2.13 Кривые пересечения нуля SCR

Синхронное переключение (переход через нуль)

Однако проблема существует со всеми описанными выше методами управления. Форма выходного сигнала переменного тока, когда SCR включается в течение каждого положительного полупериода волны переменного тока, имеет очень быстрое время нарастания, поскольку ток через SCR внезапно переключается с нуля на мгновенное значение волны переменного тока.При использовании источника переменного тока 230 В это резкое изменение может составлять около 325 В (пиковое значение волны переменного тока). Форма волны также может быть острым треугольным всплеском, если SCR включается после достижения пикового значения волны. В любом случае форма волны переменного напряжения, создаваемая действием SCR, будет богата гармониками, которые могут вызвать серьезный уровень электромагнитных помех (ЭМИ), вызывающих проблемы не только для других подключенных схем; Помехи также могут излучаться на другие расположенные поблизости электронные устройства в виде радиочастотных помех (r.е.и.), поскольку создаваемые гармоники могут распространяться в радиодиапазоны. Чтобы избежать этих проблем, можно использовать альтернативные методы контроля. Один из таких методов, называемый «синхронное переключение или переключение с переходом через нуль», заключается в том, чтобы разрешить тиристорам переключаться только тогда, когда форма напряжения сети равна нулю или очень близка к нему. Затем тиристор включается на определенное количество циклов, а затем снова выключается (когда напряжение переменного тока проходит через 0 В) еще на количество циклов. Затем можно изменить соотношение циклов включения и выключения, чтобы обеспечить изменение средней мощности, подаваемой на нагрузку.Рис. 6.2.13 иллюстрирует теоретический метод достижения нулевого переключения кроссовера. Практическая демонстрационная схема показана на рис. 6.2.14, а фактические формы сигналов, полученные из схемы, показаны на рис. 6.2.15.

Форма сигнала A на рис. 6.2.15 показывает форму сигнала 18Vpp, 100 Гц, приложенную к схеме перехода через нуль от двухполупериодного выпрямленного источника переменного тока и мостового выпрямителя (затенено серым на рис. 6.2.14).

Форма сигнала B представляет собой серию импульсов 5 В, полученных от оптопары IC1.Поскольку транзистор оптопары включен в течение большей части положительного полупериода входа переменного тока, это делает эмиттер высоким, за исключением узкого импульса, когда эмиттер падает с 5 В до 0 В каждый раз, когда вход переменного тока падает до 0 В. Таким образом, эти импульсы синхронизируются с точкой нулевого напряжения формы сигнала A.

Однако, поскольку для запуска SCR необходимы положительные импульсы запуска, импульсы в точке B инвертируются Tr1 для создания формы сигнала C.

Форма сигнала

D является выходным сигналом автономного нестабильного генератора 555 IC2, который генерирует прямоугольные импульсы с частотой повторения импульсов около 7 Гц и переменной скважностью, регулируемой VR1.Эта форма сигнала используется для управления соотношением времени включения и выключения SCR. Поскольку SCR будет высоким (включенным) в течение нескольких полупериодов 100 Гц, затем низким (выключенным) в течение нескольких полупериодов. Отношение метки к пространству прямоугольной волны, создаваемой IC2, регулируется VR1, чтобы обеспечить время включения примерно от 20% до 90% от периодического времени нестабильного выхода. Работа микросхемы IC2 более подробно описана в модуле «Осцилляторы» 4.4.

Выходы Tr1 (форма сигнала C) и IC2 (форма сигнала D) подаются на два входа логического элемента И (IC3).Выход IC3 переходит на логическую 1 только тогда, когда оба входа находятся на логической 1. Это создает серию узких положительных импульсов запуска (форма сигнала E) для запуска SCR только в начале этих полупериодов, когда форма сигнала D имеет высокий уровень. Создаваемые импульсы запуска подаются на Т2, изолирующий импульсный трансформатор 1: 1 через транзистор Tr2 драйвера эмиттерного повторителя. Вторичная обмотка Т2 подает триггерные импульсы на затвор тринистора через резистор ограничителя тока R11 и диод D3. Форма волны затвора (форма волны F) практически идентична форме волны выходного сигнала на катоде SCR, поскольку между затвором и катодом SCR существует лишь небольшая разница в напряжении.

Рис. 6.2.14 Цепь управления переходом через ноль SCR

* Примечание по безопасности: Как правило, резисторы 0,25 Вт подходят для этой конструкции, но если цепь работает в течение длительного времени без источника переменного тока, но при этом источник постоянного тока все еще включен, существует вероятность того, что R11 (47R 0,25 Вт) может перегреться. , так как в этих условиях он будет пропускать повышенный ток из-за сигнала E, являющегося версией нестабильного выхода с более высоким током (форма сигнала D). Чтобы избежать перегрева, R5 может быть заменен версией с более высокой мощностью, или, предпочтительно, оба источника переменного и постоянного тока всегда должны быть отключены, когда цепь не работает!

Рис.6.2.15 Формы сигналов Рис. 6.2.14 Схема

Рис. 6.2.16 SCR Zero Crossing


Схема макетной платы

SCR Работа цепи с нулевым переходом

В этой демонстрационной схеме снова используется двухполупериодный выпрямленный источник переменного тока низкого напряжения (12 В RMS ), описанный ранее и затененный серым цветом на рис. 6.2.14.

Рис. 6.2.14. использует два разных метода изоляции и демонстрирует, как метод контроля перехода через нуль может быть реализован с использованием стандартных компонентов.Он не предназначен для представления какого-либо конкретного коммерчески доступного решения и не предназначен для представления наилучшего доступного метода. Целью схем управления затвором SCR, обсуждаемых в этом модуле, является предоставление полезных демонстраций широко используемых методов управления и среды низкого напряжения для соответствующих экспериментов. Они могут быть построены недорого на стандартном макете или плате, как показано на рис. 6.2.16, в качестве полезных демонстраций или студенческих проектов. В этих проектах используются низкие напряжения, чтобы поддерживать более безопасную среду, но узнайте больше об электронике.org не заявляет и не предполагает, что какая-либо электронная схема является полностью безопасной, выбор построения и / или использования схем и методов, описанных на этом сайте, осуществляется исключительно на ваш страх и риск.

Видео на рис. 6.2.17 показывает эффект управления переходом через ноль при использовании для уменьшения яркости лампы. Обратите внимание на ярко выраженное мерцание, возникающее при включении и выключении SCR на низких частотах, показывая, что это решение, устраняя одну проблему управления SCR (помехи), порождает другую — низкую скорость переключения и связанное с этим мерцание.Однако, хотя это может быть проблемой для приложений освещения, это не проблема для приложений с медленно меняющимися значениями, такими как управление нагревом. Таким образом, переход через нуль может быть эффективным для контроля температуры путем изменения средней мощности, подаваемой на нагревательный элемент. Кроме того, из-за отсутствия быстро изменяющихся скачков напряжения при управлении переходом через ноль он больше подходит для использования с индуктивными нагрузками, чем схемы управления, которые переключаются во время цикла переменного тока.

Рис.6.2.17 SCR Zero Crossing Control

Рис. 6.2.17 Видео недоступно


в формате для печати

приложений SCR | Переключатель, управление питанием переменного и постоянного тока, защита от перенапряжения

В этом руководстве мы узнаем о некоторых широко известных приложениях SCR. Применения SCR включают переключение, управление мощностью в цепях переменного и постоянного тока, защиту от перенапряжения и т.д. также может переключать высокие напряжения, что позволяет использовать тиристор или тиристор в различных приложениях.

Эти приложения включают переключение, выпрямление, регулирование, защиту и т. Д. SCR используются для управления бытовыми приборами, включая освещение, контроль температуры, регулирование скорости вентилятора, нагрев и активацию сигнализации.

В промышленных приложениях тиристоры используются для управления скоростью двигателя, зарядкой аккумулятора и преобразованием мощности. Некоторые из них описаны ниже.

SCR как коммутатор

Операция переключения — одно из наиболее важных приложений SCR.SCR часто используется в качестве твердотельного реле и имеет больше преимуществ, чем электромагнитные реле или переключатели, поскольку в SCR нет движущихся частей.

На рисунке ниже показано применение SCR в качестве переключателя для включения и выключения питания, подаваемого на нагрузку. Мощность переменного тока, подаваемая на нагрузку, регулируется путем подачи на SCR чередующихся запускающих импульсов. Резисторы R1 и R2 защищают диоды D1 и D2 соответственно. Резистор R ограничивает ток затвора.

Во время положительного полупериода входа SCR1 смещен в прямом направлении, а SCR2 — в обратном.Если переключатель S замкнут, ток затвора подается на SCR1 через диод D1 и, следовательно, SCR1 включается. Следовательно, ток течет к нагрузке через тиристор 1.

Аналогично, во время отрицательного полупериода сигнала SCR2 смещен в прямом направлении, а SCR1 — в обратном. Если переключатель S замкнут, ток затвора течет к SCR2 через диод D2. Следовательно, SCR2 включен, и ток нагрузки течет через него.

Следовательно, управляя переключателем S, ток нагрузки можно регулировать в любом желаемом положении.Замечено, что этот переключатель управляет током в несколько миллиампер для управления током в несколько сотен ампер в нагрузке. Таким образом, этот метод переключения более выгоден, чем механическое или электромеханическое переключение.

В начало

Управление мощностью с использованием SCR

SCR могут управлять мощностью, передаваемой на нагрузку. Часто требуется изменять мощность, подаваемую на нагрузку, в зависимости от требований к нагрузке, таких как регулировка скорости двигателя и регуляторы освещенности.

В таких условиях изменение мощности с помощью обычных регулируемых потенциометров не является надежным методом из-за большого рассеивания мощности. Для уменьшения рассеиваемой мощности в цепях большой мощности, тиристоры — лучший выбор в качестве устройств управления мощностью.

Управление мощностью переменного тока с использованием SCR

В цепях переменного тока регулирование фазы является наиболее распространенной формой управления мощностью SCR. При управлении фазой, изменяя угол срабатывания альфа на выводе затвора, достигается управление мощностью.

На рисунке ниже показана полная схема управления волной переменного тока, иллюстрирующая метод управления фазой. Учтите, что питание переменного тока подается на два встречно-параллельных тиристора. Во время положительного полупериода сигнала SCR1 проводит, в то время как в отрицательном полупериоде SCR2 проводит, когда к ним подаются соответствующие импульсы затвора.

Изменяя угол включения соответствующих тиристоров, время включения изменяется. Это приводит к варьированию мощности, потребляемой нагрузкой. На рисунке ниже тиристоры срабатывают при задержке импульсов (что означает увеличение угла зажигания), что приводит к снижению мощности, подаваемой на нагрузку.

Основным преимуществом фазового управления является то, что тиристоры автоматически выключаются при каждом текущем нулевом положении переменного тока. Следовательно, для выключения тиристора не требуется схема коммутации.

Вернуться к началу

Управление мощностью постоянного тока с использованием SCR

В случае цепи постоянного тока мощность, подаваемая на нагрузку, изменяется путем изменения продолжительности включения и выключения SCR. Этот метод называется прерыванием или управлением ВКЛ-ВЫКЛ. На рисунке ниже показано простое двухпозиционное управление нагрузкой с помощью SCR.

Также можно переключать тиристор с определенной частотой срабатывания, чтобы ток, протекающий в нагрузку, варьировался. Примером такой схемы является схема SCR на основе ШИМ, обеспечивающая переменный выход на нагрузку.

Можно производить переменную мощность постоянного тока для нагрузки, используя схемы выпрямителя с регулировкой фазы. Средняя мощность постоянного тока, подаваемая на нагрузку, регулируется путем управления моментом включения тиристора. Некоторые из этих схем выпрямителя приведены ниже.

Полупериодный выпрямитель

На приведенной ниже схеме показана схема однофазного полуволнового выпрямителя с тиристором. Диод, включенный последовательно с переменным резистором, подключен к затвору, который отвечает за запуск тринистора.

  • Во время отрицательного полупериода входного сигнала переменного тока тиристор смещен в обратном направлении. Следовательно, ток через нагрузку не течет.
  • Во время отрицательного полупериода входа тиристор смещен в прямом направлении. Если резистор изменяется таким образом, что к затвору прикладывается минимальный ток срабатывания, то тиристор включается.Следовательно, ток начинает течь к нагрузке.
  • Если ток затвора выше, напряжение питания, при котором SCR включается, будет меньше. Угол, при котором SCR начинает проводить, называется углом зажигания. Для этой схемы выпрямителя угол открытия можно изменять только в течение положительного полупериода.
  • Следовательно, изменяя угол зажигания или ток затвора (изменяя сопротивление в этой цепи), можно заставить тиристор проводить часть или полный положительный полупериод, так что средняя мощность, подаваемая на нагрузку, изменяется.

Полнополупериодный выпрямитель

В двухполупериодном выпрямителе выпрямляются как положительная, так и отрицательная волна входного питания. Следовательно, по сравнению с полуволновым выпрямителем среднее значение постоянного напряжения выше, а также меньше пульсаций. На приведенном ниже рисунке показана схема двухполупериодного выпрямителя, состоящая из двух тиристоров, соединенных с центральным трансформатором с ответвлениями.

• Во время положительного полупериода входа SCR1 смещен в прямом направлении, а SCR2 — в обратном.При подаче правильного стробирующего сигнала SCR1 включается, и, следовательно, через него начинает течь ток нагрузки.

• Во время отрицательного полупериода входа SCR2 смещен в прямом направлении, а SCR1 — в обратном. При срабатывании затвора SCR2 включается, и, следовательно, ток нагрузки протекает через SCR2.

• Следовательно, изменяя ток срабатывания тринистора, изменяется средняя мощность, подаваемая на нагрузку.

Полнополупериодный мостовой выпрямитель

Вместо использования трансформатора с центральным ответвлением можно также использовать четыре тиристора в мостовой конфигурации для получения двухполупериодного выпрямления.Во время положительного полупериода входа SCR1 и SCR2 находятся в проводящем состоянии. Во время отрицательного полупериода SCR3 и SCR4 находятся в проводящем состоянии. Угол проводимости каждого тиристора регулируется путем изменения соответствующих токов затвора. Следовательно, выходное напряжение на нагрузке меняется.

Вернуться к началу

Защита от перенапряжения с помощью SCR

Благодаря быстрому переключению SCR, одним из распространенных приложений SCR является то, что он может использоваться в качестве защитного устройства.Цепь, используемая для защиты от перенапряжения, называется цепью лома.

На рисунке ниже показана схема лома с тиристором. Эта цепь лома подключается к цепи или нагрузке, которую необходимо защитить. Эта схема состоит из тринистора, который запускается стабилитроном. Этот стабилитрон выбран таким образом, что при нормальных условиях работы он действует как разомкнутый переключатель.

Итак, напряжение на резисторе равно нулю, и, следовательно, тиристор остается в выключенном состоянии.

Каждый раз, когда напряжение источника питания превышает указанные пределы, стабилитроны начинают проводить ток, и на резисторе появляется достаточное напряжение. Это переводит SCR в режим проводимости. Падение напряжения на тиристоре снижается, поскольку он находится в режиме проводимости, и, таким образом, нагрузка защищена от перенапряжения.

В начало

Как работают тиристоры? | Сравнение тиристоров и транзисторов

Криса Вудфорда.Последнее изменение: 29 мая 2021 г.

Транзисторы — крошечные электронные компоненты которые изменили мир: вы найдете их в все от калькуляторов и компьютеры для телефоны, радио и слуховые аппараты. Они удивительно универсальны, но это не значит, что они могут все. Хотя мы можем использовать их для включения крошечных электрических токов и выключено (это основной принцип компьютерной памяти), и преобразовать малые токи в несколько большие (вот как усилитель работает), они не очень полезны в обращении гораздо большие токи.Еще один недостаток в том, что они отключаются сразу после снятия тока переключения, что означает они не так полезны в устройствах, таких как будильники, где вы хотите цепь для срабатывания и остается включенной неопределенно долго. Для такого рода работ мы можем обратиться к похожему электронному компоненту, называемому тиристор, имеющий общие черты с диоды, резисторы, и транзисторы. Триристоры довольно легко понять, хотя большинство объяснений, которые вы найдете в Интернете, излишне сложный и часто невероятно запутанный.Итак, это наш старт точка: давайте посмотрим, сможем ли мы ясно и просто взглянуть на то, что тиристоры, как они работают и какие вещи, для которых мы можем их использовать!

Изображение: Типичный тиристор немного похож на транзистор — и работает в близкородственный способ.

Что такое тиристоры?

Во-первых, давайте разберемся с терминологией. Некоторые люди используйте термин кремниевый выпрямитель (SCR) взаимозаменяемо с «тиристором». Фактически, кремниевый выпрямитель — это торговая марка, которую компания General Electric представила опишите один конкретный тип тиристора, который он сделал.Есть различные другие типы тиристоров (в том числе так называемые диаки и симисторы, которые предназначены для работы с переменным током), поэтому условия не полностью синоним. Тем не менее, эта статья о хранении вещей простой, поэтому поговорим о тиристорах в самом общем виде термины и предполагают, что SCR — это одно и то же. Мы будем называть их тиристорами.

Фото: Тиристоры широко используются в электронных схемах управления мощностью, подобных этому.

Три соединения

Так что же такое тиристор? Это электронный компонент с тремя выводами, называемый анодом (положительный вывод), катод (отрицательный вывод) и затвор. Это несколько аналогичные к трем выводам транзистора, которые, как вы помните, называются эмиттер, коллектор и база (для обычного транзистора) или исток, сток и затвор (в полевом транзисторе или полевом транзисторе). В обычном транзисторе один из трех выводов (база) действует как элемент управления, который регулирует, сколько тока течет между другими два отведения.То же самое и с тиристором: затвор управляет ток, протекающий между анодом и катодом. (Стоит отметить, что можно получить триисторы с двумя или четырьмя выводами, а также с тремя выводами. Но мы сохраняем здесь все просто, поэтому мы просто поговорим о наиболее распространенной разновидности.)

Сравнение транзисторов и тиристоров

Если транзистор и тиристор выполняют одну и ту же работу, какая между ними разница? С транзистором, когда маленький ток течет в базу, это делает больший ток между эмиттер и коллектор.Другими словами, он действует как переключатель и усилитель одновременно:

Как работает транзистор: небольшой ток, протекающий в базу, вызывает больший ток между эмиттером и коллектором. Это транзистор n-p-n с красным, обозначающим кремний n-типа, синим, обозначающим p-тип, черными точками, представляющими электроны, и белыми точками, обозначающими дырки.

То же самое происходит внутри полевого транзистора, за исключением того, что мы прикладываем небольшое напряжение к затвору, чтобы произвести электрическое поле, которое помогает току течь от источника к осушать.Если мы удалим небольшой ток в базе (или затворе), большой ток немедленно перестает течь от эмиттера к коллектору (или от истока к стоку в полевом транзисторе).

Часто это не то, чего мы хотим. В что-то вроде цепи охранной сигнализации (где, возможно, злоумышленник наступает на нажимную подушечку, и колокольчики начинают звенеть), мы хотим, чтобы небольшой ток (активируется нажимной подушечкой) для отключения большего ток (звон колокольчиков) и чтобы больший ток продолжал течь даже когда меньший ток прекращается (так что колокола все еще звонят, даже если наш незадачливый злоумышленник осознает свою ошибку и отходит от площадки).В тиристоре это именно то, что происходит. Небольшой ток на затворе вызывает много больший ток между анодом и катодом. Но даже если мы тогда удалите ток затвора, больший ток продолжает течь из анод к катоду. Другими словами, тиристор остается («защелкивается») включенным. и остается в этом состоянии до тех пор, пока схема не будет перезагружена.

Там, где транзистор обычно имеет дело с крошечными электронными токи (миллиампер) тиристор выдерживает настоящие (электрические) силовые токи (обычно несколько сотен вольт и 5–10 ампер).Вот почему мы можем использовать их в таких вещах, как заводские выключатели питания, регуляторы скорости электродвигателей, бытовые диммеры, выключатели зажигания автомобилей, сетевые фильтры и термостаты. Время переключения практически мгновенно (измеряется в микросекундах), и эта полезная функция, в сочетании с отсутствием движущихся частей и высокой надежностью, поэтому часто используются тиристоры. как электронные (твердотельные) версии реле (переключатели электромагнитные).

Как работает тиристор?

Тиристоры являются логическим продолжением диодов и транзисторы, поэтому давайте кратко рассмотрим эти компоненты.Если вы не знакомы с твердотельной электроникой, у нас больше и более четкие объяснения того, как работают диоды и и как работают транзисторы, которую вы, возможно, захотите прочитать в первую очередь.

Тиристор как два диода

Напомним, что диод — это два слоя полупроводника. (p-тип и n-тип) зажаты вместе, чтобы создать соединение где происходят интересные вещи. В зависимости от того, как вы подключаете диод, ток либо будет течь через него, либо нет, что делает его электронный эквивалент улицы с односторонним движением.С положительной связью к p-типу (синий) и отрицательному соединению к n-типу (красный) диод смещение вперед, поэтому электроны (черные точки) и дыры (белые точки) перемещаются к счастью через переход и нормальный ток течет:

Диод с прямым смещением: через переход между p-типом (синий) и n-типом (красный) протекает ток, переносимый электронами (черные точки) и дырками (белые точки).

В противоположной конфигурации, с плюсовым подключением к n-типу и отрицательный к p-типу, диод имеет обратное смещение: соединение становится огромной пропастью, которую электроны и дырки не могут пересечь и нет тока:

Диод с обратным смещением: при обратном подключении батареи «зона истощения» на стыке становится шире, поэтому ток не течет.

В транзисторе мы имеем три слоя полупроводника, расположенных поочередно (либо p-n-p, либо n-p-n), что дает два перекрестка, где могут происходить интересные вещи. (Полевой транзистор немного разные, с дополнительными слоями металла и оксида, но все же по сути, бутерброд n-p-n или p-n-p.). Тиристор — это просто следующий шаг в последовательность: четыре слоя полупроводника, снова расположенные поочередно дайте нам p-n-p-n (или n-p-n-p, если вы поменяете местами) с тремя переходы между ними. Анод соединяется с внешним слоем p, катод к внешнему n слою, а затвор к внутреннему p слой, например:

Тиристор похож на два соединенных диода, соединенных вместе, но с дополнительным подключением к одному из внутренних слоев — «затвору».«

Вы можете видеть, что это напоминает два соединительных диода, соединенных последовательно, но с дополнительным соединением затвора внизу. Тиристор, как и диод, является выпрямителем: он проводит только в одном направлении. Вы не можете сделать тиристор, просто подключив два диода последовательно: дополнительное соединение затвора означает, что это еще не все. Если вы хорошо знакомы с электроникой, вы заметите сходство между тиристором и диодом Шокли (своего рода двойной диод с четыре чередующихся полупроводниковых слоя, изобретенные пионером транзисторов Уильямом Шокли в 1956 г.).Тиристоры произошли от работы транзисторов и диодов Шокли, который был разработан Джуэллом Джеймсом Эберсом, кто разработал двухтранзисторную модель, о которой мы расскажем дальше.

Иллюстрации: General Electric представила первый коммерчески успешный тиристор (тогда называемый кремниевым выпрямителем) в июле 1957 года благодаря усилиям Роберта Холла, Ника Холоньяка, Ф. В. «Билла» Гуцвиллера, и другие. Это базовая иллюстрация тиристора из одного из патентов Билла Гуцвиллера.Работа от Патент США 3040270: Схема выпрямителя с кремниевым управлением, включая генератор переменной частоты, предоставлена ​​Бюро патентов и товарных знаков США.

Тиристор как два транзистора

Менее очевидно то, что четыре слоя работают как два транзисторы (n-p-n и p-n-p), которые соединены вместе, так что выход из одного формирует вход в другой. Ворота служат как своего рода «стартер» для их активации.

Тиристор также похож на два транзистора, соединенных вместе, поэтому выход каждого из них служит входом для другого.

Три состояния тиристора

Так как же это работает? Мы можем перевести его в три возможных состояния, во всех трех из которых он либо полностью выключен, либо полностью включен, что означает, что это, по сути, двоичное цифровое устройство. Чтобы понять, как работают эти состояния, полезно помнить о диодах и транзисторах:

Прямая блокировка

Обычно, когда ток не течет в затвор, тиристор выключен: ток не может течь из затвора. анод к катоду.Почему? Представьте тиристор как два соединенных диода. все вместе. Верхний и нижний диоды смещены в прямом направлении. Однако это означает, что соединение в центре имеет обратное смещение, поэтому ток не может пройти весь путь сверху вниз. Это состояние называется вперед блокировка. Хотя это похоже на прямое смещение в обычном диоде, ток не течет.

Блокировка обратного хода

Предположим, мы поменяем местами соединения анод / катод. Теперь вы, вероятно, видите, что оба верхний и нижний диоды имеют обратное смещение, поэтому ток через тиристор по-прежнему не течет.Это называется обратной блокировкой (аналогично обратному смещению в простом диоде).

Форвардное ведение

Третье состояние действительно интересно. Нам нужно, чтобы анод был положительный и отрицательный катод. Затем, когда ток течет в затвор, он включает нижний транзистор, который включает верхний, который включает нижний и так далее. Каждый транзистор активирует другой. Мы можем рассматривать это как своего рода внутреннюю положительную обратную связь, в которой два транзистора продолжают подавать ток друг другу. пока они оба не будут полностью активированы, после чего через них может течь ток. как от анода к катоду.Это состояние называется прямой проводимостью, и именно так тиристор «защелкивается» (остается постоянно) включенным. После фиксации тиристора на таком, вы не можете выключить его, просто сняв ток с вентиль: в этот момент ток затвора не имеет значения — и вы должны прервать основной ток, протекающий от анода к катод, часто отключая питание всей цепи. Не следите за этим? Посмотрите анимацию в поле ниже, и я надеюсь, что она вам прояснится.

Типы тиристоров

Несколько упрощено, вот в чем суть того, как тиристор работает.Есть множество вариантов, в том числе устройства отключения ворот (GTO) (который может быть включен или выключен действием затвора), AGT (тиристор с анодным затвором) устройства, у которых затвор идет на внутренний слой n-типа около анода (вместо слоя p-типа около катода), фотоэлектрические тиристоры, в которых база активируется светом, и все другие виды. Но все они работают примерно одинаково, с затвором, отключающим один транзистор, который затем отключает другой.

Что такое тиристор? Типы тиристоров и их применение

Что такое тиристор? Типы тиристоров и их применение

Тиристоры — интересный класс полупроводниковых приборов.Они имеют аналогичные характеристики с другими твердотельными компонентами из кремния, такими как диоды и транзисторы. Поэтому отличить тиристоры от диодов и транзисторов может быть сложно. Чтобы усложнить задачу, на рынке доступны различные типы тиристоров.

В некоторых случаях то, что отличает тиристоры друг от друга, может быть всего лишь крошечной деталью.

Также, в зависимости от производителя, данный тиристор может называться другим именем.

Для успешного применения тиристоров при проектировании схем важно знать их уникальные характеристики, ограничения и их взаимосвязь со схемой.Вот почему мы потратили некоторое время на то, чтобы разобраться во всем этом, чтобы вы могли лучше понять, какой тиристор лучше всего подходит для вашего приложения.

Что такое тиристор?

А Тиристор — это четырехслойный прибор с чередующимися полупроводниками P-типа и N-типа (P-N-P-N).

В своей основной форме тиристор имеет три вывода: анод (положительный вывод), катод (отрицательный вывод) и затвор (контрольный вывод). Затвор контролирует поток тока между анодом и катодом.

Основная функция тиристора — регулировать электрическую мощность и ток, действуя как переключатель. Для такого небольшого и легкого компонента он обеспечивает адекватную защиту цепей с большими напряжениями и токами (до 6000 В, 4500 А).

Он привлекателен в качестве выпрямителя, поскольку может быстро переключаться из состояния проводимости тока в состояние непроводимости.

Кроме того, его стоимость обслуживания невысока, и при правильной эксплуатации он остается работоспособным в течение длительного времени без возникновения неисправностей.

Тиристоры используются в самых разных электрических цепях, от простых охранных сигнализаций до линий электропередачи.

Как работают тиристоры?

Тиристор со структурой P-N-P-N имеет три перехода: PN, NP и PN. Если анод является положительным выводом по отношению к катоду, внешние переходы, PN и PN смещены в прямом направлении, а центральный переход NP с обратным смещением. Следовательно, переход NP блокирует прохождение положительного тока от анода к катоду.Говорят, что тиристор находится в состоянии прямой блокировки . Точно так же прохождение отрицательного тока блокируется внешними PN-переходами. Тиристор находится в состоянии обратной блокировки .

Еще одно состояние, в котором может находиться тиристор, — это состояние прямой проводимости , при котором он получает достаточный сигнал для включения и начинает проводить.

Давайте на минутку выделим уникальные свойства, которые тиристоры привносят в схему, углубившись в природу сигнала и отклик тиристора.

Щелкните здесь, чтобы купить тиристоры или другие устройства защиты цепей от MDE Semiconductor.

Наши двухконтактные тиристоры серии P разработаны для телекоммуникационной отрасли. Эти продукты обеспечивают защиту в соответствии с FCC Part 68, UL 1459, Bellcore 1089. ITU-TK, 20 & K. 21

MDE Semiconductor уделяет особое внимание решениям по защите цепей.

Краткое описание включения тиристора

Когда на вывод затвора подается достаточный положительный сигнальный ток или импульс, он переводит тиристор в проводящее состояние. Ток течет от анода к катоду и будет продолжать течь, даже когда сигнал затвора удален. Говорят, что тиристор «зафиксирован».

Чтобы разблокировать тиристор, необходимо выполнить сброс схемы путем уменьшения анодно-катодного тока ниже порогового значения, известного как ток удержания.

Включение тиристора на уровне полупроводникового материала

Структура PNPN тиристора может быть интерпретирована как два транзистора, соединенные вместе. То есть ток коллектора от транзистора NPN питает базу транзистора PNP. Точно так же ток коллектора от транзистора PNP питает базу транзистора NPN.

Для фиксации тиристора и начала проведения тока сумма общей базы

коэффициенты усиления по току двух транзисторов должны превышать единицу.

Когда на затвор подается положительный ток или кратковременный импульс, который в достаточной степени увеличивает коэффициент усиления контура до единицы, происходит регенерация. Это означает, что импульс заставляет транзистор NPN проводить ток, который, в свою очередь, смещает транзистор PNP в проводимость. Если

начальный пусковой ток на затворе удаляется, тиристор остается во включенном состоянии, пока ток через тиристор достаточно высок, чтобы соответствовать критериям единичного усиления.Это ток фиксации .

Тиристор может включиться также из-за лавинного пробоя блокировочного перехода. Чтобы тиристор включился при нулевом токе затвора, приложенный ток должен достигнуть напряжения отключения тиристора. Это нежелательно, так как поломка приводит к повреждению устройства. Для нормальной работы тиристор выбирается таким образом, чтобы его напряжение отключения было больше, чем наибольшее напряжение, которое будет испытываться от источника питания.Таким образом, включение тиристора может произойти только после того, как на затвор будет подан преднамеренный импульс, за исключением случаев, когда тиристор был специально разработан для работы в режиме отключения. (См. Типы тиристоров с возможностью управляемого отключения ниже).

Тиристор выключения

Чтобы выключить тиристор, который зафиксирован (включен / включен), ток через него должен измениться так, чтобы коэффициент усиления контура был ниже единицы.Выключение начинается, когда ток становится ниже удерживающего.

Тиристоры различных типов и их применение

Тиристоры

можно классифицировать в зависимости от характера их поведения при включении и выключении, а также их характеристик напряжения и тока: Различные классы:

  1. Тиристоры с возможностью включения (однонаправленное управление)
  2. Тиристоры с возможностью отключения (однонаправленное управление)
  3. Двунаправленное управление

  1. Тиристоры с возможностью включения (однонаправленное управление)

  1. Кремниевый выпрямитель (SCR)

SCR

— наиболее известные тиристоры.Как объяснено в общем описании тиристоров выше, тиристор остается зафиксированным даже при снятии тока затвора. Чтобы разблокировать, необходимо снять ток между анодом и катодом или сбросить анод до отрицательного напряжения относительно катода. Эта характеристика идеальна для регулирования фазы. Когда анодный ток становится равным нулю, тиристор перестает проводить и блокирует обратное напряжение.

SCR используются в схемах переключения, приводах двигателей постоянного тока, статических переключателях переменного / постоянного тока и инвертирующих схемах.

  1. Тиристор обратного тока (RCT)

Тиристоры обычно пропускают ток только в прямом направлении, но блокируют токи в обратном направлении. Однако RCT состоит из SCR, интегрированного с обратным диодом, который устраняет нежелательную индуктивность контура и уменьшает переходные процессы обратного напряжения. RCT обеспечивает электрическую проводимость в обратном направлении с улучшенной коммутацией.

RCT используются в инверторах и приводах постоянного тока для мощных прерывателей.

  1. Светоактивированный кремниевый выпрямитель (LASCR)

Они также известны как тиристоры с управляемым светом (LTT). Для этих устройств, когда легкие частицы попадают на обратносмещенный переход, количество электронно-дырочных пар в тиристоре увеличивается. Если сила света больше критического значения, тиристор включится. LASCR обеспечивает полную электрическую изоляцию между источником света и переключающим устройством преобразователя мощности.

LASCR используются в передающем оборудовании HVDC, компенсаторах реактивной мощности и генераторах импульсов большой мощности.

  1. Тиристоры с возможностью отключения (однонаправленное управление)

Традиционные тиристоры, такие как тиристоры, включаются при подаче достаточного количества управляющего импульса. Чтобы выключить их, необходимо отключить главный ток. Это неудобно в схемах преобразования постоянного тока в переменный и постоянного в постоянный, где ток, естественно, не становится нулевым.

  1. Затвор запорный тиристор (ГТО)

GTO отличается от стандартного тиристора тем, что его можно отключить, подав отрицательный ток (напряжение) на затвор, не требуя снятия тока между анодом и катодом (принудительная коммутация). Это означает, что GTO можно выключить стробирующим сигналом с отрицательной полярностью, что делает его полностью управляемым переключателем. Его также называют коммутатором, управляемым воротами, или GCS. Время выключения GTO примерно в десять раз меньше, чем у эквивалентного SCR.

GTO

с возможностью обратной блокировки, сравнимой с их номинальным напряжением в прямом направлении, называются симметричными GTO. Асимметричные GTO не обладают значительной возможностью блокировки обратного напряжения. GTO с обратной проводимостью состоят из GTO, интегрированного с встречно-параллельным диодом. Асимметричные GTO — самая популярная разновидность на рынке.

GTO используются в приводах двигателей постоянного и переменного тока, мощных инверторах и стабилизаторах переменного тока.

  1. МОП отключающий тиристор (МТО)

MTO — это комбинация GTO и MOSFET для улучшения отключающей способности GTO.GTO требует подачи большого тока отключения затвора, пиковая амплитуда которого составляет около 20-35% анодно-катодного тока (ток, который необходимо контролировать). MTO имеет два управляющих терминала, затвор включения и затвор выключения, также называемый затвором MOSFET.

Чтобы включить MTO, приложенный импульс затвора достаточной величины вызывает фиксацию тиристора (аналогично SCR и GTO).

Для выключения MTO на затвор MOSFET подается импульс напряжения.Включается полевой МОП-транзистор, который закорачивает эмиттер и базу NPN-транзистора, тем самым останавливая фиксацию. Это намного более быстрый процесс, чем GTO (приблизительно 1-2 мкс), и в этом случае большой отрицательный импульс, приложенный к затвору GTO, направлен на извлечение достаточного тока из базы NPN-транзистора. Кроме того, более быстрое время (MTO) устраняет потери, связанные с текущей передачей.

MTO используются в высоковольтных системах до 20 МВА, моторных приводах, гибких линиях передачи переменного тока (FACT) и инверторах источников напряжения для высокой мощности.

  1. Эмиттер отключающих тиристоров (ЭТО)

Как и MTO, ETO имеет два вывода, нормальный затвор и второй затвор, соединенные последовательно с полевым МОП-транзистором.

Чтобы включить ETO, на оба логических элемента подается положительное напряжение, что приводит к включению NMOS и выключению PMOS. Когда в нормальный затвор подается положительный ток, ETO включается.

Для выключения, когда на затвор полевого МОП-транзистора подается сигнал отрицательного напряжения, NMOS выключается и передает весь ток от катода.Процесс фиксации останавливается, и ETO выключается.

ETO

применяются в инверторах источников напряжения для высокой мощности, гибких линиях передачи переменного тока (FACT) и статических синхронных компенсаторах (STATCOM).

  1. Двунаправленное управление

Обсуждаемые до сих пор тиристоры были однонаправленными и используются в качестве выпрямителей, преобразователей постоянного тока в постоянный и инверторов. Чтобы использовать эти тиристоры для управления напряжением переменного тока, два тиристора необходимо соединить встречно параллельно, в результате чего получатся две отдельные схемы управления, которые потребуют большего количества проводных соединений.Двунаправленные тиристоры, которые могут проводить ток в обоих направлениях при срабатывании триггера, были разработаны специально для решения этой проблемы.

  1. Триод переменного тока (TRIAC)

Тиристоры

— вторые по распространенности тиристоры после тиристоров. Они могут управлять обеими половинами переменного сигнала, тем самым более эффективно используя доступную мощность. Однако симметричные преобразователи частоты обычно используются только для приложений с низким энергопотреблением из-за присущей им несимметричной конструкции.В приложениях с высокой мощностью симисторы имеют некоторые недостатки при переключении при разных напряжениях затвора в течение каждого полупериода. Это создает дополнительные гармоники, которые вызывают дисбаланс в системе и влияют на характеристики ЭМС.

Маломощные триаки используются в качестве регуляторов света, регуляторов скорости для электрических вентиляторов и других электродвигателей, а также в компьютерных схемах управления бытовой техникой.

  1. Диод переменного тока (DIAC)

DIACS — это маломощные устройства, которые в основном используются вместе с TRIACS (размещены последовательно с выводом затвора TRIAC).

Поскольку TRIAC по своей природе несимметричны, DIAC предотвращает протекание любого тока через затвор TRIAC до тех пор, пока DIAC не достигнет своего триггерного напряжения в любом направлении. Это гарантирует, что TRIACS, используемые в переключателях переменного тока, срабатывают равномерно в любом направлении.

DIAC находятся в диммерах для ламп.

  1. Кремниевый диод переменного тока (SIDAC)

SIDAC электрически ведет себя так же, как DIAC.Основное различие между ними состоит в том, что SIDAC имеют более высокое напряжение отключения и большую мощность, чем DIAC. SIDAC — это пятиуровневое устройство, которое можно использовать непосредственно в качестве переключателя, а не в качестве триггера для другого коммутационного устройства (например, DIAC для TRIACS).

Если приложенное напряжение соответствует или превышает напряжение отключения, SIDAC начинает проводить ток. Он остается в этом проводящем состоянии даже при изменении приложенного напряжения до тех пор, пока ток не станет ниже его номинального тока удержания.SIDAC возвращается в непроводящее состояние, чтобы повторить цикл.

SIDAC

используются в релаксационных генераторах и других устройствах специального назначения.

Щелкните здесь, чтобы купить тиристоры или другие устройства защиты цепей от MDE Semiconductor.

Наши двухконтактные тиристоры серии P разработаны для телекоммуникационной отрасли. Эти продукты обеспечивают защиту в соответствии с FCC Part 68, UL 1459, Bellcore 1089.ITU-TK, 20 и K. 21

Тиристор — обзор | Темы ScienceDirect

8.4.4 Тиристоры

Тиристор представляет собой четырехслойное трехконтактное полупроводниковое устройство, используемое для управления протеканием тока. Он состоит из трех p-n-переходов, как показано на рис. 8.46, и трех выводов, называемых анодом, катодом и затвором. Использование тиристора включает защиту электронных цепей от перенапряжения (лом), управление двигателем, бытовые вспомогательные устройства (например, электрические кухонные приспособления) и цепи регулирования напряжения.

Рисунок 8.46. Структура тиристора и обозначение схемы

В выключенном состоянии ток (I) не течет от анода к катоду. Тиристор можно включить или перевести в проводящее состояние, подав ток в слой p-типа, подключенный к затвору. При включении он будет продолжать проводить ток (от анода к катоду) до тех пор, пока проводящий ток остается выше уровня удерживающего тока. Это не зависит от тока затвора.

Рисунок 8.47 показан тиристор, регулирующий ток, протекающий через резистор. Входное напряжение синусоидальной волны применяется в качестве управляющего сигнала, и ток будет течь, когда тиристор находится в проводящем состоянии, а проводящий ток остается выше уровня удерживающего тока для тиристора. Для коммерческих устройств эту информацию предоставляет техническое описание. Схема генератора тока затвора генерирует необходимые сигналы для управления работой тиристора. Обычно схема генерирует импульсы в соответствующей точке синусоидальной волны входного сигнала, в этом примере включает тиристор на пике напряжения входного сигнала.Ток (I) течет до тех пор, пока этот ток выше уровня удерживающего тока. Если нагрузка индуктивная (как в электродвигателях), необходимо учитывать разность фаз между напряжением и током. Ток будет течь только от анода к катоду, поэтому сигнал переменного тока должен быть выпрямлен. Благодаря такому действию тиристор также называют кремниевым управляемым выпрямителем (SCR).

Рисунок 8.47. Тиристор, контролирующий протекание тока через резистор

Характеристики тиристора отображаются на одном из двух графиков:

1.

Характеристика тиристора с нулевым током затвора , на рис. 8.48 показана характеристика напряжения устройства (напряжение между анодом и катодом) по сравнению с током (ток, протекающий через анод), когда затвор не работает. Первоначально, когда тиристор выключен, ток отсутствует, и будет течь только небольшой прямой ток утечки. По мере увеличения напряжения на тиристоре будет течь только небольшой прямой ток утечки, пока напряжение не достигнет значения, при котором ток может увеличиться до значения (тока фиксации), при котором тиристор сам включится.Напряжение на тиристоре падает до уровня прямого падения напряжения. Тиристор будет продолжать проводить (независимо от тока затвора), пока прямой ток остается выше уровня удерживающего тока. Когда тиристор выключен и на анод и катод подается обратное напряжение, будет наблюдаться небольшой обратный ток утечки, пока приложенное напряжение не достигнет величины, вызывающей обратный пробой (напряжение обратного пробоя). В этот момент ток может резко увеличиться и, если его не ограничить, может вызвать поломку устройства.Эти уровни напряжения и тока необходимо учитывать при проектировании схемы, чтобы предотвратить нежелательное срабатывание схемы и потенциальный отказ цепи.

Рисунок 8.48. Характеристика тиристора с нулевым током затвора

2.

Характеристика переключения тиристора , на рисунке 8.49 показана характеристика устройства, когда ток затвора применяется для включения тиристора. Здесь ток фиксации больше, чем ток удержания.

Рисунок 8.49. Характеристики переключения тиристора

ПЛИС или CPLD могут обеспечивать управление тиристором. Простая установка, показанная на рис. 8.50, показывает, что CPLD выдает импульсы с одного из своих цифровых выходов. Здесь на схеме показан выходной вывод CPLD, подключенный непосредственно к затвору тиристора. Однако может потребоваться токоограничивающий резистор, включенный последовательно с затвором тиристора (как в схемах биполярных транзисторов). Этот импульсный сигнал может быть создан с использованием простого счетчика с декодированием выходных состояний счетчика для обеспечения необходимой последовательности импульсов 0-1-0.

Рисунок 8.50. CPLD-управление тиристором

При выборе схемы и ширины импульса необходимо учитывать следующие факторы:

1.

FPGA или CPLD могут обеспечить необходимый ток затвора тиристора и напряжение затвора.

2.

Ширина импульса тока затвора должна учитывать требования ко времени включения и выключения тиристора, а также частоту управляющего сигнала переменного тока.

3.

Момент времени в течение цикла напряжения переменного тока, в котором создается сигнал стробирующего импульса.Чтобы создать точно синхронизированный импульс (синхронизированный с сигналом переменного тока), тогда сигнал переменного тока должен контролироваться, а точка в сигнальном цикле для создания импульса определяется значением отслеживаемого сигнала. Компаратор и опорное напряжение постоянного тока (напряжение сигнала, при котором создается импульс) с выходом компаратора в качестве входа для CPLD (и, следовательно, подходящего цифрового конечного автомата в CPLD) обеспечивают эту синхронизацию.

4.

Необходимо принять соответствующие меры для изоляции любых низковольтных и высоковольтных цепей.

Для электрической изоляции любых низковольтных и высоковольтных цепей используется оптоизолятор. Это устройство, которое обеспечивает оптическое соединение между двумя цепями, но электрическую изоляцию. Оптоизолятор состоит из светодиода и фототранзистора в одном корпусе. Внешний входной сигнал включает или выключает светодиод на входной цепи. Когда светодиод включен, генерируемый свет падает на фототранзистор, включая его, когда он горит, и гаснет, когда он не горит.

Создает оптическое соединение с гальванической развязкой. Основная идея оптоизолятора показана на рисунке 8.51.

Рисунок 8.51. Использование оптоизолятора

На рисунке 8.52 показан пример оптоизолятора, электрически изолирующего CPLD от самого тиристора.

Рисунок 8.52. Пример схемы оптоизоляции

Для создания импульсов, необходимых для включения тиристора, можно использовать FPGA или CPLD. Рассмотрим ситуацию, когда необходимо управлять синусоидальным напряжением 50 Гц для схемы, показанной на рисунке 8.50. Здесь импульс управляется так, чтобы он увеличивался с шагом в 1 мс, полученным из тактовой частоты 1 кГц (период тактовой частоты составляет 1 мс). Если этот тактовый сигнал 1 кГц получен из более высокой тактовой частоты, тогда может быть разработан счетчик для создания схемы делителя тактовой частоты. Простым способом получения импульса является создание счетчика и декодирование состояний выхода счетчика для создания импульсного сигнала. Импульс должен повторяться в каждом цикле синусоидальной волны, поэтому счетчик должен повторяться каждые 20 тактов (представляющих период времени 20 мс, 1/50 Гц).Импульс создается (т.е. будет логической 1) на положительном полупериоде синусоидальной волны. Не дается никакой информации о том, как схема будет определять, где находится время в цикле синусоидальной волны, поэтому предполагается, что, когда синусоидальная волна находится в точке пересечения (т. Е. Ноль), происходит переход от отрицательного значения к положительному значению (см. Рисунок 8.53), счетчик будет в исходном состоянии (состояние 0).

Рисунок 8.53. Отображение положения цикла синусоидальной волны для отображения состояний счетчика

Пример кода VHDL для этой схемы можно увидеть со ссылкой на блок-схему, показанную на рисунке 8.54. Здесь показано графическое представление кода VHDL (показанного на рисунке 8.55), а также конструкция счетчика с декодированными выходами, который управляется с помощью главного тактового генератора 50 МГц и активного низкого асинхронного сброса. Этот дизайн кода VHDL реализован в рамках четырех процессов: Первый процесс создает счетчик на 50 000 отсчетов, используя входную частоту 50 МГц. Второй процесс создает внутреннюю тактовую частоту 1 кГц путем декодирования выходных данных первого процесса. Третий процесс создает счетчик с 20 состояниями, а четвертый процесс декодирует этот выходной сигнал счетчика для получения сигнала управления затвором тиристора.

Рисунок 8.54. Цифровая схема для создания импульса затвора тиристора

Рисунок 8.55. Генератор импульсов управления тиристорным затвором

Пример испытательного стенда VHDL для этой конструкции показан на рисунке 8.56.

Рисунок 8.56. Испытательный стенд генератора импульсов управления тиристорным затвором

Точка входного сигнала, в которой запускается импульс затвора тиристора, может быть обнаружена с помощью схемы, подобной показанной на рисунке 8.57. Здесь компаратор используется для обнаружения превышения входным сигналом установленного опорного напряжения постоянного тока (V REF ).

Рисунок 8.57. Определение значения входной синусоидальной волны

В этой схеме два резистора (R 1 и R 2 ) используются для уменьшения значения входного синусоидального напряжения (V IN ) до безопасного уровня. который может использоваться компаратором без повреждения самого компаратора.

Схема управления двухпозиционным тиристором с ИС логического элемента

Это схема управления тиристором двухпозиционного действия с ИС логического элемента. Поведение схемы. SCR включится, когда на вход A будет подан ток смещения.Но SCR выключится, если на его вход B будет подан ток смещения .

Для управления обоими входами требуется логический сигнал «1», и они будут работать попеременно в разное время.

Как SCR проводит ток

Когда вход A получает логическую «1». IC1a превратит логику в «0». Это заставляет C1 заряжать положительное напряжение через R3.

Для IC1b выдает на выходе логическую «1».

Он работает как моностабильная схема для обеспечения импульсной логики «1».
Который контролируется значением C1, R3 через диод D1. Он имеет только положительное напряжение, которое может вызвать срабатывание затвора SCR. Использование R5 ограничивает ток затвора не слишком большим.

Рекомендуется: Как работает SCR и основные схемы

Когда срабатывает SCR. Он будет продолжать находиться в состоянии ВКЛ. Хотя, напряжение срабатывания изменится. Положительное напряжение будет проходить через анод и катод SCR. Также должно быть напряжение на R7.

У которого напряжение больше, чем падение напряжения на R6. Потому что сопротивление R7 больше, чем R6. Это делает Q1 смещенным вперед , чтобы загорелся светодиод.

Когда мы хотим, чтобы SCR перестал проводить или отключился. Нам нужно ввести логическую «1» на вход B.

C2, R4 и IC1d подключаются как моностабильный мультивибратор . Они будут генерировать импульсную логику «1» из 1 цикла. Эта логика поступает на контролируемую ногу IC2. Который этот IC2 (является электронным переключателем IC.

См. Техническое описание CD4066 (IC2)

Электронный переключатель соединит анод SCR с землей. Напряжение между анодом и землей составляет 0 В. В этом состоянии SCR немедленно прекратит выполнение. Q1 будет выключен, а затем LED1 погаснет.

Напряжение на катоде может управлять другими цепями контроллера. Который он включается и выключается с помощью SCR, как светодиод транзистора Q1, включающий-выключенный.

Возможно, вам тоже понравятся эти схемы.

Списки деталей

Резисторы 0,25 Вт, допуск: 5%
R1, R2: 10K
R3, R4: 1M
R5: 22K
R6: 6,8K
R7: 470K
R8, R9: 1K

Электролитические конденсаторы
C1: 1 мкФ 50 В

Полупроводники:
Q1: 2N3904, 40 В 0,1 А, NPN TO-92 Транзистор
LED1: красный 3 мм


14 мА, диод.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *